OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [drivers/] [input/] [misc/] [hp_sdc_rtc.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 * HP i8042 SDC + MSM-58321 BBRTC driver.
3
 *
4
 * Copyright (c) 2001 Brian S. Julin
5
 * All rights reserved.
6
 *
7
 * Redistribution and use in source and binary forms, with or without
8
 * modification, are permitted provided that the following conditions
9
 * are met:
10
 * 1. Redistributions of source code must retain the above copyright
11
 *    notice, this list of conditions, and the following disclaimer,
12
 *    without modification.
13
 * 2. The name of the author may not be used to endorse or promote products
14
 *    derived from this software without specific prior written permission.
15
 *
16
 * Alternatively, this software may be distributed under the terms of the
17
 * GNU General Public License ("GPL").
18
 *
19
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28
 *
29
 * References:
30
 * System Device Controller Microprocessor Firmware Theory of Operation
31
 *      for Part Number 1820-4784 Revision B.  Dwg No. A-1820-4784-2
32
 * efirtc.c by Stephane Eranian/Hewlett Packard
33
 *
34
 */
35
 
36
#include <linux/hp_sdc.h>
37
#include <linux/errno.h>
38
#include <linux/types.h>
39
#include <linux/init.h>
40
#include <linux/module.h>
41
#include <linux/time.h>
42
#include <linux/miscdevice.h>
43
#include <linux/proc_fs.h>
44
#include <linux/poll.h>
45
#include <linux/rtc.h>
46
 
47
MODULE_AUTHOR("Brian S. Julin <bri@calyx.com>");
48
MODULE_DESCRIPTION("HP i8042 SDC + MSM-58321 RTC Driver");
49
MODULE_LICENSE("Dual BSD/GPL");
50
 
51
#define RTC_VERSION "1.10d"
52
 
53
static unsigned long epoch = 2000;
54
 
55
static struct semaphore i8042tregs;
56
 
57
static hp_sdc_irqhook hp_sdc_rtc_isr;
58
 
59
static struct fasync_struct *hp_sdc_rtc_async_queue;
60
 
61
static DECLARE_WAIT_QUEUE_HEAD(hp_sdc_rtc_wait);
62
 
63
static ssize_t hp_sdc_rtc_read(struct file *file, char __user *buf,
64
                               size_t count, loff_t *ppos);
65
 
66
static int hp_sdc_rtc_ioctl(struct inode *inode, struct file *file,
67
                            unsigned int cmd, unsigned long arg);
68
 
69
static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait);
70
 
71
static int hp_sdc_rtc_open(struct inode *inode, struct file *file);
72
static int hp_sdc_rtc_release(struct inode *inode, struct file *file);
73
static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on);
74
 
75
static int hp_sdc_rtc_read_proc(char *page, char **start, off_t off,
76
                                int count, int *eof, void *data);
77
 
78
static void hp_sdc_rtc_isr (int irq, void *dev_id,
79
                            uint8_t status, uint8_t data)
80
{
81
        return;
82
}
83
 
84
static int hp_sdc_rtc_do_read_bbrtc (struct rtc_time *rtctm)
85
{
86
        struct semaphore tsem;
87
        hp_sdc_transaction t;
88
        uint8_t tseq[91];
89
        int i;
90
 
91
        i = 0;
92
        while (i < 91) {
93
                tseq[i++] = HP_SDC_ACT_DATAREG |
94
                        HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN;
95
                tseq[i++] = 0x01;                       /* write i8042[0x70] */
96
                tseq[i]   = i / 7;                      /* BBRTC reg address */
97
                i++;
98
                tseq[i++] = HP_SDC_CMD_DO_RTCR;         /* Trigger command   */
99
                tseq[i++] = 2;          /* expect 1 stat/dat pair back.   */
100
                i++; i++;               /* buffer for stat/dat pair       */
101
        }
102
        tseq[84] |= HP_SDC_ACT_SEMAPHORE;
103
        t.endidx =              91;
104
        t.seq =                 tseq;
105
        t.act.semaphore =       &tsem;
106
        init_MUTEX_LOCKED(&tsem);
107
 
108
        if (hp_sdc_enqueue_transaction(&t)) return -1;
109
 
110
        down_interruptible(&tsem);  /* Put ourselves to sleep for results. */
111
 
112
        /* Check for nonpresence of BBRTC */
113
        if (!((tseq[83] | tseq[90] | tseq[69] | tseq[76] |
114
               tseq[55] | tseq[62] | tseq[34] | tseq[41] |
115
               tseq[20] | tseq[27] | tseq[6]  | tseq[13]) & 0x0f))
116
                return -1;
117
 
118
        memset(rtctm, 0, sizeof(struct rtc_time));
119
        rtctm->tm_year = (tseq[83] & 0x0f) + (tseq[90] & 0x0f) * 10;
120
        rtctm->tm_mon  = (tseq[69] & 0x0f) + (tseq[76] & 0x0f) * 10;
121
        rtctm->tm_mday = (tseq[55] & 0x0f) + (tseq[62] & 0x0f) * 10;
122
        rtctm->tm_wday = (tseq[48] & 0x0f);
123
        rtctm->tm_hour = (tseq[34] & 0x0f) + (tseq[41] & 0x0f) * 10;
124
        rtctm->tm_min  = (tseq[20] & 0x0f) + (tseq[27] & 0x0f) * 10;
125
        rtctm->tm_sec  = (tseq[6]  & 0x0f) + (tseq[13] & 0x0f) * 10;
126
 
127
        return 0;
128
}
129
 
130
static int hp_sdc_rtc_read_bbrtc (struct rtc_time *rtctm)
131
{
132
        struct rtc_time tm, tm_last;
133
        int i = 0;
134
 
135
        /* MSM-58321 has no read latch, so must read twice and compare. */
136
 
137
        if (hp_sdc_rtc_do_read_bbrtc(&tm_last)) return -1;
138
        if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1;
139
 
140
        while (memcmp(&tm, &tm_last, sizeof(struct rtc_time))) {
141
                if (i++ > 4) return -1;
142
                memcpy(&tm_last, &tm, sizeof(struct rtc_time));
143
                if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1;
144
        }
145
 
146
        memcpy(rtctm, &tm, sizeof(struct rtc_time));
147
 
148
        return 0;
149
}
150
 
151
 
152
static int64_t hp_sdc_rtc_read_i8042timer (uint8_t loadcmd, int numreg)
153
{
154
        hp_sdc_transaction t;
155
        uint8_t tseq[26] = {
156
                HP_SDC_ACT_PRECMD | HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
157
                0,
158
                HP_SDC_CMD_READ_T1, 2, 0, 0,
159
                HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
160
                HP_SDC_CMD_READ_T2, 2, 0, 0,
161
                HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
162
                HP_SDC_CMD_READ_T3, 2, 0, 0,
163
                HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
164
                HP_SDC_CMD_READ_T4, 2, 0, 0,
165
                HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
166
                HP_SDC_CMD_READ_T5, 2, 0, 0
167
        };
168
 
169
        t.endidx = numreg * 5;
170
 
171
        tseq[1] = loadcmd;
172
        tseq[t.endidx - 4] |= HP_SDC_ACT_SEMAPHORE; /* numreg assumed > 1 */
173
 
174
        t.seq =                 tseq;
175
        t.act.semaphore =       &i8042tregs;
176
 
177
        down_interruptible(&i8042tregs);  /* Sleep if output regs in use. */
178
 
179
        if (hp_sdc_enqueue_transaction(&t)) return -1;
180
 
181
        down_interruptible(&i8042tregs);  /* Sleep until results come back. */
182
        up(&i8042tregs);
183
 
184
        return (tseq[5] |
185
                ((uint64_t)(tseq[10]) << 8)  | ((uint64_t)(tseq[15]) << 16) |
186
                ((uint64_t)(tseq[20]) << 24) | ((uint64_t)(tseq[25]) << 32));
187
}
188
 
189
 
190
/* Read the i8042 real-time clock */
191
static inline int hp_sdc_rtc_read_rt(struct timeval *res) {
192
        int64_t raw;
193
        uint32_t tenms;
194
        unsigned int days;
195
 
196
        raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_RT, 5);
197
        if (raw < 0) return -1;
198
 
199
        tenms = (uint32_t)raw & 0xffffff;
200
        days  = (unsigned int)(raw >> 24) & 0xffff;
201
 
202
        res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
203
        res->tv_sec =  (time_t)(tenms / 100) + days * 86400;
204
 
205
        return 0;
206
}
207
 
208
 
209
/* Read the i8042 fast handshake timer */
210
static inline int hp_sdc_rtc_read_fhs(struct timeval *res) {
211
        uint64_t raw;
212
        unsigned int tenms;
213
 
214
        raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_FHS, 2);
215
        if (raw < 0) return -1;
216
 
217
        tenms = (unsigned int)raw & 0xffff;
218
 
219
        res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
220
        res->tv_sec  = (time_t)(tenms / 100);
221
 
222
        return 0;
223
}
224
 
225
 
226
/* Read the i8042 match timer (a.k.a. alarm) */
227
static inline int hp_sdc_rtc_read_mt(struct timeval *res) {
228
        int64_t raw;
229
        uint32_t tenms;
230
 
231
        raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_MT, 3);
232
        if (raw < 0) return -1;
233
 
234
        tenms = (uint32_t)raw & 0xffffff;
235
 
236
        res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
237
        res->tv_sec  = (time_t)(tenms / 100);
238
 
239
        return 0;
240
}
241
 
242
 
243
/* Read the i8042 delay timer */
244
static inline int hp_sdc_rtc_read_dt(struct timeval *res) {
245
        int64_t raw;
246
        uint32_t tenms;
247
 
248
        raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_DT, 3);
249
        if (raw < 0) return -1;
250
 
251
        tenms = (uint32_t)raw & 0xffffff;
252
 
253
        res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
254
        res->tv_sec  = (time_t)(tenms / 100);
255
 
256
        return 0;
257
}
258
 
259
 
260
/* Read the i8042 cycle timer (a.k.a. periodic) */
261
static inline int hp_sdc_rtc_read_ct(struct timeval *res) {
262
        int64_t raw;
263
        uint32_t tenms;
264
 
265
        raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_CT, 3);
266
        if (raw < 0) return -1;
267
 
268
        tenms = (uint32_t)raw & 0xffffff;
269
 
270
        res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
271
        res->tv_sec  = (time_t)(tenms / 100);
272
 
273
        return 0;
274
}
275
 
276
 
277
/* Set the i8042 real-time clock */
278
static int hp_sdc_rtc_set_rt (struct timeval *setto)
279
{
280
        uint32_t tenms;
281
        unsigned int days;
282
        hp_sdc_transaction t;
283
        uint8_t tseq[11] = {
284
                HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
285
                HP_SDC_CMD_SET_RTMS, 3, 0, 0, 0,
286
                HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
287
                HP_SDC_CMD_SET_RTD, 2, 0, 0
288
        };
289
 
290
        t.endidx = 10;
291
 
292
        if (0xffff < setto->tv_sec / 86400) return -1;
293
        days = setto->tv_sec / 86400;
294
        if (0xffff < setto->tv_usec / 1000000 / 86400) return -1;
295
        days += ((setto->tv_sec % 86400) + setto->tv_usec / 1000000) / 86400;
296
        if (days > 0xffff) return -1;
297
 
298
        if (0xffffff < setto->tv_sec) return -1;
299
        tenms  = setto->tv_sec * 100;
300
        if (0xffffff < setto->tv_usec / 10000) return -1;
301
        tenms += setto->tv_usec / 10000;
302
        if (tenms > 0xffffff) return -1;
303
 
304
        tseq[3] = (uint8_t)(tenms & 0xff);
305
        tseq[4] = (uint8_t)((tenms >> 8)  & 0xff);
306
        tseq[5] = (uint8_t)((tenms >> 16) & 0xff);
307
 
308
        tseq[9] = (uint8_t)(days & 0xff);
309
        tseq[10] = (uint8_t)((days >> 8) & 0xff);
310
 
311
        t.seq = tseq;
312
 
313
        if (hp_sdc_enqueue_transaction(&t)) return -1;
314
        return 0;
315
}
316
 
317
/* Set the i8042 fast handshake timer */
318
static int hp_sdc_rtc_set_fhs (struct timeval *setto)
319
{
320
        uint32_t tenms;
321
        hp_sdc_transaction t;
322
        uint8_t tseq[5] = {
323
                HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
324
                HP_SDC_CMD_SET_FHS, 2, 0, 0
325
        };
326
 
327
        t.endidx = 4;
328
 
329
        if (0xffff < setto->tv_sec) return -1;
330
        tenms  = setto->tv_sec * 100;
331
        if (0xffff < setto->tv_usec / 10000) return -1;
332
        tenms += setto->tv_usec / 10000;
333
        if (tenms > 0xffff) return -1;
334
 
335
        tseq[3] = (uint8_t)(tenms & 0xff);
336
        tseq[4] = (uint8_t)((tenms >> 8)  & 0xff);
337
 
338
        t.seq = tseq;
339
 
340
        if (hp_sdc_enqueue_transaction(&t)) return -1;
341
        return 0;
342
}
343
 
344
 
345
/* Set the i8042 match timer (a.k.a. alarm) */
346
#define hp_sdc_rtc_set_mt (setto) \
347
        hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_MT)
348
 
349
/* Set the i8042 delay timer */
350
#define hp_sdc_rtc_set_dt (setto) \
351
        hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_DT)
352
 
353
/* Set the i8042 cycle timer (a.k.a. periodic) */
354
#define hp_sdc_rtc_set_ct (setto) \
355
        hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_CT)
356
 
357
/* Set one of the i8042 3-byte wide timers */
358
static int hp_sdc_rtc_set_i8042timer (struct timeval *setto, uint8_t setcmd)
359
{
360
        uint32_t tenms;
361
        hp_sdc_transaction t;
362
        uint8_t tseq[6] = {
363
                HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
364
                0, 3, 0, 0, 0
365
        };
366
 
367
        t.endidx = 6;
368
 
369
        if (0xffffff < setto->tv_sec) return -1;
370
        tenms  = setto->tv_sec * 100;
371
        if (0xffffff < setto->tv_usec / 10000) return -1;
372
        tenms += setto->tv_usec / 10000;
373
        if (tenms > 0xffffff) return -1;
374
 
375
        tseq[1] = setcmd;
376
        tseq[3] = (uint8_t)(tenms & 0xff);
377
        tseq[4] = (uint8_t)((tenms >> 8)  & 0xff);
378
        tseq[5] = (uint8_t)((tenms >> 16)  & 0xff);
379
 
380
        t.seq =                 tseq;
381
 
382
        if (hp_sdc_enqueue_transaction(&t)) {
383
                return -1;
384
        }
385
        return 0;
386
}
387
 
388
static ssize_t hp_sdc_rtc_read(struct file *file, char __user *buf,
389
                               size_t count, loff_t *ppos) {
390
        ssize_t retval;
391
 
392
        if (count < sizeof(unsigned long))
393
                return -EINVAL;
394
 
395
        retval = put_user(68, (unsigned long __user *)buf);
396
        return retval;
397
}
398
 
399
static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait)
400
{
401
        unsigned long l;
402
 
403
        l = 0;
404
        if (l != 0)
405
                return POLLIN | POLLRDNORM;
406
        return 0;
407
}
408
 
409
static int hp_sdc_rtc_open(struct inode *inode, struct file *file)
410
{
411
        return 0;
412
}
413
 
414
static int hp_sdc_rtc_release(struct inode *inode, struct file *file)
415
{
416
        /* Turn off interrupts? */
417
 
418
        if (file->f_flags & FASYNC) {
419
                hp_sdc_rtc_fasync (-1, file, 0);
420
        }
421
 
422
        return 0;
423
}
424
 
425
static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on)
426
{
427
        return fasync_helper (fd, filp, on, &hp_sdc_rtc_async_queue);
428
}
429
 
430
static int hp_sdc_rtc_proc_output (char *buf)
431
{
432
#define YN(bit) ("no")
433
#define NY(bit) ("yes")
434
        char *p;
435
        struct rtc_time tm;
436
        struct timeval tv;
437
 
438
        memset(&tm, 0, sizeof(struct rtc_time));
439
 
440
        p = buf;
441
 
442
        if (hp_sdc_rtc_read_bbrtc(&tm)) {
443
                p += sprintf(p, "BBRTC\t\t: READ FAILED!\n");
444
        } else {
445
                p += sprintf(p,
446
                             "rtc_time\t: %02d:%02d:%02d\n"
447
                             "rtc_date\t: %04d-%02d-%02d\n"
448
                             "rtc_epoch\t: %04lu\n",
449
                             tm.tm_hour, tm.tm_min, tm.tm_sec,
450
                             tm.tm_year + 1900, tm.tm_mon + 1,
451
                             tm.tm_mday, epoch);
452
        }
453
 
454
        if (hp_sdc_rtc_read_rt(&tv)) {
455
                p += sprintf(p, "i8042 rtc\t: READ FAILED!\n");
456
        } else {
457
                p += sprintf(p, "i8042 rtc\t: %ld.%02d seconds\n",
458
                             tv.tv_sec, tv.tv_usec/1000);
459
        }
460
 
461
        if (hp_sdc_rtc_read_fhs(&tv)) {
462
                p += sprintf(p, "handshake\t: READ FAILED!\n");
463
        } else {
464
                p += sprintf(p, "handshake\t: %ld.%02d seconds\n",
465
                             tv.tv_sec, tv.tv_usec/1000);
466
        }
467
 
468
        if (hp_sdc_rtc_read_mt(&tv)) {
469
                p += sprintf(p, "alarm\t\t: READ FAILED!\n");
470
        } else {
471
                p += sprintf(p, "alarm\t\t: %ld.%02d seconds\n",
472
                             tv.tv_sec, tv.tv_usec/1000);
473
        }
474
 
475
        if (hp_sdc_rtc_read_dt(&tv)) {
476
                p += sprintf(p, "delay\t\t: READ FAILED!\n");
477
        } else {
478
                p += sprintf(p, "delay\t\t: %ld.%02d seconds\n",
479
                             tv.tv_sec, tv.tv_usec/1000);
480
        }
481
 
482
        if (hp_sdc_rtc_read_ct(&tv)) {
483
                p += sprintf(p, "periodic\t: READ FAILED!\n");
484
        } else {
485
                p += sprintf(p, "periodic\t: %ld.%02d seconds\n",
486
                             tv.tv_sec, tv.tv_usec/1000);
487
        }
488
 
489
        p += sprintf(p,
490
                     "DST_enable\t: %s\n"
491
                     "BCD\t\t: %s\n"
492
                     "24hr\t\t: %s\n"
493
                     "square_wave\t: %s\n"
494
                     "alarm_IRQ\t: %s\n"
495
                     "update_IRQ\t: %s\n"
496
                     "periodic_IRQ\t: %s\n"
497
                     "periodic_freq\t: %ld\n"
498
                     "batt_status\t: %s\n",
499
                     YN(RTC_DST_EN),
500
                     NY(RTC_DM_BINARY),
501
                     YN(RTC_24H),
502
                     YN(RTC_SQWE),
503
                     YN(RTC_AIE),
504
                     YN(RTC_UIE),
505
                     YN(RTC_PIE),
506
                     1UL,
507
                     1 ? "okay" : "dead");
508
 
509
        return  p - buf;
510
#undef YN
511
#undef NY
512
}
513
 
514
static int hp_sdc_rtc_read_proc(char *page, char **start, off_t off,
515
                         int count, int *eof, void *data)
516
{
517
        int len = hp_sdc_rtc_proc_output (page);
518
        if (len <= off+count) *eof = 1;
519
        *start = page + off;
520
        len -= off;
521
        if (len>count) len = count;
522
        if (len<0) len = 0;
523
        return len;
524
}
525
 
526
static int hp_sdc_rtc_ioctl(struct inode *inode, struct file *file,
527
                            unsigned int cmd, unsigned long arg)
528
{
529
#if 1
530
        return -EINVAL;
531
#else
532
 
533
        struct rtc_time wtime;
534
        struct timeval ttime;
535
        int use_wtime = 0;
536
 
537
        /* This needs major work. */
538
 
539
        switch (cmd) {
540
 
541
        case RTC_AIE_OFF:       /* Mask alarm int. enab. bit    */
542
        case RTC_AIE_ON:        /* Allow alarm interrupts.      */
543
        case RTC_PIE_OFF:       /* Mask periodic int. enab. bit */
544
        case RTC_PIE_ON:        /* Allow periodic ints          */
545
        case RTC_UIE_ON:        /* Allow ints for RTC updates.  */
546
        case RTC_UIE_OFF:       /* Allow ints for RTC updates.  */
547
        {
548
                /* We cannot mask individual user timers and we
549
                   cannot tell them apart when they occur, so it
550
                   would be disingenuous to succeed these IOCTLs */
551
                return -EINVAL;
552
        }
553
        case RTC_ALM_READ:      /* Read the present alarm time */
554
        {
555
                if (hp_sdc_rtc_read_mt(&ttime)) return -EFAULT;
556
                if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT;
557
 
558
                wtime.tm_hour = ttime.tv_sec / 3600;  ttime.tv_sec %= 3600;
559
                wtime.tm_min  = ttime.tv_sec / 60;    ttime.tv_sec %= 60;
560
                wtime.tm_sec  = ttime.tv_sec;
561
 
562
                break;
563
        }
564
        case RTC_IRQP_READ:     /* Read the periodic IRQ rate.  */
565
        {
566
                return put_user(hp_sdc_rtc_freq, (unsigned long *)arg);
567
        }
568
        case RTC_IRQP_SET:      /* Set periodic IRQ rate.       */
569
        {
570
                /*
571
                 * The max we can do is 100Hz.
572
                 */
573
 
574
                if ((arg < 1) || (arg > 100)) return -EINVAL;
575
                ttime.tv_sec = 0;
576
                ttime.tv_usec = 1000000 / arg;
577
                if (hp_sdc_rtc_set_ct(&ttime)) return -EFAULT;
578
                hp_sdc_rtc_freq = arg;
579
                return 0;
580
        }
581
        case RTC_ALM_SET:       /* Store a time into the alarm */
582
        {
583
                /*
584
                 * This expects a struct hp_sdc_rtc_time. Writing 0xff means
585
                 * "don't care" or "match all" for PC timers.  The HP SDC
586
                 * does not support that perk, but it could be emulated fairly
587
                 * easily.  Only the tm_hour, tm_min and tm_sec are used.
588
                 * We could do it with 10ms accuracy with the HP SDC, if the
589
                 * rtc interface left us a way to do that.
590
                 */
591
                struct hp_sdc_rtc_time alm_tm;
592
 
593
                if (copy_from_user(&alm_tm, (struct hp_sdc_rtc_time*)arg,
594
                                   sizeof(struct hp_sdc_rtc_time)))
595
                       return -EFAULT;
596
 
597
                if (alm_tm.tm_hour > 23) return -EINVAL;
598
                if (alm_tm.tm_min  > 59) return -EINVAL;
599
                if (alm_tm.tm_sec  > 59) return -EINVAL;
600
 
601
                ttime.sec = alm_tm.tm_hour * 3600 +
602
                  alm_tm.tm_min * 60 + alm_tm.tm_sec;
603
                ttime.usec = 0;
604
                if (hp_sdc_rtc_set_mt(&ttime)) return -EFAULT;
605
                return 0;
606
        }
607
        case RTC_RD_TIME:       /* Read the time/date from RTC  */
608
        {
609
                if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT;
610
                break;
611
        }
612
        case RTC_SET_TIME:      /* Set the RTC */
613
        {
614
                struct rtc_time hp_sdc_rtc_tm;
615
                unsigned char mon, day, hrs, min, sec, leap_yr;
616
                unsigned int yrs;
617
 
618
                if (!capable(CAP_SYS_TIME))
619
                        return -EACCES;
620
                if (copy_from_user(&hp_sdc_rtc_tm, (struct rtc_time *)arg,
621
                                   sizeof(struct rtc_time)))
622
                        return -EFAULT;
623
 
624
                yrs = hp_sdc_rtc_tm.tm_year + 1900;
625
                mon = hp_sdc_rtc_tm.tm_mon + 1;   /* tm_mon starts at zero */
626
                day = hp_sdc_rtc_tm.tm_mday;
627
                hrs = hp_sdc_rtc_tm.tm_hour;
628
                min = hp_sdc_rtc_tm.tm_min;
629
                sec = hp_sdc_rtc_tm.tm_sec;
630
 
631
                if (yrs < 1970)
632
                        return -EINVAL;
633
 
634
                leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
635
 
636
                if ((mon > 12) || (day == 0))
637
                        return -EINVAL;
638
                if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
639
                        return -EINVAL;
640
                if ((hrs >= 24) || (min >= 60) || (sec >= 60))
641
                        return -EINVAL;
642
 
643
                if ((yrs -= eH) > 255)    /* They are unsigned */
644
                        return -EINVAL;
645
 
646
 
647
                return 0;
648
        }
649
        case RTC_EPOCH_READ:    /* Read the epoch.      */
650
        {
651
                return put_user (epoch, (unsigned long *)arg);
652
        }
653
        case RTC_EPOCH_SET:     /* Set the epoch.       */
654
        {
655
                /*
656
                 * There were no RTC clocks before 1900.
657
                 */
658
                if (arg < 1900)
659
                  return -EINVAL;
660
                if (!capable(CAP_SYS_TIME))
661
                  return -EACCES;
662
 
663
                epoch = arg;
664
                return 0;
665
        }
666
        default:
667
                return -EINVAL;
668
        }
669
        return copy_to_user((void *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
670
#endif
671
}
672
 
673
static const struct file_operations hp_sdc_rtc_fops = {
674
        .owner =        THIS_MODULE,
675
        .llseek =       no_llseek,
676
        .read =         hp_sdc_rtc_read,
677
        .poll =         hp_sdc_rtc_poll,
678
        .ioctl =        hp_sdc_rtc_ioctl,
679
        .open =         hp_sdc_rtc_open,
680
        .release =      hp_sdc_rtc_release,
681
        .fasync =       hp_sdc_rtc_fasync,
682
};
683
 
684
static struct miscdevice hp_sdc_rtc_dev = {
685
        .minor =        RTC_MINOR,
686
        .name =         "rtc_HIL",
687
        .fops =         &hp_sdc_rtc_fops
688
};
689
 
690
static int __init hp_sdc_rtc_init(void)
691
{
692
        int ret;
693
 
694
        init_MUTEX(&i8042tregs);
695
 
696
        if ((ret = hp_sdc_request_timer_irq(&hp_sdc_rtc_isr)))
697
                return ret;
698
        if (misc_register(&hp_sdc_rtc_dev) != 0)
699
                printk(KERN_INFO "Could not register misc. dev for i8042 rtc\n");
700
 
701
        create_proc_read_entry ("driver/rtc", 0, NULL,
702
                                hp_sdc_rtc_read_proc, NULL);
703
 
704
        printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support loaded "
705
                         "(RTC v " RTC_VERSION ")\n");
706
 
707
        return 0;
708
}
709
 
710
static void __exit hp_sdc_rtc_exit(void)
711
{
712
        remove_proc_entry ("driver/rtc", NULL);
713
        misc_deregister(&hp_sdc_rtc_dev);
714
        hp_sdc_release_timer_irq(hp_sdc_rtc_isr);
715
        printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support unloaded\n");
716
}
717
 
718
module_init(hp_sdc_rtc_init);
719
module_exit(hp_sdc_rtc_exit);

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.