OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [drivers/] [kvm/] [vmx.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 * Kernel-based Virtual Machine driver for Linux
3
 *
4
 * This module enables machines with Intel VT-x extensions to run virtual
5
 * machines without emulation or binary translation.
6
 *
7
 * Copyright (C) 2006 Qumranet, Inc.
8
 *
9
 * Authors:
10
 *   Avi Kivity   <avi@qumranet.com>
11
 *   Yaniv Kamay  <yaniv@qumranet.com>
12
 *
13
 * This work is licensed under the terms of the GNU GPL, version 2.  See
14
 * the COPYING file in the top-level directory.
15
 *
16
 */
17
 
18
#include "kvm.h"
19
#include "x86_emulate.h"
20
#include "irq.h"
21
#include "vmx.h"
22
#include "segment_descriptor.h"
23
 
24
#include <linux/module.h>
25
#include <linux/kernel.h>
26
#include <linux/mm.h>
27
#include <linux/highmem.h>
28
#include <linux/sched.h>
29
 
30
#include <asm/io.h>
31
#include <asm/desc.h>
32
 
33
MODULE_AUTHOR("Qumranet");
34
MODULE_LICENSE("GPL");
35
 
36
struct vmcs {
37
        u32 revision_id;
38
        u32 abort;
39
        char data[0];
40
};
41
 
42
struct vcpu_vmx {
43
        struct kvm_vcpu       vcpu;
44
        int                   launched;
45
        u8                    fail;
46
        struct kvm_msr_entry *guest_msrs;
47
        struct kvm_msr_entry *host_msrs;
48
        int                   nmsrs;
49
        int                   save_nmsrs;
50
        int                   msr_offset_efer;
51
#ifdef CONFIG_X86_64
52
        int                   msr_offset_kernel_gs_base;
53
#endif
54
        struct vmcs          *vmcs;
55
        struct {
56
                int           loaded;
57
                u16           fs_sel, gs_sel, ldt_sel;
58
                int           gs_ldt_reload_needed;
59
                int           fs_reload_needed;
60
        }host_state;
61
 
62
};
63
 
64
static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
65
{
66
        return container_of(vcpu, struct vcpu_vmx, vcpu);
67
}
68
 
69
static int init_rmode_tss(struct kvm *kvm);
70
 
71
static DEFINE_PER_CPU(struct vmcs *, vmxarea);
72
static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
73
 
74
static struct page *vmx_io_bitmap_a;
75
static struct page *vmx_io_bitmap_b;
76
 
77
#define EFER_SAVE_RESTORE_BITS ((u64)EFER_SCE)
78
 
79
static struct vmcs_config {
80
        int size;
81
        int order;
82
        u32 revision_id;
83
        u32 pin_based_exec_ctrl;
84
        u32 cpu_based_exec_ctrl;
85
        u32 vmexit_ctrl;
86
        u32 vmentry_ctrl;
87
} vmcs_config;
88
 
89
#define VMX_SEGMENT_FIELD(seg)                                  \
90
        [VCPU_SREG_##seg] = {                                   \
91
                .selector = GUEST_##seg##_SELECTOR,             \
92
                .base = GUEST_##seg##_BASE,                     \
93
                .limit = GUEST_##seg##_LIMIT,                   \
94
                .ar_bytes = GUEST_##seg##_AR_BYTES,             \
95
        }
96
 
97
static struct kvm_vmx_segment_field {
98
        unsigned selector;
99
        unsigned base;
100
        unsigned limit;
101
        unsigned ar_bytes;
102
} kvm_vmx_segment_fields[] = {
103
        VMX_SEGMENT_FIELD(CS),
104
        VMX_SEGMENT_FIELD(DS),
105
        VMX_SEGMENT_FIELD(ES),
106
        VMX_SEGMENT_FIELD(FS),
107
        VMX_SEGMENT_FIELD(GS),
108
        VMX_SEGMENT_FIELD(SS),
109
        VMX_SEGMENT_FIELD(TR),
110
        VMX_SEGMENT_FIELD(LDTR),
111
};
112
 
113
/*
114
 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
115
 * away by decrementing the array size.
116
 */
117
static const u32 vmx_msr_index[] = {
118
#ifdef CONFIG_X86_64
119
        MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
120
#endif
121
        MSR_EFER, MSR_K6_STAR,
122
};
123
#define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
124
 
125
static void load_msrs(struct kvm_msr_entry *e, int n)
126
{
127
        int i;
128
 
129
        for (i = 0; i < n; ++i)
130
                wrmsrl(e[i].index, e[i].data);
131
}
132
 
133
static void save_msrs(struct kvm_msr_entry *e, int n)
134
{
135
        int i;
136
 
137
        for (i = 0; i < n; ++i)
138
                rdmsrl(e[i].index, e[i].data);
139
}
140
 
141
static inline u64 msr_efer_save_restore_bits(struct kvm_msr_entry msr)
142
{
143
        return (u64)msr.data & EFER_SAVE_RESTORE_BITS;
144
}
145
 
146
static inline int msr_efer_need_save_restore(struct vcpu_vmx *vmx)
147
{
148
        int efer_offset = vmx->msr_offset_efer;
149
        return msr_efer_save_restore_bits(vmx->host_msrs[efer_offset]) !=
150
                msr_efer_save_restore_bits(vmx->guest_msrs[efer_offset]);
151
}
152
 
153
static inline int is_page_fault(u32 intr_info)
154
{
155
        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
156
                             INTR_INFO_VALID_MASK)) ==
157
                (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
158
}
159
 
160
static inline int is_no_device(u32 intr_info)
161
{
162
        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
163
                             INTR_INFO_VALID_MASK)) ==
164
                (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
165
}
166
 
167
static inline int is_external_interrupt(u32 intr_info)
168
{
169
        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
170
                == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
171
}
172
 
173
static inline int cpu_has_vmx_tpr_shadow(void)
174
{
175
        return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
176
}
177
 
178
static inline int vm_need_tpr_shadow(struct kvm *kvm)
179
{
180
        return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
181
}
182
 
183
static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
184
{
185
        int i;
186
 
187
        for (i = 0; i < vmx->nmsrs; ++i)
188
                if (vmx->guest_msrs[i].index == msr)
189
                        return i;
190
        return -1;
191
}
192
 
193
static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
194
{
195
        int i;
196
 
197
        i = __find_msr_index(vmx, msr);
198
        if (i >= 0)
199
                return &vmx->guest_msrs[i];
200
        return NULL;
201
}
202
 
203
static void vmcs_clear(struct vmcs *vmcs)
204
{
205
        u64 phys_addr = __pa(vmcs);
206
        u8 error;
207
 
208
        asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
209
                      : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
210
                      : "cc", "memory");
211
        if (error)
212
                printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
213
                       vmcs, phys_addr);
214
}
215
 
216
static void __vcpu_clear(void *arg)
217
{
218
        struct vcpu_vmx *vmx = arg;
219
        int cpu = raw_smp_processor_id();
220
 
221
        if (vmx->vcpu.cpu == cpu)
222
                vmcs_clear(vmx->vmcs);
223
        if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
224
                per_cpu(current_vmcs, cpu) = NULL;
225
        rdtscll(vmx->vcpu.host_tsc);
226
}
227
 
228
static void vcpu_clear(struct vcpu_vmx *vmx)
229
{
230
        if (vmx->vcpu.cpu != raw_smp_processor_id() && vmx->vcpu.cpu != -1)
231
                smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear,
232
                                         vmx, 0, 1);
233
        else
234
                __vcpu_clear(vmx);
235
        vmx->launched = 0;
236
}
237
 
238
static unsigned long vmcs_readl(unsigned long field)
239
{
240
        unsigned long value;
241
 
242
        asm volatile (ASM_VMX_VMREAD_RDX_RAX
243
                      : "=a"(value) : "d"(field) : "cc");
244
        return value;
245
}
246
 
247
static u16 vmcs_read16(unsigned long field)
248
{
249
        return vmcs_readl(field);
250
}
251
 
252
static u32 vmcs_read32(unsigned long field)
253
{
254
        return vmcs_readl(field);
255
}
256
 
257
static u64 vmcs_read64(unsigned long field)
258
{
259
#ifdef CONFIG_X86_64
260
        return vmcs_readl(field);
261
#else
262
        return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
263
#endif
264
}
265
 
266
static noinline void vmwrite_error(unsigned long field, unsigned long value)
267
{
268
        printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
269
               field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
270
        dump_stack();
271
}
272
 
273
static void vmcs_writel(unsigned long field, unsigned long value)
274
{
275
        u8 error;
276
 
277
        asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
278
                       : "=q"(error) : "a"(value), "d"(field) : "cc" );
279
        if (unlikely(error))
280
                vmwrite_error(field, value);
281
}
282
 
283
static void vmcs_write16(unsigned long field, u16 value)
284
{
285
        vmcs_writel(field, value);
286
}
287
 
288
static void vmcs_write32(unsigned long field, u32 value)
289
{
290
        vmcs_writel(field, value);
291
}
292
 
293
static void vmcs_write64(unsigned long field, u64 value)
294
{
295
#ifdef CONFIG_X86_64
296
        vmcs_writel(field, value);
297
#else
298
        vmcs_writel(field, value);
299
        asm volatile ("");
300
        vmcs_writel(field+1, value >> 32);
301
#endif
302
}
303
 
304
static void vmcs_clear_bits(unsigned long field, u32 mask)
305
{
306
        vmcs_writel(field, vmcs_readl(field) & ~mask);
307
}
308
 
309
static void vmcs_set_bits(unsigned long field, u32 mask)
310
{
311
        vmcs_writel(field, vmcs_readl(field) | mask);
312
}
313
 
314
static void update_exception_bitmap(struct kvm_vcpu *vcpu)
315
{
316
        u32 eb;
317
 
318
        eb = 1u << PF_VECTOR;
319
        if (!vcpu->fpu_active)
320
                eb |= 1u << NM_VECTOR;
321
        if (vcpu->guest_debug.enabled)
322
                eb |= 1u << 1;
323
        if (vcpu->rmode.active)
324
                eb = ~0;
325
        vmcs_write32(EXCEPTION_BITMAP, eb);
326
}
327
 
328
static void reload_tss(void)
329
{
330
#ifndef CONFIG_X86_64
331
 
332
        /*
333
         * VT restores TR but not its size.  Useless.
334
         */
335
        struct descriptor_table gdt;
336
        struct segment_descriptor *descs;
337
 
338
        get_gdt(&gdt);
339
        descs = (void *)gdt.base;
340
        descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
341
        load_TR_desc();
342
#endif
343
}
344
 
345
static void load_transition_efer(struct vcpu_vmx *vmx)
346
{
347
        u64 trans_efer;
348
        int efer_offset = vmx->msr_offset_efer;
349
 
350
        trans_efer = vmx->host_msrs[efer_offset].data;
351
        trans_efer &= ~EFER_SAVE_RESTORE_BITS;
352
        trans_efer |= msr_efer_save_restore_bits(vmx->guest_msrs[efer_offset]);
353
        wrmsrl(MSR_EFER, trans_efer);
354
        vmx->vcpu.stat.efer_reload++;
355
}
356
 
357
static void vmx_save_host_state(struct kvm_vcpu *vcpu)
358
{
359
        struct vcpu_vmx *vmx = to_vmx(vcpu);
360
 
361
        if (vmx->host_state.loaded)
362
                return;
363
 
364
        vmx->host_state.loaded = 1;
365
        /*
366
         * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
367
         * allow segment selectors with cpl > 0 or ti == 1.
368
         */
369
        vmx->host_state.ldt_sel = read_ldt();
370
        vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
371
        vmx->host_state.fs_sel = read_fs();
372
        if (!(vmx->host_state.fs_sel & 7)) {
373
                vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
374
                vmx->host_state.fs_reload_needed = 0;
375
        } else {
376
                vmcs_write16(HOST_FS_SELECTOR, 0);
377
                vmx->host_state.fs_reload_needed = 1;
378
        }
379
        vmx->host_state.gs_sel = read_gs();
380
        if (!(vmx->host_state.gs_sel & 7))
381
                vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
382
        else {
383
                vmcs_write16(HOST_GS_SELECTOR, 0);
384
                vmx->host_state.gs_ldt_reload_needed = 1;
385
        }
386
 
387
#ifdef CONFIG_X86_64
388
        vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
389
        vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
390
#else
391
        vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
392
        vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
393
#endif
394
 
395
#ifdef CONFIG_X86_64
396
        if (is_long_mode(&vmx->vcpu)) {
397
                save_msrs(vmx->host_msrs +
398
                          vmx->msr_offset_kernel_gs_base, 1);
399
        }
400
#endif
401
        load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
402
        if (msr_efer_need_save_restore(vmx))
403
                load_transition_efer(vmx);
404
}
405
 
406
static void vmx_load_host_state(struct vcpu_vmx *vmx)
407
{
408
        unsigned long flags;
409
 
410
        if (!vmx->host_state.loaded)
411
                return;
412
 
413
        vmx->host_state.loaded = 0;
414
        if (vmx->host_state.fs_reload_needed)
415
                load_fs(vmx->host_state.fs_sel);
416
        if (vmx->host_state.gs_ldt_reload_needed) {
417
                load_ldt(vmx->host_state.ldt_sel);
418
                /*
419
                 * If we have to reload gs, we must take care to
420
                 * preserve our gs base.
421
                 */
422
                local_irq_save(flags);
423
                load_gs(vmx->host_state.gs_sel);
424
#ifdef CONFIG_X86_64
425
                wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
426
#endif
427
                local_irq_restore(flags);
428
        }
429
        reload_tss();
430
        save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
431
        load_msrs(vmx->host_msrs, vmx->save_nmsrs);
432
        if (msr_efer_need_save_restore(vmx))
433
                load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
434
}
435
 
436
/*
437
 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
438
 * vcpu mutex is already taken.
439
 */
440
static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
441
{
442
        struct vcpu_vmx *vmx = to_vmx(vcpu);
443
        u64 phys_addr = __pa(vmx->vmcs);
444
        u64 tsc_this, delta;
445
 
446
        if (vcpu->cpu != cpu) {
447
                vcpu_clear(vmx);
448
                kvm_migrate_apic_timer(vcpu);
449
        }
450
 
451
        if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
452
                u8 error;
453
 
454
                per_cpu(current_vmcs, cpu) = vmx->vmcs;
455
                asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
456
                              : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
457
                              : "cc");
458
                if (error)
459
                        printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
460
                               vmx->vmcs, phys_addr);
461
        }
462
 
463
        if (vcpu->cpu != cpu) {
464
                struct descriptor_table dt;
465
                unsigned long sysenter_esp;
466
 
467
                vcpu->cpu = cpu;
468
                /*
469
                 * Linux uses per-cpu TSS and GDT, so set these when switching
470
                 * processors.
471
                 */
472
                vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
473
                get_gdt(&dt);
474
                vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
475
 
476
                rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
477
                vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
478
 
479
                /*
480
                 * Make sure the time stamp counter is monotonous.
481
                 */
482
                rdtscll(tsc_this);
483
                delta = vcpu->host_tsc - tsc_this;
484
                vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
485
        }
486
}
487
 
488
static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
489
{
490
        vmx_load_host_state(to_vmx(vcpu));
491
        kvm_put_guest_fpu(vcpu);
492
}
493
 
494
static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
495
{
496
        if (vcpu->fpu_active)
497
                return;
498
        vcpu->fpu_active = 1;
499
        vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
500
        if (vcpu->cr0 & X86_CR0_TS)
501
                vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
502
        update_exception_bitmap(vcpu);
503
}
504
 
505
static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
506
{
507
        if (!vcpu->fpu_active)
508
                return;
509
        vcpu->fpu_active = 0;
510
        vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
511
        update_exception_bitmap(vcpu);
512
}
513
 
514
static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
515
{
516
        vcpu_clear(to_vmx(vcpu));
517
}
518
 
519
static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
520
{
521
        return vmcs_readl(GUEST_RFLAGS);
522
}
523
 
524
static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
525
{
526
        if (vcpu->rmode.active)
527
                rflags |= IOPL_MASK | X86_EFLAGS_VM;
528
        vmcs_writel(GUEST_RFLAGS, rflags);
529
}
530
 
531
static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
532
{
533
        unsigned long rip;
534
        u32 interruptibility;
535
 
536
        rip = vmcs_readl(GUEST_RIP);
537
        rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
538
        vmcs_writel(GUEST_RIP, rip);
539
 
540
        /*
541
         * We emulated an instruction, so temporary interrupt blocking
542
         * should be removed, if set.
543
         */
544
        interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
545
        if (interruptibility & 3)
546
                vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
547
                             interruptibility & ~3);
548
        vcpu->interrupt_window_open = 1;
549
}
550
 
551
static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
552
{
553
        printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
554
               vmcs_readl(GUEST_RIP));
555
        vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
556
        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
557
                     GP_VECTOR |
558
                     INTR_TYPE_EXCEPTION |
559
                     INTR_INFO_DELIEVER_CODE_MASK |
560
                     INTR_INFO_VALID_MASK);
561
}
562
 
563
/*
564
 * Swap MSR entry in host/guest MSR entry array.
565
 */
566
#ifdef CONFIG_X86_64
567
static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
568
{
569
        struct kvm_msr_entry tmp;
570
 
571
        tmp = vmx->guest_msrs[to];
572
        vmx->guest_msrs[to] = vmx->guest_msrs[from];
573
        vmx->guest_msrs[from] = tmp;
574
        tmp = vmx->host_msrs[to];
575
        vmx->host_msrs[to] = vmx->host_msrs[from];
576
        vmx->host_msrs[from] = tmp;
577
}
578
#endif
579
 
580
/*
581
 * Set up the vmcs to automatically save and restore system
582
 * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
583
 * mode, as fiddling with msrs is very expensive.
584
 */
585
static void setup_msrs(struct vcpu_vmx *vmx)
586
{
587
        int save_nmsrs;
588
 
589
        save_nmsrs = 0;
590
#ifdef CONFIG_X86_64
591
        if (is_long_mode(&vmx->vcpu)) {
592
                int index;
593
 
594
                index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
595
                if (index >= 0)
596
                        move_msr_up(vmx, index, save_nmsrs++);
597
                index = __find_msr_index(vmx, MSR_LSTAR);
598
                if (index >= 0)
599
                        move_msr_up(vmx, index, save_nmsrs++);
600
                index = __find_msr_index(vmx, MSR_CSTAR);
601
                if (index >= 0)
602
                        move_msr_up(vmx, index, save_nmsrs++);
603
                index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
604
                if (index >= 0)
605
                        move_msr_up(vmx, index, save_nmsrs++);
606
                /*
607
                 * MSR_K6_STAR is only needed on long mode guests, and only
608
                 * if efer.sce is enabled.
609
                 */
610
                index = __find_msr_index(vmx, MSR_K6_STAR);
611
                if ((index >= 0) && (vmx->vcpu.shadow_efer & EFER_SCE))
612
                        move_msr_up(vmx, index, save_nmsrs++);
613
        }
614
#endif
615
        vmx->save_nmsrs = save_nmsrs;
616
 
617
#ifdef CONFIG_X86_64
618
        vmx->msr_offset_kernel_gs_base =
619
                __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
620
#endif
621
        vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
622
}
623
 
624
/*
625
 * reads and returns guest's timestamp counter "register"
626
 * guest_tsc = host_tsc + tsc_offset    -- 21.3
627
 */
628
static u64 guest_read_tsc(void)
629
{
630
        u64 host_tsc, tsc_offset;
631
 
632
        rdtscll(host_tsc);
633
        tsc_offset = vmcs_read64(TSC_OFFSET);
634
        return host_tsc + tsc_offset;
635
}
636
 
637
/*
638
 * writes 'guest_tsc' into guest's timestamp counter "register"
639
 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
640
 */
641
static void guest_write_tsc(u64 guest_tsc)
642
{
643
        u64 host_tsc;
644
 
645
        rdtscll(host_tsc);
646
        vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
647
}
648
 
649
/*
650
 * Reads an msr value (of 'msr_index') into 'pdata'.
651
 * Returns 0 on success, non-0 otherwise.
652
 * Assumes vcpu_load() was already called.
653
 */
654
static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
655
{
656
        u64 data;
657
        struct kvm_msr_entry *msr;
658
 
659
        if (!pdata) {
660
                printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
661
                return -EINVAL;
662
        }
663
 
664
        switch (msr_index) {
665
#ifdef CONFIG_X86_64
666
        case MSR_FS_BASE:
667
                data = vmcs_readl(GUEST_FS_BASE);
668
                break;
669
        case MSR_GS_BASE:
670
                data = vmcs_readl(GUEST_GS_BASE);
671
                break;
672
        case MSR_EFER:
673
                return kvm_get_msr_common(vcpu, msr_index, pdata);
674
#endif
675
        case MSR_IA32_TIME_STAMP_COUNTER:
676
                data = guest_read_tsc();
677
                break;
678
        case MSR_IA32_SYSENTER_CS:
679
                data = vmcs_read32(GUEST_SYSENTER_CS);
680
                break;
681
        case MSR_IA32_SYSENTER_EIP:
682
                data = vmcs_readl(GUEST_SYSENTER_EIP);
683
                break;
684
        case MSR_IA32_SYSENTER_ESP:
685
                data = vmcs_readl(GUEST_SYSENTER_ESP);
686
                break;
687
        default:
688
                msr = find_msr_entry(to_vmx(vcpu), msr_index);
689
                if (msr) {
690
                        data = msr->data;
691
                        break;
692
                }
693
                return kvm_get_msr_common(vcpu, msr_index, pdata);
694
        }
695
 
696
        *pdata = data;
697
        return 0;
698
}
699
 
700
/*
701
 * Writes msr value into into the appropriate "register".
702
 * Returns 0 on success, non-0 otherwise.
703
 * Assumes vcpu_load() was already called.
704
 */
705
static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
706
{
707
        struct vcpu_vmx *vmx = to_vmx(vcpu);
708
        struct kvm_msr_entry *msr;
709
        int ret = 0;
710
 
711
        switch (msr_index) {
712
#ifdef CONFIG_X86_64
713
        case MSR_EFER:
714
                ret = kvm_set_msr_common(vcpu, msr_index, data);
715
                if (vmx->host_state.loaded)
716
                        load_transition_efer(vmx);
717
                break;
718
        case MSR_FS_BASE:
719
                vmcs_writel(GUEST_FS_BASE, data);
720
                break;
721
        case MSR_GS_BASE:
722
                vmcs_writel(GUEST_GS_BASE, data);
723
                break;
724
#endif
725
        case MSR_IA32_SYSENTER_CS:
726
                vmcs_write32(GUEST_SYSENTER_CS, data);
727
                break;
728
        case MSR_IA32_SYSENTER_EIP:
729
                vmcs_writel(GUEST_SYSENTER_EIP, data);
730
                break;
731
        case MSR_IA32_SYSENTER_ESP:
732
                vmcs_writel(GUEST_SYSENTER_ESP, data);
733
                break;
734
        case MSR_IA32_TIME_STAMP_COUNTER:
735
                guest_write_tsc(data);
736
                break;
737
        default:
738
                msr = find_msr_entry(vmx, msr_index);
739
                if (msr) {
740
                        msr->data = data;
741
                        if (vmx->host_state.loaded)
742
                                load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
743
                        break;
744
                }
745
                ret = kvm_set_msr_common(vcpu, msr_index, data);
746
        }
747
 
748
        return ret;
749
}
750
 
751
/*
752
 * Sync the rsp and rip registers into the vcpu structure.  This allows
753
 * registers to be accessed by indexing vcpu->regs.
754
 */
755
static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
756
{
757
        vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
758
        vcpu->rip = vmcs_readl(GUEST_RIP);
759
}
760
 
761
/*
762
 * Syncs rsp and rip back into the vmcs.  Should be called after possible
763
 * modification.
764
 */
765
static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
766
{
767
        vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
768
        vmcs_writel(GUEST_RIP, vcpu->rip);
769
}
770
 
771
static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
772
{
773
        unsigned long dr7 = 0x400;
774
        int old_singlestep;
775
 
776
        old_singlestep = vcpu->guest_debug.singlestep;
777
 
778
        vcpu->guest_debug.enabled = dbg->enabled;
779
        if (vcpu->guest_debug.enabled) {
780
                int i;
781
 
782
                dr7 |= 0x200;  /* exact */
783
                for (i = 0; i < 4; ++i) {
784
                        if (!dbg->breakpoints[i].enabled)
785
                                continue;
786
                        vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
787
                        dr7 |= 2 << (i*2);    /* global enable */
788
                        dr7 |= 0 << (i*4+16); /* execution breakpoint */
789
                }
790
 
791
                vcpu->guest_debug.singlestep = dbg->singlestep;
792
        } else
793
                vcpu->guest_debug.singlestep = 0;
794
 
795
        if (old_singlestep && !vcpu->guest_debug.singlestep) {
796
                unsigned long flags;
797
 
798
                flags = vmcs_readl(GUEST_RFLAGS);
799
                flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
800
                vmcs_writel(GUEST_RFLAGS, flags);
801
        }
802
 
803
        update_exception_bitmap(vcpu);
804
        vmcs_writel(GUEST_DR7, dr7);
805
 
806
        return 0;
807
}
808
 
809
static int vmx_get_irq(struct kvm_vcpu *vcpu)
810
{
811
        u32 idtv_info_field;
812
 
813
        idtv_info_field = vmcs_read32(IDT_VECTORING_INFO_FIELD);
814
        if (idtv_info_field & INTR_INFO_VALID_MASK) {
815
                if (is_external_interrupt(idtv_info_field))
816
                        return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
817
                else
818
                        printk("pending exception: not handled yet\n");
819
        }
820
        return -1;
821
}
822
 
823
static __init int cpu_has_kvm_support(void)
824
{
825
        unsigned long ecx = cpuid_ecx(1);
826
        return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
827
}
828
 
829
static __init int vmx_disabled_by_bios(void)
830
{
831
        u64 msr;
832
 
833
        rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
834
        return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
835
                       MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
836
            == MSR_IA32_FEATURE_CONTROL_LOCKED;
837
        /* locked but not enabled */
838
}
839
 
840
static void hardware_enable(void *garbage)
841
{
842
        int cpu = raw_smp_processor_id();
843
        u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
844
        u64 old;
845
 
846
        rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
847
        if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
848
                    MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
849
            != (MSR_IA32_FEATURE_CONTROL_LOCKED |
850
                MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
851
                /* enable and lock */
852
                wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
853
                       MSR_IA32_FEATURE_CONTROL_LOCKED |
854
                       MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
855
        write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
856
        asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
857
                      : "memory", "cc");
858
}
859
 
860
static void hardware_disable(void *garbage)
861
{
862
        asm volatile (ASM_VMX_VMXOFF : : : "cc");
863
}
864
 
865
static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
866
                                      u32 msr, u32* result)
867
{
868
        u32 vmx_msr_low, vmx_msr_high;
869
        u32 ctl = ctl_min | ctl_opt;
870
 
871
        rdmsr(msr, vmx_msr_low, vmx_msr_high);
872
 
873
        ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
874
        ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
875
 
876
        /* Ensure minimum (required) set of control bits are supported. */
877
        if (ctl_min & ~ctl)
878
                return -EIO;
879
 
880
        *result = ctl;
881
        return 0;
882
}
883
 
884
static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
885
{
886
        u32 vmx_msr_low, vmx_msr_high;
887
        u32 min, opt;
888
        u32 _pin_based_exec_control = 0;
889
        u32 _cpu_based_exec_control = 0;
890
        u32 _vmexit_control = 0;
891
        u32 _vmentry_control = 0;
892
 
893
        min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
894
        opt = 0;
895
        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
896
                                &_pin_based_exec_control) < 0)
897
                return -EIO;
898
 
899
        min = CPU_BASED_HLT_EXITING |
900
#ifdef CONFIG_X86_64
901
              CPU_BASED_CR8_LOAD_EXITING |
902
              CPU_BASED_CR8_STORE_EXITING |
903
#endif
904
              CPU_BASED_USE_IO_BITMAPS |
905
              CPU_BASED_MOV_DR_EXITING |
906
              CPU_BASED_USE_TSC_OFFSETING;
907
#ifdef CONFIG_X86_64
908
        opt = CPU_BASED_TPR_SHADOW;
909
#else
910
        opt = 0;
911
#endif
912
        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
913
                                &_cpu_based_exec_control) < 0)
914
                return -EIO;
915
#ifdef CONFIG_X86_64
916
        if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
917
                _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
918
                                           ~CPU_BASED_CR8_STORE_EXITING;
919
#endif
920
 
921
        min = 0;
922
#ifdef CONFIG_X86_64
923
        min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
924
#endif
925
        opt = 0;
926
        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
927
                                &_vmexit_control) < 0)
928
                return -EIO;
929
 
930
        min = opt = 0;
931
        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
932
                                &_vmentry_control) < 0)
933
                return -EIO;
934
 
935
        rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
936
 
937
        /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
938
        if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
939
                return -EIO;
940
 
941
#ifdef CONFIG_X86_64
942
        /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
943
        if (vmx_msr_high & (1u<<16))
944
                return -EIO;
945
#endif
946
 
947
        /* Require Write-Back (WB) memory type for VMCS accesses. */
948
        if (((vmx_msr_high >> 18) & 15) != 6)
949
                return -EIO;
950
 
951
        vmcs_conf->size = vmx_msr_high & 0x1fff;
952
        vmcs_conf->order = get_order(vmcs_config.size);
953
        vmcs_conf->revision_id = vmx_msr_low;
954
 
955
        vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
956
        vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
957
        vmcs_conf->vmexit_ctrl         = _vmexit_control;
958
        vmcs_conf->vmentry_ctrl        = _vmentry_control;
959
 
960
        return 0;
961
}
962
 
963
static struct vmcs *alloc_vmcs_cpu(int cpu)
964
{
965
        int node = cpu_to_node(cpu);
966
        struct page *pages;
967
        struct vmcs *vmcs;
968
 
969
        pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
970
        if (!pages)
971
                return NULL;
972
        vmcs = page_address(pages);
973
        memset(vmcs, 0, vmcs_config.size);
974
        vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
975
        return vmcs;
976
}
977
 
978
static struct vmcs *alloc_vmcs(void)
979
{
980
        return alloc_vmcs_cpu(raw_smp_processor_id());
981
}
982
 
983
static void free_vmcs(struct vmcs *vmcs)
984
{
985
        free_pages((unsigned long)vmcs, vmcs_config.order);
986
}
987
 
988
static void free_kvm_area(void)
989
{
990
        int cpu;
991
 
992
        for_each_online_cpu(cpu)
993
                free_vmcs(per_cpu(vmxarea, cpu));
994
}
995
 
996
static __init int alloc_kvm_area(void)
997
{
998
        int cpu;
999
 
1000
        for_each_online_cpu(cpu) {
1001
                struct vmcs *vmcs;
1002
 
1003
                vmcs = alloc_vmcs_cpu(cpu);
1004
                if (!vmcs) {
1005
                        free_kvm_area();
1006
                        return -ENOMEM;
1007
                }
1008
 
1009
                per_cpu(vmxarea, cpu) = vmcs;
1010
        }
1011
        return 0;
1012
}
1013
 
1014
static __init int hardware_setup(void)
1015
{
1016
        if (setup_vmcs_config(&vmcs_config) < 0)
1017
                return -EIO;
1018
        return alloc_kvm_area();
1019
}
1020
 
1021
static __exit void hardware_unsetup(void)
1022
{
1023
        free_kvm_area();
1024
}
1025
 
1026
static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1027
{
1028
        struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1029
 
1030
        if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1031
                vmcs_write16(sf->selector, save->selector);
1032
                vmcs_writel(sf->base, save->base);
1033
                vmcs_write32(sf->limit, save->limit);
1034
                vmcs_write32(sf->ar_bytes, save->ar);
1035
        } else {
1036
                u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1037
                        << AR_DPL_SHIFT;
1038
                vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1039
        }
1040
}
1041
 
1042
static void enter_pmode(struct kvm_vcpu *vcpu)
1043
{
1044
        unsigned long flags;
1045
 
1046
        vcpu->rmode.active = 0;
1047
 
1048
        vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
1049
        vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
1050
        vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
1051
 
1052
        flags = vmcs_readl(GUEST_RFLAGS);
1053
        flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
1054
        flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
1055
        vmcs_writel(GUEST_RFLAGS, flags);
1056
 
1057
        vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1058
                        (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1059
 
1060
        update_exception_bitmap(vcpu);
1061
 
1062
        fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
1063
        fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
1064
        fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
1065
        fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
1066
 
1067
        vmcs_write16(GUEST_SS_SELECTOR, 0);
1068
        vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1069
 
1070
        vmcs_write16(GUEST_CS_SELECTOR,
1071
                     vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1072
        vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1073
}
1074
 
1075
static gva_t rmode_tss_base(struct kvm* kvm)
1076
{
1077
        gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
1078
        return base_gfn << PAGE_SHIFT;
1079
}
1080
 
1081
static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1082
{
1083
        struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1084
 
1085
        save->selector = vmcs_read16(sf->selector);
1086
        save->base = vmcs_readl(sf->base);
1087
        save->limit = vmcs_read32(sf->limit);
1088
        save->ar = vmcs_read32(sf->ar_bytes);
1089
        vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
1090
        vmcs_write32(sf->limit, 0xffff);
1091
        vmcs_write32(sf->ar_bytes, 0xf3);
1092
}
1093
 
1094
static void enter_rmode(struct kvm_vcpu *vcpu)
1095
{
1096
        unsigned long flags;
1097
 
1098
        vcpu->rmode.active = 1;
1099
 
1100
        vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1101
        vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1102
 
1103
        vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1104
        vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1105
 
1106
        vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1107
        vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1108
 
1109
        flags = vmcs_readl(GUEST_RFLAGS);
1110
        vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
1111
 
1112
        flags |= IOPL_MASK | X86_EFLAGS_VM;
1113
 
1114
        vmcs_writel(GUEST_RFLAGS, flags);
1115
        vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1116
        update_exception_bitmap(vcpu);
1117
 
1118
        vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1119
        vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1120
        vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1121
 
1122
        vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1123
        vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1124
        if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1125
                vmcs_writel(GUEST_CS_BASE, 0xf0000);
1126
        vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1127
 
1128
        fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
1129
        fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
1130
        fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
1131
        fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
1132
 
1133
        kvm_mmu_reset_context(vcpu);
1134
        init_rmode_tss(vcpu->kvm);
1135
}
1136
 
1137
#ifdef CONFIG_X86_64
1138
 
1139
static void enter_lmode(struct kvm_vcpu *vcpu)
1140
{
1141
        u32 guest_tr_ar;
1142
 
1143
        guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1144
        if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1145
                printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1146
                       __FUNCTION__);
1147
                vmcs_write32(GUEST_TR_AR_BYTES,
1148
                             (guest_tr_ar & ~AR_TYPE_MASK)
1149
                             | AR_TYPE_BUSY_64_TSS);
1150
        }
1151
 
1152
        vcpu->shadow_efer |= EFER_LMA;
1153
 
1154
        find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1155
        vmcs_write32(VM_ENTRY_CONTROLS,
1156
                     vmcs_read32(VM_ENTRY_CONTROLS)
1157
                     | VM_ENTRY_IA32E_MODE);
1158
}
1159
 
1160
static void exit_lmode(struct kvm_vcpu *vcpu)
1161
{
1162
        vcpu->shadow_efer &= ~EFER_LMA;
1163
 
1164
        vmcs_write32(VM_ENTRY_CONTROLS,
1165
                     vmcs_read32(VM_ENTRY_CONTROLS)
1166
                     & ~VM_ENTRY_IA32E_MODE);
1167
}
1168
 
1169
#endif
1170
 
1171
static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1172
{
1173
        vcpu->cr4 &= KVM_GUEST_CR4_MASK;
1174
        vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1175
}
1176
 
1177
static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1178
{
1179
        vmx_fpu_deactivate(vcpu);
1180
 
1181
        if (vcpu->rmode.active && (cr0 & X86_CR0_PE))
1182
                enter_pmode(vcpu);
1183
 
1184
        if (!vcpu->rmode.active && !(cr0 & X86_CR0_PE))
1185
                enter_rmode(vcpu);
1186
 
1187
#ifdef CONFIG_X86_64
1188
        if (vcpu->shadow_efer & EFER_LME) {
1189
                if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1190
                        enter_lmode(vcpu);
1191
                if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1192
                        exit_lmode(vcpu);
1193
        }
1194
#endif
1195
 
1196
        vmcs_writel(CR0_READ_SHADOW, cr0);
1197
        vmcs_writel(GUEST_CR0,
1198
                    (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
1199
        vcpu->cr0 = cr0;
1200
 
1201
        if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1202
                vmx_fpu_activate(vcpu);
1203
}
1204
 
1205
static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1206
{
1207
        vmcs_writel(GUEST_CR3, cr3);
1208
        if (vcpu->cr0 & X86_CR0_PE)
1209
                vmx_fpu_deactivate(vcpu);
1210
}
1211
 
1212
static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1213
{
1214
        vmcs_writel(CR4_READ_SHADOW, cr4);
1215
        vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
1216
                    KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
1217
        vcpu->cr4 = cr4;
1218
}
1219
 
1220
#ifdef CONFIG_X86_64
1221
 
1222
static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1223
{
1224
        struct vcpu_vmx *vmx = to_vmx(vcpu);
1225
        struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1226
 
1227
        vcpu->shadow_efer = efer;
1228
        if (efer & EFER_LMA) {
1229
                vmcs_write32(VM_ENTRY_CONTROLS,
1230
                                     vmcs_read32(VM_ENTRY_CONTROLS) |
1231
                                     VM_ENTRY_IA32E_MODE);
1232
                msr->data = efer;
1233
 
1234
        } else {
1235
                vmcs_write32(VM_ENTRY_CONTROLS,
1236
                                     vmcs_read32(VM_ENTRY_CONTROLS) &
1237
                                     ~VM_ENTRY_IA32E_MODE);
1238
 
1239
                msr->data = efer & ~EFER_LME;
1240
        }
1241
        setup_msrs(vmx);
1242
}
1243
 
1244
#endif
1245
 
1246
static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1247
{
1248
        struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1249
 
1250
        return vmcs_readl(sf->base);
1251
}
1252
 
1253
static void vmx_get_segment(struct kvm_vcpu *vcpu,
1254
                            struct kvm_segment *var, int seg)
1255
{
1256
        struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1257
        u32 ar;
1258
 
1259
        var->base = vmcs_readl(sf->base);
1260
        var->limit = vmcs_read32(sf->limit);
1261
        var->selector = vmcs_read16(sf->selector);
1262
        ar = vmcs_read32(sf->ar_bytes);
1263
        if (ar & AR_UNUSABLE_MASK)
1264
                ar = 0;
1265
        var->type = ar & 15;
1266
        var->s = (ar >> 4) & 1;
1267
        var->dpl = (ar >> 5) & 3;
1268
        var->present = (ar >> 7) & 1;
1269
        var->avl = (ar >> 12) & 1;
1270
        var->l = (ar >> 13) & 1;
1271
        var->db = (ar >> 14) & 1;
1272
        var->g = (ar >> 15) & 1;
1273
        var->unusable = (ar >> 16) & 1;
1274
}
1275
 
1276
static u32 vmx_segment_access_rights(struct kvm_segment *var)
1277
{
1278
        u32 ar;
1279
 
1280
        if (var->unusable)
1281
                ar = 1 << 16;
1282
        else {
1283
                ar = var->type & 15;
1284
                ar |= (var->s & 1) << 4;
1285
                ar |= (var->dpl & 3) << 5;
1286
                ar |= (var->present & 1) << 7;
1287
                ar |= (var->avl & 1) << 12;
1288
                ar |= (var->l & 1) << 13;
1289
                ar |= (var->db & 1) << 14;
1290
                ar |= (var->g & 1) << 15;
1291
        }
1292
        if (ar == 0) /* a 0 value means unusable */
1293
                ar = AR_UNUSABLE_MASK;
1294
 
1295
        return ar;
1296
}
1297
 
1298
static void vmx_set_segment(struct kvm_vcpu *vcpu,
1299
                            struct kvm_segment *var, int seg)
1300
{
1301
        struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1302
        u32 ar;
1303
 
1304
        if (vcpu->rmode.active && seg == VCPU_SREG_TR) {
1305
                vcpu->rmode.tr.selector = var->selector;
1306
                vcpu->rmode.tr.base = var->base;
1307
                vcpu->rmode.tr.limit = var->limit;
1308
                vcpu->rmode.tr.ar = vmx_segment_access_rights(var);
1309
                return;
1310
        }
1311
        vmcs_writel(sf->base, var->base);
1312
        vmcs_write32(sf->limit, var->limit);
1313
        vmcs_write16(sf->selector, var->selector);
1314
        if (vcpu->rmode.active && var->s) {
1315
                /*
1316
                 * Hack real-mode segments into vm86 compatibility.
1317
                 */
1318
                if (var->base == 0xffff0000 && var->selector == 0xf000)
1319
                        vmcs_writel(sf->base, 0xf0000);
1320
                ar = 0xf3;
1321
        } else
1322
                ar = vmx_segment_access_rights(var);
1323
        vmcs_write32(sf->ar_bytes, ar);
1324
}
1325
 
1326
static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1327
{
1328
        u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1329
 
1330
        *db = (ar >> 14) & 1;
1331
        *l = (ar >> 13) & 1;
1332
}
1333
 
1334
static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1335
{
1336
        dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1337
        dt->base = vmcs_readl(GUEST_IDTR_BASE);
1338
}
1339
 
1340
static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1341
{
1342
        vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1343
        vmcs_writel(GUEST_IDTR_BASE, dt->base);
1344
}
1345
 
1346
static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1347
{
1348
        dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1349
        dt->base = vmcs_readl(GUEST_GDTR_BASE);
1350
}
1351
 
1352
static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1353
{
1354
        vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1355
        vmcs_writel(GUEST_GDTR_BASE, dt->base);
1356
}
1357
 
1358
static int init_rmode_tss(struct kvm* kvm)
1359
{
1360
        struct page *p1, *p2, *p3;
1361
        gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1362
        char *page;
1363
 
1364
        p1 = gfn_to_page(kvm, fn++);
1365
        p2 = gfn_to_page(kvm, fn++);
1366
        p3 = gfn_to_page(kvm, fn);
1367
 
1368
        if (!p1 || !p2 || !p3) {
1369
                kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
1370
                return 0;
1371
        }
1372
 
1373
        page = kmap_atomic(p1, KM_USER0);
1374
        clear_page(page);
1375
        *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1376
        kunmap_atomic(page, KM_USER0);
1377
 
1378
        page = kmap_atomic(p2, KM_USER0);
1379
        clear_page(page);
1380
        kunmap_atomic(page, KM_USER0);
1381
 
1382
        page = kmap_atomic(p3, KM_USER0);
1383
        clear_page(page);
1384
        *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
1385
        kunmap_atomic(page, KM_USER0);
1386
 
1387
        return 1;
1388
}
1389
 
1390
static void seg_setup(int seg)
1391
{
1392
        struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1393
 
1394
        vmcs_write16(sf->selector, 0);
1395
        vmcs_writel(sf->base, 0);
1396
        vmcs_write32(sf->limit, 0xffff);
1397
        vmcs_write32(sf->ar_bytes, 0x93);
1398
}
1399
 
1400
/*
1401
 * Sets up the vmcs for emulated real mode.
1402
 */
1403
static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
1404
{
1405
        u32 host_sysenter_cs;
1406
        u32 junk;
1407
        unsigned long a;
1408
        struct descriptor_table dt;
1409
        int i;
1410
        int ret = 0;
1411
        unsigned long kvm_vmx_return;
1412
        u64 msr;
1413
        u32 exec_control;
1414
 
1415
        if (!init_rmode_tss(vmx->vcpu.kvm)) {
1416
                ret = -ENOMEM;
1417
                goto out;
1418
        }
1419
 
1420
        vmx->vcpu.rmode.active = 0;
1421
 
1422
        vmx->vcpu.regs[VCPU_REGS_RDX] = get_rdx_init_val();
1423
        set_cr8(&vmx->vcpu, 0);
1424
        msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1425
        if (vmx->vcpu.vcpu_id == 0)
1426
                msr |= MSR_IA32_APICBASE_BSP;
1427
        kvm_set_apic_base(&vmx->vcpu, msr);
1428
 
1429
        fx_init(&vmx->vcpu);
1430
 
1431
        /*
1432
         * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1433
         * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
1434
         */
1435
        if (vmx->vcpu.vcpu_id == 0) {
1436
                vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1437
                vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1438
        } else {
1439
                vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.sipi_vector << 8);
1440
                vmcs_writel(GUEST_CS_BASE, vmx->vcpu.sipi_vector << 12);
1441
        }
1442
        vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1443
        vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1444
 
1445
        seg_setup(VCPU_SREG_DS);
1446
        seg_setup(VCPU_SREG_ES);
1447
        seg_setup(VCPU_SREG_FS);
1448
        seg_setup(VCPU_SREG_GS);
1449
        seg_setup(VCPU_SREG_SS);
1450
 
1451
        vmcs_write16(GUEST_TR_SELECTOR, 0);
1452
        vmcs_writel(GUEST_TR_BASE, 0);
1453
        vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1454
        vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1455
 
1456
        vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1457
        vmcs_writel(GUEST_LDTR_BASE, 0);
1458
        vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1459
        vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1460
 
1461
        vmcs_write32(GUEST_SYSENTER_CS, 0);
1462
        vmcs_writel(GUEST_SYSENTER_ESP, 0);
1463
        vmcs_writel(GUEST_SYSENTER_EIP, 0);
1464
 
1465
        vmcs_writel(GUEST_RFLAGS, 0x02);
1466
        if (vmx->vcpu.vcpu_id == 0)
1467
                vmcs_writel(GUEST_RIP, 0xfff0);
1468
        else
1469
                vmcs_writel(GUEST_RIP, 0);
1470
        vmcs_writel(GUEST_RSP, 0);
1471
 
1472
        //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1473
        vmcs_writel(GUEST_DR7, 0x400);
1474
 
1475
        vmcs_writel(GUEST_GDTR_BASE, 0);
1476
        vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1477
 
1478
        vmcs_writel(GUEST_IDTR_BASE, 0);
1479
        vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1480
 
1481
        vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1482
        vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1483
        vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1484
 
1485
        /* I/O */
1486
        vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1487
        vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1488
 
1489
        guest_write_tsc(0);
1490
 
1491
        vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1492
 
1493
        /* Special registers */
1494
        vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1495
 
1496
        /* Control */
1497
        vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
1498
                vmcs_config.pin_based_exec_ctrl);
1499
 
1500
        exec_control = vmcs_config.cpu_based_exec_ctrl;
1501
        if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
1502
                exec_control &= ~CPU_BASED_TPR_SHADOW;
1503
#ifdef CONFIG_X86_64
1504
                exec_control |= CPU_BASED_CR8_STORE_EXITING |
1505
                                CPU_BASED_CR8_LOAD_EXITING;
1506
#endif
1507
        }
1508
        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
1509
 
1510
        vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1511
        vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1512
        vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
1513
 
1514
        vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
1515
        vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
1516
        vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
1517
 
1518
        vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
1519
        vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1520
        vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1521
        vmcs_write16(HOST_FS_SELECTOR, read_fs());    /* 22.2.4 */
1522
        vmcs_write16(HOST_GS_SELECTOR, read_gs());    /* 22.2.4 */
1523
        vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1524
#ifdef CONFIG_X86_64
1525
        rdmsrl(MSR_FS_BASE, a);
1526
        vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1527
        rdmsrl(MSR_GS_BASE, a);
1528
        vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1529
#else
1530
        vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1531
        vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1532
#endif
1533
 
1534
        vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
1535
 
1536
        get_idt(&dt);
1537
        vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
1538
 
1539
        asm ("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1540
        vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1541
        vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1542
        vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
1543
        vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
1544
 
1545
        rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1546
        vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1547
        rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1548
        vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
1549
        rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1550
        vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
1551
 
1552
        for (i = 0; i < NR_VMX_MSR; ++i) {
1553
                u32 index = vmx_msr_index[i];
1554
                u32 data_low, data_high;
1555
                u64 data;
1556
                int j = vmx->nmsrs;
1557
 
1558
                if (rdmsr_safe(index, &data_low, &data_high) < 0)
1559
                        continue;
1560
                if (wrmsr_safe(index, data_low, data_high) < 0)
1561
                        continue;
1562
                data = data_low | ((u64)data_high << 32);
1563
                vmx->host_msrs[j].index = index;
1564
                vmx->host_msrs[j].reserved = 0;
1565
                vmx->host_msrs[j].data = data;
1566
                vmx->guest_msrs[j] = vmx->host_msrs[j];
1567
                ++vmx->nmsrs;
1568
        }
1569
 
1570
        setup_msrs(vmx);
1571
 
1572
        vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
1573
 
1574
        /* 22.2.1, 20.8.1 */
1575
        vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
1576
 
1577
        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
1578
 
1579
#ifdef CONFIG_X86_64
1580
        vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
1581
        if (vm_need_tpr_shadow(vmx->vcpu.kvm))
1582
                vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
1583
                             page_to_phys(vmx->vcpu.apic->regs_page));
1584
        vmcs_write32(TPR_THRESHOLD, 0);
1585
#endif
1586
 
1587
        vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1588
        vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1589
 
1590
        vmx->vcpu.cr0 = 0x60000010;
1591
        vmx_set_cr0(&vmx->vcpu, vmx->vcpu.cr0); // enter rmode
1592
        vmx_set_cr4(&vmx->vcpu, 0);
1593
#ifdef CONFIG_X86_64
1594
        vmx_set_efer(&vmx->vcpu, 0);
1595
#endif
1596
        vmx_fpu_activate(&vmx->vcpu);
1597
        update_exception_bitmap(&vmx->vcpu);
1598
 
1599
        return 0;
1600
 
1601
out:
1602
        return ret;
1603
}
1604
 
1605
static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
1606
{
1607
        struct vcpu_vmx *vmx = to_vmx(vcpu);
1608
 
1609
        vmx_vcpu_setup(vmx);
1610
}
1611
 
1612
static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1613
{
1614
        u16 ent[2];
1615
        u16 cs;
1616
        u16 ip;
1617
        unsigned long flags;
1618
        unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1619
        u16 sp =  vmcs_readl(GUEST_RSP);
1620
        u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1621
 
1622
        if (sp > ss_limit || sp < 6 ) {
1623
                vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1624
                            __FUNCTION__,
1625
                            vmcs_readl(GUEST_RSP),
1626
                            vmcs_readl(GUEST_SS_BASE),
1627
                            vmcs_read32(GUEST_SS_LIMIT));
1628
                return;
1629
        }
1630
 
1631
        if (emulator_read_std(irq * sizeof(ent), &ent, sizeof(ent), vcpu) !=
1632
                                                        X86EMUL_CONTINUE) {
1633
                vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1634
                return;
1635
        }
1636
 
1637
        flags =  vmcs_readl(GUEST_RFLAGS);
1638
        cs =  vmcs_readl(GUEST_CS_BASE) >> 4;
1639
        ip =  vmcs_readl(GUEST_RIP);
1640
 
1641
 
1642
        if (emulator_write_emulated(ss_base + sp - 2, &flags, 2, vcpu) != X86EMUL_CONTINUE ||
1643
            emulator_write_emulated(ss_base + sp - 4, &cs, 2, vcpu) != X86EMUL_CONTINUE ||
1644
            emulator_write_emulated(ss_base + sp - 6, &ip, 2, vcpu) != X86EMUL_CONTINUE) {
1645
                vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1646
                return;
1647
        }
1648
 
1649
        vmcs_writel(GUEST_RFLAGS, flags &
1650
                    ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1651
        vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1652
        vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1653
        vmcs_writel(GUEST_RIP, ent[0]);
1654
        vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1655
}
1656
 
1657
static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
1658
{
1659
        if (vcpu->rmode.active) {
1660
                inject_rmode_irq(vcpu, irq);
1661
                return;
1662
        }
1663
        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1664
                        irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1665
}
1666
 
1667
static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1668
{
1669
        int word_index = __ffs(vcpu->irq_summary);
1670
        int bit_index = __ffs(vcpu->irq_pending[word_index]);
1671
        int irq = word_index * BITS_PER_LONG + bit_index;
1672
 
1673
        clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1674
        if (!vcpu->irq_pending[word_index])
1675
                clear_bit(word_index, &vcpu->irq_summary);
1676
        vmx_inject_irq(vcpu, irq);
1677
}
1678
 
1679
 
1680
static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1681
                                       struct kvm_run *kvm_run)
1682
{
1683
        u32 cpu_based_vm_exec_control;
1684
 
1685
        vcpu->interrupt_window_open =
1686
                ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1687
                 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1688
 
1689
        if (vcpu->interrupt_window_open &&
1690
            vcpu->irq_summary &&
1691
            !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1692
                /*
1693
                 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1694
                 */
1695
                kvm_do_inject_irq(vcpu);
1696
 
1697
        cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1698
        if (!vcpu->interrupt_window_open &&
1699
            (vcpu->irq_summary || kvm_run->request_interrupt_window))
1700
                /*
1701
                 * Interrupts blocked.  Wait for unblock.
1702
                 */
1703
                cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1704
        else
1705
                cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1706
        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1707
}
1708
 
1709
static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1710
{
1711
        struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1712
 
1713
        set_debugreg(dbg->bp[0], 0);
1714
        set_debugreg(dbg->bp[1], 1);
1715
        set_debugreg(dbg->bp[2], 2);
1716
        set_debugreg(dbg->bp[3], 3);
1717
 
1718
        if (dbg->singlestep) {
1719
                unsigned long flags;
1720
 
1721
                flags = vmcs_readl(GUEST_RFLAGS);
1722
                flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1723
                vmcs_writel(GUEST_RFLAGS, flags);
1724
        }
1725
}
1726
 
1727
static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1728
                                  int vec, u32 err_code)
1729
{
1730
        if (!vcpu->rmode.active)
1731
                return 0;
1732
 
1733
        /*
1734
         * Instruction with address size override prefix opcode 0x67
1735
         * Cause the #SS fault with 0 error code in VM86 mode.
1736
         */
1737
        if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
1738
                if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
1739
                        return 1;
1740
        return 0;
1741
}
1742
 
1743
static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1744
{
1745
        u32 intr_info, error_code;
1746
        unsigned long cr2, rip;
1747
        u32 vect_info;
1748
        enum emulation_result er;
1749
        int r;
1750
 
1751
        vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1752
        intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1753
 
1754
        if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1755
                                                !is_page_fault(intr_info)) {
1756
                printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1757
                       "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1758
        }
1759
 
1760
        if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
1761
                int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1762
                set_bit(irq, vcpu->irq_pending);
1763
                set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1764
        }
1765
 
1766
        if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
1767
                return 1;  /* already handled by vmx_vcpu_run() */
1768
 
1769
        if (is_no_device(intr_info)) {
1770
                vmx_fpu_activate(vcpu);
1771
                return 1;
1772
        }
1773
 
1774
        error_code = 0;
1775
        rip = vmcs_readl(GUEST_RIP);
1776
        if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1777
                error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1778
        if (is_page_fault(intr_info)) {
1779
                cr2 = vmcs_readl(EXIT_QUALIFICATION);
1780
 
1781
                mutex_lock(&vcpu->kvm->lock);
1782
                r = kvm_mmu_page_fault(vcpu, cr2, error_code);
1783
                if (r < 0) {
1784
                        mutex_unlock(&vcpu->kvm->lock);
1785
                        return r;
1786
                }
1787
                if (!r) {
1788
                        mutex_unlock(&vcpu->kvm->lock);
1789
                        return 1;
1790
                }
1791
 
1792
                er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
1793
                mutex_unlock(&vcpu->kvm->lock);
1794
 
1795
                switch (er) {
1796
                case EMULATE_DONE:
1797
                        return 1;
1798
                case EMULATE_DO_MMIO:
1799
                        ++vcpu->stat.mmio_exits;
1800
                        return 0;
1801
                 case EMULATE_FAIL:
1802
                        kvm_report_emulation_failure(vcpu, "pagetable");
1803
                        break;
1804
                default:
1805
                        BUG();
1806
                }
1807
        }
1808
 
1809
        if (vcpu->rmode.active &&
1810
            handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1811
                                                                error_code)) {
1812
                if (vcpu->halt_request) {
1813
                        vcpu->halt_request = 0;
1814
                        return kvm_emulate_halt(vcpu);
1815
                }
1816
                return 1;
1817
        }
1818
 
1819
        if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1820
                kvm_run->exit_reason = KVM_EXIT_DEBUG;
1821
                return 0;
1822
        }
1823
        kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1824
        kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1825
        kvm_run->ex.error_code = error_code;
1826
        return 0;
1827
}
1828
 
1829
static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1830
                                     struct kvm_run *kvm_run)
1831
{
1832
        ++vcpu->stat.irq_exits;
1833
        return 1;
1834
}
1835
 
1836
static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1837
{
1838
        kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1839
        return 0;
1840
}
1841
 
1842
static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1843
{
1844
        unsigned long exit_qualification;
1845
        int size, down, in, string, rep;
1846
        unsigned port;
1847
 
1848
        ++vcpu->stat.io_exits;
1849
        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1850
        string = (exit_qualification & 16) != 0;
1851
 
1852
        if (string) {
1853
                if (emulate_instruction(vcpu, kvm_run, 0, 0) == EMULATE_DO_MMIO)
1854
                        return 0;
1855
                return 1;
1856
        }
1857
 
1858
        size = (exit_qualification & 7) + 1;
1859
        in = (exit_qualification & 8) != 0;
1860
        down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1861
        rep = (exit_qualification & 32) != 0;
1862
        port = exit_qualification >> 16;
1863
 
1864
        return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
1865
}
1866
 
1867
static void
1868
vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1869
{
1870
        /*
1871
         * Patch in the VMCALL instruction:
1872
         */
1873
        hypercall[0] = 0x0f;
1874
        hypercall[1] = 0x01;
1875
        hypercall[2] = 0xc1;
1876
        hypercall[3] = 0xc3;
1877
}
1878
 
1879
static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1880
{
1881
        unsigned long exit_qualification;
1882
        int cr;
1883
        int reg;
1884
 
1885
        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1886
        cr = exit_qualification & 15;
1887
        reg = (exit_qualification >> 8) & 15;
1888
        switch ((exit_qualification >> 4) & 3) {
1889
        case 0: /* mov to cr */
1890
                switch (cr) {
1891
                case 0:
1892
                        vcpu_load_rsp_rip(vcpu);
1893
                        set_cr0(vcpu, vcpu->regs[reg]);
1894
                        skip_emulated_instruction(vcpu);
1895
                        return 1;
1896
                case 3:
1897
                        vcpu_load_rsp_rip(vcpu);
1898
                        set_cr3(vcpu, vcpu->regs[reg]);
1899
                        skip_emulated_instruction(vcpu);
1900
                        return 1;
1901
                case 4:
1902
                        vcpu_load_rsp_rip(vcpu);
1903
                        set_cr4(vcpu, vcpu->regs[reg]);
1904
                        skip_emulated_instruction(vcpu);
1905
                        return 1;
1906
                case 8:
1907
                        vcpu_load_rsp_rip(vcpu);
1908
                        set_cr8(vcpu, vcpu->regs[reg]);
1909
                        skip_emulated_instruction(vcpu);
1910
                        kvm_run->exit_reason = KVM_EXIT_SET_TPR;
1911
                        return 0;
1912
                };
1913
                break;
1914
        case 2: /* clts */
1915
                vcpu_load_rsp_rip(vcpu);
1916
                vmx_fpu_deactivate(vcpu);
1917
                vcpu->cr0 &= ~X86_CR0_TS;
1918
                vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
1919
                vmx_fpu_activate(vcpu);
1920
                skip_emulated_instruction(vcpu);
1921
                return 1;
1922
        case 1: /*mov from cr*/
1923
                switch (cr) {
1924
                case 3:
1925
                        vcpu_load_rsp_rip(vcpu);
1926
                        vcpu->regs[reg] = vcpu->cr3;
1927
                        vcpu_put_rsp_rip(vcpu);
1928
                        skip_emulated_instruction(vcpu);
1929
                        return 1;
1930
                case 8:
1931
                        vcpu_load_rsp_rip(vcpu);
1932
                        vcpu->regs[reg] = get_cr8(vcpu);
1933
                        vcpu_put_rsp_rip(vcpu);
1934
                        skip_emulated_instruction(vcpu);
1935
                        return 1;
1936
                }
1937
                break;
1938
        case 3: /* lmsw */
1939
                lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1940
 
1941
                skip_emulated_instruction(vcpu);
1942
                return 1;
1943
        default:
1944
                break;
1945
        }
1946
        kvm_run->exit_reason = 0;
1947
        pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
1948
               (int)(exit_qualification >> 4) & 3, cr);
1949
        return 0;
1950
}
1951
 
1952
static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1953
{
1954
        unsigned long exit_qualification;
1955
        unsigned long val;
1956
        int dr, reg;
1957
 
1958
        /*
1959
         * FIXME: this code assumes the host is debugging the guest.
1960
         *        need to deal with guest debugging itself too.
1961
         */
1962
        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1963
        dr = exit_qualification & 7;
1964
        reg = (exit_qualification >> 8) & 15;
1965
        vcpu_load_rsp_rip(vcpu);
1966
        if (exit_qualification & 16) {
1967
                /* mov from dr */
1968
                switch (dr) {
1969
                case 6:
1970
                        val = 0xffff0ff0;
1971
                        break;
1972
                case 7:
1973
                        val = 0x400;
1974
                        break;
1975
                default:
1976
                        val = 0;
1977
                }
1978
                vcpu->regs[reg] = val;
1979
        } else {
1980
                /* mov to dr */
1981
        }
1982
        vcpu_put_rsp_rip(vcpu);
1983
        skip_emulated_instruction(vcpu);
1984
        return 1;
1985
}
1986
 
1987
static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1988
{
1989
        kvm_emulate_cpuid(vcpu);
1990
        return 1;
1991
}
1992
 
1993
static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1994
{
1995
        u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1996
        u64 data;
1997
 
1998
        if (vmx_get_msr(vcpu, ecx, &data)) {
1999
                vmx_inject_gp(vcpu, 0);
2000
                return 1;
2001
        }
2002
 
2003
        /* FIXME: handling of bits 32:63 of rax, rdx */
2004
        vcpu->regs[VCPU_REGS_RAX] = data & -1u;
2005
        vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2006
        skip_emulated_instruction(vcpu);
2007
        return 1;
2008
}
2009
 
2010
static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2011
{
2012
        u32 ecx = vcpu->regs[VCPU_REGS_RCX];
2013
        u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
2014
                | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
2015
 
2016
        if (vmx_set_msr(vcpu, ecx, data) != 0) {
2017
                vmx_inject_gp(vcpu, 0);
2018
                return 1;
2019
        }
2020
 
2021
        skip_emulated_instruction(vcpu);
2022
        return 1;
2023
}
2024
 
2025
static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2026
                                      struct kvm_run *kvm_run)
2027
{
2028
        return 1;
2029
}
2030
 
2031
static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2032
                                   struct kvm_run *kvm_run)
2033
{
2034
        u32 cpu_based_vm_exec_control;
2035
 
2036
        /* clear pending irq */
2037
        cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2038
        cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2039
        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2040
        /*
2041
         * If the user space waits to inject interrupts, exit as soon as
2042
         * possible
2043
         */
2044
        if (kvm_run->request_interrupt_window &&
2045
            !vcpu->irq_summary) {
2046
                kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2047
                ++vcpu->stat.irq_window_exits;
2048
                return 0;
2049
        }
2050
        return 1;
2051
}
2052
 
2053
static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2054
{
2055
        skip_emulated_instruction(vcpu);
2056
        return kvm_emulate_halt(vcpu);
2057
}
2058
 
2059
static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2060
{
2061
        skip_emulated_instruction(vcpu);
2062
        return kvm_hypercall(vcpu, kvm_run);
2063
}
2064
 
2065
/*
2066
 * The exit handlers return 1 if the exit was handled fully and guest execution
2067
 * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
2068
 * to be done to userspace and return 0.
2069
 */
2070
static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
2071
                                      struct kvm_run *kvm_run) = {
2072
        [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
2073
        [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
2074
        [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
2075
        [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
2076
        [EXIT_REASON_CR_ACCESS]               = handle_cr,
2077
        [EXIT_REASON_DR_ACCESS]               = handle_dr,
2078
        [EXIT_REASON_CPUID]                   = handle_cpuid,
2079
        [EXIT_REASON_MSR_READ]                = handle_rdmsr,
2080
        [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
2081
        [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
2082
        [EXIT_REASON_HLT]                     = handle_halt,
2083
        [EXIT_REASON_VMCALL]                  = handle_vmcall,
2084
        [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold
2085
};
2086
 
2087
static const int kvm_vmx_max_exit_handlers =
2088
        ARRAY_SIZE(kvm_vmx_exit_handlers);
2089
 
2090
/*
2091
 * The guest has exited.  See if we can fix it or if we need userspace
2092
 * assistance.
2093
 */
2094
static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2095
{
2096
        u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2097
        u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
2098
        struct vcpu_vmx *vmx = to_vmx(vcpu);
2099
 
2100
        if (unlikely(vmx->fail)) {
2101
                kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2102
                kvm_run->fail_entry.hardware_entry_failure_reason
2103
                        = vmcs_read32(VM_INSTRUCTION_ERROR);
2104
                return 0;
2105
        }
2106
 
2107
        if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
2108
                                exit_reason != EXIT_REASON_EXCEPTION_NMI )
2109
                printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
2110
                       "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
2111
        if (exit_reason < kvm_vmx_max_exit_handlers
2112
            && kvm_vmx_exit_handlers[exit_reason])
2113
                return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
2114
        else {
2115
                kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2116
                kvm_run->hw.hardware_exit_reason = exit_reason;
2117
        }
2118
        return 0;
2119
}
2120
 
2121
static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2122
{
2123
}
2124
 
2125
static void update_tpr_threshold(struct kvm_vcpu *vcpu)
2126
{
2127
        int max_irr, tpr;
2128
 
2129
        if (!vm_need_tpr_shadow(vcpu->kvm))
2130
                return;
2131
 
2132
        if (!kvm_lapic_enabled(vcpu) ||
2133
            ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
2134
                vmcs_write32(TPR_THRESHOLD, 0);
2135
                return;
2136
        }
2137
 
2138
        tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
2139
        vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
2140
}
2141
 
2142
static void enable_irq_window(struct kvm_vcpu *vcpu)
2143
{
2144
        u32 cpu_based_vm_exec_control;
2145
 
2146
        cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2147
        cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2148
        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2149
}
2150
 
2151
static void vmx_intr_assist(struct kvm_vcpu *vcpu)
2152
{
2153
        u32 idtv_info_field, intr_info_field;
2154
        int has_ext_irq, interrupt_window_open;
2155
        int vector;
2156
 
2157
        kvm_inject_pending_timer_irqs(vcpu);
2158
        update_tpr_threshold(vcpu);
2159
 
2160
        has_ext_irq = kvm_cpu_has_interrupt(vcpu);
2161
        intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
2162
        idtv_info_field = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2163
        if (intr_info_field & INTR_INFO_VALID_MASK) {
2164
                if (idtv_info_field & INTR_INFO_VALID_MASK) {
2165
                        /* TODO: fault when IDT_Vectoring */
2166
                        printk(KERN_ERR "Fault when IDT_Vectoring\n");
2167
                }
2168
                if (has_ext_irq)
2169
                        enable_irq_window(vcpu);
2170
                return;
2171
        }
2172
        if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
2173
                vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
2174
                vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2175
                                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
2176
 
2177
                if (unlikely(idtv_info_field & INTR_INFO_DELIEVER_CODE_MASK))
2178
                        vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2179
                                vmcs_read32(IDT_VECTORING_ERROR_CODE));
2180
                if (unlikely(has_ext_irq))
2181
                        enable_irq_window(vcpu);
2182
                return;
2183
        }
2184
        if (!has_ext_irq)
2185
                return;
2186
        interrupt_window_open =
2187
                ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2188
                 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
2189
        if (interrupt_window_open) {
2190
                vector = kvm_cpu_get_interrupt(vcpu);
2191
                vmx_inject_irq(vcpu, vector);
2192
                kvm_timer_intr_post(vcpu, vector);
2193
        } else
2194
                enable_irq_window(vcpu);
2195
}
2196
 
2197
static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2198
{
2199
        struct vcpu_vmx *vmx = to_vmx(vcpu);
2200
        u32 intr_info;
2201
 
2202
        /*
2203
         * Loading guest fpu may have cleared host cr0.ts
2204
         */
2205
        vmcs_writel(HOST_CR0, read_cr0());
2206
 
2207
        asm (
2208
                /* Store host registers */
2209
#ifdef CONFIG_X86_64
2210
                "push %%rax; push %%rbx; push %%rdx;"
2211
                "push %%rsi; push %%rdi; push %%rbp;"
2212
                "push %%r8;  push %%r9;  push %%r10; push %%r11;"
2213
                "push %%r12; push %%r13; push %%r14; push %%r15;"
2214
                "push %%rcx \n\t"
2215
                ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2216
#else
2217
                "pusha; push %%ecx \n\t"
2218
                ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2219
#endif
2220
                /* Check if vmlaunch of vmresume is needed */
2221
                "cmp $0, %1 \n\t"
2222
                /* Load guest registers.  Don't clobber flags. */
2223
#ifdef CONFIG_X86_64
2224
                "mov %c[cr2](%3), %%rax \n\t"
2225
                "mov %%rax, %%cr2 \n\t"
2226
                "mov %c[rax](%3), %%rax \n\t"
2227
                "mov %c[rbx](%3), %%rbx \n\t"
2228
                "mov %c[rdx](%3), %%rdx \n\t"
2229
                "mov %c[rsi](%3), %%rsi \n\t"
2230
                "mov %c[rdi](%3), %%rdi \n\t"
2231
                "mov %c[rbp](%3), %%rbp \n\t"
2232
                "mov %c[r8](%3),  %%r8  \n\t"
2233
                "mov %c[r9](%3),  %%r9  \n\t"
2234
                "mov %c[r10](%3), %%r10 \n\t"
2235
                "mov %c[r11](%3), %%r11 \n\t"
2236
                "mov %c[r12](%3), %%r12 \n\t"
2237
                "mov %c[r13](%3), %%r13 \n\t"
2238
                "mov %c[r14](%3), %%r14 \n\t"
2239
                "mov %c[r15](%3), %%r15 \n\t"
2240
                "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
2241
#else
2242
                "mov %c[cr2](%3), %%eax \n\t"
2243
                "mov %%eax,   %%cr2 \n\t"
2244
                "mov %c[rax](%3), %%eax \n\t"
2245
                "mov %c[rbx](%3), %%ebx \n\t"
2246
                "mov %c[rdx](%3), %%edx \n\t"
2247
                "mov %c[rsi](%3), %%esi \n\t"
2248
                "mov %c[rdi](%3), %%edi \n\t"
2249
                "mov %c[rbp](%3), %%ebp \n\t"
2250
                "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
2251
#endif
2252
                /* Enter guest mode */
2253
                "jne .Llaunched \n\t"
2254
                ASM_VMX_VMLAUNCH "\n\t"
2255
                "jmp .Lkvm_vmx_return \n\t"
2256
                ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
2257
                ".Lkvm_vmx_return: "
2258
                /* Save guest registers, load host registers, keep flags */
2259
#ifdef CONFIG_X86_64
2260
                "xchg %3,     (%%rsp) \n\t"
2261
                "mov %%rax, %c[rax](%3) \n\t"
2262
                "mov %%rbx, %c[rbx](%3) \n\t"
2263
                "pushq (%%rsp); popq %c[rcx](%3) \n\t"
2264
                "mov %%rdx, %c[rdx](%3) \n\t"
2265
                "mov %%rsi, %c[rsi](%3) \n\t"
2266
                "mov %%rdi, %c[rdi](%3) \n\t"
2267
                "mov %%rbp, %c[rbp](%3) \n\t"
2268
                "mov %%r8,  %c[r8](%3) \n\t"
2269
                "mov %%r9,  %c[r9](%3) \n\t"
2270
                "mov %%r10, %c[r10](%3) \n\t"
2271
                "mov %%r11, %c[r11](%3) \n\t"
2272
                "mov %%r12, %c[r12](%3) \n\t"
2273
                "mov %%r13, %c[r13](%3) \n\t"
2274
                "mov %%r14, %c[r14](%3) \n\t"
2275
                "mov %%r15, %c[r15](%3) \n\t"
2276
                "mov %%cr2, %%rax   \n\t"
2277
                "mov %%rax, %c[cr2](%3) \n\t"
2278
                "mov (%%rsp), %3 \n\t"
2279
 
2280
                "pop  %%rcx; pop  %%r15; pop  %%r14; pop  %%r13; pop  %%r12;"
2281
                "pop  %%r11; pop  %%r10; pop  %%r9;  pop  %%r8;"
2282
                "pop  %%rbp; pop  %%rdi; pop  %%rsi;"
2283
                "pop  %%rdx; pop  %%rbx; pop  %%rax \n\t"
2284
#else
2285
                "xchg %3, (%%esp) \n\t"
2286
                "mov %%eax, %c[rax](%3) \n\t"
2287
                "mov %%ebx, %c[rbx](%3) \n\t"
2288
                "pushl (%%esp); popl %c[rcx](%3) \n\t"
2289
                "mov %%edx, %c[rdx](%3) \n\t"
2290
                "mov %%esi, %c[rsi](%3) \n\t"
2291
                "mov %%edi, %c[rdi](%3) \n\t"
2292
                "mov %%ebp, %c[rbp](%3) \n\t"
2293
                "mov %%cr2, %%eax  \n\t"
2294
                "mov %%eax, %c[cr2](%3) \n\t"
2295
                "mov (%%esp), %3 \n\t"
2296
 
2297
                "pop %%ecx; popa \n\t"
2298
#endif
2299
                "setbe %0 \n\t"
2300
              : "=q" (vmx->fail)
2301
              : "r"(vmx->launched), "d"((unsigned long)HOST_RSP),
2302
                "c"(vcpu),
2303
                [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
2304
                [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
2305
                [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
2306
                [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
2307
                [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
2308
                [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
2309
                [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
2310
#ifdef CONFIG_X86_64
2311
                [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
2312
                [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
2313
                [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
2314
                [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
2315
                [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
2316
                [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
2317
                [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
2318
                [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
2319
#endif
2320
                [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
2321
              : "cc", "memory" );
2322
 
2323
        vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
2324
 
2325
        asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2326
        vmx->launched = 1;
2327
 
2328
        intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2329
 
2330
        /* We need to handle NMIs before interrupts are enabled */
2331
        if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
2332
                asm("int $2");
2333
}
2334
 
2335
static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
2336
                                  unsigned long addr,
2337
                                  u32 err_code)
2338
{
2339
        u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2340
 
2341
        ++vcpu->stat.pf_guest;
2342
 
2343
        if (is_page_fault(vect_info)) {
2344
                printk(KERN_DEBUG "inject_page_fault: "
2345
                       "double fault 0x%lx @ 0x%lx\n",
2346
                       addr, vmcs_readl(GUEST_RIP));
2347
                vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
2348
                vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2349
                             DF_VECTOR |
2350
                             INTR_TYPE_EXCEPTION |
2351
                             INTR_INFO_DELIEVER_CODE_MASK |
2352
                             INTR_INFO_VALID_MASK);
2353
                return;
2354
        }
2355
        vcpu->cr2 = addr;
2356
        vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
2357
        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2358
                     PF_VECTOR |
2359
                     INTR_TYPE_EXCEPTION |
2360
                     INTR_INFO_DELIEVER_CODE_MASK |
2361
                     INTR_INFO_VALID_MASK);
2362
 
2363
}
2364
 
2365
static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2366
{
2367
        struct vcpu_vmx *vmx = to_vmx(vcpu);
2368
 
2369
        if (vmx->vmcs) {
2370
                on_each_cpu(__vcpu_clear, vmx, 0, 1);
2371
                free_vmcs(vmx->vmcs);
2372
                vmx->vmcs = NULL;
2373
        }
2374
}
2375
 
2376
static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2377
{
2378
        struct vcpu_vmx *vmx = to_vmx(vcpu);
2379
 
2380
        vmx_free_vmcs(vcpu);
2381
        kfree(vmx->host_msrs);
2382
        kfree(vmx->guest_msrs);
2383
        kvm_vcpu_uninit(vcpu);
2384
        kmem_cache_free(kvm_vcpu_cache, vmx);
2385
}
2386
 
2387
static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
2388
{
2389
        int err;
2390
        struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2391
        int cpu;
2392
 
2393
        if (!vmx)
2394
                return ERR_PTR(-ENOMEM);
2395
 
2396
        err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
2397
        if (err)
2398
                goto free_vcpu;
2399
 
2400
        if (irqchip_in_kernel(kvm)) {
2401
                err = kvm_create_lapic(&vmx->vcpu);
2402
                if (err < 0)
2403
                        goto free_vcpu;
2404
        }
2405
 
2406
        vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2407
        if (!vmx->guest_msrs) {
2408
                err = -ENOMEM;
2409
                goto uninit_vcpu;
2410
        }
2411
 
2412
        vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2413
        if (!vmx->host_msrs)
2414
                goto free_guest_msrs;
2415
 
2416
        vmx->vmcs = alloc_vmcs();
2417
        if (!vmx->vmcs)
2418
                goto free_msrs;
2419
 
2420
        vmcs_clear(vmx->vmcs);
2421
 
2422
        cpu = get_cpu();
2423
        vmx_vcpu_load(&vmx->vcpu, cpu);
2424
        err = vmx_vcpu_setup(vmx);
2425
        vmx_vcpu_put(&vmx->vcpu);
2426
        put_cpu();
2427
        if (err)
2428
                goto free_vmcs;
2429
 
2430
        return &vmx->vcpu;
2431
 
2432
free_vmcs:
2433
        free_vmcs(vmx->vmcs);
2434
free_msrs:
2435
        kfree(vmx->host_msrs);
2436
free_guest_msrs:
2437
        kfree(vmx->guest_msrs);
2438
uninit_vcpu:
2439
        kvm_vcpu_uninit(&vmx->vcpu);
2440
free_vcpu:
2441
        kmem_cache_free(kvm_vcpu_cache, vmx);
2442
        return ERR_PTR(err);
2443
}
2444
 
2445
static void __init vmx_check_processor_compat(void *rtn)
2446
{
2447
        struct vmcs_config vmcs_conf;
2448
 
2449
        *(int *)rtn = 0;
2450
        if (setup_vmcs_config(&vmcs_conf) < 0)
2451
                *(int *)rtn = -EIO;
2452
        if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
2453
                printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
2454
                                smp_processor_id());
2455
                *(int *)rtn = -EIO;
2456
        }
2457
}
2458
 
2459
static struct kvm_x86_ops vmx_x86_ops = {
2460
        .cpu_has_kvm_support = cpu_has_kvm_support,
2461
        .disabled_by_bios = vmx_disabled_by_bios,
2462
        .hardware_setup = hardware_setup,
2463
        .hardware_unsetup = hardware_unsetup,
2464
        .check_processor_compatibility = vmx_check_processor_compat,
2465
        .hardware_enable = hardware_enable,
2466
        .hardware_disable = hardware_disable,
2467
 
2468
        .vcpu_create = vmx_create_vcpu,
2469
        .vcpu_free = vmx_free_vcpu,
2470
        .vcpu_reset = vmx_vcpu_reset,
2471
 
2472
        .prepare_guest_switch = vmx_save_host_state,
2473
        .vcpu_load = vmx_vcpu_load,
2474
        .vcpu_put = vmx_vcpu_put,
2475
        .vcpu_decache = vmx_vcpu_decache,
2476
 
2477
        .set_guest_debug = set_guest_debug,
2478
        .guest_debug_pre = kvm_guest_debug_pre,
2479
        .get_msr = vmx_get_msr,
2480
        .set_msr = vmx_set_msr,
2481
        .get_segment_base = vmx_get_segment_base,
2482
        .get_segment = vmx_get_segment,
2483
        .set_segment = vmx_set_segment,
2484
        .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2485
        .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
2486
        .set_cr0 = vmx_set_cr0,
2487
        .set_cr3 = vmx_set_cr3,
2488
        .set_cr4 = vmx_set_cr4,
2489
#ifdef CONFIG_X86_64
2490
        .set_efer = vmx_set_efer,
2491
#endif
2492
        .get_idt = vmx_get_idt,
2493
        .set_idt = vmx_set_idt,
2494
        .get_gdt = vmx_get_gdt,
2495
        .set_gdt = vmx_set_gdt,
2496
        .cache_regs = vcpu_load_rsp_rip,
2497
        .decache_regs = vcpu_put_rsp_rip,
2498
        .get_rflags = vmx_get_rflags,
2499
        .set_rflags = vmx_set_rflags,
2500
 
2501
        .tlb_flush = vmx_flush_tlb,
2502
        .inject_page_fault = vmx_inject_page_fault,
2503
 
2504
        .inject_gp = vmx_inject_gp,
2505
 
2506
        .run = vmx_vcpu_run,
2507
        .handle_exit = kvm_handle_exit,
2508
        .skip_emulated_instruction = skip_emulated_instruction,
2509
        .patch_hypercall = vmx_patch_hypercall,
2510
        .get_irq = vmx_get_irq,
2511
        .set_irq = vmx_inject_irq,
2512
        .inject_pending_irq = vmx_intr_assist,
2513
        .inject_pending_vectors = do_interrupt_requests,
2514
};
2515
 
2516
static int __init vmx_init(void)
2517
{
2518
        void *iova;
2519
        int r;
2520
 
2521
        vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2522
        if (!vmx_io_bitmap_a)
2523
                return -ENOMEM;
2524
 
2525
        vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2526
        if (!vmx_io_bitmap_b) {
2527
                r = -ENOMEM;
2528
                goto out;
2529
        }
2530
 
2531
        /*
2532
         * Allow direct access to the PC debug port (it is often used for I/O
2533
         * delays, but the vmexits simply slow things down).
2534
         */
2535
        iova = kmap(vmx_io_bitmap_a);
2536
        memset(iova, 0xff, PAGE_SIZE);
2537
        clear_bit(0x80, iova);
2538
        kunmap(vmx_io_bitmap_a);
2539
 
2540
        iova = kmap(vmx_io_bitmap_b);
2541
        memset(iova, 0xff, PAGE_SIZE);
2542
        kunmap(vmx_io_bitmap_b);
2543
 
2544
        r = kvm_init_x86(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
2545
        if (r)
2546
                goto out1;
2547
 
2548
        return 0;
2549
 
2550
out1:
2551
        __free_page(vmx_io_bitmap_b);
2552
out:
2553
        __free_page(vmx_io_bitmap_a);
2554
        return r;
2555
}
2556
 
2557
static void __exit vmx_exit(void)
2558
{
2559
        __free_page(vmx_io_bitmap_b);
2560
        __free_page(vmx_io_bitmap_a);
2561
 
2562
        kvm_exit_x86();
2563
}
2564
 
2565
module_init(vmx_init)
2566
module_exit(vmx_exit)

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.