OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [drivers/] [macintosh/] [therm_pm72.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 * Device driver for the thermostats & fan controller of  the
3
 * Apple G5 "PowerMac7,2" desktop machines.
4
 *
5
 * (c) Copyright IBM Corp. 2003-2004
6
 *
7
 * Maintained by: Benjamin Herrenschmidt
8
 *                <benh@kernel.crashing.org>
9
 *
10
 *
11
 * The algorithm used is the PID control algorithm, used the same
12
 * way the published Darwin code does, using the same values that
13
 * are present in the Darwin 7.0 snapshot property lists.
14
 *
15
 * As far as the CPUs control loops are concerned, I use the
16
 * calibration & PID constants provided by the EEPROM,
17
 * I do _not_ embed any value from the property lists, as the ones
18
 * provided by Darwin 7.0 seem to always have an older version that
19
 * what I've seen on the actual computers.
20
 * It would be interesting to verify that though. Darwin has a
21
 * version code of 1.0.0d11 for all control loops it seems, while
22
 * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
23
 *
24
 * Darwin doesn't provide source to all parts, some missing
25
 * bits like the AppleFCU driver or the actual scale of some
26
 * of the values returned by sensors had to be "guessed" some
27
 * way... or based on what Open Firmware does.
28
 *
29
 * I didn't yet figure out how to get the slots power consumption
30
 * out of the FCU, so that part has not been implemented yet and
31
 * the slots fan is set to a fixed 50% PWM, hoping this value is
32
 * safe enough ...
33
 *
34
 * Note: I have observed strange oscillations of the CPU control
35
 * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
36
 * oscillates slowly (over several minutes) between the minimum
37
 * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
38
 * this, it could be some incorrect constant or an error in the
39
 * way I ported the algorithm, or it could be just normal. I
40
 * don't have full understanding on the way Apple tweaked the PID
41
 * algorithm for the CPU control, it is definitely not a standard
42
 * implementation...
43
 *
44
 * TODO:  - Check MPU structure version/signature
45
 *        - Add things like /sbin/overtemp for non-critical
46
 *          overtemp conditions so userland can take some policy
47
 *          decisions, like slewing down CPUs
48
 *        - Deal with fan and i2c failures in a better way
49
 *        - Maybe do a generic PID based on params used for
50
 *          U3 and Drives ? Definitely need to factor code a bit
51
 *          bettter... also make sensor detection more robust using
52
 *          the device-tree to probe for them
53
 *        - Figure out how to get the slots consumption and set the
54
 *          slots fan accordingly
55
 *
56
 * History:
57
 *
58
 *  Nov. 13, 2003 : 0.5
59
 *      - First release
60
 *
61
 *  Nov. 14, 2003 : 0.6
62
 *      - Read fan speed from FCU, low level fan routines now deal
63
 *        with errors & check fan status, though higher level don't
64
 *        do much.
65
 *      - Move a bunch of definitions to .h file
66
 *
67
 *  Nov. 18, 2003 : 0.7
68
 *      - Fix build on ppc64 kernel
69
 *      - Move back statics definitions to .c file
70
 *      - Avoid calling schedule_timeout with a negative number
71
 *
72
 *  Dec. 18, 2003 : 0.8
73
 *      - Fix typo when reading back fan speed on 2 CPU machines
74
 *
75
 *  Mar. 11, 2004 : 0.9
76
 *      - Rework code accessing the ADC chips, make it more robust and
77
 *        closer to the chip spec. Also make sure it is configured properly,
78
 *        I've seen yet unexplained cases where on startup, I would have stale
79
 *        values in the configuration register
80
 *      - Switch back to use of target fan speed for PID, thus lowering
81
 *        pressure on i2c
82
 *
83
 *  Oct. 20, 2004 : 1.1
84
 *      - Add device-tree lookup for fan IDs, should detect liquid cooling
85
 *        pumps when present
86
 *      - Enable driver for PowerMac7,3 machines
87
 *      - Split the U3/Backside cooling on U3 & U3H versions as Darwin does
88
 *      - Add new CPU cooling algorithm for machines with liquid cooling
89
 *      - Workaround for some PowerMac7,3 with empty "fan" node in the devtree
90
 *      - Fix a signed/unsigned compare issue in some PID loops
91
 *
92
 *  Mar. 10, 2005 : 1.2
93
 *      - Add basic support for Xserve G5
94
 *      - Retreive pumps min/max from EEPROM image in device-tree (broken)
95
 *      - Use min/max macros here or there
96
 *      - Latest darwin updated U3H min fan speed to 20% PWM
97
 *
98
 *  July. 06, 2006 : 1.3
99
 *      - Fix setting of RPM fans on Xserve G5 (they were going too fast)
100
 *      - Add missing slots fan control loop for Xserve G5
101
 *      - Lower fixed slots fan speed from 50% to 40% on desktop G5s. We
102
 *        still can't properly implement the control loop for these, so let's
103
 *        reduce the noise a little bit, it appears that 40% still gives us
104
 *        a pretty good air flow
105
 *      - Add code to "tickle" the FCU regulary so it doesn't think that
106
 *        we are gone while in fact, the machine just didn't need any fan
107
 *        speed change lately
108
 *
109
 */
110
 
111
#include <linux/types.h>
112
#include <linux/module.h>
113
#include <linux/errno.h>
114
#include <linux/kernel.h>
115
#include <linux/delay.h>
116
#include <linux/sched.h>
117
#include <linux/slab.h>
118
#include <linux/init.h>
119
#include <linux/spinlock.h>
120
#include <linux/wait.h>
121
#include <linux/reboot.h>
122
#include <linux/kmod.h>
123
#include <linux/i2c.h>
124
#include <asm/prom.h>
125
#include <asm/machdep.h>
126
#include <asm/io.h>
127
#include <asm/system.h>
128
#include <asm/sections.h>
129
#include <asm/of_device.h>
130
#include <asm/macio.h>
131
#include <asm/of_platform.h>
132
 
133
#include "therm_pm72.h"
134
 
135
#define VERSION "1.3"
136
 
137
#undef DEBUG
138
 
139
#ifdef DEBUG
140
#define DBG(args...)    printk(args)
141
#else
142
#define DBG(args...)    do { } while(0)
143
#endif
144
 
145
 
146
/*
147
 * Driver statics
148
 */
149
 
150
static struct of_device *               of_dev;
151
static struct i2c_adapter *             u3_0;
152
static struct i2c_adapter *             u3_1;
153
static struct i2c_adapter *             k2;
154
static struct i2c_client *              fcu;
155
static struct cpu_pid_state             cpu_state[2];
156
static struct basckside_pid_params      backside_params;
157
static struct backside_pid_state        backside_state;
158
static struct drives_pid_state          drives_state;
159
static struct dimm_pid_state            dimms_state;
160
static struct slots_pid_state           slots_state;
161
static int                              state;
162
static int                              cpu_count;
163
static int                              cpu_pid_type;
164
static pid_t                            ctrl_task;
165
static struct completion                ctrl_complete;
166
static int                              critical_state;
167
static int                              rackmac;
168
static s32                              dimm_output_clamp;
169
static int                              fcu_rpm_shift;
170
static int                              fcu_tickle_ticks;
171
static DECLARE_MUTEX(driver_lock);
172
 
173
/*
174
 * We have 3 types of CPU PID control. One is "split" old style control
175
 * for intake & exhaust fans, the other is "combined" control for both
176
 * CPUs that also deals with the pumps when present. To be "compatible"
177
 * with OS X at this point, we only use "COMBINED" on the machines that
178
 * are identified as having the pumps (though that identification is at
179
 * least dodgy). Ultimately, we could probably switch completely to this
180
 * algorithm provided we hack it to deal with the UP case
181
 */
182
#define CPU_PID_TYPE_SPLIT      0
183
#define CPU_PID_TYPE_COMBINED   1
184
#define CPU_PID_TYPE_RACKMAC    2
185
 
186
/*
187
 * This table describes all fans in the FCU. The "id" and "type" values
188
 * are defaults valid for all earlier machines. Newer machines will
189
 * eventually override the table content based on the device-tree
190
 */
191
struct fcu_fan_table
192
{
193
        char*   loc;    /* location code */
194
        int     type;   /* 0 = rpm, 1 = pwm, 2 = pump */
195
        int     id;     /* id or -1 */
196
};
197
 
198
#define FCU_FAN_RPM             0
199
#define FCU_FAN_PWM             1
200
 
201
#define FCU_FAN_ABSENT_ID       -1
202
 
203
#define FCU_FAN_COUNT           ARRAY_SIZE(fcu_fans)
204
 
205
struct fcu_fan_table    fcu_fans[] = {
206
        [BACKSIDE_FAN_PWM_INDEX] = {
207
                .loc    = "BACKSIDE,SYS CTRLR FAN",
208
                .type   = FCU_FAN_PWM,
209
                .id     = BACKSIDE_FAN_PWM_DEFAULT_ID,
210
        },
211
        [DRIVES_FAN_RPM_INDEX] = {
212
                .loc    = "DRIVE BAY",
213
                .type   = FCU_FAN_RPM,
214
                .id     = DRIVES_FAN_RPM_DEFAULT_ID,
215
        },
216
        [SLOTS_FAN_PWM_INDEX] = {
217
                .loc    = "SLOT,PCI FAN",
218
                .type   = FCU_FAN_PWM,
219
                .id     = SLOTS_FAN_PWM_DEFAULT_ID,
220
        },
221
        [CPUA_INTAKE_FAN_RPM_INDEX] = {
222
                .loc    = "CPU A INTAKE",
223
                .type   = FCU_FAN_RPM,
224
                .id     = CPUA_INTAKE_FAN_RPM_DEFAULT_ID,
225
        },
226
        [CPUA_EXHAUST_FAN_RPM_INDEX] = {
227
                .loc    = "CPU A EXHAUST",
228
                .type   = FCU_FAN_RPM,
229
                .id     = CPUA_EXHAUST_FAN_RPM_DEFAULT_ID,
230
        },
231
        [CPUB_INTAKE_FAN_RPM_INDEX] = {
232
                .loc    = "CPU B INTAKE",
233
                .type   = FCU_FAN_RPM,
234
                .id     = CPUB_INTAKE_FAN_RPM_DEFAULT_ID,
235
        },
236
        [CPUB_EXHAUST_FAN_RPM_INDEX] = {
237
                .loc    = "CPU B EXHAUST",
238
                .type   = FCU_FAN_RPM,
239
                .id     = CPUB_EXHAUST_FAN_RPM_DEFAULT_ID,
240
        },
241
        /* pumps aren't present by default, have to be looked up in the
242
         * device-tree
243
         */
244
        [CPUA_PUMP_RPM_INDEX] = {
245
                .loc    = "CPU A PUMP",
246
                .type   = FCU_FAN_RPM,
247
                .id     = FCU_FAN_ABSENT_ID,
248
        },
249
        [CPUB_PUMP_RPM_INDEX] = {
250
                .loc    = "CPU B PUMP",
251
                .type   = FCU_FAN_RPM,
252
                .id     = FCU_FAN_ABSENT_ID,
253
        },
254
        /* Xserve fans */
255
        [CPU_A1_FAN_RPM_INDEX] = {
256
                .loc    = "CPU A 1",
257
                .type   = FCU_FAN_RPM,
258
                .id     = FCU_FAN_ABSENT_ID,
259
        },
260
        [CPU_A2_FAN_RPM_INDEX] = {
261
                .loc    = "CPU A 2",
262
                .type   = FCU_FAN_RPM,
263
                .id     = FCU_FAN_ABSENT_ID,
264
        },
265
        [CPU_A3_FAN_RPM_INDEX] = {
266
                .loc    = "CPU A 3",
267
                .type   = FCU_FAN_RPM,
268
                .id     = FCU_FAN_ABSENT_ID,
269
        },
270
        [CPU_B1_FAN_RPM_INDEX] = {
271
                .loc    = "CPU B 1",
272
                .type   = FCU_FAN_RPM,
273
                .id     = FCU_FAN_ABSENT_ID,
274
        },
275
        [CPU_B2_FAN_RPM_INDEX] = {
276
                .loc    = "CPU B 2",
277
                .type   = FCU_FAN_RPM,
278
                .id     = FCU_FAN_ABSENT_ID,
279
        },
280
        [CPU_B3_FAN_RPM_INDEX] = {
281
                .loc    = "CPU B 3",
282
                .type   = FCU_FAN_RPM,
283
                .id     = FCU_FAN_ABSENT_ID,
284
        },
285
};
286
 
287
/*
288
 * i2c_driver structure to attach to the host i2c controller
289
 */
290
 
291
static int therm_pm72_attach(struct i2c_adapter *adapter);
292
static int therm_pm72_detach(struct i2c_adapter *adapter);
293
 
294
static struct i2c_driver therm_pm72_driver =
295
{
296
        .driver = {
297
                .name   = "therm_pm72",
298
        },
299
        .attach_adapter = therm_pm72_attach,
300
        .detach_adapter = therm_pm72_detach,
301
};
302
 
303
/*
304
 * Utility function to create an i2c_client structure and
305
 * attach it to one of u3 adapters
306
 */
307
static struct i2c_client *attach_i2c_chip(int id, const char *name)
308
{
309
        struct i2c_client *clt;
310
        struct i2c_adapter *adap;
311
 
312
        if (id & 0x200)
313
                adap = k2;
314
        else if (id & 0x100)
315
                adap = u3_1;
316
        else
317
                adap = u3_0;
318
        if (adap == NULL)
319
                return NULL;
320
 
321
        clt = kzalloc(sizeof(struct i2c_client), GFP_KERNEL);
322
        if (clt == NULL)
323
                return NULL;
324
 
325
        clt->addr = (id >> 1) & 0x7f;
326
        clt->adapter = adap;
327
        clt->driver = &therm_pm72_driver;
328
        strncpy(clt->name, name, I2C_NAME_SIZE-1);
329
 
330
        if (i2c_attach_client(clt)) {
331
                printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 0x%x\n", id);
332
                kfree(clt);
333
                return NULL;
334
        }
335
        return clt;
336
}
337
 
338
/*
339
 * Utility function to get rid of the i2c_client structure
340
 * (will also detach from the adapter hopepfully)
341
 */
342
static void detach_i2c_chip(struct i2c_client *clt)
343
{
344
        i2c_detach_client(clt);
345
        kfree(clt);
346
}
347
 
348
/*
349
 * Here are the i2c chip access wrappers
350
 */
351
 
352
static void initialize_adc(struct cpu_pid_state *state)
353
{
354
        int rc;
355
        u8 buf[2];
356
 
357
        /* Read ADC the configuration register and cache it. We
358
         * also make sure Config2 contains proper values, I've seen
359
         * cases where we got stale grabage in there, thus preventing
360
         * proper reading of conv. values
361
         */
362
 
363
        /* Clear Config2 */
364
        buf[0] = 5;
365
        buf[1] = 0;
366
        i2c_master_send(state->monitor, buf, 2);
367
 
368
        /* Read & cache Config1 */
369
        buf[0] = 1;
370
        rc = i2c_master_send(state->monitor, buf, 1);
371
        if (rc > 0) {
372
                rc = i2c_master_recv(state->monitor, buf, 1);
373
                if (rc > 0) {
374
                        state->adc_config = buf[0];
375
                        DBG("ADC config reg: %02x\n", state->adc_config);
376
                        /* Disable shutdown mode */
377
                        state->adc_config &= 0xfe;
378
                        buf[0] = 1;
379
                        buf[1] = state->adc_config;
380
                        rc = i2c_master_send(state->monitor, buf, 2);
381
                }
382
        }
383
        if (rc <= 0)
384
                printk(KERN_ERR "therm_pm72: Error reading ADC config"
385
                       " register !\n");
386
}
387
 
388
static int read_smon_adc(struct cpu_pid_state *state, int chan)
389
{
390
        int rc, data, tries = 0;
391
        u8 buf[2];
392
 
393
        for (;;) {
394
                /* Set channel */
395
                buf[0] = 1;
396
                buf[1] = (state->adc_config & 0x1f) | (chan << 5);
397
                rc = i2c_master_send(state->monitor, buf, 2);
398
                if (rc <= 0)
399
                        goto error;
400
                /* Wait for convertion */
401
                msleep(1);
402
                /* Switch to data register */
403
                buf[0] = 4;
404
                rc = i2c_master_send(state->monitor, buf, 1);
405
                if (rc <= 0)
406
                        goto error;
407
                /* Read result */
408
                rc = i2c_master_recv(state->monitor, buf, 2);
409
                if (rc < 0)
410
                        goto error;
411
                data = ((u16)buf[0]) << 8 | (u16)buf[1];
412
                return data >> 6;
413
        error:
414
                DBG("Error reading ADC, retrying...\n");
415
                if (++tries > 10) {
416
                        printk(KERN_ERR "therm_pm72: Error reading ADC !\n");
417
                        return -1;
418
                }
419
                msleep(10);
420
        }
421
}
422
 
423
static int read_lm87_reg(struct i2c_client * chip, int reg)
424
{
425
        int rc, tries = 0;
426
        u8 buf;
427
 
428
        for (;;) {
429
                /* Set address */
430
                buf = (u8)reg;
431
                rc = i2c_master_send(chip, &buf, 1);
432
                if (rc <= 0)
433
                        goto error;
434
                rc = i2c_master_recv(chip, &buf, 1);
435
                if (rc <= 0)
436
                        goto error;
437
                return (int)buf;
438
        error:
439
                DBG("Error reading LM87, retrying...\n");
440
                if (++tries > 10) {
441
                        printk(KERN_ERR "therm_pm72: Error reading LM87 !\n");
442
                        return -1;
443
                }
444
                msleep(10);
445
        }
446
}
447
 
448
static int fan_read_reg(int reg, unsigned char *buf, int nb)
449
{
450
        int tries, nr, nw;
451
 
452
        buf[0] = reg;
453
        tries = 0;
454
        for (;;) {
455
                nw = i2c_master_send(fcu, buf, 1);
456
                if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
457
                        break;
458
                msleep(10);
459
                ++tries;
460
        }
461
        if (nw <= 0) {
462
                printk(KERN_ERR "Failure writing address to FCU: %d", nw);
463
                return -EIO;
464
        }
465
        tries = 0;
466
        for (;;) {
467
                nr = i2c_master_recv(fcu, buf, nb);
468
                if (nr > 0 || (nr < 0 && nr != ENODEV) || tries >= 100)
469
                        break;
470
                msleep(10);
471
                ++tries;
472
        }
473
        if (nr <= 0)
474
                printk(KERN_ERR "Failure reading data from FCU: %d", nw);
475
        return nr;
476
}
477
 
478
static int fan_write_reg(int reg, const unsigned char *ptr, int nb)
479
{
480
        int tries, nw;
481
        unsigned char buf[16];
482
 
483
        buf[0] = reg;
484
        memcpy(buf+1, ptr, nb);
485
        ++nb;
486
        tries = 0;
487
        for (;;) {
488
                nw = i2c_master_send(fcu, buf, nb);
489
                if (nw > 0 || (nw < 0 && nw != EIO) || tries >= 100)
490
                        break;
491
                msleep(10);
492
                ++tries;
493
        }
494
        if (nw < 0)
495
                printk(KERN_ERR "Failure writing to FCU: %d", nw);
496
        return nw;
497
}
498
 
499
static int start_fcu(void)
500
{
501
        unsigned char buf = 0xff;
502
        int rc;
503
 
504
        rc = fan_write_reg(0xe, &buf, 1);
505
        if (rc < 0)
506
                return -EIO;
507
        rc = fan_write_reg(0x2e, &buf, 1);
508
        if (rc < 0)
509
                return -EIO;
510
        rc = fan_read_reg(0, &buf, 1);
511
        if (rc < 0)
512
                return -EIO;
513
        fcu_rpm_shift = (buf == 1) ? 2 : 3;
514
        printk(KERN_DEBUG "FCU Initialized, RPM fan shift is %d\n",
515
               fcu_rpm_shift);
516
 
517
        return 0;
518
}
519
 
520
static int set_rpm_fan(int fan_index, int rpm)
521
{
522
        unsigned char buf[2];
523
        int rc, id, min, max;
524
 
525
        if (fcu_fans[fan_index].type != FCU_FAN_RPM)
526
                return -EINVAL;
527
        id = fcu_fans[fan_index].id;
528
        if (id == FCU_FAN_ABSENT_ID)
529
                return -EINVAL;
530
 
531
        min = 2400 >> fcu_rpm_shift;
532
        max = 56000 >> fcu_rpm_shift;
533
 
534
        if (rpm < min)
535
                rpm = min;
536
        else if (rpm > max)
537
                rpm = max;
538
        buf[0] = rpm >> (8 - fcu_rpm_shift);
539
        buf[1] = rpm << fcu_rpm_shift;
540
        rc = fan_write_reg(0x10 + (id * 2), buf, 2);
541
        if (rc < 0)
542
                return -EIO;
543
        return 0;
544
}
545
 
546
static int get_rpm_fan(int fan_index, int programmed)
547
{
548
        unsigned char failure;
549
        unsigned char active;
550
        unsigned char buf[2];
551
        int rc, id, reg_base;
552
 
553
        if (fcu_fans[fan_index].type != FCU_FAN_RPM)
554
                return -EINVAL;
555
        id = fcu_fans[fan_index].id;
556
        if (id == FCU_FAN_ABSENT_ID)
557
                return -EINVAL;
558
 
559
        rc = fan_read_reg(0xb, &failure, 1);
560
        if (rc != 1)
561
                return -EIO;
562
        if ((failure & (1 << id)) != 0)
563
                return -EFAULT;
564
        rc = fan_read_reg(0xd, &active, 1);
565
        if (rc != 1)
566
                return -EIO;
567
        if ((active & (1 << id)) == 0)
568
                return -ENXIO;
569
 
570
        /* Programmed value or real current speed */
571
        reg_base = programmed ? 0x10 : 0x11;
572
        rc = fan_read_reg(reg_base + (id * 2), buf, 2);
573
        if (rc != 2)
574
                return -EIO;
575
 
576
        return (buf[0] << (8 - fcu_rpm_shift)) | buf[1] >> fcu_rpm_shift;
577
}
578
 
579
static int set_pwm_fan(int fan_index, int pwm)
580
{
581
        unsigned char buf[2];
582
        int rc, id;
583
 
584
        if (fcu_fans[fan_index].type != FCU_FAN_PWM)
585
                return -EINVAL;
586
        id = fcu_fans[fan_index].id;
587
        if (id == FCU_FAN_ABSENT_ID)
588
                return -EINVAL;
589
 
590
        if (pwm < 10)
591
                pwm = 10;
592
        else if (pwm > 100)
593
                pwm = 100;
594
        pwm = (pwm * 2559) / 1000;
595
        buf[0] = pwm;
596
        rc = fan_write_reg(0x30 + (id * 2), buf, 1);
597
        if (rc < 0)
598
                return rc;
599
        return 0;
600
}
601
 
602
static int get_pwm_fan(int fan_index)
603
{
604
        unsigned char failure;
605
        unsigned char active;
606
        unsigned char buf[2];
607
        int rc, id;
608
 
609
        if (fcu_fans[fan_index].type != FCU_FAN_PWM)
610
                return -EINVAL;
611
        id = fcu_fans[fan_index].id;
612
        if (id == FCU_FAN_ABSENT_ID)
613
                return -EINVAL;
614
 
615
        rc = fan_read_reg(0x2b, &failure, 1);
616
        if (rc != 1)
617
                return -EIO;
618
        if ((failure & (1 << id)) != 0)
619
                return -EFAULT;
620
        rc = fan_read_reg(0x2d, &active, 1);
621
        if (rc != 1)
622
                return -EIO;
623
        if ((active & (1 << id)) == 0)
624
                return -ENXIO;
625
 
626
        /* Programmed value or real current speed */
627
        rc = fan_read_reg(0x30 + (id * 2), buf, 1);
628
        if (rc != 1)
629
                return -EIO;
630
 
631
        return (buf[0] * 1000) / 2559;
632
}
633
 
634
static void tickle_fcu(void)
635
{
636
        int pwm;
637
 
638
        pwm = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
639
 
640
        DBG("FCU Tickle, slots fan is: %d\n", pwm);
641
        if (pwm < 0)
642
                pwm = 100;
643
 
644
        if (!rackmac) {
645
                pwm = SLOTS_FAN_DEFAULT_PWM;
646
        } else if (pwm < SLOTS_PID_OUTPUT_MIN)
647
                pwm = SLOTS_PID_OUTPUT_MIN;
648
 
649
        /* That is hopefully enough to make the FCU happy */
650
        set_pwm_fan(SLOTS_FAN_PWM_INDEX, pwm);
651
}
652
 
653
 
654
/*
655
 * Utility routine to read the CPU calibration EEPROM data
656
 * from the device-tree
657
 */
658
static int read_eeprom(int cpu, struct mpu_data *out)
659
{
660
        struct device_node *np;
661
        char nodename[64];
662
        const u8 *data;
663
        int len;
664
 
665
        /* prom.c routine for finding a node by path is a bit brain dead
666
         * and requires exact @xxx unit numbers. This is a bit ugly but
667
         * will work for these machines
668
         */
669
        sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0);
670
        np = of_find_node_by_path(nodename);
671
        if (np == NULL) {
672
                printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid node from device-tree\n");
673
                return -ENODEV;
674
        }
675
        data = of_get_property(np, "cpuid", &len);
676
        if (data == NULL) {
677
                printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid property from device-tree\n");
678
                of_node_put(np);
679
                return -ENODEV;
680
        }
681
        memcpy(out, data, sizeof(struct mpu_data));
682
        of_node_put(np);
683
 
684
        return 0;
685
}
686
 
687
static void fetch_cpu_pumps_minmax(void)
688
{
689
        struct cpu_pid_state *state0 = &cpu_state[0];
690
        struct cpu_pid_state *state1 = &cpu_state[1];
691
        u16 pump_min = 0, pump_max = 0xffff;
692
        u16 tmp[4];
693
 
694
        /* Try to fetch pumps min/max infos from eeprom */
695
 
696
        memcpy(&tmp, &state0->mpu.processor_part_num, 8);
697
        if (tmp[0] != 0xffff && tmp[1] != 0xffff) {
698
                pump_min = max(pump_min, tmp[0]);
699
                pump_max = min(pump_max, tmp[1]);
700
        }
701
        if (tmp[2] != 0xffff && tmp[3] != 0xffff) {
702
                pump_min = max(pump_min, tmp[2]);
703
                pump_max = min(pump_max, tmp[3]);
704
        }
705
 
706
        /* Double check the values, this _IS_ needed as the EEPROM on
707
         * some dual 2.5Ghz G5s seem, at least, to have both min & max
708
         * same to the same value ... (grrrr)
709
         */
710
        if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) {
711
                pump_min = CPU_PUMP_OUTPUT_MIN;
712
                pump_max = CPU_PUMP_OUTPUT_MAX;
713
        }
714
 
715
        state0->pump_min = state1->pump_min = pump_min;
716
        state0->pump_max = state1->pump_max = pump_max;
717
}
718
 
719
/*
720
 * Now, unfortunately, sysfs doesn't give us a nice void * we could
721
 * pass around to the attribute functions, so we don't really have
722
 * choice but implement a bunch of them...
723
 *
724
 * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
725
 * the input twice... I accept patches :)
726
 */
727
#define BUILD_SHOW_FUNC_FIX(name, data)                         \
728
static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)        \
729
{                                                               \
730
        ssize_t r;                                              \
731
        down(&driver_lock);                                     \
732
        r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data));        \
733
        up(&driver_lock);                                       \
734
        return r;                                               \
735
}
736
#define BUILD_SHOW_FUNC_INT(name, data)                         \
737
static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)        \
738
{                                                               \
739
        return sprintf(buf, "%d", data);                        \
740
}
741
 
742
BUILD_SHOW_FUNC_FIX(cpu0_temperature, cpu_state[0].last_temp)
743
BUILD_SHOW_FUNC_FIX(cpu0_voltage, cpu_state[0].voltage)
744
BUILD_SHOW_FUNC_FIX(cpu0_current, cpu_state[0].current_a)
745
BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, cpu_state[0].rpm)
746
BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, cpu_state[0].intake_rpm)
747
 
748
BUILD_SHOW_FUNC_FIX(cpu1_temperature, cpu_state[1].last_temp)
749
BUILD_SHOW_FUNC_FIX(cpu1_voltage, cpu_state[1].voltage)
750
BUILD_SHOW_FUNC_FIX(cpu1_current, cpu_state[1].current_a)
751
BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, cpu_state[1].rpm)
752
BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, cpu_state[1].intake_rpm)
753
 
754
BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp)
755
BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm)
756
 
757
BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp)
758
BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm)
759
 
760
BUILD_SHOW_FUNC_FIX(slots_temperature, slots_state.last_temp)
761
BUILD_SHOW_FUNC_INT(slots_fan_pwm, slots_state.pwm)
762
 
763
BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp)
764
 
765
static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL);
766
static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL);
767
static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL);
768
static DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL);
769
static DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL);
770
 
771
static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL);
772
static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL);
773
static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL);
774
static DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL);
775
static DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL);
776
 
777
static DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL);
778
static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL);
779
 
780
static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL);
781
static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL);
782
 
783
static DEVICE_ATTR(slots_temperature,S_IRUGO,show_slots_temperature,NULL);
784
static DEVICE_ATTR(slots_fan_pwm,S_IRUGO,show_slots_fan_pwm,NULL);
785
 
786
static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL);
787
 
788
/*
789
 * CPUs fans control loop
790
 */
791
 
792
static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, s32 *power)
793
{
794
        s32 ltemp, volts, amps;
795
        int index, rc = 0;
796
 
797
        /* Default (in case of error) */
798
        *temp = state->cur_temp;
799
        *power = state->cur_power;
800
 
801
        if (cpu_pid_type == CPU_PID_TYPE_RACKMAC)
802
                index = (state->index == 0) ?
803
                        CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX;
804
        else
805
                index = (state->index == 0) ?
806
                        CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX;
807
 
808
        /* Read current fan status */
809
        rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED);
810
        if (rc < 0) {
811
                /* XXX What do we do now ? Nothing for now, keep old value, but
812
                 * return error upstream
813
                 */
814
                DBG("  cpu %d, fan reading error !\n", state->index);
815
        } else {
816
                state->rpm = rc;
817
                DBG("  cpu %d, exhaust RPM: %d\n", state->index, state->rpm);
818
        }
819
 
820
        /* Get some sensor readings and scale it */
821
        ltemp = read_smon_adc(state, 1);
822
        if (ltemp == -1) {
823
                /* XXX What do we do now ? */
824
                state->overtemp++;
825
                if (rc == 0)
826
                        rc = -EIO;
827
                DBG("  cpu %d, temp reading error !\n", state->index);
828
        } else {
829
                /* Fixup temperature according to diode calibration
830
                 */
831
                DBG("  cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
832
                    state->index,
833
                    ltemp, state->mpu.mdiode, state->mpu.bdiode);
834
                *temp = ((s32)ltemp * (s32)state->mpu.mdiode + ((s32)state->mpu.bdiode << 12)) >> 2;
835
                state->last_temp = *temp;
836
                DBG("  temp: %d.%03d\n", FIX32TOPRINT((*temp)));
837
        }
838
 
839
        /*
840
         * Read voltage & current and calculate power
841
         */
842
        volts = read_smon_adc(state, 3);
843
        amps = read_smon_adc(state, 4);
844
 
845
        /* Scale voltage and current raw sensor values according to fixed scales
846
         * obtained in Darwin and calculate power from I and V
847
         */
848
        volts *= ADC_CPU_VOLTAGE_SCALE;
849
        amps *= ADC_CPU_CURRENT_SCALE;
850
        *power = (((u64)volts) * ((u64)amps)) >> 16;
851
        state->voltage = volts;
852
        state->current_a = amps;
853
        state->last_power = *power;
854
 
855
        DBG("  cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
856
            state->index, FIX32TOPRINT(state->current_a),
857
            FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power));
858
 
859
        return 0;
860
}
861
 
862
static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power)
863
{
864
        s32 power_target, integral, derivative, proportional, adj_in_target, sval;
865
        s64 integ_p, deriv_p, prop_p, sum;
866
        int i;
867
 
868
        /* Calculate power target value (could be done once for all)
869
         * and convert to a 16.16 fp number
870
         */
871
        power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16;
872
        DBG("  power target: %d.%03d, error: %d.%03d\n",
873
            FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power));
874
 
875
        /* Store temperature and power in history array */
876
        state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
877
        state->temp_history[state->cur_temp] = temp;
878
        state->cur_power = (state->cur_power + 1) % state->count_power;
879
        state->power_history[state->cur_power] = power;
880
        state->error_history[state->cur_power] = power_target - power;
881
 
882
        /* If first loop, fill the history table */
883
        if (state->first) {
884
                for (i = 0; i < (state->count_power - 1); i++) {
885
                        state->cur_power = (state->cur_power + 1) % state->count_power;
886
                        state->power_history[state->cur_power] = power;
887
                        state->error_history[state->cur_power] = power_target - power;
888
                }
889
                for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) {
890
                        state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
891
                        state->temp_history[state->cur_temp] = temp;
892
                }
893
                state->first = 0;
894
        }
895
 
896
        /* Calculate the integral term normally based on the "power" values */
897
        sum = 0;
898
        integral = 0;
899
        for (i = 0; i < state->count_power; i++)
900
                integral += state->error_history[i];
901
        integral *= CPU_PID_INTERVAL;
902
        DBG("  integral: %08x\n", integral);
903
 
904
        /* Calculate the adjusted input (sense value).
905
         *   G_r is 12.20
906
         *   integ is 16.16
907
         *   so the result is 28.36
908
         *
909
         * input target is mpu.ttarget, input max is mpu.tmax
910
         */
911
        integ_p = ((s64)state->mpu.pid_gr) * (s64)integral;
912
        DBG("   integ_p: %d\n", (int)(integ_p >> 36));
913
        sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff);
914
        adj_in_target = (state->mpu.ttarget << 16);
915
        if (adj_in_target > sval)
916
                adj_in_target = sval;
917
        DBG("   adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target),
918
            state->mpu.ttarget);
919
 
920
        /* Calculate the derivative term */
921
        derivative = state->temp_history[state->cur_temp] -
922
                state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 1)
923
                                    % CPU_TEMP_HISTORY_SIZE];
924
        derivative /= CPU_PID_INTERVAL;
925
        deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative;
926
        DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
927
        sum += deriv_p;
928
 
929
        /* Calculate the proportional term */
930
        proportional = temp - adj_in_target;
931
        prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional;
932
        DBG("   prop_p: %d\n", (int)(prop_p >> 36));
933
        sum += prop_p;
934
 
935
        /* Scale sum */
936
        sum >>= 36;
937
 
938
        DBG("   sum: %d\n", (int)sum);
939
        state->rpm += (s32)sum;
940
}
941
 
942
static void do_monitor_cpu_combined(void)
943
{
944
        struct cpu_pid_state *state0 = &cpu_state[0];
945
        struct cpu_pid_state *state1 = &cpu_state[1];
946
        s32 temp0, power0, temp1, power1;
947
        s32 temp_combi, power_combi;
948
        int rc, intake, pump;
949
 
950
        rc = do_read_one_cpu_values(state0, &temp0, &power0);
951
        if (rc < 0) {
952
                /* XXX What do we do now ? */
953
        }
954
        state1->overtemp = 0;
955
        rc = do_read_one_cpu_values(state1, &temp1, &power1);
956
        if (rc < 0) {
957
                /* XXX What do we do now ? */
958
        }
959
        if (state1->overtemp)
960
                state0->overtemp++;
961
 
962
        temp_combi = max(temp0, temp1);
963
        power_combi = max(power0, power1);
964
 
965
        /* Check tmax, increment overtemp if we are there. At tmax+8, we go
966
         * full blown immediately and try to trigger a shutdown
967
         */
968
        if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) {
969
                printk(KERN_WARNING "Warning ! Temperature way above maximum (%d) !\n",
970
                       temp_combi >> 16);
971
                state0->overtemp += CPU_MAX_OVERTEMP / 4;
972
        } else if (temp_combi > (state0->mpu.tmax << 16))
973
                state0->overtemp++;
974
        else
975
                state0->overtemp = 0;
976
        if (state0->overtemp >= CPU_MAX_OVERTEMP)
977
                critical_state = 1;
978
        if (state0->overtemp > 0) {
979
                state0->rpm = state0->mpu.rmaxn_exhaust_fan;
980
                state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan;
981
                pump = state0->pump_max;
982
                goto do_set_fans;
983
        }
984
 
985
        /* Do the PID */
986
        do_cpu_pid(state0, temp_combi, power_combi);
987
 
988
        /* Range check */
989
        state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan);
990
        state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan);
991
 
992
        /* Calculate intake fan speed */
993
        intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16;
994
        intake = max(intake, (int)state0->mpu.rminn_intake_fan);
995
        intake = min(intake, (int)state0->mpu.rmaxn_intake_fan);
996
        state0->intake_rpm = intake;
997
 
998
        /* Calculate pump speed */
999
        pump = (state0->rpm * state0->pump_max) /
1000
                state0->mpu.rmaxn_exhaust_fan;
1001
        pump = min(pump, state0->pump_max);
1002
        pump = max(pump, state0->pump_min);
1003
 
1004
 do_set_fans:
1005
        /* We copy values from state 0 to state 1 for /sysfs */
1006
        state1->rpm = state0->rpm;
1007
        state1->intake_rpm = state0->intake_rpm;
1008
 
1009
        DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
1010
            state1->index, (int)state1->rpm, intake, pump, state1->overtemp);
1011
 
1012
        /* We should check for errors, shouldn't we ? But then, what
1013
         * do we do once the error occurs ? For FCU notified fan
1014
         * failures (-EFAULT) we probably want to notify userland
1015
         * some way...
1016
         */
1017
        set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1018
        set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm);
1019
        set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1020
        set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm);
1021
 
1022
        if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
1023
                set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump);
1024
        if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
1025
                set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump);
1026
}
1027
 
1028
static void do_monitor_cpu_split(struct cpu_pid_state *state)
1029
{
1030
        s32 temp, power;
1031
        int rc, intake;
1032
 
1033
        /* Read current fan status */
1034
        rc = do_read_one_cpu_values(state, &temp, &power);
1035
        if (rc < 0) {
1036
                /* XXX What do we do now ? */
1037
        }
1038
 
1039
        /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1040
         * full blown immediately and try to trigger a shutdown
1041
         */
1042
        if (temp >= ((state->mpu.tmax + 8) << 16)) {
1043
                printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1044
                       " (%d) !\n",
1045
                       state->index, temp >> 16);
1046
                state->overtemp += CPU_MAX_OVERTEMP / 4;
1047
        } else if (temp > (state->mpu.tmax << 16))
1048
                state->overtemp++;
1049
        else
1050
                state->overtemp = 0;
1051
        if (state->overtemp >= CPU_MAX_OVERTEMP)
1052
                critical_state = 1;
1053
        if (state->overtemp > 0) {
1054
                state->rpm = state->mpu.rmaxn_exhaust_fan;
1055
                state->intake_rpm = intake = state->mpu.rmaxn_intake_fan;
1056
                goto do_set_fans;
1057
        }
1058
 
1059
        /* Do the PID */
1060
        do_cpu_pid(state, temp, power);
1061
 
1062
        /* Range check */
1063
        state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan);
1064
        state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan);
1065
 
1066
        /* Calculate intake fan */
1067
        intake = (state->rpm * CPU_INTAKE_SCALE) >> 16;
1068
        intake = max(intake, (int)state->mpu.rminn_intake_fan);
1069
        intake = min(intake, (int)state->mpu.rmaxn_intake_fan);
1070
        state->intake_rpm = intake;
1071
 
1072
 do_set_fans:
1073
        DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
1074
            state->index, (int)state->rpm, intake, state->overtemp);
1075
 
1076
        /* We should check for errors, shouldn't we ? But then, what
1077
         * do we do once the error occurs ? For FCU notified fan
1078
         * failures (-EFAULT) we probably want to notify userland
1079
         * some way...
1080
         */
1081
        if (state->index == 0) {
1082
                set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1083
                set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm);
1084
        } else {
1085
                set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1086
                set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm);
1087
        }
1088
}
1089
 
1090
static void do_monitor_cpu_rack(struct cpu_pid_state *state)
1091
{
1092
        s32 temp, power, fan_min;
1093
        int rc;
1094
 
1095
        /* Read current fan status */
1096
        rc = do_read_one_cpu_values(state, &temp, &power);
1097
        if (rc < 0) {
1098
                /* XXX What do we do now ? */
1099
        }
1100
 
1101
        /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1102
         * full blown immediately and try to trigger a shutdown
1103
         */
1104
        if (temp >= ((state->mpu.tmax + 8) << 16)) {
1105
                printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1106
                       " (%d) !\n",
1107
                       state->index, temp >> 16);
1108
                state->overtemp = CPU_MAX_OVERTEMP / 4;
1109
        } else if (temp > (state->mpu.tmax << 16))
1110
                state->overtemp++;
1111
        else
1112
                state->overtemp = 0;
1113
        if (state->overtemp >= CPU_MAX_OVERTEMP)
1114
                critical_state = 1;
1115
        if (state->overtemp > 0) {
1116
                state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan;
1117
                goto do_set_fans;
1118
        }
1119
 
1120
        /* Do the PID */
1121
        do_cpu_pid(state, temp, power);
1122
 
1123
        /* Check clamp from dimms */
1124
        fan_min = dimm_output_clamp;
1125
        fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan);
1126
 
1127
        DBG(" CPU min mpu = %d, min dimm = %d\n",
1128
            state->mpu.rminn_intake_fan, dimm_output_clamp);
1129
 
1130
        state->rpm = max(state->rpm, (int)fan_min);
1131
        state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan);
1132
        state->intake_rpm = state->rpm;
1133
 
1134
 do_set_fans:
1135
        DBG("** CPU %d RPM: %d overtemp: %d\n",
1136
            state->index, (int)state->rpm, state->overtemp);
1137
 
1138
        /* We should check for errors, shouldn't we ? But then, what
1139
         * do we do once the error occurs ? For FCU notified fan
1140
         * failures (-EFAULT) we probably want to notify userland
1141
         * some way...
1142
         */
1143
        if (state->index == 0) {
1144
                set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm);
1145
                set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm);
1146
                set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm);
1147
        } else {
1148
                set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm);
1149
                set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm);
1150
                set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm);
1151
        }
1152
}
1153
 
1154
/*
1155
 * Initialize the state structure for one CPU control loop
1156
 */
1157
static int init_cpu_state(struct cpu_pid_state *state, int index)
1158
{
1159
        state->index = index;
1160
        state->first = 1;
1161
        state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000;
1162
        state->overtemp = 0;
1163
        state->adc_config = 0x00;
1164
 
1165
 
1166
        if (index == 0)
1167
                state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, "CPU0_monitor");
1168
        else if (index == 1)
1169
                state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, "CPU1_monitor");
1170
        if (state->monitor == NULL)
1171
                goto fail;
1172
 
1173
        if (read_eeprom(index, &state->mpu))
1174
                goto fail;
1175
 
1176
        state->count_power = state->mpu.tguardband;
1177
        if (state->count_power > CPU_POWER_HISTORY_SIZE) {
1178
                printk(KERN_WARNING "Warning ! too many power history slots\n");
1179
                state->count_power = CPU_POWER_HISTORY_SIZE;
1180
        }
1181
        DBG("CPU %d Using %d power history entries\n", index, state->count_power);
1182
 
1183
        if (index == 0) {
1184
                device_create_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1185
                device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1186
                device_create_file(&of_dev->dev, &dev_attr_cpu0_current);
1187
                device_create_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1188
                device_create_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1189
        } else {
1190
                device_create_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1191
                device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1192
                device_create_file(&of_dev->dev, &dev_attr_cpu1_current);
1193
                device_create_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1194
                device_create_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1195
        }
1196
 
1197
        return 0;
1198
 fail:
1199
        if (state->monitor)
1200
                detach_i2c_chip(state->monitor);
1201
        state->monitor = NULL;
1202
 
1203
        return -ENODEV;
1204
}
1205
 
1206
/*
1207
 * Dispose of the state data for one CPU control loop
1208
 */
1209
static void dispose_cpu_state(struct cpu_pid_state *state)
1210
{
1211
        if (state->monitor == NULL)
1212
                return;
1213
 
1214
        if (state->index == 0) {
1215
                device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1216
                device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1217
                device_remove_file(&of_dev->dev, &dev_attr_cpu0_current);
1218
                device_remove_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1219
                device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1220
        } else {
1221
                device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1222
                device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1223
                device_remove_file(&of_dev->dev, &dev_attr_cpu1_current);
1224
                device_remove_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1225
                device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1226
        }
1227
 
1228
        detach_i2c_chip(state->monitor);
1229
        state->monitor = NULL;
1230
}
1231
 
1232
/*
1233
 * Motherboard backside & U3 heatsink fan control loop
1234
 */
1235
static void do_monitor_backside(struct backside_pid_state *state)
1236
{
1237
        s32 temp, integral, derivative, fan_min;
1238
        s64 integ_p, deriv_p, prop_p, sum;
1239
        int i, rc;
1240
 
1241
        if (--state->ticks != 0)
1242
                return;
1243
        state->ticks = backside_params.interval;
1244
 
1245
        DBG("backside:\n");
1246
 
1247
        /* Check fan status */
1248
        rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX);
1249
        if (rc < 0) {
1250
                printk(KERN_WARNING "Error %d reading backside fan !\n", rc);
1251
                /* XXX What do we do now ? */
1252
        } else
1253
                state->pwm = rc;
1254
        DBG("  current pwm: %d\n", state->pwm);
1255
 
1256
        /* Get some sensor readings */
1257
        temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16;
1258
        state->last_temp = temp;
1259
        DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1260
            FIX32TOPRINT(backside_params.input_target));
1261
 
1262
        /* Store temperature and error in history array */
1263
        state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE;
1264
        state->sample_history[state->cur_sample] = temp;
1265
        state->error_history[state->cur_sample] = temp - backside_params.input_target;
1266
 
1267
        /* If first loop, fill the history table */
1268
        if (state->first) {
1269
                for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) {
1270
                        state->cur_sample = (state->cur_sample + 1) %
1271
                                BACKSIDE_PID_HISTORY_SIZE;
1272
                        state->sample_history[state->cur_sample] = temp;
1273
                        state->error_history[state->cur_sample] =
1274
                                temp - backside_params.input_target;
1275
                }
1276
                state->first = 0;
1277
        }
1278
 
1279
        /* Calculate the integral term */
1280
        sum = 0;
1281
        integral = 0;
1282
        for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++)
1283
                integral += state->error_history[i];
1284
        integral *= backside_params.interval;
1285
        DBG("  integral: %08x\n", integral);
1286
        integ_p = ((s64)backside_params.G_r) * (s64)integral;
1287
        DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1288
        sum += integ_p;
1289
 
1290
        /* Calculate the derivative term */
1291
        derivative = state->error_history[state->cur_sample] -
1292
                state->error_history[(state->cur_sample + BACKSIDE_PID_HISTORY_SIZE - 1)
1293
                                    % BACKSIDE_PID_HISTORY_SIZE];
1294
        derivative /= backside_params.interval;
1295
        deriv_p = ((s64)backside_params.G_d) * (s64)derivative;
1296
        DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1297
        sum += deriv_p;
1298
 
1299
        /* Calculate the proportional term */
1300
        prop_p = ((s64)backside_params.G_p) * (s64)(state->error_history[state->cur_sample]);
1301
        DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1302
        sum += prop_p;
1303
 
1304
        /* Scale sum */
1305
        sum >>= 36;
1306
 
1307
        DBG("   sum: %d\n", (int)sum);
1308
        if (backside_params.additive)
1309
                state->pwm += (s32)sum;
1310
        else
1311
                state->pwm = sum;
1312
 
1313
        /* Check for clamp */
1314
        fan_min = (dimm_output_clamp * 100) / 14000;
1315
        fan_min = max(fan_min, backside_params.output_min);
1316
 
1317
        state->pwm = max(state->pwm, fan_min);
1318
        state->pwm = min(state->pwm, backside_params.output_max);
1319
 
1320
        DBG("** BACKSIDE PWM: %d\n", (int)state->pwm);
1321
        set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm);
1322
}
1323
 
1324
/*
1325
 * Initialize the state structure for the backside fan control loop
1326
 */
1327
static int init_backside_state(struct backside_pid_state *state)
1328
{
1329
        struct device_node *u3;
1330
        int u3h = 1; /* conservative by default */
1331
 
1332
        /*
1333
         * There are different PID params for machines with U3 and machines
1334
         * with U3H, pick the right ones now
1335
         */
1336
        u3 = of_find_node_by_path("/u3@0,f8000000");
1337
        if (u3 != NULL) {
1338
                const u32 *vers = of_get_property(u3, "device-rev", NULL);
1339
                if (vers)
1340
                        if (((*vers) & 0x3f) < 0x34)
1341
                                u3h = 0;
1342
                of_node_put(u3);
1343
        }
1344
 
1345
        if (rackmac) {
1346
                backside_params.G_d = BACKSIDE_PID_RACK_G_d;
1347
                backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET;
1348
                backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1349
                backside_params.interval = BACKSIDE_PID_RACK_INTERVAL;
1350
                backside_params.G_p = BACKSIDE_PID_RACK_G_p;
1351
                backside_params.G_r = BACKSIDE_PID_G_r;
1352
                backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1353
                backside_params.additive = 0;
1354
        } else if (u3h) {
1355
                backside_params.G_d = BACKSIDE_PID_U3H_G_d;
1356
                backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET;
1357
                backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1358
                backside_params.interval = BACKSIDE_PID_INTERVAL;
1359
                backside_params.G_p = BACKSIDE_PID_G_p;
1360
                backside_params.G_r = BACKSIDE_PID_G_r;
1361
                backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1362
                backside_params.additive = 1;
1363
        } else {
1364
                backside_params.G_d = BACKSIDE_PID_U3_G_d;
1365
                backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET;
1366
                backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN;
1367
                backside_params.interval = BACKSIDE_PID_INTERVAL;
1368
                backside_params.G_p = BACKSIDE_PID_G_p;
1369
                backside_params.G_r = BACKSIDE_PID_G_r;
1370
                backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1371
                backside_params.additive = 1;
1372
        }
1373
 
1374
        state->ticks = 1;
1375
        state->first = 1;
1376
        state->pwm = 50;
1377
 
1378
        state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp");
1379
        if (state->monitor == NULL)
1380
                return -ENODEV;
1381
 
1382
        device_create_file(&of_dev->dev, &dev_attr_backside_temperature);
1383
        device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1384
 
1385
        return 0;
1386
}
1387
 
1388
/*
1389
 * Dispose of the state data for the backside control loop
1390
 */
1391
static void dispose_backside_state(struct backside_pid_state *state)
1392
{
1393
        if (state->monitor == NULL)
1394
                return;
1395
 
1396
        device_remove_file(&of_dev->dev, &dev_attr_backside_temperature);
1397
        device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1398
 
1399
        detach_i2c_chip(state->monitor);
1400
        state->monitor = NULL;
1401
}
1402
 
1403
/*
1404
 * Drives bay fan control loop
1405
 */
1406
static void do_monitor_drives(struct drives_pid_state *state)
1407
{
1408
        s32 temp, integral, derivative;
1409
        s64 integ_p, deriv_p, prop_p, sum;
1410
        int i, rc;
1411
 
1412
        if (--state->ticks != 0)
1413
                return;
1414
        state->ticks = DRIVES_PID_INTERVAL;
1415
 
1416
        DBG("drives:\n");
1417
 
1418
        /* Check fan status */
1419
        rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED);
1420
        if (rc < 0) {
1421
                printk(KERN_WARNING "Error %d reading drives fan !\n", rc);
1422
                /* XXX What do we do now ? */
1423
        } else
1424
                state->rpm = rc;
1425
        DBG("  current rpm: %d\n", state->rpm);
1426
 
1427
        /* Get some sensor readings */
1428
        temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1429
                                                    DS1775_TEMP)) << 8;
1430
        state->last_temp = temp;
1431
        DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1432
            FIX32TOPRINT(DRIVES_PID_INPUT_TARGET));
1433
 
1434
        /* Store temperature and error in history array */
1435
        state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE;
1436
        state->sample_history[state->cur_sample] = temp;
1437
        state->error_history[state->cur_sample] = temp - DRIVES_PID_INPUT_TARGET;
1438
 
1439
        /* If first loop, fill the history table */
1440
        if (state->first) {
1441
                for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) {
1442
                        state->cur_sample = (state->cur_sample + 1) %
1443
                                DRIVES_PID_HISTORY_SIZE;
1444
                        state->sample_history[state->cur_sample] = temp;
1445
                        state->error_history[state->cur_sample] =
1446
                                temp - DRIVES_PID_INPUT_TARGET;
1447
                }
1448
                state->first = 0;
1449
        }
1450
 
1451
        /* Calculate the integral term */
1452
        sum = 0;
1453
        integral = 0;
1454
        for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++)
1455
                integral += state->error_history[i];
1456
        integral *= DRIVES_PID_INTERVAL;
1457
        DBG("  integral: %08x\n", integral);
1458
        integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral;
1459
        DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1460
        sum += integ_p;
1461
 
1462
        /* Calculate the derivative term */
1463
        derivative = state->error_history[state->cur_sample] -
1464
                state->error_history[(state->cur_sample + DRIVES_PID_HISTORY_SIZE - 1)
1465
                                    % DRIVES_PID_HISTORY_SIZE];
1466
        derivative /= DRIVES_PID_INTERVAL;
1467
        deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative;
1468
        DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1469
        sum += deriv_p;
1470
 
1471
        /* Calculate the proportional term */
1472
        prop_p = ((s64)DRIVES_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1473
        DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1474
        sum += prop_p;
1475
 
1476
        /* Scale sum */
1477
        sum >>= 36;
1478
 
1479
        DBG("   sum: %d\n", (int)sum);
1480
        state->rpm += (s32)sum;
1481
 
1482
        state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN);
1483
        state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX);
1484
 
1485
        DBG("** DRIVES RPM: %d\n", (int)state->rpm);
1486
        set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm);
1487
}
1488
 
1489
/*
1490
 * Initialize the state structure for the drives bay fan control loop
1491
 */
1492
static int init_drives_state(struct drives_pid_state *state)
1493
{
1494
        state->ticks = 1;
1495
        state->first = 1;
1496
        state->rpm = 1000;
1497
 
1498
        state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp");
1499
        if (state->monitor == NULL)
1500
                return -ENODEV;
1501
 
1502
        device_create_file(&of_dev->dev, &dev_attr_drives_temperature);
1503
        device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1504
 
1505
        return 0;
1506
}
1507
 
1508
/*
1509
 * Dispose of the state data for the drives control loop
1510
 */
1511
static void dispose_drives_state(struct drives_pid_state *state)
1512
{
1513
        if (state->monitor == NULL)
1514
                return;
1515
 
1516
        device_remove_file(&of_dev->dev, &dev_attr_drives_temperature);
1517
        device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1518
 
1519
        detach_i2c_chip(state->monitor);
1520
        state->monitor = NULL;
1521
}
1522
 
1523
/*
1524
 * DIMMs temp control loop
1525
 */
1526
static void do_monitor_dimms(struct dimm_pid_state *state)
1527
{
1528
        s32 temp, integral, derivative, fan_min;
1529
        s64 integ_p, deriv_p, prop_p, sum;
1530
        int i;
1531
 
1532
        if (--state->ticks != 0)
1533
                return;
1534
        state->ticks = DIMM_PID_INTERVAL;
1535
 
1536
        DBG("DIMM:\n");
1537
 
1538
        DBG("  current value: %d\n", state->output);
1539
 
1540
        temp = read_lm87_reg(state->monitor, LM87_INT_TEMP);
1541
        if (temp < 0)
1542
                return;
1543
        temp <<= 16;
1544
        state->last_temp = temp;
1545
        DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1546
            FIX32TOPRINT(DIMM_PID_INPUT_TARGET));
1547
 
1548
        /* Store temperature and error in history array */
1549
        state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE;
1550
        state->sample_history[state->cur_sample] = temp;
1551
        state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET;
1552
 
1553
        /* If first loop, fill the history table */
1554
        if (state->first) {
1555
                for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) {
1556
                        state->cur_sample = (state->cur_sample + 1) %
1557
                                DIMM_PID_HISTORY_SIZE;
1558
                        state->sample_history[state->cur_sample] = temp;
1559
                        state->error_history[state->cur_sample] =
1560
                                temp - DIMM_PID_INPUT_TARGET;
1561
                }
1562
                state->first = 0;
1563
        }
1564
 
1565
        /* Calculate the integral term */
1566
        sum = 0;
1567
        integral = 0;
1568
        for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++)
1569
                integral += state->error_history[i];
1570
        integral *= DIMM_PID_INTERVAL;
1571
        DBG("  integral: %08x\n", integral);
1572
        integ_p = ((s64)DIMM_PID_G_r) * (s64)integral;
1573
        DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1574
        sum += integ_p;
1575
 
1576
        /* Calculate the derivative term */
1577
        derivative = state->error_history[state->cur_sample] -
1578
                state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE - 1)
1579
                                    % DIMM_PID_HISTORY_SIZE];
1580
        derivative /= DIMM_PID_INTERVAL;
1581
        deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative;
1582
        DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1583
        sum += deriv_p;
1584
 
1585
        /* Calculate the proportional term */
1586
        prop_p = ((s64)DIMM_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1587
        DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1588
        sum += prop_p;
1589
 
1590
        /* Scale sum */
1591
        sum >>= 36;
1592
 
1593
        DBG("   sum: %d\n", (int)sum);
1594
        state->output = (s32)sum;
1595
        state->output = max(state->output, DIMM_PID_OUTPUT_MIN);
1596
        state->output = min(state->output, DIMM_PID_OUTPUT_MAX);
1597
        dimm_output_clamp = state->output;
1598
 
1599
        DBG("** DIMM clamp value: %d\n", (int)state->output);
1600
 
1601
        /* Backside PID is only every 5 seconds, force backside fan clamping now */
1602
        fan_min = (dimm_output_clamp * 100) / 14000;
1603
        fan_min = max(fan_min, backside_params.output_min);
1604
        if (backside_state.pwm < fan_min) {
1605
                backside_state.pwm = fan_min;
1606
                DBG(" -> applying clamp to backside fan now: %d  !\n", fan_min);
1607
                set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min);
1608
        }
1609
}
1610
 
1611
/*
1612
 * Initialize the state structure for the DIMM temp control loop
1613
 */
1614
static int init_dimms_state(struct dimm_pid_state *state)
1615
{
1616
        state->ticks = 1;
1617
        state->first = 1;
1618
        state->output = 4000;
1619
 
1620
        state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp");
1621
        if (state->monitor == NULL)
1622
                return -ENODEV;
1623
 
1624
        device_create_file(&of_dev->dev, &dev_attr_dimms_temperature);
1625
 
1626
        return 0;
1627
}
1628
 
1629
/*
1630
 * Dispose of the state data for the DIMM control loop
1631
 */
1632
static void dispose_dimms_state(struct dimm_pid_state *state)
1633
{
1634
        if (state->monitor == NULL)
1635
                return;
1636
 
1637
        device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature);
1638
 
1639
        detach_i2c_chip(state->monitor);
1640
        state->monitor = NULL;
1641
}
1642
 
1643
/*
1644
 * Slots fan control loop
1645
 */
1646
static void do_monitor_slots(struct slots_pid_state *state)
1647
{
1648
        s32 temp, integral, derivative;
1649
        s64 integ_p, deriv_p, prop_p, sum;
1650
        int i, rc;
1651
 
1652
        if (--state->ticks != 0)
1653
                return;
1654
        state->ticks = SLOTS_PID_INTERVAL;
1655
 
1656
        DBG("slots:\n");
1657
 
1658
        /* Check fan status */
1659
        rc = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
1660
        if (rc < 0) {
1661
                printk(KERN_WARNING "Error %d reading slots fan !\n", rc);
1662
                /* XXX What do we do now ? */
1663
        } else
1664
                state->pwm = rc;
1665
        DBG("  current pwm: %d\n", state->pwm);
1666
 
1667
        /* Get some sensor readings */
1668
        temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1669
                                                    DS1775_TEMP)) << 8;
1670
        state->last_temp = temp;
1671
        DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1672
            FIX32TOPRINT(SLOTS_PID_INPUT_TARGET));
1673
 
1674
        /* Store temperature and error in history array */
1675
        state->cur_sample = (state->cur_sample + 1) % SLOTS_PID_HISTORY_SIZE;
1676
        state->sample_history[state->cur_sample] = temp;
1677
        state->error_history[state->cur_sample] = temp - SLOTS_PID_INPUT_TARGET;
1678
 
1679
        /* If first loop, fill the history table */
1680
        if (state->first) {
1681
                for (i = 0; i < (SLOTS_PID_HISTORY_SIZE - 1); i++) {
1682
                        state->cur_sample = (state->cur_sample + 1) %
1683
                                SLOTS_PID_HISTORY_SIZE;
1684
                        state->sample_history[state->cur_sample] = temp;
1685
                        state->error_history[state->cur_sample] =
1686
                                temp - SLOTS_PID_INPUT_TARGET;
1687
                }
1688
                state->first = 0;
1689
        }
1690
 
1691
        /* Calculate the integral term */
1692
        sum = 0;
1693
        integral = 0;
1694
        for (i = 0; i < SLOTS_PID_HISTORY_SIZE; i++)
1695
                integral += state->error_history[i];
1696
        integral *= SLOTS_PID_INTERVAL;
1697
        DBG("  integral: %08x\n", integral);
1698
        integ_p = ((s64)SLOTS_PID_G_r) * (s64)integral;
1699
        DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1700
        sum += integ_p;
1701
 
1702
        /* Calculate the derivative term */
1703
        derivative = state->error_history[state->cur_sample] -
1704
                state->error_history[(state->cur_sample + SLOTS_PID_HISTORY_SIZE - 1)
1705
                                    % SLOTS_PID_HISTORY_SIZE];
1706
        derivative /= SLOTS_PID_INTERVAL;
1707
        deriv_p = ((s64)SLOTS_PID_G_d) * (s64)derivative;
1708
        DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1709
        sum += deriv_p;
1710
 
1711
        /* Calculate the proportional term */
1712
        prop_p = ((s64)SLOTS_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1713
        DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1714
        sum += prop_p;
1715
 
1716
        /* Scale sum */
1717
        sum >>= 36;
1718
 
1719
        DBG("   sum: %d\n", (int)sum);
1720
        state->pwm = (s32)sum;
1721
 
1722
        state->pwm = max(state->pwm, SLOTS_PID_OUTPUT_MIN);
1723
        state->pwm = min(state->pwm, SLOTS_PID_OUTPUT_MAX);
1724
 
1725
        DBG("** DRIVES PWM: %d\n", (int)state->pwm);
1726
        set_pwm_fan(SLOTS_FAN_PWM_INDEX, state->pwm);
1727
}
1728
 
1729
/*
1730
 * Initialize the state structure for the slots bay fan control loop
1731
 */
1732
static int init_slots_state(struct slots_pid_state *state)
1733
{
1734
        state->ticks = 1;
1735
        state->first = 1;
1736
        state->pwm = 50;
1737
 
1738
        state->monitor = attach_i2c_chip(XSERVE_SLOTS_LM75, "slots_temp");
1739
        if (state->monitor == NULL)
1740
                return -ENODEV;
1741
 
1742
        device_create_file(&of_dev->dev, &dev_attr_slots_temperature);
1743
        device_create_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1744
 
1745
        return 0;
1746
}
1747
 
1748
/*
1749
 * Dispose of the state data for the slots control loop
1750
 */
1751
static void dispose_slots_state(struct slots_pid_state *state)
1752
{
1753
        if (state->monitor == NULL)
1754
                return;
1755
 
1756
        device_remove_file(&of_dev->dev, &dev_attr_slots_temperature);
1757
        device_remove_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1758
 
1759
        detach_i2c_chip(state->monitor);
1760
        state->monitor = NULL;
1761
}
1762
 
1763
 
1764
static int call_critical_overtemp(void)
1765
{
1766
        char *argv[] = { critical_overtemp_path, NULL };
1767
        static char *envp[] = { "HOME=/",
1768
                                "TERM=linux",
1769
                                "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
1770
                                NULL };
1771
 
1772
        return call_usermodehelper(critical_overtemp_path,
1773
                                   argv, envp, UMH_WAIT_EXEC);
1774
}
1775
 
1776
 
1777
/*
1778
 * Here's the kernel thread that calls the various control loops
1779
 */
1780
static int main_control_loop(void *x)
1781
{
1782
        daemonize("kfand");
1783
 
1784
        DBG("main_control_loop started\n");
1785
 
1786
        down(&driver_lock);
1787
 
1788
        if (start_fcu() < 0) {
1789
                printk(KERN_ERR "kfand: failed to start FCU\n");
1790
                up(&driver_lock);
1791
                goto out;
1792
        }
1793
 
1794
        /* Set the PCI fan once for now on non-RackMac */
1795
        if (!rackmac)
1796
                set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM);
1797
 
1798
        /* Initialize ADCs */
1799
        initialize_adc(&cpu_state[0]);
1800
        if (cpu_state[1].monitor != NULL)
1801
                initialize_adc(&cpu_state[1]);
1802
 
1803
        fcu_tickle_ticks = FCU_TICKLE_TICKS;
1804
 
1805
        up(&driver_lock);
1806
 
1807
        while (state == state_attached) {
1808
                unsigned long elapsed, start;
1809
 
1810
                start = jiffies;
1811
 
1812
                down(&driver_lock);
1813
 
1814
                /* Tickle the FCU just in case */
1815
                if (--fcu_tickle_ticks < 0) {
1816
                        fcu_tickle_ticks = FCU_TICKLE_TICKS;
1817
                        tickle_fcu();
1818
                }
1819
 
1820
                /* First, we always calculate the new DIMMs state on an Xserve */
1821
                if (rackmac)
1822
                        do_monitor_dimms(&dimms_state);
1823
 
1824
                /* Then, the CPUs */
1825
                if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1826
                        do_monitor_cpu_combined();
1827
                else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) {
1828
                        do_monitor_cpu_rack(&cpu_state[0]);
1829
                        if (cpu_state[1].monitor != NULL)
1830
                                do_monitor_cpu_rack(&cpu_state[1]);
1831
                        // better deal with UP
1832
                } else {
1833
                        do_monitor_cpu_split(&cpu_state[0]);
1834
                        if (cpu_state[1].monitor != NULL)
1835
                                do_monitor_cpu_split(&cpu_state[1]);
1836
                        // better deal with UP
1837
                }
1838
                /* Then, the rest */
1839
                do_monitor_backside(&backside_state);
1840
                if (rackmac)
1841
                        do_monitor_slots(&slots_state);
1842
                else
1843
                        do_monitor_drives(&drives_state);
1844
                up(&driver_lock);
1845
 
1846
                if (critical_state == 1) {
1847
                        printk(KERN_WARNING "Temperature control detected a critical condition\n");
1848
                        printk(KERN_WARNING "Attempting to shut down...\n");
1849
                        if (call_critical_overtemp()) {
1850
                                printk(KERN_WARNING "Can't call %s, power off now!\n",
1851
                                       critical_overtemp_path);
1852
                                machine_power_off();
1853
                        }
1854
                }
1855
                if (critical_state > 0)
1856
                        critical_state++;
1857
                if (critical_state > MAX_CRITICAL_STATE) {
1858
                        printk(KERN_WARNING "Shutdown timed out, power off now !\n");
1859
                        machine_power_off();
1860
                }
1861
 
1862
                // FIXME: Deal with signals
1863
                elapsed = jiffies - start;
1864
                if (elapsed < HZ)
1865
                        schedule_timeout_interruptible(HZ - elapsed);
1866
        }
1867
 
1868
 out:
1869
        DBG("main_control_loop ended\n");
1870
 
1871
        ctrl_task = 0;
1872
        complete_and_exit(&ctrl_complete, 0);
1873
}
1874
 
1875
/*
1876
 * Dispose the control loops when tearing down
1877
 */
1878
static void dispose_control_loops(void)
1879
{
1880
        dispose_cpu_state(&cpu_state[0]);
1881
        dispose_cpu_state(&cpu_state[1]);
1882
        dispose_backside_state(&backside_state);
1883
        dispose_drives_state(&drives_state);
1884
        dispose_slots_state(&slots_state);
1885
        dispose_dimms_state(&dimms_state);
1886
}
1887
 
1888
/*
1889
 * Create the control loops. U3-0 i2c bus is up, so we can now
1890
 * get to the various sensors
1891
 */
1892
static int create_control_loops(void)
1893
{
1894
        struct device_node *np;
1895
 
1896
        /* Count CPUs from the device-tree, we don't care how many are
1897
         * actually used by Linux
1898
         */
1899
        cpu_count = 0;
1900
        for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));)
1901
                cpu_count++;
1902
 
1903
        DBG("counted %d CPUs in the device-tree\n", cpu_count);
1904
 
1905
        /* Decide the type of PID algorithm to use based on the presence of
1906
         * the pumps, though that may not be the best way, that is good enough
1907
         * for now
1908
         */
1909
        if (rackmac)
1910
                cpu_pid_type = CPU_PID_TYPE_RACKMAC;
1911
        else if (machine_is_compatible("PowerMac7,3")
1912
            && (cpu_count > 1)
1913
            && fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID
1914
            && fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) {
1915
                printk(KERN_INFO "Liquid cooling pumps detected, using new algorithm !\n");
1916
                cpu_pid_type = CPU_PID_TYPE_COMBINED;
1917
        } else
1918
                cpu_pid_type = CPU_PID_TYPE_SPLIT;
1919
 
1920
        /* Create control loops for everything. If any fail, everything
1921
         * fails
1922
         */
1923
        if (init_cpu_state(&cpu_state[0], 0))
1924
                goto fail;
1925
        if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1926
                fetch_cpu_pumps_minmax();
1927
 
1928
        if (cpu_count > 1 && init_cpu_state(&cpu_state[1], 1))
1929
                goto fail;
1930
        if (init_backside_state(&backside_state))
1931
                goto fail;
1932
        if (rackmac && init_dimms_state(&dimms_state))
1933
                goto fail;
1934
        if (rackmac && init_slots_state(&slots_state))
1935
                goto fail;
1936
        if (!rackmac && init_drives_state(&drives_state))
1937
                goto fail;
1938
 
1939
        DBG("all control loops up !\n");
1940
 
1941
        return 0;
1942
 
1943
 fail:
1944
        DBG("failure creating control loops, disposing\n");
1945
 
1946
        dispose_control_loops();
1947
 
1948
        return -ENODEV;
1949
}
1950
 
1951
/*
1952
 * Start the control loops after everything is up, that is create
1953
 * the thread that will make them run
1954
 */
1955
static void start_control_loops(void)
1956
{
1957
        init_completion(&ctrl_complete);
1958
 
1959
        ctrl_task = kernel_thread(main_control_loop, NULL, SIGCHLD | CLONE_KERNEL);
1960
}
1961
 
1962
/*
1963
 * Stop the control loops when tearing down
1964
 */
1965
static void stop_control_loops(void)
1966
{
1967
        if (ctrl_task != 0)
1968
                wait_for_completion(&ctrl_complete);
1969
}
1970
 
1971
/*
1972
 * Attach to the i2c FCU after detecting U3-1 bus
1973
 */
1974
static int attach_fcu(void)
1975
{
1976
        fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu");
1977
        if (fcu == NULL)
1978
                return -ENODEV;
1979
 
1980
        DBG("FCU attached\n");
1981
 
1982
        return 0;
1983
}
1984
 
1985
/*
1986
 * Detach from the i2c FCU when tearing down
1987
 */
1988
static void detach_fcu(void)
1989
{
1990
        if (fcu)
1991
                detach_i2c_chip(fcu);
1992
        fcu = NULL;
1993
}
1994
 
1995
/*
1996
 * Attach to the i2c controller. We probe the various chips based
1997
 * on the device-tree nodes and build everything for the driver to
1998
 * run, we then kick the driver monitoring thread
1999
 */
2000
static int therm_pm72_attach(struct i2c_adapter *adapter)
2001
{
2002
        down(&driver_lock);
2003
 
2004
        /* Check state */
2005
        if (state == state_detached)
2006
                state = state_attaching;
2007
        if (state != state_attaching) {
2008
                up(&driver_lock);
2009
                return 0;
2010
        }
2011
 
2012
        /* Check if we are looking for one of these */
2013
        if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) {
2014
                u3_0 = adapter;
2015
                DBG("found U3-0\n");
2016
                if (k2 || !rackmac)
2017
                        if (create_control_loops())
2018
                                u3_0 = NULL;
2019
        } else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) {
2020
                u3_1 = adapter;
2021
                DBG("found U3-1, attaching FCU\n");
2022
                if (attach_fcu())
2023
                        u3_1 = NULL;
2024
        } else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) {
2025
                k2 = adapter;
2026
                DBG("Found K2\n");
2027
                if (u3_0 && rackmac)
2028
                        if (create_control_loops())
2029
                                k2 = NULL;
2030
        }
2031
        /* We got all we need, start control loops */
2032
        if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) {
2033
                DBG("everything up, starting control loops\n");
2034
                state = state_attached;
2035
                start_control_loops();
2036
        }
2037
        up(&driver_lock);
2038
 
2039
        return 0;
2040
}
2041
 
2042
/*
2043
 * Called on every adapter when the driver or the i2c controller
2044
 * is going away.
2045
 */
2046
static int therm_pm72_detach(struct i2c_adapter *adapter)
2047
{
2048
        down(&driver_lock);
2049
 
2050
        if (state != state_detached)
2051
                state = state_detaching;
2052
 
2053
        /* Stop control loops if any */
2054
        DBG("stopping control loops\n");
2055
        up(&driver_lock);
2056
        stop_control_loops();
2057
        down(&driver_lock);
2058
 
2059
        if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) {
2060
                DBG("lost U3-0, disposing control loops\n");
2061
                dispose_control_loops();
2062
                u3_0 = NULL;
2063
        }
2064
 
2065
        if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) {
2066
                DBG("lost U3-1, detaching FCU\n");
2067
                detach_fcu();
2068
                u3_1 = NULL;
2069
        }
2070
        if (u3_0 == NULL && u3_1 == NULL)
2071
                state = state_detached;
2072
 
2073
        up(&driver_lock);
2074
 
2075
        return 0;
2076
}
2077
 
2078
static int fan_check_loc_match(const char *loc, int fan)
2079
{
2080
        char    tmp[64];
2081
        char    *c, *e;
2082
 
2083
        strlcpy(tmp, fcu_fans[fan].loc, 64);
2084
 
2085
        c = tmp;
2086
        for (;;) {
2087
                e = strchr(c, ',');
2088
                if (e)
2089
                        *e = 0;
2090
                if (strcmp(loc, c) == 0)
2091
                        return 1;
2092
                if (e == NULL)
2093
                        break;
2094
                c = e + 1;
2095
        }
2096
        return 0;
2097
}
2098
 
2099
static void fcu_lookup_fans(struct device_node *fcu_node)
2100
{
2101
        struct device_node *np = NULL;
2102
        int i;
2103
 
2104
        /* The table is filled by default with values that are suitable
2105
         * for the old machines without device-tree informations. We scan
2106
         * the device-tree and override those values with whatever is
2107
         * there
2108
         */
2109
 
2110
        DBG("Looking up FCU controls in device-tree...\n");
2111
 
2112
        while ((np = of_get_next_child(fcu_node, np)) != NULL) {
2113
                int type = -1;
2114
                const char *loc;
2115
                const u32 *reg;
2116
 
2117
                DBG(" control: %s, type: %s\n", np->name, np->type);
2118
 
2119
                /* Detect control type */
2120
                if (!strcmp(np->type, "fan-rpm-control") ||
2121
                    !strcmp(np->type, "fan-rpm"))
2122
                        type = FCU_FAN_RPM;
2123
                if (!strcmp(np->type, "fan-pwm-control") ||
2124
                    !strcmp(np->type, "fan-pwm"))
2125
                        type = FCU_FAN_PWM;
2126
                /* Only care about fans for now */
2127
                if (type == -1)
2128
                        continue;
2129
 
2130
                /* Lookup for a matching location */
2131
                loc = of_get_property(np, "location", NULL);
2132
                reg = of_get_property(np, "reg", NULL);
2133
                if (loc == NULL || reg == NULL)
2134
                        continue;
2135
                DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg);
2136
 
2137
                for (i = 0; i < FCU_FAN_COUNT; i++) {
2138
                        int fan_id;
2139
 
2140
                        if (!fan_check_loc_match(loc, i))
2141
                                continue;
2142
                        DBG(" location match, index: %d\n", i);
2143
                        fcu_fans[i].id = FCU_FAN_ABSENT_ID;
2144
                        if (type != fcu_fans[i].type) {
2145
                                printk(KERN_WARNING "therm_pm72: Fan type mismatch "
2146
                                       "in device-tree for %s\n", np->full_name);
2147
                                break;
2148
                        }
2149
                        if (type == FCU_FAN_RPM)
2150
                                fan_id = ((*reg) - 0x10) / 2;
2151
                        else
2152
                                fan_id = ((*reg) - 0x30) / 2;
2153
                        if (fan_id > 7) {
2154
                                printk(KERN_WARNING "therm_pm72: Can't parse "
2155
                                       "fan ID in device-tree for %s\n", np->full_name);
2156
                                break;
2157
                        }
2158
                        DBG(" fan id -> %d, type -> %d\n", fan_id, type);
2159
                        fcu_fans[i].id = fan_id;
2160
                }
2161
        }
2162
 
2163
        /* Now dump the array */
2164
        printk(KERN_INFO "Detected fan controls:\n");
2165
        for (i = 0; i < FCU_FAN_COUNT; i++) {
2166
                if (fcu_fans[i].id == FCU_FAN_ABSENT_ID)
2167
                        continue;
2168
                printk(KERN_INFO "  %d: %s fan, id %d, location: %s\n", i,
2169
                       fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM",
2170
                       fcu_fans[i].id, fcu_fans[i].loc);
2171
        }
2172
}
2173
 
2174
static int fcu_of_probe(struct of_device* dev, const struct of_device_id *match)
2175
{
2176
        state = state_detached;
2177
 
2178
        /* Lookup the fans in the device tree */
2179
        fcu_lookup_fans(dev->node);
2180
 
2181
        /* Add the driver */
2182
        return i2c_add_driver(&therm_pm72_driver);
2183
}
2184
 
2185
static int fcu_of_remove(struct of_device* dev)
2186
{
2187
        i2c_del_driver(&therm_pm72_driver);
2188
 
2189
        return 0;
2190
}
2191
 
2192
static struct of_device_id fcu_match[] =
2193
{
2194
        {
2195
        .type           = "fcu",
2196
        },
2197
        {},
2198
};
2199
 
2200
static struct of_platform_driver fcu_of_platform_driver =
2201
{
2202
        .name           = "temperature",
2203
        .match_table    = fcu_match,
2204
        .probe          = fcu_of_probe,
2205
        .remove         = fcu_of_remove
2206
};
2207
 
2208
/*
2209
 * Check machine type, attach to i2c controller
2210
 */
2211
static int __init therm_pm72_init(void)
2212
{
2213
        struct device_node *np;
2214
 
2215
        rackmac = machine_is_compatible("RackMac3,1");
2216
 
2217
        if (!machine_is_compatible("PowerMac7,2") &&
2218
            !machine_is_compatible("PowerMac7,3") &&
2219
            !rackmac)
2220
                return -ENODEV;
2221
 
2222
        printk(KERN_INFO "PowerMac G5 Thermal control driver %s\n", VERSION);
2223
 
2224
        np = of_find_node_by_type(NULL, "fcu");
2225
        if (np == NULL) {
2226
                /* Some machines have strangely broken device-tree */
2227
                np = of_find_node_by_path("/u3@0,f8000000/i2c@f8001000/fan@15e");
2228
                if (np == NULL) {
2229
                            printk(KERN_ERR "Can't find FCU in device-tree !\n");
2230
                            return -ENODEV;
2231
                }
2232
        }
2233
        of_dev = of_platform_device_create(np, "temperature", NULL);
2234
        if (of_dev == NULL) {
2235
                printk(KERN_ERR "Can't register FCU platform device !\n");
2236
                return -ENODEV;
2237
        }
2238
 
2239
        of_register_platform_driver(&fcu_of_platform_driver);
2240
 
2241
        return 0;
2242
}
2243
 
2244
static void __exit therm_pm72_exit(void)
2245
{
2246
        of_unregister_platform_driver(&fcu_of_platform_driver);
2247
 
2248
        if (of_dev)
2249
                of_device_unregister(of_dev);
2250
}
2251
 
2252
module_init(therm_pm72_init);
2253
module_exit(therm_pm72_exit);
2254
 
2255
MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
2256
MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
2257
MODULE_LICENSE("GPL");
2258
 

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.