OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [drivers/] [macintosh/] [windfarm_pm112.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 * Windfarm PowerMac thermal control.
3
 * Control loops for machines with SMU and PPC970MP processors.
4
 *
5
 * Copyright (C) 2005 Paul Mackerras, IBM Corp. <paulus@samba.org>
6
 * Copyright (C) 2006 Benjamin Herrenschmidt, IBM Corp.
7
 *
8
 * Use and redistribute under the terms of the GNU GPL v2.
9
 */
10
#include <linux/types.h>
11
#include <linux/errno.h>
12
#include <linux/kernel.h>
13
#include <linux/device.h>
14
#include <linux/platform_device.h>
15
#include <linux/reboot.h>
16
#include <asm/prom.h>
17
#include <asm/smu.h>
18
 
19
#include "windfarm.h"
20
#include "windfarm_pid.h"
21
 
22
#define VERSION "0.2"
23
 
24
#define DEBUG
25
#undef LOTSA_DEBUG
26
 
27
#ifdef DEBUG
28
#define DBG(args...)    printk(args)
29
#else
30
#define DBG(args...)    do { } while(0)
31
#endif
32
 
33
#ifdef LOTSA_DEBUG
34
#define DBG_LOTS(args...)       printk(args)
35
#else
36
#define DBG_LOTS(args...)       do { } while(0)
37
#endif
38
 
39
/* define this to force CPU overtemp to 60 degree, useful for testing
40
 * the overtemp code
41
 */
42
#undef HACKED_OVERTEMP
43
 
44
/* We currently only handle 2 chips, 4 cores... */
45
#define NR_CHIPS        2
46
#define NR_CORES        4
47
#define NR_CPU_FANS     3 * NR_CHIPS
48
 
49
/* Controls and sensors */
50
static struct wf_sensor *sens_cpu_temp[NR_CORES];
51
static struct wf_sensor *sens_cpu_power[NR_CORES];
52
static struct wf_sensor *hd_temp;
53
static struct wf_sensor *slots_power;
54
static struct wf_sensor *u4_temp;
55
 
56
static struct wf_control *cpu_fans[NR_CPU_FANS];
57
static char *cpu_fan_names[NR_CPU_FANS] = {
58
        "cpu-rear-fan-0",
59
        "cpu-rear-fan-1",
60
        "cpu-front-fan-0",
61
        "cpu-front-fan-1",
62
        "cpu-pump-0",
63
        "cpu-pump-1",
64
};
65
static struct wf_control *cpufreq_clamp;
66
 
67
/* Second pump isn't required (and isn't actually present) */
68
#define CPU_FANS_REQD           (NR_CPU_FANS - 2)
69
#define FIRST_PUMP              4
70
#define LAST_PUMP               5
71
 
72
/* We keep a temperature history for average calculation of 180s */
73
#define CPU_TEMP_HIST_SIZE      180
74
 
75
/* Scale factor for fan speed, *100 */
76
static int cpu_fan_scale[NR_CPU_FANS] = {
77
        100,
78
        100,
79
        97,             /* inlet fans run at 97% of exhaust fan */
80
        97,
81
        100,            /* updated later */
82
        100,            /* updated later */
83
};
84
 
85
static struct wf_control *backside_fan;
86
static struct wf_control *slots_fan;
87
static struct wf_control *drive_bay_fan;
88
 
89
/* PID loop state */
90
static struct wf_cpu_pid_state cpu_pid[NR_CORES];
91
static u32 cpu_thist[CPU_TEMP_HIST_SIZE];
92
static int cpu_thist_pt;
93
static s64 cpu_thist_total;
94
static s32 cpu_all_tmax = 100 << 16;
95
static int cpu_last_target;
96
static struct wf_pid_state backside_pid;
97
static int backside_tick;
98
static struct wf_pid_state slots_pid;
99
static int slots_started;
100
static struct wf_pid_state drive_bay_pid;
101
static int drive_bay_tick;
102
 
103
static int nr_cores;
104
static int have_all_controls;
105
static int have_all_sensors;
106
static int started;
107
 
108
static int failure_state;
109
#define FAILURE_SENSOR          1
110
#define FAILURE_FAN             2
111
#define FAILURE_PERM            4
112
#define FAILURE_LOW_OVERTEMP    8
113
#define FAILURE_HIGH_OVERTEMP   16
114
 
115
/* Overtemp values */
116
#define LOW_OVER_AVERAGE        0
117
#define LOW_OVER_IMMEDIATE      (10 << 16)
118
#define LOW_OVER_CLEAR          ((-10) << 16)
119
#define HIGH_OVER_IMMEDIATE     (14 << 16)
120
#define HIGH_OVER_AVERAGE       (10 << 16)
121
#define HIGH_OVER_IMMEDIATE     (14 << 16)
122
 
123
 
124
/* Implementation... */
125
static int create_cpu_loop(int cpu)
126
{
127
        int chip = cpu / 2;
128
        int core = cpu & 1;
129
        struct smu_sdbp_header *hdr;
130
        struct smu_sdbp_cpupiddata *piddata;
131
        struct wf_cpu_pid_param pid;
132
        struct wf_control *main_fan = cpu_fans[0];
133
        s32 tmax;
134
        int fmin;
135
 
136
        /* Get PID params from the appropriate SAT */
137
        hdr = smu_sat_get_sdb_partition(chip, 0xC8 + core, NULL);
138
        if (hdr == NULL) {
139
                printk(KERN_WARNING"windfarm: can't get CPU PID fan config\n");
140
                return -EINVAL;
141
        }
142
        piddata = (struct smu_sdbp_cpupiddata *)&hdr[1];
143
 
144
        /* Get FVT params to get Tmax; if not found, assume default */
145
        hdr = smu_sat_get_sdb_partition(chip, 0xC4 + core, NULL);
146
        if (hdr) {
147
                struct smu_sdbp_fvt *fvt = (struct smu_sdbp_fvt *)&hdr[1];
148
                tmax = fvt->maxtemp << 16;
149
        } else
150
                tmax = 95 << 16;        /* default to 95 degrees C */
151
 
152
        /* We keep a global tmax for overtemp calculations */
153
        if (tmax < cpu_all_tmax)
154
                cpu_all_tmax = tmax;
155
 
156
        /*
157
         * Darwin has a minimum fan speed of 1000 rpm for the 4-way and
158
         * 515 for the 2-way.  That appears to be overkill, so for now,
159
         * impose a minimum of 750 or 515.
160
         */
161
        fmin = (nr_cores > 2) ? 750 : 515;
162
 
163
        /* Initialize PID loop */
164
        pid.interval = 1;       /* seconds */
165
        pid.history_len = piddata->history_len;
166
        pid.gd = piddata->gd;
167
        pid.gp = piddata->gp;
168
        pid.gr = piddata->gr / piddata->history_len;
169
        pid.pmaxadj = (piddata->max_power << 16) - (piddata->power_adj << 8);
170
        pid.ttarget = tmax - (piddata->target_temp_delta << 16);
171
        pid.tmax = tmax;
172
        pid.min = main_fan->ops->get_min(main_fan);
173
        pid.max = main_fan->ops->get_max(main_fan);
174
        if (pid.min < fmin)
175
                pid.min = fmin;
176
 
177
        wf_cpu_pid_init(&cpu_pid[cpu], &pid);
178
        return 0;
179
}
180
 
181
static void cpu_max_all_fans(void)
182
{
183
        int i;
184
 
185
        /* We max all CPU fans in case of a sensor error. We also do the
186
         * cpufreq clamping now, even if it's supposedly done later by the
187
         * generic code anyway, we do it earlier here to react faster
188
         */
189
        if (cpufreq_clamp)
190
                wf_control_set_max(cpufreq_clamp);
191
        for (i = 0; i < NR_CPU_FANS; ++i)
192
                if (cpu_fans[i])
193
                        wf_control_set_max(cpu_fans[i]);
194
}
195
 
196
static int cpu_check_overtemp(s32 temp)
197
{
198
        int new_state = 0;
199
        s32 t_avg, t_old;
200
 
201
        /* First check for immediate overtemps */
202
        if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) {
203
                new_state |= FAILURE_LOW_OVERTEMP;
204
                if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
205
                        printk(KERN_ERR "windfarm: Overtemp due to immediate CPU"
206
                               " temperature !\n");
207
        }
208
        if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) {
209
                new_state |= FAILURE_HIGH_OVERTEMP;
210
                if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
211
                        printk(KERN_ERR "windfarm: Critical overtemp due to"
212
                               " immediate CPU temperature !\n");
213
        }
214
 
215
        /* We calculate a history of max temperatures and use that for the
216
         * overtemp management
217
         */
218
        t_old = cpu_thist[cpu_thist_pt];
219
        cpu_thist[cpu_thist_pt] = temp;
220
        cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE;
221
        cpu_thist_total -= t_old;
222
        cpu_thist_total += temp;
223
        t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE;
224
 
225
        DBG_LOTS("t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n",
226
                 FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp));
227
 
228
        /* Now check for average overtemps */
229
        if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) {
230
                new_state |= FAILURE_LOW_OVERTEMP;
231
                if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
232
                        printk(KERN_ERR "windfarm: Overtemp due to average CPU"
233
                               " temperature !\n");
234
        }
235
        if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) {
236
                new_state |= FAILURE_HIGH_OVERTEMP;
237
                if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
238
                        printk(KERN_ERR "windfarm: Critical overtemp due to"
239
                               " average CPU temperature !\n");
240
        }
241
 
242
        /* Now handle overtemp conditions. We don't currently use the windfarm
243
         * overtemp handling core as it's not fully suited to the needs of those
244
         * new machine. This will be fixed later.
245
         */
246
        if (new_state) {
247
                /* High overtemp -> immediate shutdown */
248
                if (new_state & FAILURE_HIGH_OVERTEMP)
249
                        machine_power_off();
250
                if ((failure_state & new_state) != new_state)
251
                        cpu_max_all_fans();
252
                failure_state |= new_state;
253
        } else if ((failure_state & FAILURE_LOW_OVERTEMP) &&
254
                   (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) {
255
                printk(KERN_ERR "windfarm: Overtemp condition cleared !\n");
256
                failure_state &= ~FAILURE_LOW_OVERTEMP;
257
        }
258
 
259
        return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP);
260
}
261
 
262
static void cpu_fans_tick(void)
263
{
264
        int err, cpu;
265
        s32 greatest_delta = 0;
266
        s32 temp, power, t_max = 0;
267
        int i, t, target = 0;
268
        struct wf_sensor *sr;
269
        struct wf_control *ct;
270
        struct wf_cpu_pid_state *sp;
271
 
272
        DBG_LOTS(KERN_DEBUG);
273
        for (cpu = 0; cpu < nr_cores; ++cpu) {
274
                /* Get CPU core temperature */
275
                sr = sens_cpu_temp[cpu];
276
                err = sr->ops->get_value(sr, &temp);
277
                if (err) {
278
                        DBG("\n");
279
                        printk(KERN_WARNING "windfarm: CPU %d temperature "
280
                               "sensor error %d\n", cpu, err);
281
                        failure_state |= FAILURE_SENSOR;
282
                        cpu_max_all_fans();
283
                        return;
284
                }
285
 
286
                /* Keep track of highest temp */
287
                t_max = max(t_max, temp);
288
 
289
                /* Get CPU power */
290
                sr = sens_cpu_power[cpu];
291
                err = sr->ops->get_value(sr, &power);
292
                if (err) {
293
                        DBG("\n");
294
                        printk(KERN_WARNING "windfarm: CPU %d power "
295
                               "sensor error %d\n", cpu, err);
296
                        failure_state |= FAILURE_SENSOR;
297
                        cpu_max_all_fans();
298
                        return;
299
                }
300
 
301
                /* Run PID */
302
                sp = &cpu_pid[cpu];
303
                t = wf_cpu_pid_run(sp, power, temp);
304
 
305
                if (cpu == 0 || sp->last_delta > greatest_delta) {
306
                        greatest_delta = sp->last_delta;
307
                        target = t;
308
                }
309
                DBG_LOTS("[%d] P=%d.%.3d T=%d.%.3d ",
310
                    cpu, FIX32TOPRINT(power), FIX32TOPRINT(temp));
311
        }
312
        DBG_LOTS("fans = %d, t_max = %d.%03d\n", target, FIX32TOPRINT(t_max));
313
 
314
        /* Darwin limits decrease to 20 per iteration */
315
        if (target < (cpu_last_target - 20))
316
                target = cpu_last_target - 20;
317
        cpu_last_target = target;
318
        for (cpu = 0; cpu < nr_cores; ++cpu)
319
                cpu_pid[cpu].target = target;
320
 
321
        /* Handle possible overtemps */
322
        if (cpu_check_overtemp(t_max))
323
                return;
324
 
325
        /* Set fans */
326
        for (i = 0; i < NR_CPU_FANS; ++i) {
327
                ct = cpu_fans[i];
328
                if (ct == NULL)
329
                        continue;
330
                err = ct->ops->set_value(ct, target * cpu_fan_scale[i] / 100);
331
                if (err) {
332
                        printk(KERN_WARNING "windfarm: fan %s reports "
333
                               "error %d\n", ct->name, err);
334
                        failure_state |= FAILURE_FAN;
335
                        break;
336
                }
337
        }
338
}
339
 
340
/* Backside/U4 fan */
341
static struct wf_pid_param backside_param = {
342
        .interval       = 5,
343
        .history_len    = 2,
344
        .gd             = 48 << 20,
345
        .gp             = 5 << 20,
346
        .gr             = 0,
347
        .itarget        = 64 << 16,
348
        .additive       = 1,
349
};
350
 
351
static void backside_fan_tick(void)
352
{
353
        s32 temp;
354
        int speed;
355
        int err;
356
 
357
        if (!backside_fan || !u4_temp)
358
                return;
359
        if (!backside_tick) {
360
                /* first time; initialize things */
361
                printk(KERN_INFO "windfarm: Backside control loop started.\n");
362
                backside_param.min = backside_fan->ops->get_min(backside_fan);
363
                backside_param.max = backside_fan->ops->get_max(backside_fan);
364
                wf_pid_init(&backside_pid, &backside_param);
365
                backside_tick = 1;
366
        }
367
        if (--backside_tick > 0)
368
                return;
369
        backside_tick = backside_pid.param.interval;
370
 
371
        err = u4_temp->ops->get_value(u4_temp, &temp);
372
        if (err) {
373
                printk(KERN_WARNING "windfarm: U4 temp sensor error %d\n",
374
                       err);
375
                failure_state |= FAILURE_SENSOR;
376
                wf_control_set_max(backside_fan);
377
                return;
378
        }
379
        speed = wf_pid_run(&backside_pid, temp);
380
        DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n",
381
                 FIX32TOPRINT(temp), speed);
382
 
383
        err = backside_fan->ops->set_value(backside_fan, speed);
384
        if (err) {
385
                printk(KERN_WARNING "windfarm: backside fan error %d\n", err);
386
                failure_state |= FAILURE_FAN;
387
        }
388
}
389
 
390
/* Drive bay fan */
391
static struct wf_pid_param drive_bay_prm = {
392
        .interval       = 5,
393
        .history_len    = 2,
394
        .gd             = 30 << 20,
395
        .gp             = 5 << 20,
396
        .gr             = 0,
397
        .itarget        = 40 << 16,
398
        .additive       = 1,
399
};
400
 
401
static void drive_bay_fan_tick(void)
402
{
403
        s32 temp;
404
        int speed;
405
        int err;
406
 
407
        if (!drive_bay_fan || !hd_temp)
408
                return;
409
        if (!drive_bay_tick) {
410
                /* first time; initialize things */
411
                printk(KERN_INFO "windfarm: Drive bay control loop started.\n");
412
                drive_bay_prm.min = drive_bay_fan->ops->get_min(drive_bay_fan);
413
                drive_bay_prm.max = drive_bay_fan->ops->get_max(drive_bay_fan);
414
                wf_pid_init(&drive_bay_pid, &drive_bay_prm);
415
                drive_bay_tick = 1;
416
        }
417
        if (--drive_bay_tick > 0)
418
                return;
419
        drive_bay_tick = drive_bay_pid.param.interval;
420
 
421
        err = hd_temp->ops->get_value(hd_temp, &temp);
422
        if (err) {
423
                printk(KERN_WARNING "windfarm: drive bay temp sensor "
424
                       "error %d\n", err);
425
                failure_state |= FAILURE_SENSOR;
426
                wf_control_set_max(drive_bay_fan);
427
                return;
428
        }
429
        speed = wf_pid_run(&drive_bay_pid, temp);
430
        DBG_LOTS("drive_bay PID temp=%d.%.3d speed=%d\n",
431
                 FIX32TOPRINT(temp), speed);
432
 
433
        err = drive_bay_fan->ops->set_value(drive_bay_fan, speed);
434
        if (err) {
435
                printk(KERN_WARNING "windfarm: drive bay fan error %d\n", err);
436
                failure_state |= FAILURE_FAN;
437
        }
438
}
439
 
440
/* PCI slots area fan */
441
/* This makes the fan speed proportional to the power consumed */
442
static struct wf_pid_param slots_param = {
443
        .interval       = 1,
444
        .history_len    = 2,
445
        .gd             = 0,
446
        .gp             = 0,
447
        .gr             = 0x1277952,
448
        .itarget        = 0,
449
        .min            = 1560,
450
        .max            = 3510,
451
};
452
 
453
static void slots_fan_tick(void)
454
{
455
        s32 power;
456
        int speed;
457
        int err;
458
 
459
        if (!slots_fan || !slots_power)
460
                return;
461
        if (!slots_started) {
462
                /* first time; initialize things */
463
                printk(KERN_INFO "windfarm: Slots control loop started.\n");
464
                wf_pid_init(&slots_pid, &slots_param);
465
                slots_started = 1;
466
        }
467
 
468
        err = slots_power->ops->get_value(slots_power, &power);
469
        if (err) {
470
                printk(KERN_WARNING "windfarm: slots power sensor error %d\n",
471
                       err);
472
                failure_state |= FAILURE_SENSOR;
473
                wf_control_set_max(slots_fan);
474
                return;
475
        }
476
        speed = wf_pid_run(&slots_pid, power);
477
        DBG_LOTS("slots PID power=%d.%.3d speed=%d\n",
478
                 FIX32TOPRINT(power), speed);
479
 
480
        err = slots_fan->ops->set_value(slots_fan, speed);
481
        if (err) {
482
                printk(KERN_WARNING "windfarm: slots fan error %d\n", err);
483
                failure_state |= FAILURE_FAN;
484
        }
485
}
486
 
487
static void set_fail_state(void)
488
{
489
        int i;
490
 
491
        if (cpufreq_clamp)
492
                wf_control_set_max(cpufreq_clamp);
493
        for (i = 0; i < NR_CPU_FANS; ++i)
494
                if (cpu_fans[i])
495
                        wf_control_set_max(cpu_fans[i]);
496
        if (backside_fan)
497
                wf_control_set_max(backside_fan);
498
        if (slots_fan)
499
                wf_control_set_max(slots_fan);
500
        if (drive_bay_fan)
501
                wf_control_set_max(drive_bay_fan);
502
}
503
 
504
static void pm112_tick(void)
505
{
506
        int i, last_failure;
507
 
508
        if (!started) {
509
                started = 1;
510
                printk(KERN_INFO "windfarm: CPUs control loops started.\n");
511
                for (i = 0; i < nr_cores; ++i) {
512
                        if (create_cpu_loop(i) < 0) {
513
                                failure_state = FAILURE_PERM;
514
                                set_fail_state();
515
                                break;
516
                        }
517
                }
518
                DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax));
519
 
520
#ifdef HACKED_OVERTEMP
521
                cpu_all_tmax = 60 << 16;
522
#endif
523
        }
524
 
525
        /* Permanent failure, bail out */
526
        if (failure_state & FAILURE_PERM)
527
                return;
528
        /* Clear all failure bits except low overtemp which will be eventually
529
         * cleared by the control loop itself
530
         */
531
        last_failure = failure_state;
532
        failure_state &= FAILURE_LOW_OVERTEMP;
533
        cpu_fans_tick();
534
        backside_fan_tick();
535
        slots_fan_tick();
536
        drive_bay_fan_tick();
537
 
538
        DBG_LOTS("last_failure: 0x%x, failure_state: %x\n",
539
                 last_failure, failure_state);
540
 
541
        /* Check for failures. Any failure causes cpufreq clamping */
542
        if (failure_state && last_failure == 0 && cpufreq_clamp)
543
                wf_control_set_max(cpufreq_clamp);
544
        if (failure_state == 0 && last_failure && cpufreq_clamp)
545
                wf_control_set_min(cpufreq_clamp);
546
 
547
        /* That's it for now, we might want to deal with other failures
548
         * differently in the future though
549
         */
550
}
551
 
552
static void pm112_new_control(struct wf_control *ct)
553
{
554
        int i, max_exhaust;
555
 
556
        if (cpufreq_clamp == NULL && !strcmp(ct->name, "cpufreq-clamp")) {
557
                if (wf_get_control(ct) == 0)
558
                        cpufreq_clamp = ct;
559
        }
560
 
561
        for (i = 0; i < NR_CPU_FANS; ++i) {
562
                if (!strcmp(ct->name, cpu_fan_names[i])) {
563
                        if (cpu_fans[i] == NULL && wf_get_control(ct) == 0)
564
                                cpu_fans[i] = ct;
565
                        break;
566
                }
567
        }
568
        if (i >= NR_CPU_FANS) {
569
                /* not a CPU fan, try the others */
570
                if (!strcmp(ct->name, "backside-fan")) {
571
                        if (backside_fan == NULL && wf_get_control(ct) == 0)
572
                                backside_fan = ct;
573
                } else if (!strcmp(ct->name, "slots-fan")) {
574
                        if (slots_fan == NULL && wf_get_control(ct) == 0)
575
                                slots_fan = ct;
576
                } else if (!strcmp(ct->name, "drive-bay-fan")) {
577
                        if (drive_bay_fan == NULL && wf_get_control(ct) == 0)
578
                                drive_bay_fan = ct;
579
                }
580
                return;
581
        }
582
 
583
        for (i = 0; i < CPU_FANS_REQD; ++i)
584
                if (cpu_fans[i] == NULL)
585
                        return;
586
 
587
        /* work out pump scaling factors */
588
        max_exhaust = cpu_fans[0]->ops->get_max(cpu_fans[0]);
589
        for (i = FIRST_PUMP; i <= LAST_PUMP; ++i)
590
                if ((ct = cpu_fans[i]) != NULL)
591
                        cpu_fan_scale[i] =
592
                                ct->ops->get_max(ct) * 100 / max_exhaust;
593
 
594
        have_all_controls = 1;
595
}
596
 
597
static void pm112_new_sensor(struct wf_sensor *sr)
598
{
599
        unsigned int i;
600
 
601
        if (!strncmp(sr->name, "cpu-temp-", 9)) {
602
                i = sr->name[9] - '0';
603
                if (sr->name[10] == 0 && i < NR_CORES &&
604
                    sens_cpu_temp[i] == NULL && wf_get_sensor(sr) == 0)
605
                        sens_cpu_temp[i] = sr;
606
 
607
        } else if (!strncmp(sr->name, "cpu-power-", 10)) {
608
                i = sr->name[10] - '0';
609
                if (sr->name[11] == 0 && i < NR_CORES &&
610
                    sens_cpu_power[i] == NULL && wf_get_sensor(sr) == 0)
611
                        sens_cpu_power[i] = sr;
612
        } else if (!strcmp(sr->name, "hd-temp")) {
613
                if (hd_temp == NULL && wf_get_sensor(sr) == 0)
614
                        hd_temp = sr;
615
        } else if (!strcmp(sr->name, "slots-power")) {
616
                if (slots_power == NULL && wf_get_sensor(sr) == 0)
617
                        slots_power = sr;
618
        } else if (!strcmp(sr->name, "backside-temp")) {
619
                if (u4_temp == NULL && wf_get_sensor(sr) == 0)
620
                        u4_temp = sr;
621
        } else
622
                return;
623
 
624
        /* check if we have all the sensors we need */
625
        for (i = 0; i < nr_cores; ++i)
626
                if (sens_cpu_temp[i] == NULL || sens_cpu_power[i] == NULL)
627
                        return;
628
 
629
        have_all_sensors = 1;
630
}
631
 
632
static int pm112_wf_notify(struct notifier_block *self,
633
                           unsigned long event, void *data)
634
{
635
        switch (event) {
636
        case WF_EVENT_NEW_SENSOR:
637
                pm112_new_sensor(data);
638
                break;
639
        case WF_EVENT_NEW_CONTROL:
640
                pm112_new_control(data);
641
                break;
642
        case WF_EVENT_TICK:
643
                if (have_all_controls && have_all_sensors)
644
                        pm112_tick();
645
        }
646
        return 0;
647
}
648
 
649
static struct notifier_block pm112_events = {
650
        .notifier_call = pm112_wf_notify,
651
};
652
 
653
static int wf_pm112_probe(struct platform_device *dev)
654
{
655
        wf_register_client(&pm112_events);
656
        return 0;
657
}
658
 
659
static int __devexit wf_pm112_remove(struct platform_device *dev)
660
{
661
        wf_unregister_client(&pm112_events);
662
        /* should release all sensors and controls */
663
        return 0;
664
}
665
 
666
static struct platform_driver wf_pm112_driver = {
667
        .probe = wf_pm112_probe,
668
        .remove = __devexit_p(wf_pm112_remove),
669
        .driver = {
670
                .name = "windfarm",
671
                .bus = &platform_bus_type,
672
        },
673
};
674
 
675
static int __init wf_pm112_init(void)
676
{
677
        struct device_node *cpu;
678
 
679
        if (!machine_is_compatible("PowerMac11,2"))
680
                return -ENODEV;
681
 
682
        /* Count the number of CPU cores */
683
        nr_cores = 0;
684
        for (cpu = NULL; (cpu = of_find_node_by_type(cpu, "cpu")) != NULL; )
685
                ++nr_cores;
686
 
687
        printk(KERN_INFO "windfarm: initializing for dual-core desktop G5\n");
688
 
689
#ifdef MODULE
690
        request_module("windfarm_smu_controls");
691
        request_module("windfarm_smu_sensors");
692
        request_module("windfarm_smu_sat");
693
        request_module("windfarm_lm75_sensor");
694
        request_module("windfarm_max6690_sensor");
695
        request_module("windfarm_cpufreq_clamp");
696
 
697
#endif /* MODULE */
698
 
699
        platform_driver_register(&wf_pm112_driver);
700
        return 0;
701
}
702
 
703
static void __exit wf_pm112_exit(void)
704
{
705
        platform_driver_unregister(&wf_pm112_driver);
706
}
707
 
708
module_init(wf_pm112_init);
709
module_exit(wf_pm112_exit);
710
 
711
MODULE_AUTHOR("Paul Mackerras <paulus@samba.org>");
712
MODULE_DESCRIPTION("Thermal control for PowerMac11,2");
713
MODULE_LICENSE("GPL");

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.