OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [drivers/] [mmc/] [host/] [mmc_spi.c] - Blame information for rev 82

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 * mmc_spi.c - Access SD/MMC cards through SPI master controllers
3
 *
4
 * (C) Copyright 2005, Intec Automation,
5
 *              Mike Lavender (mike@steroidmicros)
6
 * (C) Copyright 2006-2007, David Brownell
7
 * (C) Copyright 2007, Axis Communications,
8
 *              Hans-Peter Nilsson (hp@axis.com)
9
 * (C) Copyright 2007, ATRON electronic GmbH,
10
 *              Jan Nikitenko <jan.nikitenko@gmail.com>
11
 *
12
 *
13
 * This program is free software; you can redistribute it and/or modify
14
 * it under the terms of the GNU General Public License as published by
15
 * the Free Software Foundation; either version 2 of the License, or
16
 * (at your option) any later version.
17
 *
18
 * This program is distributed in the hope that it will be useful,
19
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21
 * GNU General Public License for more details.
22
 *
23
 * You should have received a copy of the GNU General Public License
24
 * along with this program; if not, write to the Free Software
25
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26
 */
27
#include <linux/hrtimer.h>
28
#include <linux/delay.h>
29
#include <linux/bio.h>
30
#include <linux/dma-mapping.h>
31
#include <linux/crc7.h>
32
#include <linux/crc-itu-t.h>
33
#include <linux/scatterlist.h>
34
 
35
#include <linux/mmc/host.h>
36
#include <linux/mmc/mmc.h>              /* for R1_SPI_* bit values */
37
 
38
#include <linux/spi/spi.h>
39
#include <linux/spi/mmc_spi.h>
40
 
41
#include <asm/unaligned.h>
42
 
43
 
44
/* NOTES:
45
 *
46
 * - For now, we won't try to interoperate with a real mmc/sd/sdio
47
 *   controller, although some of them do have hardware support for
48
 *   SPI protocol.  The main reason for such configs would be mmc-ish
49
 *   cards like DataFlash, which don't support that "native" protocol.
50
 *
51
 *   We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
52
 *   switch between driver stacks, and in any case if "native" mode
53
 *   is available, it will be faster and hence preferable.
54
 *
55
 * - MMC depends on a different chipselect management policy than the
56
 *   SPI interface currently supports for shared bus segments:  it needs
57
 *   to issue multiple spi_message requests with the chipselect active,
58
 *   using the results of one message to decide the next one to issue.
59
 *
60
 *   Pending updates to the programming interface, this driver expects
61
 *   that it not share the bus with other drivers (precluding conflicts).
62
 *
63
 * - We tell the controller to keep the chipselect active from the
64
 *   beginning of an mmc_host_ops.request until the end.  So beware
65
 *   of SPI controller drivers that mis-handle the cs_change flag!
66
 *
67
 *   However, many cards seem OK with chipselect flapping up/down
68
 *   during that time ... at least on unshared bus segments.
69
 */
70
 
71
 
72
/*
73
 * Local protocol constants, internal to data block protocols.
74
 */
75
 
76
/* Response tokens used to ack each block written: */
77
#define SPI_MMC_RESPONSE_CODE(x)        ((x) & 0x1f)
78
#define SPI_RESPONSE_ACCEPTED           ((2 << 1)|1)
79
#define SPI_RESPONSE_CRC_ERR            ((5 << 1)|1)
80
#define SPI_RESPONSE_WRITE_ERR          ((6 << 1)|1)
81
 
82
/* Read and write blocks start with these tokens and end with crc;
83
 * on error, read tokens act like a subset of R2_SPI_* values.
84
 */
85
#define SPI_TOKEN_SINGLE        0xfe    /* single block r/w, multiblock read */
86
#define SPI_TOKEN_MULTI_WRITE   0xfc    /* multiblock write */
87
#define SPI_TOKEN_STOP_TRAN     0xfd    /* terminate multiblock write */
88
 
89
#define MMC_SPI_BLOCKSIZE       512
90
 
91
 
92
/* These fixed timeouts come from the latest SD specs, which say to ignore
93
 * the CSD values.  The R1B value is for card erase (e.g. the "I forgot the
94
 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
95
 * reads which takes nowhere near that long.  Older cards may be able to use
96
 * shorter timeouts ... but why bother?
97
 */
98
#define readblock_timeout       ktime_set(0, 100 * 1000 * 1000)
99
#define writeblock_timeout      ktime_set(0, 250 * 1000 * 1000)
100
#define r1b_timeout             ktime_set(3, 0)
101
 
102
 
103
/****************************************************************************/
104
 
105
/*
106
 * Local Data Structures
107
 */
108
 
109
/* "scratch" is per-{command,block} data exchanged with the card */
110
struct scratch {
111
        u8                      status[29];
112
        u8                      data_token;
113
        __be16                  crc_val;
114
};
115
 
116
struct mmc_spi_host {
117
        struct mmc_host         *mmc;
118
        struct spi_device       *spi;
119
 
120
        unsigned char           power_mode;
121
        u16                     powerup_msecs;
122
 
123
        struct mmc_spi_platform_data    *pdata;
124
 
125
        /* for bulk data transfers */
126
        struct spi_transfer     token, t, crc, early_status;
127
        struct spi_message      m;
128
 
129
        /* for status readback */
130
        struct spi_transfer     status;
131
        struct spi_message      readback;
132
 
133
        /* underlying DMA-aware controller, or null */
134
        struct device           *dma_dev;
135
 
136
        /* buffer used for commands and for message "overhead" */
137
        struct scratch          *data;
138
        dma_addr_t              data_dma;
139
 
140
        /* Specs say to write ones most of the time, even when the card
141
         * has no need to read its input data; and many cards won't care.
142
         * This is our source of those ones.
143
         */
144
        void                    *ones;
145
        dma_addr_t              ones_dma;
146
};
147
 
148
 
149
/****************************************************************************/
150
 
151
/*
152
 * MMC-over-SPI protocol glue, used by the MMC stack interface
153
 */
154
 
155
static inline int mmc_cs_off(struct mmc_spi_host *host)
156
{
157
        /* chipselect will always be inactive after setup() */
158
        return spi_setup(host->spi);
159
}
160
 
161
static int
162
mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
163
{
164
        int status;
165
 
166
        if (len > sizeof(*host->data)) {
167
                WARN_ON(1);
168
                return -EIO;
169
        }
170
 
171
        host->status.len = len;
172
 
173
        if (host->dma_dev)
174
                dma_sync_single_for_device(host->dma_dev,
175
                                host->data_dma, sizeof(*host->data),
176
                                DMA_FROM_DEVICE);
177
 
178
        status = spi_sync(host->spi, &host->readback);
179
 
180
        if (host->dma_dev)
181
                dma_sync_single_for_cpu(host->dma_dev,
182
                                host->data_dma, sizeof(*host->data),
183
                                DMA_FROM_DEVICE);
184
 
185
        return status;
186
}
187
 
188
static int
189
mmc_spi_skip(struct mmc_spi_host *host, ktime_t timeout, unsigned n, u8 byte)
190
{
191
        u8              *cp = host->data->status;
192
 
193
        timeout = ktime_add(timeout, ktime_get());
194
 
195
        while (1) {
196
                int             status;
197
                unsigned        i;
198
 
199
                status = mmc_spi_readbytes(host, n);
200
                if (status < 0)
201
                        return status;
202
 
203
                for (i = 0; i < n; i++) {
204
                        if (cp[i] != byte)
205
                                return cp[i];
206
                }
207
 
208
                /* REVISIT investigate msleep() to avoid busy-wait I/O
209
                 * in at least some cases.
210
                 */
211
                if (ktime_to_ns(ktime_sub(ktime_get(), timeout)) > 0)
212
                        break;
213
        }
214
        return -ETIMEDOUT;
215
}
216
 
217
static inline int
218
mmc_spi_wait_unbusy(struct mmc_spi_host *host, ktime_t timeout)
219
{
220
        return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
221
}
222
 
223
static int mmc_spi_readtoken(struct mmc_spi_host *host)
224
{
225
        return mmc_spi_skip(host, readblock_timeout, 1, 0xff);
226
}
227
 
228
 
229
/*
230
 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
231
 * hosts return!  The low byte holds R1_SPI bits.  The next byte may hold
232
 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
233
 *
234
 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
235
 * newer cards R7 (IF_COND).
236
 */
237
 
238
static char *maptype(struct mmc_command *cmd)
239
{
240
        switch (mmc_spi_resp_type(cmd)) {
241
        case MMC_RSP_SPI_R1:    return "R1";
242
        case MMC_RSP_SPI_R1B:   return "R1B";
243
        case MMC_RSP_SPI_R2:    return "R2/R5";
244
        case MMC_RSP_SPI_R3:    return "R3/R4/R7";
245
        default:                return "?";
246
        }
247
}
248
 
249
/* return zero, else negative errno after setting cmd->error */
250
static int mmc_spi_response_get(struct mmc_spi_host *host,
251
                struct mmc_command *cmd, int cs_on)
252
{
253
        u8      *cp = host->data->status;
254
        u8      *end = cp + host->t.len;
255
        int     value = 0;
256
        char    tag[32];
257
 
258
        snprintf(tag, sizeof(tag), "  ... CMD%d response SPI_%s",
259
                cmd->opcode, maptype(cmd));
260
 
261
        /* Except for data block reads, the whole response will already
262
         * be stored in the scratch buffer.  It's somewhere after the
263
         * command and the first byte we read after it.  We ignore that
264
         * first byte.  After STOP_TRANSMISSION command it may include
265
         * two data bits, but otherwise it's all ones.
266
         */
267
        cp += 8;
268
        while (cp < end && *cp == 0xff)
269
                cp++;
270
 
271
        /* Data block reads (R1 response types) may need more data... */
272
        if (cp == end) {
273
                unsigned        i;
274
 
275
                cp = host->data->status;
276
 
277
                /* Card sends N(CR) (== 1..8) bytes of all-ones then one
278
                 * status byte ... and we already scanned 2 bytes.
279
                 *
280
                 * REVISIT block read paths use nasty byte-at-a-time I/O
281
                 * so it can always DMA directly into the target buffer.
282
                 * It'd probably be better to memcpy() the first chunk and
283
                 * avoid extra i/o calls...
284
                 */
285
                for (i = 2; i < 9; i++) {
286
                        value = mmc_spi_readbytes(host, 1);
287
                        if (value < 0)
288
                                goto done;
289
                        if (*cp != 0xff)
290
                                goto checkstatus;
291
                }
292
                value = -ETIMEDOUT;
293
                goto done;
294
        }
295
 
296
checkstatus:
297
        if (*cp & 0x80) {
298
                dev_dbg(&host->spi->dev, "%s: INVALID RESPONSE, %02x\n",
299
                                        tag, *cp);
300
                value = -EBADR;
301
                goto done;
302
        }
303
 
304
        cmd->resp[0] = *cp++;
305
        cmd->error = 0;
306
 
307
        /* Status byte: the entire seven-bit R1 response.  */
308
        if (cmd->resp[0] != 0) {
309
                if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS
310
                                        | R1_SPI_ILLEGAL_COMMAND)
311
                                & cmd->resp[0])
312
                        value = -EINVAL;
313
                else if (R1_SPI_COM_CRC & cmd->resp[0])
314
                        value = -EILSEQ;
315
                else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
316
                                & cmd->resp[0])
317
                        value = -EIO;
318
                /* else R1_SPI_IDLE, "it's resetting" */
319
        }
320
 
321
        switch (mmc_spi_resp_type(cmd)) {
322
 
323
        /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
324
         * and less-common stuff like various erase operations.
325
         */
326
        case MMC_RSP_SPI_R1B:
327
                /* maybe we read all the busy tokens already */
328
                while (cp < end && *cp == 0)
329
                        cp++;
330
                if (cp == end)
331
                        mmc_spi_wait_unbusy(host, r1b_timeout);
332
                break;
333
 
334
        /* SPI R2 == R1 + second status byte; SEND_STATUS
335
         * SPI R5 == R1 + data byte; IO_RW_DIRECT
336
         */
337
        case MMC_RSP_SPI_R2:
338
                cmd->resp[0] |= *cp << 8;
339
                break;
340
 
341
        /* SPI R3, R4, or R7 == R1 + 4 bytes */
342
        case MMC_RSP_SPI_R3:
343
                cmd->resp[1] = be32_to_cpu(get_unaligned((u32 *)cp));
344
                break;
345
 
346
        /* SPI R1 == just one status byte */
347
        case MMC_RSP_SPI_R1:
348
                break;
349
 
350
        default:
351
                dev_dbg(&host->spi->dev, "bad response type %04x\n",
352
                                mmc_spi_resp_type(cmd));
353
                if (value >= 0)
354
                        value = -EINVAL;
355
                goto done;
356
        }
357
 
358
        if (value < 0)
359
                dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
360
                        tag, cmd->resp[0], cmd->resp[1]);
361
 
362
        /* disable chipselect on errors and some success cases */
363
        if (value >= 0 && cs_on)
364
                return value;
365
done:
366
        if (value < 0)
367
                cmd->error = value;
368
        mmc_cs_off(host);
369
        return value;
370
}
371
 
372
/* Issue command and read its response.
373
 * Returns zero on success, negative for error.
374
 *
375
 * On error, caller must cope with mmc core retry mechanism.  That
376
 * means immediate low-level resubmit, which affects the bus lock...
377
 */
378
static int
379
mmc_spi_command_send(struct mmc_spi_host *host,
380
                struct mmc_request *mrq,
381
                struct mmc_command *cmd, int cs_on)
382
{
383
        struct scratch          *data = host->data;
384
        u8                      *cp = data->status;
385
        u32                     arg = cmd->arg;
386
        int                     status;
387
        struct spi_transfer     *t;
388
 
389
        /* We can handle most commands (except block reads) in one full
390
         * duplex I/O operation before either starting the next transfer
391
         * (data block or command) or else deselecting the card.
392
         *
393
         * First, write 7 bytes:
394
         *  - an all-ones byte to ensure the card is ready
395
         *  - opcode byte (plus start and transmission bits)
396
         *  - four bytes of big-endian argument
397
         *  - crc7 (plus end bit) ... always computed, it's cheap
398
         *
399
         * We init the whole buffer to all-ones, which is what we need
400
         * to write while we're reading (later) response data.
401
         */
402
        memset(cp++, 0xff, sizeof(data->status));
403
 
404
        *cp++ = 0x40 | cmd->opcode;
405
        *cp++ = (u8)(arg >> 24);
406
        *cp++ = (u8)(arg >> 16);
407
        *cp++ = (u8)(arg >> 8);
408
        *cp++ = (u8)arg;
409
        *cp++ = (crc7(0, &data->status[1], 5) << 1) | 0x01;
410
 
411
        /* Then, read up to 13 bytes (while writing all-ones):
412
         *  - N(CR) (== 1..8) bytes of all-ones
413
         *  - status byte (for all response types)
414
         *  - the rest of the response, either:
415
         *      + nothing, for R1 or R1B responses
416
         *      + second status byte, for R2 responses
417
         *      + four data bytes, for R3 and R7 responses
418
         *
419
         * Finally, read some more bytes ... in the nice cases we know in
420
         * advance how many, and reading 1 more is always OK:
421
         *  - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
422
         *  - N(RC) (== 1..N) bytes of all-ones, before next command
423
         *  - N(WR) (== 1..N) bytes of all-ones, before data write
424
         *
425
         * So in those cases one full duplex I/O of at most 21 bytes will
426
         * handle the whole command, leaving the card ready to receive a
427
         * data block or new command.  We do that whenever we can, shaving
428
         * CPU and IRQ costs (especially when using DMA or FIFOs).
429
         *
430
         * There are two other cases, where it's not generally practical
431
         * to rely on a single I/O:
432
         *
433
         *  - R1B responses need at least N(EC) bytes of all-zeroes.
434
         *
435
         *    In this case we can *try* to fit it into one I/O, then
436
         *    maybe read more data later.
437
         *
438
         *  - Data block reads are more troublesome, since a variable
439
         *    number of padding bytes precede the token and data.
440
         *      + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
441
         *      + N(AC) (== 1..many) bytes of all-ones
442
         *
443
         *    In this case we currently only have minimal speedups here:
444
         *    when N(CR) == 1 we can avoid I/O in response_get().
445
         */
446
        if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
447
                cp += 2;        /* min(N(CR)) + status */
448
                /* R1 */
449
        } else {
450
                cp += 10;       /* max(N(CR)) + status + min(N(RC),N(WR)) */
451
                if (cmd->flags & MMC_RSP_SPI_S2)        /* R2/R5 */
452
                        cp++;
453
                else if (cmd->flags & MMC_RSP_SPI_B4)   /* R3/R4/R7 */
454
                        cp += 4;
455
                else if (cmd->flags & MMC_RSP_BUSY)     /* R1B */
456
                        cp = data->status + sizeof(data->status);
457
                /* else:  R1 (most commands) */
458
        }
459
 
460
        dev_dbg(&host->spi->dev, "  mmc_spi: CMD%d, resp %s\n",
461
                cmd->opcode, maptype(cmd));
462
 
463
        /* send command, leaving chipselect active */
464
        spi_message_init(&host->m);
465
 
466
        t = &host->t;
467
        memset(t, 0, sizeof(*t));
468
        t->tx_buf = t->rx_buf = data->status;
469
        t->tx_dma = t->rx_dma = host->data_dma;
470
        t->len = cp - data->status;
471
        t->cs_change = 1;
472
        spi_message_add_tail(t, &host->m);
473
 
474
        if (host->dma_dev) {
475
                host->m.is_dma_mapped = 1;
476
                dma_sync_single_for_device(host->dma_dev,
477
                                host->data_dma, sizeof(*host->data),
478
                                DMA_BIDIRECTIONAL);
479
        }
480
        status = spi_sync(host->spi, &host->m);
481
 
482
        if (host->dma_dev)
483
                dma_sync_single_for_cpu(host->dma_dev,
484
                                host->data_dma, sizeof(*host->data),
485
                                DMA_BIDIRECTIONAL);
486
        if (status < 0) {
487
                dev_dbg(&host->spi->dev, "  ... write returned %d\n", status);
488
                cmd->error = status;
489
                return status;
490
        }
491
 
492
        /* after no-data commands and STOP_TRANSMISSION, chipselect off */
493
        return mmc_spi_response_get(host, cmd, cs_on);
494
}
495
 
496
/* Build data message with up to four separate transfers.  For TX, we
497
 * start by writing the data token.  And in most cases, we finish with
498
 * a status transfer.
499
 *
500
 * We always provide TX data for data and CRC.  The MMC/SD protocol
501
 * requires us to write ones; but Linux defaults to writing zeroes;
502
 * so we explicitly initialize it to all ones on RX paths.
503
 *
504
 * We also handle DMA mapping, so the underlying SPI controller does
505
 * not need to (re)do it for each message.
506
 */
507
static void
508
mmc_spi_setup_data_message(
509
        struct mmc_spi_host     *host,
510
        int                     multiple,
511
        enum dma_data_direction direction)
512
{
513
        struct spi_transfer     *t;
514
        struct scratch          *scratch = host->data;
515
        dma_addr_t              dma = host->data_dma;
516
 
517
        spi_message_init(&host->m);
518
        if (dma)
519
                host->m.is_dma_mapped = 1;
520
 
521
        /* for reads, readblock() skips 0xff bytes before finding
522
         * the token; for writes, this transfer issues that token.
523
         */
524
        if (direction == DMA_TO_DEVICE) {
525
                t = &host->token;
526
                memset(t, 0, sizeof(*t));
527
                t->len = 1;
528
                if (multiple)
529
                        scratch->data_token = SPI_TOKEN_MULTI_WRITE;
530
                else
531
                        scratch->data_token = SPI_TOKEN_SINGLE;
532
                t->tx_buf = &scratch->data_token;
533
                if (dma)
534
                        t->tx_dma = dma + offsetof(struct scratch, data_token);
535
                spi_message_add_tail(t, &host->m);
536
        }
537
 
538
        /* Body of transfer is buffer, then CRC ...
539
         * either TX-only, or RX with TX-ones.
540
         */
541
        t = &host->t;
542
        memset(t, 0, sizeof(*t));
543
        t->tx_buf = host->ones;
544
        t->tx_dma = host->ones_dma;
545
        /* length and actual buffer info are written later */
546
        spi_message_add_tail(t, &host->m);
547
 
548
        t = &host->crc;
549
        memset(t, 0, sizeof(*t));
550
        t->len = 2;
551
        if (direction == DMA_TO_DEVICE) {
552
                /* the actual CRC may get written later */
553
                t->tx_buf = &scratch->crc_val;
554
                if (dma)
555
                        t->tx_dma = dma + offsetof(struct scratch, crc_val);
556
        } else {
557
                t->tx_buf = host->ones;
558
                t->tx_dma = host->ones_dma;
559
                t->rx_buf = &scratch->crc_val;
560
                if (dma)
561
                        t->rx_dma = dma + offsetof(struct scratch, crc_val);
562
        }
563
        spi_message_add_tail(t, &host->m);
564
 
565
        /*
566
         * A single block read is followed by N(EC) [0+] all-ones bytes
567
         * before deselect ... don't bother.
568
         *
569
         * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
570
         * the next block is read, or a STOP_TRANSMISSION is issued.  We'll
571
         * collect that single byte, so readblock() doesn't need to.
572
         *
573
         * For a write, the one-byte data response follows immediately, then
574
         * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
575
         * Then single block reads may deselect, and multiblock ones issue
576
         * the next token (next data block, or STOP_TRAN).  We can try to
577
         * minimize I/O ops by using a single read to collect end-of-busy.
578
         */
579
        if (multiple || direction == DMA_TO_DEVICE) {
580
                t = &host->early_status;
581
                memset(t, 0, sizeof(*t));
582
                t->len = (direction == DMA_TO_DEVICE)
583
                                ? sizeof(scratch->status)
584
                                : 1;
585
                t->tx_buf = host->ones;
586
                t->tx_dma = host->ones_dma;
587
                t->rx_buf = scratch->status;
588
                if (dma)
589
                        t->rx_dma = dma + offsetof(struct scratch, status);
590
                t->cs_change = 1;
591
                spi_message_add_tail(t, &host->m);
592
        }
593
}
594
 
595
/*
596
 * Write one block:
597
 *  - caller handled preceding N(WR) [1+] all-ones bytes
598
 *  - data block
599
 *      + token
600
 *      + data bytes
601
 *      + crc16
602
 *  - an all-ones byte ... card writes a data-response byte
603
 *  - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
604
 *
605
 * Return negative errno, else success.
606
 */
607
static int
608
mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t)
609
{
610
        struct spi_device       *spi = host->spi;
611
        int                     status, i;
612
        struct scratch          *scratch = host->data;
613
 
614
        if (host->mmc->use_spi_crc)
615
                scratch->crc_val = cpu_to_be16(
616
                                crc_itu_t(0, t->tx_buf, t->len));
617
        if (host->dma_dev)
618
                dma_sync_single_for_device(host->dma_dev,
619
                                host->data_dma, sizeof(*scratch),
620
                                DMA_BIDIRECTIONAL);
621
 
622
        status = spi_sync(spi, &host->m);
623
 
624
        if (status != 0) {
625
                dev_dbg(&spi->dev, "write error (%d)\n", status);
626
                return status;
627
        }
628
 
629
        if (host->dma_dev)
630
                dma_sync_single_for_cpu(host->dma_dev,
631
                                host->data_dma, sizeof(*scratch),
632
                                DMA_BIDIRECTIONAL);
633
 
634
        /*
635
         * Get the transmission data-response reply.  It must follow
636
         * immediately after the data block we transferred.  This reply
637
         * doesn't necessarily tell whether the write operation succeeded;
638
         * it just says if the transmission was ok and whether *earlier*
639
         * writes succeeded; see the standard.
640
         */
641
        switch (SPI_MMC_RESPONSE_CODE(scratch->status[0])) {
642
        case SPI_RESPONSE_ACCEPTED:
643
                status = 0;
644
                break;
645
        case SPI_RESPONSE_CRC_ERR:
646
                /* host shall then issue MMC_STOP_TRANSMISSION */
647
                status = -EILSEQ;
648
                break;
649
        case SPI_RESPONSE_WRITE_ERR:
650
                /* host shall then issue MMC_STOP_TRANSMISSION,
651
                 * and should MMC_SEND_STATUS to sort it out
652
                 */
653
                status = -EIO;
654
                break;
655
        default:
656
                status = -EPROTO;
657
                break;
658
        }
659
        if (status != 0) {
660
                dev_dbg(&spi->dev, "write error %02x (%d)\n",
661
                        scratch->status[0], status);
662
                return status;
663
        }
664
 
665
        t->tx_buf += t->len;
666
        if (host->dma_dev)
667
                t->tx_dma += t->len;
668
 
669
        /* Return when not busy.  If we didn't collect that status yet,
670
         * we'll need some more I/O.
671
         */
672
        for (i = 1; i < sizeof(scratch->status); i++) {
673
                if (scratch->status[i] != 0)
674
                        return 0;
675
        }
676
        return mmc_spi_wait_unbusy(host, writeblock_timeout);
677
}
678
 
679
/*
680
 * Read one block:
681
 *  - skip leading all-ones bytes ... either
682
 *      + N(AC) [1..f(clock,CSD)] usually, else
683
 *      + N(CX) [0..8] when reading CSD or CID
684
 *  - data block
685
 *      + token ... if error token, no data or crc
686
 *      + data bytes
687
 *      + crc16
688
 *
689
 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
690
 * before dropping chipselect.
691
 *
692
 * For multiblock reads, caller either reads the next block or issues a
693
 * STOP_TRANSMISSION command.
694
 */
695
static int
696
mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t)
697
{
698
        struct spi_device       *spi = host->spi;
699
        int                     status;
700
        struct scratch          *scratch = host->data;
701
 
702
        /* At least one SD card sends an all-zeroes byte when N(CX)
703
         * applies, before the all-ones bytes ... just cope with that.
704
         */
705
        status = mmc_spi_readbytes(host, 1);
706
        if (status < 0)
707
                return status;
708
        status = scratch->status[0];
709
        if (status == 0xff || status == 0)
710
                status = mmc_spi_readtoken(host);
711
 
712
        if (status == SPI_TOKEN_SINGLE) {
713
                if (host->dma_dev) {
714
                        dma_sync_single_for_device(host->dma_dev,
715
                                        host->data_dma, sizeof(*scratch),
716
                                        DMA_BIDIRECTIONAL);
717
                        dma_sync_single_for_device(host->dma_dev,
718
                                        t->rx_dma, t->len,
719
                                        DMA_FROM_DEVICE);
720
                }
721
 
722
                status = spi_sync(spi, &host->m);
723
 
724
                if (host->dma_dev) {
725
                        dma_sync_single_for_cpu(host->dma_dev,
726
                                        host->data_dma, sizeof(*scratch),
727
                                        DMA_BIDIRECTIONAL);
728
                        dma_sync_single_for_cpu(host->dma_dev,
729
                                        t->rx_dma, t->len,
730
                                        DMA_FROM_DEVICE);
731
                }
732
 
733
        } else {
734
                dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
735
 
736
                /* we've read extra garbage, timed out, etc */
737
                if (status < 0)
738
                        return status;
739
 
740
                /* low four bits are an R2 subset, fifth seems to be
741
                 * vendor specific ... map them all to generic error..
742
                 */
743
                return -EIO;
744
        }
745
 
746
        if (host->mmc->use_spi_crc) {
747
                u16 crc = crc_itu_t(0, t->rx_buf, t->len);
748
 
749
                be16_to_cpus(&scratch->crc_val);
750
                if (scratch->crc_val != crc) {
751
                        dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, "
752
                                        "computed=0x%04x len=%d\n",
753
                                        scratch->crc_val, crc, t->len);
754
                        return -EILSEQ;
755
                }
756
        }
757
 
758
        t->rx_buf += t->len;
759
        if (host->dma_dev)
760
                t->rx_dma += t->len;
761
 
762
        return 0;
763
}
764
 
765
/*
766
 * An MMC/SD data stage includes one or more blocks, optional CRCs,
767
 * and inline handshaking.  That handhaking makes it unlike most
768
 * other SPI protocol stacks.
769
 */
770
static void
771
mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
772
                struct mmc_data *data, u32 blk_size)
773
{
774
        struct spi_device       *spi = host->spi;
775
        struct device           *dma_dev = host->dma_dev;
776
        struct spi_transfer     *t;
777
        enum dma_data_direction direction;
778
        struct scatterlist      *sg;
779
        unsigned                n_sg;
780
        int                     multiple = (data->blocks > 1);
781
 
782
        if (data->flags & MMC_DATA_READ)
783
                direction = DMA_FROM_DEVICE;
784
        else
785
                direction = DMA_TO_DEVICE;
786
        mmc_spi_setup_data_message(host, multiple, direction);
787
        t = &host->t;
788
 
789
        /* Handle scatterlist segments one at a time, with synch for
790
         * each 512-byte block
791
         */
792
        for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) {
793
                int                     status = 0;
794
                dma_addr_t              dma_addr = 0;
795
                void                    *kmap_addr;
796
                unsigned                length = sg->length;
797
                enum dma_data_direction dir = direction;
798
 
799
                /* set up dma mapping for controller drivers that might
800
                 * use DMA ... though they may fall back to PIO
801
                 */
802
                if (dma_dev) {
803
                        /* never invalidate whole *shared* pages ... */
804
                        if ((sg->offset != 0 || length != PAGE_SIZE)
805
                                        && dir == DMA_FROM_DEVICE)
806
                                dir = DMA_BIDIRECTIONAL;
807
 
808
                        dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
809
                                                PAGE_SIZE, dir);
810
                        if (direction == DMA_TO_DEVICE)
811
                                t->tx_dma = dma_addr + sg->offset;
812
                        else
813
                                t->rx_dma = dma_addr + sg->offset;
814
                }
815
 
816
                /* allow pio too; we don't allow highmem */
817
                kmap_addr = kmap(sg_page(sg));
818
                if (direction == DMA_TO_DEVICE)
819
                        t->tx_buf = kmap_addr + sg->offset;
820
                else
821
                        t->rx_buf = kmap_addr + sg->offset;
822
 
823
                /* transfer each block, and update request status */
824
                while (length) {
825
                        t->len = min(length, blk_size);
826
 
827
                        dev_dbg(&host->spi->dev,
828
                                "    mmc_spi: %s block, %d bytes\n",
829
                                (direction == DMA_TO_DEVICE)
830
                                ? "write"
831
                                : "read",
832
                                t->len);
833
 
834
                        if (direction == DMA_TO_DEVICE)
835
                                status = mmc_spi_writeblock(host, t);
836
                        else
837
                                status = mmc_spi_readblock(host, t);
838
                        if (status < 0)
839
                                break;
840
 
841
                        data->bytes_xfered += t->len;
842
                        length -= t->len;
843
 
844
                        if (!multiple)
845
                                break;
846
                }
847
 
848
                /* discard mappings */
849
                if (direction == DMA_FROM_DEVICE)
850
                        flush_kernel_dcache_page(sg_page(sg));
851
                kunmap(sg_page(sg));
852
                if (dma_dev)
853
                        dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
854
 
855
                if (status < 0) {
856
                        data->error = status;
857
                        dev_dbg(&spi->dev, "%s status %d\n",
858
                                (direction == DMA_TO_DEVICE)
859
                                        ? "write" : "read",
860
                                status);
861
                        break;
862
                }
863
        }
864
 
865
        /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
866
         * can be issued before multiblock writes.  Unlike its more widely
867
         * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
868
         * that can affect the STOP_TRAN logic.   Complete (and current)
869
         * MMC specs should sort that out before Linux starts using CMD23.
870
         */
871
        if (direction == DMA_TO_DEVICE && multiple) {
872
                struct scratch  *scratch = host->data;
873
                int             tmp;
874
                const unsigned  statlen = sizeof(scratch->status);
875
 
876
                dev_dbg(&spi->dev, "    mmc_spi: STOP_TRAN\n");
877
 
878
                /* Tweak the per-block message we set up earlier by morphing
879
                 * it to hold single buffer with the token followed by some
880
                 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
881
                 * "not busy any longer" status, and leave chip selected.
882
                 */
883
                INIT_LIST_HEAD(&host->m.transfers);
884
                list_add(&host->early_status.transfer_list,
885
                                &host->m.transfers);
886
 
887
                memset(scratch->status, 0xff, statlen);
888
                scratch->status[0] = SPI_TOKEN_STOP_TRAN;
889
 
890
                host->early_status.tx_buf = host->early_status.rx_buf;
891
                host->early_status.tx_dma = host->early_status.rx_dma;
892
                host->early_status.len = statlen;
893
 
894
                if (host->dma_dev)
895
                        dma_sync_single_for_device(host->dma_dev,
896
                                        host->data_dma, sizeof(*scratch),
897
                                        DMA_BIDIRECTIONAL);
898
 
899
                tmp = spi_sync(spi, &host->m);
900
 
901
                if (host->dma_dev)
902
                        dma_sync_single_for_cpu(host->dma_dev,
903
                                        host->data_dma, sizeof(*scratch),
904
                                        DMA_BIDIRECTIONAL);
905
 
906
                if (tmp < 0) {
907
                        if (!data->error)
908
                                data->error = tmp;
909
                        return;
910
                }
911
 
912
                /* Ideally we collected "not busy" status with one I/O,
913
                 * avoiding wasteful byte-at-a-time scanning... but more
914
                 * I/O is often needed.
915
                 */
916
                for (tmp = 2; tmp < statlen; tmp++) {
917
                        if (scratch->status[tmp] != 0)
918
                                return;
919
                }
920
                tmp = mmc_spi_wait_unbusy(host, writeblock_timeout);
921
                if (tmp < 0 && !data->error)
922
                        data->error = tmp;
923
        }
924
}
925
 
926
/****************************************************************************/
927
 
928
/*
929
 * MMC driver implementation -- the interface to the MMC stack
930
 */
931
 
932
static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
933
{
934
        struct mmc_spi_host     *host = mmc_priv(mmc);
935
        int                     status = -EINVAL;
936
 
937
#ifdef DEBUG
938
        /* MMC core and layered drivers *MUST* issue SPI-aware commands */
939
        {
940
                struct mmc_command      *cmd;
941
                int                     invalid = 0;
942
 
943
                cmd = mrq->cmd;
944
                if (!mmc_spi_resp_type(cmd)) {
945
                        dev_dbg(&host->spi->dev, "bogus command\n");
946
                        cmd->error = -EINVAL;
947
                        invalid = 1;
948
                }
949
 
950
                cmd = mrq->stop;
951
                if (cmd && !mmc_spi_resp_type(cmd)) {
952
                        dev_dbg(&host->spi->dev, "bogus STOP command\n");
953
                        cmd->error = -EINVAL;
954
                        invalid = 1;
955
                }
956
 
957
                if (invalid) {
958
                        dump_stack();
959
                        mmc_request_done(host->mmc, mrq);
960
                        return;
961
                }
962
        }
963
#endif
964
 
965
        /* issue command; then optionally data and stop */
966
        status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
967
        if (status == 0 && mrq->data) {
968
                mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
969
                if (mrq->stop)
970
                        status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
971
                else
972
                        mmc_cs_off(host);
973
        }
974
 
975
        mmc_request_done(host->mmc, mrq);
976
}
977
 
978
/* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
979
 *
980
 * NOTE that here we can't know that the card has just been powered up;
981
 * not all MMC/SD sockets support power switching.
982
 *
983
 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
984
 * this doesn't seem to do the right thing at all...
985
 */
986
static void mmc_spi_initsequence(struct mmc_spi_host *host)
987
{
988
        /* Try to be very sure any previous command has completed;
989
         * wait till not-busy, skip debris from any old commands.
990
         */
991
        mmc_spi_wait_unbusy(host, r1b_timeout);
992
        mmc_spi_readbytes(host, 10);
993
 
994
        /*
995
         * Do a burst with chipselect active-high.  We need to do this to
996
         * meet the requirement of 74 clock cycles with both chipselect
997
         * and CMD (MOSI) high before CMD0 ... after the card has been
998
         * powered up to Vdd(min), and so is ready to take commands.
999
         *
1000
         * Some cards are particularly needy of this (e.g. Viking "SD256")
1001
         * while most others don't seem to care.
1002
         *
1003
         * Note that this is one of the places MMC/SD plays games with the
1004
         * SPI protocol.  Another is that when chipselect is released while
1005
         * the card returns BUSY status, the clock must issue several cycles
1006
         * with chipselect high before the card will stop driving its output.
1007
         */
1008
        host->spi->mode |= SPI_CS_HIGH;
1009
        if (spi_setup(host->spi) != 0) {
1010
                /* Just warn; most cards work without it. */
1011
                dev_warn(&host->spi->dev,
1012
                                "can't change chip-select polarity\n");
1013
                host->spi->mode &= ~SPI_CS_HIGH;
1014
        } else {
1015
                mmc_spi_readbytes(host, 18);
1016
 
1017
                host->spi->mode &= ~SPI_CS_HIGH;
1018
                if (spi_setup(host->spi) != 0) {
1019
                        /* Wot, we can't get the same setup we had before? */
1020
                        dev_err(&host->spi->dev,
1021
                                        "can't restore chip-select polarity\n");
1022
                }
1023
        }
1024
}
1025
 
1026
static char *mmc_powerstring(u8 power_mode)
1027
{
1028
        switch (power_mode) {
1029
        case MMC_POWER_OFF: return "off";
1030
        case MMC_POWER_UP:  return "up";
1031
        case MMC_POWER_ON:  return "on";
1032
        }
1033
        return "?";
1034
}
1035
 
1036
static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1037
{
1038
        struct mmc_spi_host *host = mmc_priv(mmc);
1039
 
1040
        if (host->power_mode != ios->power_mode) {
1041
                int             canpower;
1042
 
1043
                canpower = host->pdata && host->pdata->setpower;
1044
 
1045
                dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1046
                                mmc_powerstring(ios->power_mode),
1047
                                ios->vdd,
1048
                                canpower ? ", can switch" : "");
1049
 
1050
                /* switch power on/off if possible, accounting for
1051
                 * max 250msec powerup time if needed.
1052
                 */
1053
                if (canpower) {
1054
                        switch (ios->power_mode) {
1055
                        case MMC_POWER_OFF:
1056
                        case MMC_POWER_UP:
1057
                                host->pdata->setpower(&host->spi->dev,
1058
                                                ios->vdd);
1059
                                if (ios->power_mode == MMC_POWER_UP)
1060
                                        msleep(host->powerup_msecs);
1061
                        }
1062
                }
1063
 
1064
                /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1065
                if (ios->power_mode == MMC_POWER_ON)
1066
                        mmc_spi_initsequence(host);
1067
 
1068
                /* If powering down, ground all card inputs to avoid power
1069
                 * delivery from data lines!  On a shared SPI bus, this
1070
                 * will probably be temporary; 6.4.2 of the simplified SD
1071
                 * spec says this must last at least 1msec.
1072
                 *
1073
                 *   - Clock low means CPOL 0, e.g. mode 0
1074
                 *   - MOSI low comes from writing zero
1075
                 *   - Chipselect is usually active low...
1076
                 */
1077
                if (canpower && ios->power_mode == MMC_POWER_OFF) {
1078
                        int mres;
1079
 
1080
                        host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1081
                        mres = spi_setup(host->spi);
1082
                        if (mres < 0)
1083
                                dev_dbg(&host->spi->dev,
1084
                                        "switch to SPI mode 0 failed\n");
1085
 
1086
                        if (spi_w8r8(host->spi, 0x00) < 0)
1087
                                dev_dbg(&host->spi->dev,
1088
                                        "put spi signals to low failed\n");
1089
 
1090
                        /*
1091
                         * Now clock should be low due to spi mode 0;
1092
                         * MOSI should be low because of written 0x00;
1093
                         * chipselect should be low (it is active low)
1094
                         * power supply is off, so now MMC is off too!
1095
                         *
1096
                         * FIXME no, chipselect can be high since the
1097
                         * device is inactive and SPI_CS_HIGH is clear...
1098
                         */
1099
                        msleep(10);
1100
                        if (mres == 0) {
1101
                                host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1102
                                mres = spi_setup(host->spi);
1103
                                if (mres < 0)
1104
                                        dev_dbg(&host->spi->dev,
1105
                                                "switch back to SPI mode 3"
1106
                                                " failed\n");
1107
                        }
1108
                }
1109
 
1110
                host->power_mode = ios->power_mode;
1111
        }
1112
 
1113
        if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1114
                int             status;
1115
 
1116
                host->spi->max_speed_hz = ios->clock;
1117
                status = spi_setup(host->spi);
1118
                dev_dbg(&host->spi->dev,
1119
                        "mmc_spi:  clock to %d Hz, %d\n",
1120
                        host->spi->max_speed_hz, status);
1121
        }
1122
}
1123
 
1124
static int mmc_spi_get_ro(struct mmc_host *mmc)
1125
{
1126
        struct mmc_spi_host *host = mmc_priv(mmc);
1127
 
1128
        if (host->pdata && host->pdata->get_ro)
1129
                return host->pdata->get_ro(mmc->parent);
1130
        /* board doesn't support read only detection; assume writeable */
1131
        return 0;
1132
}
1133
 
1134
 
1135
static const struct mmc_host_ops mmc_spi_ops = {
1136
        .request        = mmc_spi_request,
1137
        .set_ios        = mmc_spi_set_ios,
1138
        .get_ro         = mmc_spi_get_ro,
1139
};
1140
 
1141
 
1142
/****************************************************************************/
1143
 
1144
/*
1145
 * SPI driver implementation
1146
 */
1147
 
1148
static irqreturn_t
1149
mmc_spi_detect_irq(int irq, void *mmc)
1150
{
1151
        struct mmc_spi_host *host = mmc_priv(mmc);
1152
        u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1153
 
1154
        mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1155
        return IRQ_HANDLED;
1156
}
1157
 
1158
struct count_children {
1159
        unsigned        n;
1160
        struct bus_type *bus;
1161
};
1162
 
1163
static int maybe_count_child(struct device *dev, void *c)
1164
{
1165
        struct count_children *ccp = c;
1166
 
1167
        if (dev->bus == ccp->bus) {
1168
                if (ccp->n)
1169
                        return -EBUSY;
1170
                ccp->n++;
1171
        }
1172
        return 0;
1173
}
1174
 
1175
static int mmc_spi_probe(struct spi_device *spi)
1176
{
1177
        void                    *ones;
1178
        struct mmc_host         *mmc;
1179
        struct mmc_spi_host     *host;
1180
        int                     status;
1181
 
1182
        /* MMC and SD specs only seem to care that sampling is on the
1183
         * rising edge ... meaning SPI modes 0 or 3.  So either SPI mode
1184
         * should be legit.  We'll use mode 0 since it seems to be a
1185
         * bit less troublesome on some hardware ... unclear why.
1186
         */
1187
        spi->mode = SPI_MODE_0;
1188
        spi->bits_per_word = 8;
1189
 
1190
        status = spi_setup(spi);
1191
        if (status < 0) {
1192
                dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1193
                                spi->mode, spi->max_speed_hz / 1000,
1194
                                status);
1195
                return status;
1196
        }
1197
 
1198
        /* We can use the bus safely iff nobody else will interfere with us.
1199
         * Most commands consist of one SPI message to issue a command, then
1200
         * several more to collect its response, then possibly more for data
1201
         * transfer.  Clocking access to other devices during that period will
1202
         * corrupt the command execution.
1203
         *
1204
         * Until we have software primitives which guarantee non-interference,
1205
         * we'll aim for a hardware-level guarantee.
1206
         *
1207
         * REVISIT we can't guarantee another device won't be added later...
1208
         */
1209
        if (spi->master->num_chipselect > 1) {
1210
                struct count_children cc;
1211
 
1212
                cc.n = 0;
1213
                cc.bus = spi->dev.bus;
1214
                status = device_for_each_child(spi->dev.parent, &cc,
1215
                                maybe_count_child);
1216
                if (status < 0) {
1217
                        dev_err(&spi->dev, "can't share SPI bus\n");
1218
                        return status;
1219
                }
1220
 
1221
                dev_warn(&spi->dev, "ASSUMING SPI bus stays unshared!\n");
1222
        }
1223
 
1224
        /* We need a supply of ones to transmit.  This is the only time
1225
         * the CPU touches these, so cache coherency isn't a concern.
1226
         *
1227
         * NOTE if many systems use more than one MMC-over-SPI connector
1228
         * it'd save some memory to share this.  That's evidently rare.
1229
         */
1230
        status = -ENOMEM;
1231
        ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1232
        if (!ones)
1233
                goto nomem;
1234
        memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1235
 
1236
        mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1237
        if (!mmc)
1238
                goto nomem;
1239
 
1240
        mmc->ops = &mmc_spi_ops;
1241
        mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1242
 
1243
        /* As long as we keep track of the number of successfully
1244
         * transmitted blocks, we're good for multiwrite.
1245
         */
1246
        mmc->caps = MMC_CAP_SPI | MMC_CAP_MULTIWRITE;
1247
 
1248
        /* SPI doesn't need the lowspeed device identification thing for
1249
         * MMC or SD cards, since it never comes up in open drain mode.
1250
         * That's good; some SPI masters can't handle very low speeds!
1251
         *
1252
         * However, low speed SDIO cards need not handle over 400 KHz;
1253
         * that's the only reason not to use a few MHz for f_min (until
1254
         * the upper layer reads the target frequency from the CSD).
1255
         */
1256
        mmc->f_min = 400000;
1257
        mmc->f_max = spi->max_speed_hz;
1258
 
1259
        host = mmc_priv(mmc);
1260
        host->mmc = mmc;
1261
        host->spi = spi;
1262
 
1263
        host->ones = ones;
1264
 
1265
        /* Platform data is used to hook up things like card sensing
1266
         * and power switching gpios.
1267
         */
1268
        host->pdata = spi->dev.platform_data;
1269
        if (host->pdata)
1270
                mmc->ocr_avail = host->pdata->ocr_mask;
1271
        if (!mmc->ocr_avail) {
1272
                dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1273
                mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1274
        }
1275
        if (host->pdata && host->pdata->setpower) {
1276
                host->powerup_msecs = host->pdata->powerup_msecs;
1277
                if (!host->powerup_msecs || host->powerup_msecs > 250)
1278
                        host->powerup_msecs = 250;
1279
        }
1280
 
1281
        dev_set_drvdata(&spi->dev, mmc);
1282
 
1283
        /* preallocate dma buffers */
1284
        host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1285
        if (!host->data)
1286
                goto fail_nobuf1;
1287
 
1288
        if (spi->master->dev.parent->dma_mask) {
1289
                struct device   *dev = spi->master->dev.parent;
1290
 
1291
                host->dma_dev = dev;
1292
                host->ones_dma = dma_map_single(dev, ones,
1293
                                MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1294
                host->data_dma = dma_map_single(dev, host->data,
1295
                                sizeof(*host->data), DMA_BIDIRECTIONAL);
1296
 
1297
                /* REVISIT in theory those map operations can fail... */
1298
 
1299
                dma_sync_single_for_cpu(host->dma_dev,
1300
                                host->data_dma, sizeof(*host->data),
1301
                                DMA_BIDIRECTIONAL);
1302
        }
1303
 
1304
        /* setup message for status/busy readback */
1305
        spi_message_init(&host->readback);
1306
        host->readback.is_dma_mapped = (host->dma_dev != NULL);
1307
 
1308
        spi_message_add_tail(&host->status, &host->readback);
1309
        host->status.tx_buf = host->ones;
1310
        host->status.tx_dma = host->ones_dma;
1311
        host->status.rx_buf = &host->data->status;
1312
        host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1313
        host->status.cs_change = 1;
1314
 
1315
        /* register card detect irq */
1316
        if (host->pdata && host->pdata->init) {
1317
                status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1318
                if (status != 0)
1319
                        goto fail_glue_init;
1320
        }
1321
 
1322
        status = mmc_add_host(mmc);
1323
        if (status != 0)
1324
                goto fail_add_host;
1325
 
1326
        dev_info(&spi->dev, "SD/MMC host %s%s%s%s\n",
1327
                        mmc->class_dev.bus_id,
1328
                        host->dma_dev ? "" : ", no DMA",
1329
                        (host->pdata && host->pdata->get_ro)
1330
                                ? "" : ", no WP",
1331
                        (host->pdata && host->pdata->setpower)
1332
                                ? "" : ", no poweroff");
1333
        return 0;
1334
 
1335
fail_add_host:
1336
        mmc_remove_host (mmc);
1337
fail_glue_init:
1338
        if (host->dma_dev)
1339
                dma_unmap_single(host->dma_dev, host->data_dma,
1340
                                sizeof(*host->data), DMA_BIDIRECTIONAL);
1341
        kfree(host->data);
1342
 
1343
fail_nobuf1:
1344
        mmc_free_host(mmc);
1345
        dev_set_drvdata(&spi->dev, NULL);
1346
 
1347
nomem:
1348
        kfree(ones);
1349
        return status;
1350
}
1351
 
1352
 
1353
static int __devexit mmc_spi_remove(struct spi_device *spi)
1354
{
1355
        struct mmc_host         *mmc = dev_get_drvdata(&spi->dev);
1356
        struct mmc_spi_host     *host;
1357
 
1358
        if (mmc) {
1359
                host = mmc_priv(mmc);
1360
 
1361
                /* prevent new mmc_detect_change() calls */
1362
                if (host->pdata && host->pdata->exit)
1363
                        host->pdata->exit(&spi->dev, mmc);
1364
 
1365
                mmc_remove_host(mmc);
1366
 
1367
                if (host->dma_dev) {
1368
                        dma_unmap_single(host->dma_dev, host->ones_dma,
1369
                                MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1370
                        dma_unmap_single(host->dma_dev, host->data_dma,
1371
                                sizeof(*host->data), DMA_BIDIRECTIONAL);
1372
                }
1373
 
1374
                kfree(host->data);
1375
                kfree(host->ones);
1376
 
1377
                spi->max_speed_hz = mmc->f_max;
1378
                mmc_free_host(mmc);
1379
                dev_set_drvdata(&spi->dev, NULL);
1380
        }
1381
        return 0;
1382
}
1383
 
1384
 
1385
static struct spi_driver mmc_spi_driver = {
1386
        .driver = {
1387
                .name =         "mmc_spi",
1388
                .bus =          &spi_bus_type,
1389
                .owner =        THIS_MODULE,
1390
        },
1391
        .probe =        mmc_spi_probe,
1392
        .remove =       __devexit_p(mmc_spi_remove),
1393
};
1394
 
1395
 
1396
static int __init mmc_spi_init(void)
1397
{
1398
        return spi_register_driver(&mmc_spi_driver);
1399
}
1400
module_init(mmc_spi_init);
1401
 
1402
 
1403
static void __exit mmc_spi_exit(void)
1404
{
1405
        spi_unregister_driver(&mmc_spi_driver);
1406
}
1407
module_exit(mmc_spi_exit);
1408
 
1409
 
1410
MODULE_AUTHOR("Mike Lavender, David Brownell, "
1411
                "Hans-Peter Nilsson, Jan Nikitenko");
1412
MODULE_DESCRIPTION("SPI SD/MMC host driver");
1413
MODULE_LICENSE("GPL");

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.