1 |
62 |
marcus.erl |
/*
|
2 |
|
|
* mmc_spi.c - Access SD/MMC cards through SPI master controllers
|
3 |
|
|
*
|
4 |
|
|
* (C) Copyright 2005, Intec Automation,
|
5 |
|
|
* Mike Lavender (mike@steroidmicros)
|
6 |
|
|
* (C) Copyright 2006-2007, David Brownell
|
7 |
|
|
* (C) Copyright 2007, Axis Communications,
|
8 |
|
|
* Hans-Peter Nilsson (hp@axis.com)
|
9 |
|
|
* (C) Copyright 2007, ATRON electronic GmbH,
|
10 |
|
|
* Jan Nikitenko <jan.nikitenko@gmail.com>
|
11 |
|
|
*
|
12 |
|
|
*
|
13 |
|
|
* This program is free software; you can redistribute it and/or modify
|
14 |
|
|
* it under the terms of the GNU General Public License as published by
|
15 |
|
|
* the Free Software Foundation; either version 2 of the License, or
|
16 |
|
|
* (at your option) any later version.
|
17 |
|
|
*
|
18 |
|
|
* This program is distributed in the hope that it will be useful,
|
19 |
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
20 |
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
21 |
|
|
* GNU General Public License for more details.
|
22 |
|
|
*
|
23 |
|
|
* You should have received a copy of the GNU General Public License
|
24 |
|
|
* along with this program; if not, write to the Free Software
|
25 |
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
26 |
|
|
*/
|
27 |
|
|
#include <linux/hrtimer.h>
|
28 |
|
|
#include <linux/delay.h>
|
29 |
|
|
#include <linux/bio.h>
|
30 |
|
|
#include <linux/dma-mapping.h>
|
31 |
|
|
#include <linux/crc7.h>
|
32 |
|
|
#include <linux/crc-itu-t.h>
|
33 |
|
|
#include <linux/scatterlist.h>
|
34 |
|
|
|
35 |
|
|
#include <linux/mmc/host.h>
|
36 |
|
|
#include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */
|
37 |
|
|
|
38 |
|
|
#include <linux/spi/spi.h>
|
39 |
|
|
#include <linux/spi/mmc_spi.h>
|
40 |
|
|
|
41 |
|
|
#include <asm/unaligned.h>
|
42 |
|
|
|
43 |
|
|
|
44 |
|
|
/* NOTES:
|
45 |
|
|
*
|
46 |
|
|
* - For now, we won't try to interoperate with a real mmc/sd/sdio
|
47 |
|
|
* controller, although some of them do have hardware support for
|
48 |
|
|
* SPI protocol. The main reason for such configs would be mmc-ish
|
49 |
|
|
* cards like DataFlash, which don't support that "native" protocol.
|
50 |
|
|
*
|
51 |
|
|
* We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
|
52 |
|
|
* switch between driver stacks, and in any case if "native" mode
|
53 |
|
|
* is available, it will be faster and hence preferable.
|
54 |
|
|
*
|
55 |
|
|
* - MMC depends on a different chipselect management policy than the
|
56 |
|
|
* SPI interface currently supports for shared bus segments: it needs
|
57 |
|
|
* to issue multiple spi_message requests with the chipselect active,
|
58 |
|
|
* using the results of one message to decide the next one to issue.
|
59 |
|
|
*
|
60 |
|
|
* Pending updates to the programming interface, this driver expects
|
61 |
|
|
* that it not share the bus with other drivers (precluding conflicts).
|
62 |
|
|
*
|
63 |
|
|
* - We tell the controller to keep the chipselect active from the
|
64 |
|
|
* beginning of an mmc_host_ops.request until the end. So beware
|
65 |
|
|
* of SPI controller drivers that mis-handle the cs_change flag!
|
66 |
|
|
*
|
67 |
|
|
* However, many cards seem OK with chipselect flapping up/down
|
68 |
|
|
* during that time ... at least on unshared bus segments.
|
69 |
|
|
*/
|
70 |
|
|
|
71 |
|
|
|
72 |
|
|
/*
|
73 |
|
|
* Local protocol constants, internal to data block protocols.
|
74 |
|
|
*/
|
75 |
|
|
|
76 |
|
|
/* Response tokens used to ack each block written: */
|
77 |
|
|
#define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f)
|
78 |
|
|
#define SPI_RESPONSE_ACCEPTED ((2 << 1)|1)
|
79 |
|
|
#define SPI_RESPONSE_CRC_ERR ((5 << 1)|1)
|
80 |
|
|
#define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1)
|
81 |
|
|
|
82 |
|
|
/* Read and write blocks start with these tokens and end with crc;
|
83 |
|
|
* on error, read tokens act like a subset of R2_SPI_* values.
|
84 |
|
|
*/
|
85 |
|
|
#define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */
|
86 |
|
|
#define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */
|
87 |
|
|
#define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */
|
88 |
|
|
|
89 |
|
|
#define MMC_SPI_BLOCKSIZE 512
|
90 |
|
|
|
91 |
|
|
|
92 |
|
|
/* These fixed timeouts come from the latest SD specs, which say to ignore
|
93 |
|
|
* the CSD values. The R1B value is for card erase (e.g. the "I forgot the
|
94 |
|
|
* card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
|
95 |
|
|
* reads which takes nowhere near that long. Older cards may be able to use
|
96 |
|
|
* shorter timeouts ... but why bother?
|
97 |
|
|
*/
|
98 |
|
|
#define readblock_timeout ktime_set(0, 100 * 1000 * 1000)
|
99 |
|
|
#define writeblock_timeout ktime_set(0, 250 * 1000 * 1000)
|
100 |
|
|
#define r1b_timeout ktime_set(3, 0)
|
101 |
|
|
|
102 |
|
|
|
103 |
|
|
/****************************************************************************/
|
104 |
|
|
|
105 |
|
|
/*
|
106 |
|
|
* Local Data Structures
|
107 |
|
|
*/
|
108 |
|
|
|
109 |
|
|
/* "scratch" is per-{command,block} data exchanged with the card */
|
110 |
|
|
struct scratch {
|
111 |
|
|
u8 status[29];
|
112 |
|
|
u8 data_token;
|
113 |
|
|
__be16 crc_val;
|
114 |
|
|
};
|
115 |
|
|
|
116 |
|
|
struct mmc_spi_host {
|
117 |
|
|
struct mmc_host *mmc;
|
118 |
|
|
struct spi_device *spi;
|
119 |
|
|
|
120 |
|
|
unsigned char power_mode;
|
121 |
|
|
u16 powerup_msecs;
|
122 |
|
|
|
123 |
|
|
struct mmc_spi_platform_data *pdata;
|
124 |
|
|
|
125 |
|
|
/* for bulk data transfers */
|
126 |
|
|
struct spi_transfer token, t, crc, early_status;
|
127 |
|
|
struct spi_message m;
|
128 |
|
|
|
129 |
|
|
/* for status readback */
|
130 |
|
|
struct spi_transfer status;
|
131 |
|
|
struct spi_message readback;
|
132 |
|
|
|
133 |
|
|
/* underlying DMA-aware controller, or null */
|
134 |
|
|
struct device *dma_dev;
|
135 |
|
|
|
136 |
|
|
/* buffer used for commands and for message "overhead" */
|
137 |
|
|
struct scratch *data;
|
138 |
|
|
dma_addr_t data_dma;
|
139 |
|
|
|
140 |
|
|
/* Specs say to write ones most of the time, even when the card
|
141 |
|
|
* has no need to read its input data; and many cards won't care.
|
142 |
|
|
* This is our source of those ones.
|
143 |
|
|
*/
|
144 |
|
|
void *ones;
|
145 |
|
|
dma_addr_t ones_dma;
|
146 |
|
|
};
|
147 |
|
|
|
148 |
|
|
|
149 |
|
|
/****************************************************************************/
|
150 |
|
|
|
151 |
|
|
/*
|
152 |
|
|
* MMC-over-SPI protocol glue, used by the MMC stack interface
|
153 |
|
|
*/
|
154 |
|
|
|
155 |
|
|
static inline int mmc_cs_off(struct mmc_spi_host *host)
|
156 |
|
|
{
|
157 |
|
|
/* chipselect will always be inactive after setup() */
|
158 |
|
|
return spi_setup(host->spi);
|
159 |
|
|
}
|
160 |
|
|
|
161 |
|
|
static int
|
162 |
|
|
mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
|
163 |
|
|
{
|
164 |
|
|
int status;
|
165 |
|
|
|
166 |
|
|
if (len > sizeof(*host->data)) {
|
167 |
|
|
WARN_ON(1);
|
168 |
|
|
return -EIO;
|
169 |
|
|
}
|
170 |
|
|
|
171 |
|
|
host->status.len = len;
|
172 |
|
|
|
173 |
|
|
if (host->dma_dev)
|
174 |
|
|
dma_sync_single_for_device(host->dma_dev,
|
175 |
|
|
host->data_dma, sizeof(*host->data),
|
176 |
|
|
DMA_FROM_DEVICE);
|
177 |
|
|
|
178 |
|
|
status = spi_sync(host->spi, &host->readback);
|
179 |
|
|
|
180 |
|
|
if (host->dma_dev)
|
181 |
|
|
dma_sync_single_for_cpu(host->dma_dev,
|
182 |
|
|
host->data_dma, sizeof(*host->data),
|
183 |
|
|
DMA_FROM_DEVICE);
|
184 |
|
|
|
185 |
|
|
return status;
|
186 |
|
|
}
|
187 |
|
|
|
188 |
|
|
static int
|
189 |
|
|
mmc_spi_skip(struct mmc_spi_host *host, ktime_t timeout, unsigned n, u8 byte)
|
190 |
|
|
{
|
191 |
|
|
u8 *cp = host->data->status;
|
192 |
|
|
|
193 |
|
|
timeout = ktime_add(timeout, ktime_get());
|
194 |
|
|
|
195 |
|
|
while (1) {
|
196 |
|
|
int status;
|
197 |
|
|
unsigned i;
|
198 |
|
|
|
199 |
|
|
status = mmc_spi_readbytes(host, n);
|
200 |
|
|
if (status < 0)
|
201 |
|
|
return status;
|
202 |
|
|
|
203 |
|
|
for (i = 0; i < n; i++) {
|
204 |
|
|
if (cp[i] != byte)
|
205 |
|
|
return cp[i];
|
206 |
|
|
}
|
207 |
|
|
|
208 |
|
|
/* REVISIT investigate msleep() to avoid busy-wait I/O
|
209 |
|
|
* in at least some cases.
|
210 |
|
|
*/
|
211 |
|
|
if (ktime_to_ns(ktime_sub(ktime_get(), timeout)) > 0)
|
212 |
|
|
break;
|
213 |
|
|
}
|
214 |
|
|
return -ETIMEDOUT;
|
215 |
|
|
}
|
216 |
|
|
|
217 |
|
|
static inline int
|
218 |
|
|
mmc_spi_wait_unbusy(struct mmc_spi_host *host, ktime_t timeout)
|
219 |
|
|
{
|
220 |
|
|
return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
|
221 |
|
|
}
|
222 |
|
|
|
223 |
|
|
static int mmc_spi_readtoken(struct mmc_spi_host *host)
|
224 |
|
|
{
|
225 |
|
|
return mmc_spi_skip(host, readblock_timeout, 1, 0xff);
|
226 |
|
|
}
|
227 |
|
|
|
228 |
|
|
|
229 |
|
|
/*
|
230 |
|
|
* Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
|
231 |
|
|
* hosts return! The low byte holds R1_SPI bits. The next byte may hold
|
232 |
|
|
* R2_SPI bits ... for SEND_STATUS, or after data read errors.
|
233 |
|
|
*
|
234 |
|
|
* cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
|
235 |
|
|
* newer cards R7 (IF_COND).
|
236 |
|
|
*/
|
237 |
|
|
|
238 |
|
|
static char *maptype(struct mmc_command *cmd)
|
239 |
|
|
{
|
240 |
|
|
switch (mmc_spi_resp_type(cmd)) {
|
241 |
|
|
case MMC_RSP_SPI_R1: return "R1";
|
242 |
|
|
case MMC_RSP_SPI_R1B: return "R1B";
|
243 |
|
|
case MMC_RSP_SPI_R2: return "R2/R5";
|
244 |
|
|
case MMC_RSP_SPI_R3: return "R3/R4/R7";
|
245 |
|
|
default: return "?";
|
246 |
|
|
}
|
247 |
|
|
}
|
248 |
|
|
|
249 |
|
|
/* return zero, else negative errno after setting cmd->error */
|
250 |
|
|
static int mmc_spi_response_get(struct mmc_spi_host *host,
|
251 |
|
|
struct mmc_command *cmd, int cs_on)
|
252 |
|
|
{
|
253 |
|
|
u8 *cp = host->data->status;
|
254 |
|
|
u8 *end = cp + host->t.len;
|
255 |
|
|
int value = 0;
|
256 |
|
|
char tag[32];
|
257 |
|
|
|
258 |
|
|
snprintf(tag, sizeof(tag), " ... CMD%d response SPI_%s",
|
259 |
|
|
cmd->opcode, maptype(cmd));
|
260 |
|
|
|
261 |
|
|
/* Except for data block reads, the whole response will already
|
262 |
|
|
* be stored in the scratch buffer. It's somewhere after the
|
263 |
|
|
* command and the first byte we read after it. We ignore that
|
264 |
|
|
* first byte. After STOP_TRANSMISSION command it may include
|
265 |
|
|
* two data bits, but otherwise it's all ones.
|
266 |
|
|
*/
|
267 |
|
|
cp += 8;
|
268 |
|
|
while (cp < end && *cp == 0xff)
|
269 |
|
|
cp++;
|
270 |
|
|
|
271 |
|
|
/* Data block reads (R1 response types) may need more data... */
|
272 |
|
|
if (cp == end) {
|
273 |
|
|
unsigned i;
|
274 |
|
|
|
275 |
|
|
cp = host->data->status;
|
276 |
|
|
|
277 |
|
|
/* Card sends N(CR) (== 1..8) bytes of all-ones then one
|
278 |
|
|
* status byte ... and we already scanned 2 bytes.
|
279 |
|
|
*
|
280 |
|
|
* REVISIT block read paths use nasty byte-at-a-time I/O
|
281 |
|
|
* so it can always DMA directly into the target buffer.
|
282 |
|
|
* It'd probably be better to memcpy() the first chunk and
|
283 |
|
|
* avoid extra i/o calls...
|
284 |
|
|
*/
|
285 |
|
|
for (i = 2; i < 9; i++) {
|
286 |
|
|
value = mmc_spi_readbytes(host, 1);
|
287 |
|
|
if (value < 0)
|
288 |
|
|
goto done;
|
289 |
|
|
if (*cp != 0xff)
|
290 |
|
|
goto checkstatus;
|
291 |
|
|
}
|
292 |
|
|
value = -ETIMEDOUT;
|
293 |
|
|
goto done;
|
294 |
|
|
}
|
295 |
|
|
|
296 |
|
|
checkstatus:
|
297 |
|
|
if (*cp & 0x80) {
|
298 |
|
|
dev_dbg(&host->spi->dev, "%s: INVALID RESPONSE, %02x\n",
|
299 |
|
|
tag, *cp);
|
300 |
|
|
value = -EBADR;
|
301 |
|
|
goto done;
|
302 |
|
|
}
|
303 |
|
|
|
304 |
|
|
cmd->resp[0] = *cp++;
|
305 |
|
|
cmd->error = 0;
|
306 |
|
|
|
307 |
|
|
/* Status byte: the entire seven-bit R1 response. */
|
308 |
|
|
if (cmd->resp[0] != 0) {
|
309 |
|
|
if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS
|
310 |
|
|
| R1_SPI_ILLEGAL_COMMAND)
|
311 |
|
|
& cmd->resp[0])
|
312 |
|
|
value = -EINVAL;
|
313 |
|
|
else if (R1_SPI_COM_CRC & cmd->resp[0])
|
314 |
|
|
value = -EILSEQ;
|
315 |
|
|
else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
|
316 |
|
|
& cmd->resp[0])
|
317 |
|
|
value = -EIO;
|
318 |
|
|
/* else R1_SPI_IDLE, "it's resetting" */
|
319 |
|
|
}
|
320 |
|
|
|
321 |
|
|
switch (mmc_spi_resp_type(cmd)) {
|
322 |
|
|
|
323 |
|
|
/* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
|
324 |
|
|
* and less-common stuff like various erase operations.
|
325 |
|
|
*/
|
326 |
|
|
case MMC_RSP_SPI_R1B:
|
327 |
|
|
/* maybe we read all the busy tokens already */
|
328 |
|
|
while (cp < end && *cp == 0)
|
329 |
|
|
cp++;
|
330 |
|
|
if (cp == end)
|
331 |
|
|
mmc_spi_wait_unbusy(host, r1b_timeout);
|
332 |
|
|
break;
|
333 |
|
|
|
334 |
|
|
/* SPI R2 == R1 + second status byte; SEND_STATUS
|
335 |
|
|
* SPI R5 == R1 + data byte; IO_RW_DIRECT
|
336 |
|
|
*/
|
337 |
|
|
case MMC_RSP_SPI_R2:
|
338 |
|
|
cmd->resp[0] |= *cp << 8;
|
339 |
|
|
break;
|
340 |
|
|
|
341 |
|
|
/* SPI R3, R4, or R7 == R1 + 4 bytes */
|
342 |
|
|
case MMC_RSP_SPI_R3:
|
343 |
|
|
cmd->resp[1] = be32_to_cpu(get_unaligned((u32 *)cp));
|
344 |
|
|
break;
|
345 |
|
|
|
346 |
|
|
/* SPI R1 == just one status byte */
|
347 |
|
|
case MMC_RSP_SPI_R1:
|
348 |
|
|
break;
|
349 |
|
|
|
350 |
|
|
default:
|
351 |
|
|
dev_dbg(&host->spi->dev, "bad response type %04x\n",
|
352 |
|
|
mmc_spi_resp_type(cmd));
|
353 |
|
|
if (value >= 0)
|
354 |
|
|
value = -EINVAL;
|
355 |
|
|
goto done;
|
356 |
|
|
}
|
357 |
|
|
|
358 |
|
|
if (value < 0)
|
359 |
|
|
dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
|
360 |
|
|
tag, cmd->resp[0], cmd->resp[1]);
|
361 |
|
|
|
362 |
|
|
/* disable chipselect on errors and some success cases */
|
363 |
|
|
if (value >= 0 && cs_on)
|
364 |
|
|
return value;
|
365 |
|
|
done:
|
366 |
|
|
if (value < 0)
|
367 |
|
|
cmd->error = value;
|
368 |
|
|
mmc_cs_off(host);
|
369 |
|
|
return value;
|
370 |
|
|
}
|
371 |
|
|
|
372 |
|
|
/* Issue command and read its response.
|
373 |
|
|
* Returns zero on success, negative for error.
|
374 |
|
|
*
|
375 |
|
|
* On error, caller must cope with mmc core retry mechanism. That
|
376 |
|
|
* means immediate low-level resubmit, which affects the bus lock...
|
377 |
|
|
*/
|
378 |
|
|
static int
|
379 |
|
|
mmc_spi_command_send(struct mmc_spi_host *host,
|
380 |
|
|
struct mmc_request *mrq,
|
381 |
|
|
struct mmc_command *cmd, int cs_on)
|
382 |
|
|
{
|
383 |
|
|
struct scratch *data = host->data;
|
384 |
|
|
u8 *cp = data->status;
|
385 |
|
|
u32 arg = cmd->arg;
|
386 |
|
|
int status;
|
387 |
|
|
struct spi_transfer *t;
|
388 |
|
|
|
389 |
|
|
/* We can handle most commands (except block reads) in one full
|
390 |
|
|
* duplex I/O operation before either starting the next transfer
|
391 |
|
|
* (data block or command) or else deselecting the card.
|
392 |
|
|
*
|
393 |
|
|
* First, write 7 bytes:
|
394 |
|
|
* - an all-ones byte to ensure the card is ready
|
395 |
|
|
* - opcode byte (plus start and transmission bits)
|
396 |
|
|
* - four bytes of big-endian argument
|
397 |
|
|
* - crc7 (plus end bit) ... always computed, it's cheap
|
398 |
|
|
*
|
399 |
|
|
* We init the whole buffer to all-ones, which is what we need
|
400 |
|
|
* to write while we're reading (later) response data.
|
401 |
|
|
*/
|
402 |
|
|
memset(cp++, 0xff, sizeof(data->status));
|
403 |
|
|
|
404 |
|
|
*cp++ = 0x40 | cmd->opcode;
|
405 |
|
|
*cp++ = (u8)(arg >> 24);
|
406 |
|
|
*cp++ = (u8)(arg >> 16);
|
407 |
|
|
*cp++ = (u8)(arg >> 8);
|
408 |
|
|
*cp++ = (u8)arg;
|
409 |
|
|
*cp++ = (crc7(0, &data->status[1], 5) << 1) | 0x01;
|
410 |
|
|
|
411 |
|
|
/* Then, read up to 13 bytes (while writing all-ones):
|
412 |
|
|
* - N(CR) (== 1..8) bytes of all-ones
|
413 |
|
|
* - status byte (for all response types)
|
414 |
|
|
* - the rest of the response, either:
|
415 |
|
|
* + nothing, for R1 or R1B responses
|
416 |
|
|
* + second status byte, for R2 responses
|
417 |
|
|
* + four data bytes, for R3 and R7 responses
|
418 |
|
|
*
|
419 |
|
|
* Finally, read some more bytes ... in the nice cases we know in
|
420 |
|
|
* advance how many, and reading 1 more is always OK:
|
421 |
|
|
* - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
|
422 |
|
|
* - N(RC) (== 1..N) bytes of all-ones, before next command
|
423 |
|
|
* - N(WR) (== 1..N) bytes of all-ones, before data write
|
424 |
|
|
*
|
425 |
|
|
* So in those cases one full duplex I/O of at most 21 bytes will
|
426 |
|
|
* handle the whole command, leaving the card ready to receive a
|
427 |
|
|
* data block or new command. We do that whenever we can, shaving
|
428 |
|
|
* CPU and IRQ costs (especially when using DMA or FIFOs).
|
429 |
|
|
*
|
430 |
|
|
* There are two other cases, where it's not generally practical
|
431 |
|
|
* to rely on a single I/O:
|
432 |
|
|
*
|
433 |
|
|
* - R1B responses need at least N(EC) bytes of all-zeroes.
|
434 |
|
|
*
|
435 |
|
|
* In this case we can *try* to fit it into one I/O, then
|
436 |
|
|
* maybe read more data later.
|
437 |
|
|
*
|
438 |
|
|
* - Data block reads are more troublesome, since a variable
|
439 |
|
|
* number of padding bytes precede the token and data.
|
440 |
|
|
* + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
|
441 |
|
|
* + N(AC) (== 1..many) bytes of all-ones
|
442 |
|
|
*
|
443 |
|
|
* In this case we currently only have minimal speedups here:
|
444 |
|
|
* when N(CR) == 1 we can avoid I/O in response_get().
|
445 |
|
|
*/
|
446 |
|
|
if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
|
447 |
|
|
cp += 2; /* min(N(CR)) + status */
|
448 |
|
|
/* R1 */
|
449 |
|
|
} else {
|
450 |
|
|
cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */
|
451 |
|
|
if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */
|
452 |
|
|
cp++;
|
453 |
|
|
else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */
|
454 |
|
|
cp += 4;
|
455 |
|
|
else if (cmd->flags & MMC_RSP_BUSY) /* R1B */
|
456 |
|
|
cp = data->status + sizeof(data->status);
|
457 |
|
|
/* else: R1 (most commands) */
|
458 |
|
|
}
|
459 |
|
|
|
460 |
|
|
dev_dbg(&host->spi->dev, " mmc_spi: CMD%d, resp %s\n",
|
461 |
|
|
cmd->opcode, maptype(cmd));
|
462 |
|
|
|
463 |
|
|
/* send command, leaving chipselect active */
|
464 |
|
|
spi_message_init(&host->m);
|
465 |
|
|
|
466 |
|
|
t = &host->t;
|
467 |
|
|
memset(t, 0, sizeof(*t));
|
468 |
|
|
t->tx_buf = t->rx_buf = data->status;
|
469 |
|
|
t->tx_dma = t->rx_dma = host->data_dma;
|
470 |
|
|
t->len = cp - data->status;
|
471 |
|
|
t->cs_change = 1;
|
472 |
|
|
spi_message_add_tail(t, &host->m);
|
473 |
|
|
|
474 |
|
|
if (host->dma_dev) {
|
475 |
|
|
host->m.is_dma_mapped = 1;
|
476 |
|
|
dma_sync_single_for_device(host->dma_dev,
|
477 |
|
|
host->data_dma, sizeof(*host->data),
|
478 |
|
|
DMA_BIDIRECTIONAL);
|
479 |
|
|
}
|
480 |
|
|
status = spi_sync(host->spi, &host->m);
|
481 |
|
|
|
482 |
|
|
if (host->dma_dev)
|
483 |
|
|
dma_sync_single_for_cpu(host->dma_dev,
|
484 |
|
|
host->data_dma, sizeof(*host->data),
|
485 |
|
|
DMA_BIDIRECTIONAL);
|
486 |
|
|
if (status < 0) {
|
487 |
|
|
dev_dbg(&host->spi->dev, " ... write returned %d\n", status);
|
488 |
|
|
cmd->error = status;
|
489 |
|
|
return status;
|
490 |
|
|
}
|
491 |
|
|
|
492 |
|
|
/* after no-data commands and STOP_TRANSMISSION, chipselect off */
|
493 |
|
|
return mmc_spi_response_get(host, cmd, cs_on);
|
494 |
|
|
}
|
495 |
|
|
|
496 |
|
|
/* Build data message with up to four separate transfers. For TX, we
|
497 |
|
|
* start by writing the data token. And in most cases, we finish with
|
498 |
|
|
* a status transfer.
|
499 |
|
|
*
|
500 |
|
|
* We always provide TX data for data and CRC. The MMC/SD protocol
|
501 |
|
|
* requires us to write ones; but Linux defaults to writing zeroes;
|
502 |
|
|
* so we explicitly initialize it to all ones on RX paths.
|
503 |
|
|
*
|
504 |
|
|
* We also handle DMA mapping, so the underlying SPI controller does
|
505 |
|
|
* not need to (re)do it for each message.
|
506 |
|
|
*/
|
507 |
|
|
static void
|
508 |
|
|
mmc_spi_setup_data_message(
|
509 |
|
|
struct mmc_spi_host *host,
|
510 |
|
|
int multiple,
|
511 |
|
|
enum dma_data_direction direction)
|
512 |
|
|
{
|
513 |
|
|
struct spi_transfer *t;
|
514 |
|
|
struct scratch *scratch = host->data;
|
515 |
|
|
dma_addr_t dma = host->data_dma;
|
516 |
|
|
|
517 |
|
|
spi_message_init(&host->m);
|
518 |
|
|
if (dma)
|
519 |
|
|
host->m.is_dma_mapped = 1;
|
520 |
|
|
|
521 |
|
|
/* for reads, readblock() skips 0xff bytes before finding
|
522 |
|
|
* the token; for writes, this transfer issues that token.
|
523 |
|
|
*/
|
524 |
|
|
if (direction == DMA_TO_DEVICE) {
|
525 |
|
|
t = &host->token;
|
526 |
|
|
memset(t, 0, sizeof(*t));
|
527 |
|
|
t->len = 1;
|
528 |
|
|
if (multiple)
|
529 |
|
|
scratch->data_token = SPI_TOKEN_MULTI_WRITE;
|
530 |
|
|
else
|
531 |
|
|
scratch->data_token = SPI_TOKEN_SINGLE;
|
532 |
|
|
t->tx_buf = &scratch->data_token;
|
533 |
|
|
if (dma)
|
534 |
|
|
t->tx_dma = dma + offsetof(struct scratch, data_token);
|
535 |
|
|
spi_message_add_tail(t, &host->m);
|
536 |
|
|
}
|
537 |
|
|
|
538 |
|
|
/* Body of transfer is buffer, then CRC ...
|
539 |
|
|
* either TX-only, or RX with TX-ones.
|
540 |
|
|
*/
|
541 |
|
|
t = &host->t;
|
542 |
|
|
memset(t, 0, sizeof(*t));
|
543 |
|
|
t->tx_buf = host->ones;
|
544 |
|
|
t->tx_dma = host->ones_dma;
|
545 |
|
|
/* length and actual buffer info are written later */
|
546 |
|
|
spi_message_add_tail(t, &host->m);
|
547 |
|
|
|
548 |
|
|
t = &host->crc;
|
549 |
|
|
memset(t, 0, sizeof(*t));
|
550 |
|
|
t->len = 2;
|
551 |
|
|
if (direction == DMA_TO_DEVICE) {
|
552 |
|
|
/* the actual CRC may get written later */
|
553 |
|
|
t->tx_buf = &scratch->crc_val;
|
554 |
|
|
if (dma)
|
555 |
|
|
t->tx_dma = dma + offsetof(struct scratch, crc_val);
|
556 |
|
|
} else {
|
557 |
|
|
t->tx_buf = host->ones;
|
558 |
|
|
t->tx_dma = host->ones_dma;
|
559 |
|
|
t->rx_buf = &scratch->crc_val;
|
560 |
|
|
if (dma)
|
561 |
|
|
t->rx_dma = dma + offsetof(struct scratch, crc_val);
|
562 |
|
|
}
|
563 |
|
|
spi_message_add_tail(t, &host->m);
|
564 |
|
|
|
565 |
|
|
/*
|
566 |
|
|
* A single block read is followed by N(EC) [0+] all-ones bytes
|
567 |
|
|
* before deselect ... don't bother.
|
568 |
|
|
*
|
569 |
|
|
* Multiblock reads are followed by N(AC) [1+] all-ones bytes before
|
570 |
|
|
* the next block is read, or a STOP_TRANSMISSION is issued. We'll
|
571 |
|
|
* collect that single byte, so readblock() doesn't need to.
|
572 |
|
|
*
|
573 |
|
|
* For a write, the one-byte data response follows immediately, then
|
574 |
|
|
* come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
|
575 |
|
|
* Then single block reads may deselect, and multiblock ones issue
|
576 |
|
|
* the next token (next data block, or STOP_TRAN). We can try to
|
577 |
|
|
* minimize I/O ops by using a single read to collect end-of-busy.
|
578 |
|
|
*/
|
579 |
|
|
if (multiple || direction == DMA_TO_DEVICE) {
|
580 |
|
|
t = &host->early_status;
|
581 |
|
|
memset(t, 0, sizeof(*t));
|
582 |
|
|
t->len = (direction == DMA_TO_DEVICE)
|
583 |
|
|
? sizeof(scratch->status)
|
584 |
|
|
: 1;
|
585 |
|
|
t->tx_buf = host->ones;
|
586 |
|
|
t->tx_dma = host->ones_dma;
|
587 |
|
|
t->rx_buf = scratch->status;
|
588 |
|
|
if (dma)
|
589 |
|
|
t->rx_dma = dma + offsetof(struct scratch, status);
|
590 |
|
|
t->cs_change = 1;
|
591 |
|
|
spi_message_add_tail(t, &host->m);
|
592 |
|
|
}
|
593 |
|
|
}
|
594 |
|
|
|
595 |
|
|
/*
|
596 |
|
|
* Write one block:
|
597 |
|
|
* - caller handled preceding N(WR) [1+] all-ones bytes
|
598 |
|
|
* - data block
|
599 |
|
|
* + token
|
600 |
|
|
* + data bytes
|
601 |
|
|
* + crc16
|
602 |
|
|
* - an all-ones byte ... card writes a data-response byte
|
603 |
|
|
* - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
|
604 |
|
|
*
|
605 |
|
|
* Return negative errno, else success.
|
606 |
|
|
*/
|
607 |
|
|
static int
|
608 |
|
|
mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t)
|
609 |
|
|
{
|
610 |
|
|
struct spi_device *spi = host->spi;
|
611 |
|
|
int status, i;
|
612 |
|
|
struct scratch *scratch = host->data;
|
613 |
|
|
|
614 |
|
|
if (host->mmc->use_spi_crc)
|
615 |
|
|
scratch->crc_val = cpu_to_be16(
|
616 |
|
|
crc_itu_t(0, t->tx_buf, t->len));
|
617 |
|
|
if (host->dma_dev)
|
618 |
|
|
dma_sync_single_for_device(host->dma_dev,
|
619 |
|
|
host->data_dma, sizeof(*scratch),
|
620 |
|
|
DMA_BIDIRECTIONAL);
|
621 |
|
|
|
622 |
|
|
status = spi_sync(spi, &host->m);
|
623 |
|
|
|
624 |
|
|
if (status != 0) {
|
625 |
|
|
dev_dbg(&spi->dev, "write error (%d)\n", status);
|
626 |
|
|
return status;
|
627 |
|
|
}
|
628 |
|
|
|
629 |
|
|
if (host->dma_dev)
|
630 |
|
|
dma_sync_single_for_cpu(host->dma_dev,
|
631 |
|
|
host->data_dma, sizeof(*scratch),
|
632 |
|
|
DMA_BIDIRECTIONAL);
|
633 |
|
|
|
634 |
|
|
/*
|
635 |
|
|
* Get the transmission data-response reply. It must follow
|
636 |
|
|
* immediately after the data block we transferred. This reply
|
637 |
|
|
* doesn't necessarily tell whether the write operation succeeded;
|
638 |
|
|
* it just says if the transmission was ok and whether *earlier*
|
639 |
|
|
* writes succeeded; see the standard.
|
640 |
|
|
*/
|
641 |
|
|
switch (SPI_MMC_RESPONSE_CODE(scratch->status[0])) {
|
642 |
|
|
case SPI_RESPONSE_ACCEPTED:
|
643 |
|
|
status = 0;
|
644 |
|
|
break;
|
645 |
|
|
case SPI_RESPONSE_CRC_ERR:
|
646 |
|
|
/* host shall then issue MMC_STOP_TRANSMISSION */
|
647 |
|
|
status = -EILSEQ;
|
648 |
|
|
break;
|
649 |
|
|
case SPI_RESPONSE_WRITE_ERR:
|
650 |
|
|
/* host shall then issue MMC_STOP_TRANSMISSION,
|
651 |
|
|
* and should MMC_SEND_STATUS to sort it out
|
652 |
|
|
*/
|
653 |
|
|
status = -EIO;
|
654 |
|
|
break;
|
655 |
|
|
default:
|
656 |
|
|
status = -EPROTO;
|
657 |
|
|
break;
|
658 |
|
|
}
|
659 |
|
|
if (status != 0) {
|
660 |
|
|
dev_dbg(&spi->dev, "write error %02x (%d)\n",
|
661 |
|
|
scratch->status[0], status);
|
662 |
|
|
return status;
|
663 |
|
|
}
|
664 |
|
|
|
665 |
|
|
t->tx_buf += t->len;
|
666 |
|
|
if (host->dma_dev)
|
667 |
|
|
t->tx_dma += t->len;
|
668 |
|
|
|
669 |
|
|
/* Return when not busy. If we didn't collect that status yet,
|
670 |
|
|
* we'll need some more I/O.
|
671 |
|
|
*/
|
672 |
|
|
for (i = 1; i < sizeof(scratch->status); i++) {
|
673 |
|
|
if (scratch->status[i] != 0)
|
674 |
|
|
return 0;
|
675 |
|
|
}
|
676 |
|
|
return mmc_spi_wait_unbusy(host, writeblock_timeout);
|
677 |
|
|
}
|
678 |
|
|
|
679 |
|
|
/*
|
680 |
|
|
* Read one block:
|
681 |
|
|
* - skip leading all-ones bytes ... either
|
682 |
|
|
* + N(AC) [1..f(clock,CSD)] usually, else
|
683 |
|
|
* + N(CX) [0..8] when reading CSD or CID
|
684 |
|
|
* - data block
|
685 |
|
|
* + token ... if error token, no data or crc
|
686 |
|
|
* + data bytes
|
687 |
|
|
* + crc16
|
688 |
|
|
*
|
689 |
|
|
* After single block reads, we're done; N(EC) [0+] all-ones bytes follow
|
690 |
|
|
* before dropping chipselect.
|
691 |
|
|
*
|
692 |
|
|
* For multiblock reads, caller either reads the next block or issues a
|
693 |
|
|
* STOP_TRANSMISSION command.
|
694 |
|
|
*/
|
695 |
|
|
static int
|
696 |
|
|
mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t)
|
697 |
|
|
{
|
698 |
|
|
struct spi_device *spi = host->spi;
|
699 |
|
|
int status;
|
700 |
|
|
struct scratch *scratch = host->data;
|
701 |
|
|
|
702 |
|
|
/* At least one SD card sends an all-zeroes byte when N(CX)
|
703 |
|
|
* applies, before the all-ones bytes ... just cope with that.
|
704 |
|
|
*/
|
705 |
|
|
status = mmc_spi_readbytes(host, 1);
|
706 |
|
|
if (status < 0)
|
707 |
|
|
return status;
|
708 |
|
|
status = scratch->status[0];
|
709 |
|
|
if (status == 0xff || status == 0)
|
710 |
|
|
status = mmc_spi_readtoken(host);
|
711 |
|
|
|
712 |
|
|
if (status == SPI_TOKEN_SINGLE) {
|
713 |
|
|
if (host->dma_dev) {
|
714 |
|
|
dma_sync_single_for_device(host->dma_dev,
|
715 |
|
|
host->data_dma, sizeof(*scratch),
|
716 |
|
|
DMA_BIDIRECTIONAL);
|
717 |
|
|
dma_sync_single_for_device(host->dma_dev,
|
718 |
|
|
t->rx_dma, t->len,
|
719 |
|
|
DMA_FROM_DEVICE);
|
720 |
|
|
}
|
721 |
|
|
|
722 |
|
|
status = spi_sync(spi, &host->m);
|
723 |
|
|
|
724 |
|
|
if (host->dma_dev) {
|
725 |
|
|
dma_sync_single_for_cpu(host->dma_dev,
|
726 |
|
|
host->data_dma, sizeof(*scratch),
|
727 |
|
|
DMA_BIDIRECTIONAL);
|
728 |
|
|
dma_sync_single_for_cpu(host->dma_dev,
|
729 |
|
|
t->rx_dma, t->len,
|
730 |
|
|
DMA_FROM_DEVICE);
|
731 |
|
|
}
|
732 |
|
|
|
733 |
|
|
} else {
|
734 |
|
|
dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
|
735 |
|
|
|
736 |
|
|
/* we've read extra garbage, timed out, etc */
|
737 |
|
|
if (status < 0)
|
738 |
|
|
return status;
|
739 |
|
|
|
740 |
|
|
/* low four bits are an R2 subset, fifth seems to be
|
741 |
|
|
* vendor specific ... map them all to generic error..
|
742 |
|
|
*/
|
743 |
|
|
return -EIO;
|
744 |
|
|
}
|
745 |
|
|
|
746 |
|
|
if (host->mmc->use_spi_crc) {
|
747 |
|
|
u16 crc = crc_itu_t(0, t->rx_buf, t->len);
|
748 |
|
|
|
749 |
|
|
be16_to_cpus(&scratch->crc_val);
|
750 |
|
|
if (scratch->crc_val != crc) {
|
751 |
|
|
dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, "
|
752 |
|
|
"computed=0x%04x len=%d\n",
|
753 |
|
|
scratch->crc_val, crc, t->len);
|
754 |
|
|
return -EILSEQ;
|
755 |
|
|
}
|
756 |
|
|
}
|
757 |
|
|
|
758 |
|
|
t->rx_buf += t->len;
|
759 |
|
|
if (host->dma_dev)
|
760 |
|
|
t->rx_dma += t->len;
|
761 |
|
|
|
762 |
|
|
return 0;
|
763 |
|
|
}
|
764 |
|
|
|
765 |
|
|
/*
|
766 |
|
|
* An MMC/SD data stage includes one or more blocks, optional CRCs,
|
767 |
|
|
* and inline handshaking. That handhaking makes it unlike most
|
768 |
|
|
* other SPI protocol stacks.
|
769 |
|
|
*/
|
770 |
|
|
static void
|
771 |
|
|
mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
|
772 |
|
|
struct mmc_data *data, u32 blk_size)
|
773 |
|
|
{
|
774 |
|
|
struct spi_device *spi = host->spi;
|
775 |
|
|
struct device *dma_dev = host->dma_dev;
|
776 |
|
|
struct spi_transfer *t;
|
777 |
|
|
enum dma_data_direction direction;
|
778 |
|
|
struct scatterlist *sg;
|
779 |
|
|
unsigned n_sg;
|
780 |
|
|
int multiple = (data->blocks > 1);
|
781 |
|
|
|
782 |
|
|
if (data->flags & MMC_DATA_READ)
|
783 |
|
|
direction = DMA_FROM_DEVICE;
|
784 |
|
|
else
|
785 |
|
|
direction = DMA_TO_DEVICE;
|
786 |
|
|
mmc_spi_setup_data_message(host, multiple, direction);
|
787 |
|
|
t = &host->t;
|
788 |
|
|
|
789 |
|
|
/* Handle scatterlist segments one at a time, with synch for
|
790 |
|
|
* each 512-byte block
|
791 |
|
|
*/
|
792 |
|
|
for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) {
|
793 |
|
|
int status = 0;
|
794 |
|
|
dma_addr_t dma_addr = 0;
|
795 |
|
|
void *kmap_addr;
|
796 |
|
|
unsigned length = sg->length;
|
797 |
|
|
enum dma_data_direction dir = direction;
|
798 |
|
|
|
799 |
|
|
/* set up dma mapping for controller drivers that might
|
800 |
|
|
* use DMA ... though they may fall back to PIO
|
801 |
|
|
*/
|
802 |
|
|
if (dma_dev) {
|
803 |
|
|
/* never invalidate whole *shared* pages ... */
|
804 |
|
|
if ((sg->offset != 0 || length != PAGE_SIZE)
|
805 |
|
|
&& dir == DMA_FROM_DEVICE)
|
806 |
|
|
dir = DMA_BIDIRECTIONAL;
|
807 |
|
|
|
808 |
|
|
dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
|
809 |
|
|
PAGE_SIZE, dir);
|
810 |
|
|
if (direction == DMA_TO_DEVICE)
|
811 |
|
|
t->tx_dma = dma_addr + sg->offset;
|
812 |
|
|
else
|
813 |
|
|
t->rx_dma = dma_addr + sg->offset;
|
814 |
|
|
}
|
815 |
|
|
|
816 |
|
|
/* allow pio too; we don't allow highmem */
|
817 |
|
|
kmap_addr = kmap(sg_page(sg));
|
818 |
|
|
if (direction == DMA_TO_DEVICE)
|
819 |
|
|
t->tx_buf = kmap_addr + sg->offset;
|
820 |
|
|
else
|
821 |
|
|
t->rx_buf = kmap_addr + sg->offset;
|
822 |
|
|
|
823 |
|
|
/* transfer each block, and update request status */
|
824 |
|
|
while (length) {
|
825 |
|
|
t->len = min(length, blk_size);
|
826 |
|
|
|
827 |
|
|
dev_dbg(&host->spi->dev,
|
828 |
|
|
" mmc_spi: %s block, %d bytes\n",
|
829 |
|
|
(direction == DMA_TO_DEVICE)
|
830 |
|
|
? "write"
|
831 |
|
|
: "read",
|
832 |
|
|
t->len);
|
833 |
|
|
|
834 |
|
|
if (direction == DMA_TO_DEVICE)
|
835 |
|
|
status = mmc_spi_writeblock(host, t);
|
836 |
|
|
else
|
837 |
|
|
status = mmc_spi_readblock(host, t);
|
838 |
|
|
if (status < 0)
|
839 |
|
|
break;
|
840 |
|
|
|
841 |
|
|
data->bytes_xfered += t->len;
|
842 |
|
|
length -= t->len;
|
843 |
|
|
|
844 |
|
|
if (!multiple)
|
845 |
|
|
break;
|
846 |
|
|
}
|
847 |
|
|
|
848 |
|
|
/* discard mappings */
|
849 |
|
|
if (direction == DMA_FROM_DEVICE)
|
850 |
|
|
flush_kernel_dcache_page(sg_page(sg));
|
851 |
|
|
kunmap(sg_page(sg));
|
852 |
|
|
if (dma_dev)
|
853 |
|
|
dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
|
854 |
|
|
|
855 |
|
|
if (status < 0) {
|
856 |
|
|
data->error = status;
|
857 |
|
|
dev_dbg(&spi->dev, "%s status %d\n",
|
858 |
|
|
(direction == DMA_TO_DEVICE)
|
859 |
|
|
? "write" : "read",
|
860 |
|
|
status);
|
861 |
|
|
break;
|
862 |
|
|
}
|
863 |
|
|
}
|
864 |
|
|
|
865 |
|
|
/* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
|
866 |
|
|
* can be issued before multiblock writes. Unlike its more widely
|
867 |
|
|
* documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
|
868 |
|
|
* that can affect the STOP_TRAN logic. Complete (and current)
|
869 |
|
|
* MMC specs should sort that out before Linux starts using CMD23.
|
870 |
|
|
*/
|
871 |
|
|
if (direction == DMA_TO_DEVICE && multiple) {
|
872 |
|
|
struct scratch *scratch = host->data;
|
873 |
|
|
int tmp;
|
874 |
|
|
const unsigned statlen = sizeof(scratch->status);
|
875 |
|
|
|
876 |
|
|
dev_dbg(&spi->dev, " mmc_spi: STOP_TRAN\n");
|
877 |
|
|
|
878 |
|
|
/* Tweak the per-block message we set up earlier by morphing
|
879 |
|
|
* it to hold single buffer with the token followed by some
|
880 |
|
|
* all-ones bytes ... skip N(BR) (0..1), scan the rest for
|
881 |
|
|
* "not busy any longer" status, and leave chip selected.
|
882 |
|
|
*/
|
883 |
|
|
INIT_LIST_HEAD(&host->m.transfers);
|
884 |
|
|
list_add(&host->early_status.transfer_list,
|
885 |
|
|
&host->m.transfers);
|
886 |
|
|
|
887 |
|
|
memset(scratch->status, 0xff, statlen);
|
888 |
|
|
scratch->status[0] = SPI_TOKEN_STOP_TRAN;
|
889 |
|
|
|
890 |
|
|
host->early_status.tx_buf = host->early_status.rx_buf;
|
891 |
|
|
host->early_status.tx_dma = host->early_status.rx_dma;
|
892 |
|
|
host->early_status.len = statlen;
|
893 |
|
|
|
894 |
|
|
if (host->dma_dev)
|
895 |
|
|
dma_sync_single_for_device(host->dma_dev,
|
896 |
|
|
host->data_dma, sizeof(*scratch),
|
897 |
|
|
DMA_BIDIRECTIONAL);
|
898 |
|
|
|
899 |
|
|
tmp = spi_sync(spi, &host->m);
|
900 |
|
|
|
901 |
|
|
if (host->dma_dev)
|
902 |
|
|
dma_sync_single_for_cpu(host->dma_dev,
|
903 |
|
|
host->data_dma, sizeof(*scratch),
|
904 |
|
|
DMA_BIDIRECTIONAL);
|
905 |
|
|
|
906 |
|
|
if (tmp < 0) {
|
907 |
|
|
if (!data->error)
|
908 |
|
|
data->error = tmp;
|
909 |
|
|
return;
|
910 |
|
|
}
|
911 |
|
|
|
912 |
|
|
/* Ideally we collected "not busy" status with one I/O,
|
913 |
|
|
* avoiding wasteful byte-at-a-time scanning... but more
|
914 |
|
|
* I/O is often needed.
|
915 |
|
|
*/
|
916 |
|
|
for (tmp = 2; tmp < statlen; tmp++) {
|
917 |
|
|
if (scratch->status[tmp] != 0)
|
918 |
|
|
return;
|
919 |
|
|
}
|
920 |
|
|
tmp = mmc_spi_wait_unbusy(host, writeblock_timeout);
|
921 |
|
|
if (tmp < 0 && !data->error)
|
922 |
|
|
data->error = tmp;
|
923 |
|
|
}
|
924 |
|
|
}
|
925 |
|
|
|
926 |
|
|
/****************************************************************************/
|
927 |
|
|
|
928 |
|
|
/*
|
929 |
|
|
* MMC driver implementation -- the interface to the MMC stack
|
930 |
|
|
*/
|
931 |
|
|
|
932 |
|
|
static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
|
933 |
|
|
{
|
934 |
|
|
struct mmc_spi_host *host = mmc_priv(mmc);
|
935 |
|
|
int status = -EINVAL;
|
936 |
|
|
|
937 |
|
|
#ifdef DEBUG
|
938 |
|
|
/* MMC core and layered drivers *MUST* issue SPI-aware commands */
|
939 |
|
|
{
|
940 |
|
|
struct mmc_command *cmd;
|
941 |
|
|
int invalid = 0;
|
942 |
|
|
|
943 |
|
|
cmd = mrq->cmd;
|
944 |
|
|
if (!mmc_spi_resp_type(cmd)) {
|
945 |
|
|
dev_dbg(&host->spi->dev, "bogus command\n");
|
946 |
|
|
cmd->error = -EINVAL;
|
947 |
|
|
invalid = 1;
|
948 |
|
|
}
|
949 |
|
|
|
950 |
|
|
cmd = mrq->stop;
|
951 |
|
|
if (cmd && !mmc_spi_resp_type(cmd)) {
|
952 |
|
|
dev_dbg(&host->spi->dev, "bogus STOP command\n");
|
953 |
|
|
cmd->error = -EINVAL;
|
954 |
|
|
invalid = 1;
|
955 |
|
|
}
|
956 |
|
|
|
957 |
|
|
if (invalid) {
|
958 |
|
|
dump_stack();
|
959 |
|
|
mmc_request_done(host->mmc, mrq);
|
960 |
|
|
return;
|
961 |
|
|
}
|
962 |
|
|
}
|
963 |
|
|
#endif
|
964 |
|
|
|
965 |
|
|
/* issue command; then optionally data and stop */
|
966 |
|
|
status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
|
967 |
|
|
if (status == 0 && mrq->data) {
|
968 |
|
|
mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
|
969 |
|
|
if (mrq->stop)
|
970 |
|
|
status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
|
971 |
|
|
else
|
972 |
|
|
mmc_cs_off(host);
|
973 |
|
|
}
|
974 |
|
|
|
975 |
|
|
mmc_request_done(host->mmc, mrq);
|
976 |
|
|
}
|
977 |
|
|
|
978 |
|
|
/* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
|
979 |
|
|
*
|
980 |
|
|
* NOTE that here we can't know that the card has just been powered up;
|
981 |
|
|
* not all MMC/SD sockets support power switching.
|
982 |
|
|
*
|
983 |
|
|
* FIXME when the card is still in SPI mode, e.g. from a previous kernel,
|
984 |
|
|
* this doesn't seem to do the right thing at all...
|
985 |
|
|
*/
|
986 |
|
|
static void mmc_spi_initsequence(struct mmc_spi_host *host)
|
987 |
|
|
{
|
988 |
|
|
/* Try to be very sure any previous command has completed;
|
989 |
|
|
* wait till not-busy, skip debris from any old commands.
|
990 |
|
|
*/
|
991 |
|
|
mmc_spi_wait_unbusy(host, r1b_timeout);
|
992 |
|
|
mmc_spi_readbytes(host, 10);
|
993 |
|
|
|
994 |
|
|
/*
|
995 |
|
|
* Do a burst with chipselect active-high. We need to do this to
|
996 |
|
|
* meet the requirement of 74 clock cycles with both chipselect
|
997 |
|
|
* and CMD (MOSI) high before CMD0 ... after the card has been
|
998 |
|
|
* powered up to Vdd(min), and so is ready to take commands.
|
999 |
|
|
*
|
1000 |
|
|
* Some cards are particularly needy of this (e.g. Viking "SD256")
|
1001 |
|
|
* while most others don't seem to care.
|
1002 |
|
|
*
|
1003 |
|
|
* Note that this is one of the places MMC/SD plays games with the
|
1004 |
|
|
* SPI protocol. Another is that when chipselect is released while
|
1005 |
|
|
* the card returns BUSY status, the clock must issue several cycles
|
1006 |
|
|
* with chipselect high before the card will stop driving its output.
|
1007 |
|
|
*/
|
1008 |
|
|
host->spi->mode |= SPI_CS_HIGH;
|
1009 |
|
|
if (spi_setup(host->spi) != 0) {
|
1010 |
|
|
/* Just warn; most cards work without it. */
|
1011 |
|
|
dev_warn(&host->spi->dev,
|
1012 |
|
|
"can't change chip-select polarity\n");
|
1013 |
|
|
host->spi->mode &= ~SPI_CS_HIGH;
|
1014 |
|
|
} else {
|
1015 |
|
|
mmc_spi_readbytes(host, 18);
|
1016 |
|
|
|
1017 |
|
|
host->spi->mode &= ~SPI_CS_HIGH;
|
1018 |
|
|
if (spi_setup(host->spi) != 0) {
|
1019 |
|
|
/* Wot, we can't get the same setup we had before? */
|
1020 |
|
|
dev_err(&host->spi->dev,
|
1021 |
|
|
"can't restore chip-select polarity\n");
|
1022 |
|
|
}
|
1023 |
|
|
}
|
1024 |
|
|
}
|
1025 |
|
|
|
1026 |
|
|
static char *mmc_powerstring(u8 power_mode)
|
1027 |
|
|
{
|
1028 |
|
|
switch (power_mode) {
|
1029 |
|
|
case MMC_POWER_OFF: return "off";
|
1030 |
|
|
case MMC_POWER_UP: return "up";
|
1031 |
|
|
case MMC_POWER_ON: return "on";
|
1032 |
|
|
}
|
1033 |
|
|
return "?";
|
1034 |
|
|
}
|
1035 |
|
|
|
1036 |
|
|
static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
|
1037 |
|
|
{
|
1038 |
|
|
struct mmc_spi_host *host = mmc_priv(mmc);
|
1039 |
|
|
|
1040 |
|
|
if (host->power_mode != ios->power_mode) {
|
1041 |
|
|
int canpower;
|
1042 |
|
|
|
1043 |
|
|
canpower = host->pdata && host->pdata->setpower;
|
1044 |
|
|
|
1045 |
|
|
dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
|
1046 |
|
|
mmc_powerstring(ios->power_mode),
|
1047 |
|
|
ios->vdd,
|
1048 |
|
|
canpower ? ", can switch" : "");
|
1049 |
|
|
|
1050 |
|
|
/* switch power on/off if possible, accounting for
|
1051 |
|
|
* max 250msec powerup time if needed.
|
1052 |
|
|
*/
|
1053 |
|
|
if (canpower) {
|
1054 |
|
|
switch (ios->power_mode) {
|
1055 |
|
|
case MMC_POWER_OFF:
|
1056 |
|
|
case MMC_POWER_UP:
|
1057 |
|
|
host->pdata->setpower(&host->spi->dev,
|
1058 |
|
|
ios->vdd);
|
1059 |
|
|
if (ios->power_mode == MMC_POWER_UP)
|
1060 |
|
|
msleep(host->powerup_msecs);
|
1061 |
|
|
}
|
1062 |
|
|
}
|
1063 |
|
|
|
1064 |
|
|
/* See 6.4.1 in the simplified SD card physical spec 2.0 */
|
1065 |
|
|
if (ios->power_mode == MMC_POWER_ON)
|
1066 |
|
|
mmc_spi_initsequence(host);
|
1067 |
|
|
|
1068 |
|
|
/* If powering down, ground all card inputs to avoid power
|
1069 |
|
|
* delivery from data lines! On a shared SPI bus, this
|
1070 |
|
|
* will probably be temporary; 6.4.2 of the simplified SD
|
1071 |
|
|
* spec says this must last at least 1msec.
|
1072 |
|
|
*
|
1073 |
|
|
* - Clock low means CPOL 0, e.g. mode 0
|
1074 |
|
|
* - MOSI low comes from writing zero
|
1075 |
|
|
* - Chipselect is usually active low...
|
1076 |
|
|
*/
|
1077 |
|
|
if (canpower && ios->power_mode == MMC_POWER_OFF) {
|
1078 |
|
|
int mres;
|
1079 |
|
|
|
1080 |
|
|
host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
|
1081 |
|
|
mres = spi_setup(host->spi);
|
1082 |
|
|
if (mres < 0)
|
1083 |
|
|
dev_dbg(&host->spi->dev,
|
1084 |
|
|
"switch to SPI mode 0 failed\n");
|
1085 |
|
|
|
1086 |
|
|
if (spi_w8r8(host->spi, 0x00) < 0)
|
1087 |
|
|
dev_dbg(&host->spi->dev,
|
1088 |
|
|
"put spi signals to low failed\n");
|
1089 |
|
|
|
1090 |
|
|
/*
|
1091 |
|
|
* Now clock should be low due to spi mode 0;
|
1092 |
|
|
* MOSI should be low because of written 0x00;
|
1093 |
|
|
* chipselect should be low (it is active low)
|
1094 |
|
|
* power supply is off, so now MMC is off too!
|
1095 |
|
|
*
|
1096 |
|
|
* FIXME no, chipselect can be high since the
|
1097 |
|
|
* device is inactive and SPI_CS_HIGH is clear...
|
1098 |
|
|
*/
|
1099 |
|
|
msleep(10);
|
1100 |
|
|
if (mres == 0) {
|
1101 |
|
|
host->spi->mode |= (SPI_CPOL|SPI_CPHA);
|
1102 |
|
|
mres = spi_setup(host->spi);
|
1103 |
|
|
if (mres < 0)
|
1104 |
|
|
dev_dbg(&host->spi->dev,
|
1105 |
|
|
"switch back to SPI mode 3"
|
1106 |
|
|
" failed\n");
|
1107 |
|
|
}
|
1108 |
|
|
}
|
1109 |
|
|
|
1110 |
|
|
host->power_mode = ios->power_mode;
|
1111 |
|
|
}
|
1112 |
|
|
|
1113 |
|
|
if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
|
1114 |
|
|
int status;
|
1115 |
|
|
|
1116 |
|
|
host->spi->max_speed_hz = ios->clock;
|
1117 |
|
|
status = spi_setup(host->spi);
|
1118 |
|
|
dev_dbg(&host->spi->dev,
|
1119 |
|
|
"mmc_spi: clock to %d Hz, %d\n",
|
1120 |
|
|
host->spi->max_speed_hz, status);
|
1121 |
|
|
}
|
1122 |
|
|
}
|
1123 |
|
|
|
1124 |
|
|
static int mmc_spi_get_ro(struct mmc_host *mmc)
|
1125 |
|
|
{
|
1126 |
|
|
struct mmc_spi_host *host = mmc_priv(mmc);
|
1127 |
|
|
|
1128 |
|
|
if (host->pdata && host->pdata->get_ro)
|
1129 |
|
|
return host->pdata->get_ro(mmc->parent);
|
1130 |
|
|
/* board doesn't support read only detection; assume writeable */
|
1131 |
|
|
return 0;
|
1132 |
|
|
}
|
1133 |
|
|
|
1134 |
|
|
|
1135 |
|
|
static const struct mmc_host_ops mmc_spi_ops = {
|
1136 |
|
|
.request = mmc_spi_request,
|
1137 |
|
|
.set_ios = mmc_spi_set_ios,
|
1138 |
|
|
.get_ro = mmc_spi_get_ro,
|
1139 |
|
|
};
|
1140 |
|
|
|
1141 |
|
|
|
1142 |
|
|
/****************************************************************************/
|
1143 |
|
|
|
1144 |
|
|
/*
|
1145 |
|
|
* SPI driver implementation
|
1146 |
|
|
*/
|
1147 |
|
|
|
1148 |
|
|
static irqreturn_t
|
1149 |
|
|
mmc_spi_detect_irq(int irq, void *mmc)
|
1150 |
|
|
{
|
1151 |
|
|
struct mmc_spi_host *host = mmc_priv(mmc);
|
1152 |
|
|
u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
|
1153 |
|
|
|
1154 |
|
|
mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
|
1155 |
|
|
return IRQ_HANDLED;
|
1156 |
|
|
}
|
1157 |
|
|
|
1158 |
|
|
struct count_children {
|
1159 |
|
|
unsigned n;
|
1160 |
|
|
struct bus_type *bus;
|
1161 |
|
|
};
|
1162 |
|
|
|
1163 |
|
|
static int maybe_count_child(struct device *dev, void *c)
|
1164 |
|
|
{
|
1165 |
|
|
struct count_children *ccp = c;
|
1166 |
|
|
|
1167 |
|
|
if (dev->bus == ccp->bus) {
|
1168 |
|
|
if (ccp->n)
|
1169 |
|
|
return -EBUSY;
|
1170 |
|
|
ccp->n++;
|
1171 |
|
|
}
|
1172 |
|
|
return 0;
|
1173 |
|
|
}
|
1174 |
|
|
|
1175 |
|
|
static int mmc_spi_probe(struct spi_device *spi)
|
1176 |
|
|
{
|
1177 |
|
|
void *ones;
|
1178 |
|
|
struct mmc_host *mmc;
|
1179 |
|
|
struct mmc_spi_host *host;
|
1180 |
|
|
int status;
|
1181 |
|
|
|
1182 |
|
|
/* MMC and SD specs only seem to care that sampling is on the
|
1183 |
|
|
* rising edge ... meaning SPI modes 0 or 3. So either SPI mode
|
1184 |
|
|
* should be legit. We'll use mode 0 since it seems to be a
|
1185 |
|
|
* bit less troublesome on some hardware ... unclear why.
|
1186 |
|
|
*/
|
1187 |
|
|
spi->mode = SPI_MODE_0;
|
1188 |
|
|
spi->bits_per_word = 8;
|
1189 |
|
|
|
1190 |
|
|
status = spi_setup(spi);
|
1191 |
|
|
if (status < 0) {
|
1192 |
|
|
dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
|
1193 |
|
|
spi->mode, spi->max_speed_hz / 1000,
|
1194 |
|
|
status);
|
1195 |
|
|
return status;
|
1196 |
|
|
}
|
1197 |
|
|
|
1198 |
|
|
/* We can use the bus safely iff nobody else will interfere with us.
|
1199 |
|
|
* Most commands consist of one SPI message to issue a command, then
|
1200 |
|
|
* several more to collect its response, then possibly more for data
|
1201 |
|
|
* transfer. Clocking access to other devices during that period will
|
1202 |
|
|
* corrupt the command execution.
|
1203 |
|
|
*
|
1204 |
|
|
* Until we have software primitives which guarantee non-interference,
|
1205 |
|
|
* we'll aim for a hardware-level guarantee.
|
1206 |
|
|
*
|
1207 |
|
|
* REVISIT we can't guarantee another device won't be added later...
|
1208 |
|
|
*/
|
1209 |
|
|
if (spi->master->num_chipselect > 1) {
|
1210 |
|
|
struct count_children cc;
|
1211 |
|
|
|
1212 |
|
|
cc.n = 0;
|
1213 |
|
|
cc.bus = spi->dev.bus;
|
1214 |
|
|
status = device_for_each_child(spi->dev.parent, &cc,
|
1215 |
|
|
maybe_count_child);
|
1216 |
|
|
if (status < 0) {
|
1217 |
|
|
dev_err(&spi->dev, "can't share SPI bus\n");
|
1218 |
|
|
return status;
|
1219 |
|
|
}
|
1220 |
|
|
|
1221 |
|
|
dev_warn(&spi->dev, "ASSUMING SPI bus stays unshared!\n");
|
1222 |
|
|
}
|
1223 |
|
|
|
1224 |
|
|
/* We need a supply of ones to transmit. This is the only time
|
1225 |
|
|
* the CPU touches these, so cache coherency isn't a concern.
|
1226 |
|
|
*
|
1227 |
|
|
* NOTE if many systems use more than one MMC-over-SPI connector
|
1228 |
|
|
* it'd save some memory to share this. That's evidently rare.
|
1229 |
|
|
*/
|
1230 |
|
|
status = -ENOMEM;
|
1231 |
|
|
ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
|
1232 |
|
|
if (!ones)
|
1233 |
|
|
goto nomem;
|
1234 |
|
|
memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
|
1235 |
|
|
|
1236 |
|
|
mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
|
1237 |
|
|
if (!mmc)
|
1238 |
|
|
goto nomem;
|
1239 |
|
|
|
1240 |
|
|
mmc->ops = &mmc_spi_ops;
|
1241 |
|
|
mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
|
1242 |
|
|
|
1243 |
|
|
/* As long as we keep track of the number of successfully
|
1244 |
|
|
* transmitted blocks, we're good for multiwrite.
|
1245 |
|
|
*/
|
1246 |
|
|
mmc->caps = MMC_CAP_SPI | MMC_CAP_MULTIWRITE;
|
1247 |
|
|
|
1248 |
|
|
/* SPI doesn't need the lowspeed device identification thing for
|
1249 |
|
|
* MMC or SD cards, since it never comes up in open drain mode.
|
1250 |
|
|
* That's good; some SPI masters can't handle very low speeds!
|
1251 |
|
|
*
|
1252 |
|
|
* However, low speed SDIO cards need not handle over 400 KHz;
|
1253 |
|
|
* that's the only reason not to use a few MHz for f_min (until
|
1254 |
|
|
* the upper layer reads the target frequency from the CSD).
|
1255 |
|
|
*/
|
1256 |
|
|
mmc->f_min = 400000;
|
1257 |
|
|
mmc->f_max = spi->max_speed_hz;
|
1258 |
|
|
|
1259 |
|
|
host = mmc_priv(mmc);
|
1260 |
|
|
host->mmc = mmc;
|
1261 |
|
|
host->spi = spi;
|
1262 |
|
|
|
1263 |
|
|
host->ones = ones;
|
1264 |
|
|
|
1265 |
|
|
/* Platform data is used to hook up things like card sensing
|
1266 |
|
|
* and power switching gpios.
|
1267 |
|
|
*/
|
1268 |
|
|
host->pdata = spi->dev.platform_data;
|
1269 |
|
|
if (host->pdata)
|
1270 |
|
|
mmc->ocr_avail = host->pdata->ocr_mask;
|
1271 |
|
|
if (!mmc->ocr_avail) {
|
1272 |
|
|
dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
|
1273 |
|
|
mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
|
1274 |
|
|
}
|
1275 |
|
|
if (host->pdata && host->pdata->setpower) {
|
1276 |
|
|
host->powerup_msecs = host->pdata->powerup_msecs;
|
1277 |
|
|
if (!host->powerup_msecs || host->powerup_msecs > 250)
|
1278 |
|
|
host->powerup_msecs = 250;
|
1279 |
|
|
}
|
1280 |
|
|
|
1281 |
|
|
dev_set_drvdata(&spi->dev, mmc);
|
1282 |
|
|
|
1283 |
|
|
/* preallocate dma buffers */
|
1284 |
|
|
host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
|
1285 |
|
|
if (!host->data)
|
1286 |
|
|
goto fail_nobuf1;
|
1287 |
|
|
|
1288 |
|
|
if (spi->master->dev.parent->dma_mask) {
|
1289 |
|
|
struct device *dev = spi->master->dev.parent;
|
1290 |
|
|
|
1291 |
|
|
host->dma_dev = dev;
|
1292 |
|
|
host->ones_dma = dma_map_single(dev, ones,
|
1293 |
|
|
MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
|
1294 |
|
|
host->data_dma = dma_map_single(dev, host->data,
|
1295 |
|
|
sizeof(*host->data), DMA_BIDIRECTIONAL);
|
1296 |
|
|
|
1297 |
|
|
/* REVISIT in theory those map operations can fail... */
|
1298 |
|
|
|
1299 |
|
|
dma_sync_single_for_cpu(host->dma_dev,
|
1300 |
|
|
host->data_dma, sizeof(*host->data),
|
1301 |
|
|
DMA_BIDIRECTIONAL);
|
1302 |
|
|
}
|
1303 |
|
|
|
1304 |
|
|
/* setup message for status/busy readback */
|
1305 |
|
|
spi_message_init(&host->readback);
|
1306 |
|
|
host->readback.is_dma_mapped = (host->dma_dev != NULL);
|
1307 |
|
|
|
1308 |
|
|
spi_message_add_tail(&host->status, &host->readback);
|
1309 |
|
|
host->status.tx_buf = host->ones;
|
1310 |
|
|
host->status.tx_dma = host->ones_dma;
|
1311 |
|
|
host->status.rx_buf = &host->data->status;
|
1312 |
|
|
host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
|
1313 |
|
|
host->status.cs_change = 1;
|
1314 |
|
|
|
1315 |
|
|
/* register card detect irq */
|
1316 |
|
|
if (host->pdata && host->pdata->init) {
|
1317 |
|
|
status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
|
1318 |
|
|
if (status != 0)
|
1319 |
|
|
goto fail_glue_init;
|
1320 |
|
|
}
|
1321 |
|
|
|
1322 |
|
|
status = mmc_add_host(mmc);
|
1323 |
|
|
if (status != 0)
|
1324 |
|
|
goto fail_add_host;
|
1325 |
|
|
|
1326 |
|
|
dev_info(&spi->dev, "SD/MMC host %s%s%s%s\n",
|
1327 |
|
|
mmc->class_dev.bus_id,
|
1328 |
|
|
host->dma_dev ? "" : ", no DMA",
|
1329 |
|
|
(host->pdata && host->pdata->get_ro)
|
1330 |
|
|
? "" : ", no WP",
|
1331 |
|
|
(host->pdata && host->pdata->setpower)
|
1332 |
|
|
? "" : ", no poweroff");
|
1333 |
|
|
return 0;
|
1334 |
|
|
|
1335 |
|
|
fail_add_host:
|
1336 |
|
|
mmc_remove_host (mmc);
|
1337 |
|
|
fail_glue_init:
|
1338 |
|
|
if (host->dma_dev)
|
1339 |
|
|
dma_unmap_single(host->dma_dev, host->data_dma,
|
1340 |
|
|
sizeof(*host->data), DMA_BIDIRECTIONAL);
|
1341 |
|
|
kfree(host->data);
|
1342 |
|
|
|
1343 |
|
|
fail_nobuf1:
|
1344 |
|
|
mmc_free_host(mmc);
|
1345 |
|
|
dev_set_drvdata(&spi->dev, NULL);
|
1346 |
|
|
|
1347 |
|
|
nomem:
|
1348 |
|
|
kfree(ones);
|
1349 |
|
|
return status;
|
1350 |
|
|
}
|
1351 |
|
|
|
1352 |
|
|
|
1353 |
|
|
static int __devexit mmc_spi_remove(struct spi_device *spi)
|
1354 |
|
|
{
|
1355 |
|
|
struct mmc_host *mmc = dev_get_drvdata(&spi->dev);
|
1356 |
|
|
struct mmc_spi_host *host;
|
1357 |
|
|
|
1358 |
|
|
if (mmc) {
|
1359 |
|
|
host = mmc_priv(mmc);
|
1360 |
|
|
|
1361 |
|
|
/* prevent new mmc_detect_change() calls */
|
1362 |
|
|
if (host->pdata && host->pdata->exit)
|
1363 |
|
|
host->pdata->exit(&spi->dev, mmc);
|
1364 |
|
|
|
1365 |
|
|
mmc_remove_host(mmc);
|
1366 |
|
|
|
1367 |
|
|
if (host->dma_dev) {
|
1368 |
|
|
dma_unmap_single(host->dma_dev, host->ones_dma,
|
1369 |
|
|
MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
|
1370 |
|
|
dma_unmap_single(host->dma_dev, host->data_dma,
|
1371 |
|
|
sizeof(*host->data), DMA_BIDIRECTIONAL);
|
1372 |
|
|
}
|
1373 |
|
|
|
1374 |
|
|
kfree(host->data);
|
1375 |
|
|
kfree(host->ones);
|
1376 |
|
|
|
1377 |
|
|
spi->max_speed_hz = mmc->f_max;
|
1378 |
|
|
mmc_free_host(mmc);
|
1379 |
|
|
dev_set_drvdata(&spi->dev, NULL);
|
1380 |
|
|
}
|
1381 |
|
|
return 0;
|
1382 |
|
|
}
|
1383 |
|
|
|
1384 |
|
|
|
1385 |
|
|
static struct spi_driver mmc_spi_driver = {
|
1386 |
|
|
.driver = {
|
1387 |
|
|
.name = "mmc_spi",
|
1388 |
|
|
.bus = &spi_bus_type,
|
1389 |
|
|
.owner = THIS_MODULE,
|
1390 |
|
|
},
|
1391 |
|
|
.probe = mmc_spi_probe,
|
1392 |
|
|
.remove = __devexit_p(mmc_spi_remove),
|
1393 |
|
|
};
|
1394 |
|
|
|
1395 |
|
|
|
1396 |
|
|
static int __init mmc_spi_init(void)
|
1397 |
|
|
{
|
1398 |
|
|
return spi_register_driver(&mmc_spi_driver);
|
1399 |
|
|
}
|
1400 |
|
|
module_init(mmc_spi_init);
|
1401 |
|
|
|
1402 |
|
|
|
1403 |
|
|
static void __exit mmc_spi_exit(void)
|
1404 |
|
|
{
|
1405 |
|
|
spi_unregister_driver(&mmc_spi_driver);
|
1406 |
|
|
}
|
1407 |
|
|
module_exit(mmc_spi_exit);
|
1408 |
|
|
|
1409 |
|
|
|
1410 |
|
|
MODULE_AUTHOR("Mike Lavender, David Brownell, "
|
1411 |
|
|
"Hans-Peter Nilsson, Jan Nikitenko");
|
1412 |
|
|
MODULE_DESCRIPTION("SPI SD/MMC host driver");
|
1413 |
|
|
MODULE_LICENSE("GPL");
|