OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [drivers/] [mtd/] [nand/] [au1550nd.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 *  drivers/mtd/nand/au1550nd.c
3
 *
4
 *  Copyright (C) 2004 Embedded Edge, LLC
5
 *
6
 * $Id: au1550nd.c,v 1.13 2005/11/07 11:14:30 gleixner Exp $
7
 *
8
 * This program is free software; you can redistribute it and/or modify
9
 * it under the terms of the GNU General Public License version 2 as
10
 * published by the Free Software Foundation.
11
 *
12
 */
13
 
14
#include <linux/slab.h>
15
#include <linux/init.h>
16
#include <linux/module.h>
17
#include <linux/interrupt.h>
18
#include <linux/mtd/mtd.h>
19
#include <linux/mtd/nand.h>
20
#include <linux/mtd/partitions.h>
21
#include <linux/version.h>
22
#include <asm/io.h>
23
 
24
#include <asm/mach-au1x00/au1xxx.h>
25
 
26
/*
27
 * MTD structure for NAND controller
28
 */
29
static struct mtd_info *au1550_mtd = NULL;
30
static void __iomem *p_nand;
31
static int nand_width = 1;      /* default x8 */
32
static void (*au1550_write_byte)(struct mtd_info *, u_char);
33
 
34
/*
35
 * Define partitions for flash device
36
 */
37
static const struct mtd_partition partition_info[] = {
38
        {
39
         .name = "NAND FS 0",
40
         .offset = 0,
41
         .size = 8 * 1024 * 1024},
42
        {
43
         .name = "NAND FS 1",
44
         .offset = MTDPART_OFS_APPEND,
45
         .size = MTDPART_SIZ_FULL}
46
};
47
 
48
/**
49
 * au_read_byte -  read one byte from the chip
50
 * @mtd:        MTD device structure
51
 *
52
 *  read function for 8bit buswith
53
 */
54
static u_char au_read_byte(struct mtd_info *mtd)
55
{
56
        struct nand_chip *this = mtd->priv;
57
        u_char ret = readb(this->IO_ADDR_R);
58
        au_sync();
59
        return ret;
60
}
61
 
62
/**
63
 * au_write_byte -  write one byte to the chip
64
 * @mtd:        MTD device structure
65
 * @byte:       pointer to data byte to write
66
 *
67
 *  write function for 8it buswith
68
 */
69
static void au_write_byte(struct mtd_info *mtd, u_char byte)
70
{
71
        struct nand_chip *this = mtd->priv;
72
        writeb(byte, this->IO_ADDR_W);
73
        au_sync();
74
}
75
 
76
/**
77
 * au_read_byte16 -  read one byte endianess aware from the chip
78
 * @mtd:        MTD device structure
79
 *
80
 *  read function for 16bit buswith with
81
 * endianess conversion
82
 */
83
static u_char au_read_byte16(struct mtd_info *mtd)
84
{
85
        struct nand_chip *this = mtd->priv;
86
        u_char ret = (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
87
        au_sync();
88
        return ret;
89
}
90
 
91
/**
92
 * au_write_byte16 -  write one byte endianess aware to the chip
93
 * @mtd:        MTD device structure
94
 * @byte:       pointer to data byte to write
95
 *
96
 *  write function for 16bit buswith with
97
 * endianess conversion
98
 */
99
static void au_write_byte16(struct mtd_info *mtd, u_char byte)
100
{
101
        struct nand_chip *this = mtd->priv;
102
        writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
103
        au_sync();
104
}
105
 
106
/**
107
 * au_read_word -  read one word from the chip
108
 * @mtd:        MTD device structure
109
 *
110
 *  read function for 16bit buswith without
111
 * endianess conversion
112
 */
113
static u16 au_read_word(struct mtd_info *mtd)
114
{
115
        struct nand_chip *this = mtd->priv;
116
        u16 ret = readw(this->IO_ADDR_R);
117
        au_sync();
118
        return ret;
119
}
120
 
121
/**
122
 * au_write_buf -  write buffer to chip
123
 * @mtd:        MTD device structure
124
 * @buf:        data buffer
125
 * @len:        number of bytes to write
126
 *
127
 *  write function for 8bit buswith
128
 */
129
static void au_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
130
{
131
        int i;
132
        struct nand_chip *this = mtd->priv;
133
 
134
        for (i = 0; i < len; i++) {
135
                writeb(buf[i], this->IO_ADDR_W);
136
                au_sync();
137
        }
138
}
139
 
140
/**
141
 * au_read_buf -  read chip data into buffer
142
 * @mtd:        MTD device structure
143
 * @buf:        buffer to store date
144
 * @len:        number of bytes to read
145
 *
146
 *  read function for 8bit buswith
147
 */
148
static void au_read_buf(struct mtd_info *mtd, u_char *buf, int len)
149
{
150
        int i;
151
        struct nand_chip *this = mtd->priv;
152
 
153
        for (i = 0; i < len; i++) {
154
                buf[i] = readb(this->IO_ADDR_R);
155
                au_sync();
156
        }
157
}
158
 
159
/**
160
 * au_verify_buf -  Verify chip data against buffer
161
 * @mtd:        MTD device structure
162
 * @buf:        buffer containing the data to compare
163
 * @len:        number of bytes to compare
164
 *
165
 *  verify function for 8bit buswith
166
 */
167
static int au_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
168
{
169
        int i;
170
        struct nand_chip *this = mtd->priv;
171
 
172
        for (i = 0; i < len; i++) {
173
                if (buf[i] != readb(this->IO_ADDR_R))
174
                        return -EFAULT;
175
                au_sync();
176
        }
177
 
178
        return 0;
179
}
180
 
181
/**
182
 * au_write_buf16 -  write buffer to chip
183
 * @mtd:        MTD device structure
184
 * @buf:        data buffer
185
 * @len:        number of bytes to write
186
 *
187
 *  write function for 16bit buswith
188
 */
189
static void au_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
190
{
191
        int i;
192
        struct nand_chip *this = mtd->priv;
193
        u16 *p = (u16 *) buf;
194
        len >>= 1;
195
 
196
        for (i = 0; i < len; i++) {
197
                writew(p[i], this->IO_ADDR_W);
198
                au_sync();
199
        }
200
 
201
}
202
 
203
/**
204
 * au_read_buf16 -  read chip data into buffer
205
 * @mtd:        MTD device structure
206
 * @buf:        buffer to store date
207
 * @len:        number of bytes to read
208
 *
209
 *  read function for 16bit buswith
210
 */
211
static void au_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
212
{
213
        int i;
214
        struct nand_chip *this = mtd->priv;
215
        u16 *p = (u16 *) buf;
216
        len >>= 1;
217
 
218
        for (i = 0; i < len; i++) {
219
                p[i] = readw(this->IO_ADDR_R);
220
                au_sync();
221
        }
222
}
223
 
224
/**
225
 * au_verify_buf16 -  Verify chip data against buffer
226
 * @mtd:        MTD device structure
227
 * @buf:        buffer containing the data to compare
228
 * @len:        number of bytes to compare
229
 *
230
 *  verify function for 16bit buswith
231
 */
232
static int au_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len)
233
{
234
        int i;
235
        struct nand_chip *this = mtd->priv;
236
        u16 *p = (u16 *) buf;
237
        len >>= 1;
238
 
239
        for (i = 0; i < len; i++) {
240
                if (p[i] != readw(this->IO_ADDR_R))
241
                        return -EFAULT;
242
                au_sync();
243
        }
244
        return 0;
245
}
246
 
247
/* Select the chip by setting nCE to low */
248
#define NAND_CTL_SETNCE         1
249
/* Deselect the chip by setting nCE to high */
250
#define NAND_CTL_CLRNCE         2
251
/* Select the command latch by setting CLE to high */
252
#define NAND_CTL_SETCLE         3
253
/* Deselect the command latch by setting CLE to low */
254
#define NAND_CTL_CLRCLE         4
255
/* Select the address latch by setting ALE to high */
256
#define NAND_CTL_SETALE         5
257
/* Deselect the address latch by setting ALE to low */
258
#define NAND_CTL_CLRALE         6
259
 
260
static void au1550_hwcontrol(struct mtd_info *mtd, int cmd)
261
{
262
        register struct nand_chip *this = mtd->priv;
263
 
264
        switch (cmd) {
265
 
266
        case NAND_CTL_SETCLE:
267
                this->IO_ADDR_W = p_nand + MEM_STNAND_CMD;
268
                break;
269
 
270
        case NAND_CTL_CLRCLE:
271
                this->IO_ADDR_W = p_nand + MEM_STNAND_DATA;
272
                break;
273
 
274
        case NAND_CTL_SETALE:
275
                this->IO_ADDR_W = p_nand + MEM_STNAND_ADDR;
276
                break;
277
 
278
        case NAND_CTL_CLRALE:
279
                this->IO_ADDR_W = p_nand + MEM_STNAND_DATA;
280
                /* FIXME: Nobody knows why this is necessary,
281
                 * but it works only that way */
282
                udelay(1);
283
                break;
284
 
285
        case NAND_CTL_SETNCE:
286
                /* assert (force assert) chip enable */
287
                au_writel((1 << (4 + NAND_CS)), MEM_STNDCTL);
288
                break;
289
 
290
        case NAND_CTL_CLRNCE:
291
                /* deassert chip enable */
292
                au_writel(0, MEM_STNDCTL);
293
                break;
294
        }
295
 
296
        this->IO_ADDR_R = this->IO_ADDR_W;
297
 
298
        /* Drain the writebuffer */
299
        au_sync();
300
}
301
 
302
int au1550_device_ready(struct mtd_info *mtd)
303
{
304
        int ret = (au_readl(MEM_STSTAT) & 0x1) ? 1 : 0;
305
        au_sync();
306
        return ret;
307
}
308
 
309
/**
310
 * au1550_select_chip - control -CE line
311
 *      Forbid driving -CE manually permitting the NAND controller to do this.
312
 *      Keeping -CE asserted during the whole sector reads interferes with the
313
 *      NOR flash and PCMCIA drivers as it causes contention on the static bus.
314
 *      We only have to hold -CE low for the NAND read commands since the flash
315
 *      chip needs it to be asserted during chip not ready time but the NAND
316
 *      controller keeps it released.
317
 *
318
 * @mtd:        MTD device structure
319
 * @chip:       chipnumber to select, -1 for deselect
320
 */
321
static void au1550_select_chip(struct mtd_info *mtd, int chip)
322
{
323
}
324
 
325
/**
326
 * au1550_command - Send command to NAND device
327
 * @mtd:        MTD device structure
328
 * @command:    the command to be sent
329
 * @column:     the column address for this command, -1 if none
330
 * @page_addr:  the page address for this command, -1 if none
331
 */
332
static void au1550_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
333
{
334
        register struct nand_chip *this = mtd->priv;
335
        int ce_override = 0, i;
336
        ulong flags;
337
 
338
        /* Begin command latch cycle */
339
        au1550_hwcontrol(mtd, NAND_CTL_SETCLE);
340
        /*
341
         * Write out the command to the device.
342
         */
343
        if (command == NAND_CMD_SEQIN) {
344
                int readcmd;
345
 
346
                if (column >= mtd->writesize) {
347
                        /* OOB area */
348
                        column -= mtd->writesize;
349
                        readcmd = NAND_CMD_READOOB;
350
                } else if (column < 256) {
351
                        /* First 256 bytes --> READ0 */
352
                        readcmd = NAND_CMD_READ0;
353
                } else {
354
                        column -= 256;
355
                        readcmd = NAND_CMD_READ1;
356
                }
357
                au1550_write_byte(mtd, readcmd);
358
        }
359
        au1550_write_byte(mtd, command);
360
 
361
        /* Set ALE and clear CLE to start address cycle */
362
        au1550_hwcontrol(mtd, NAND_CTL_CLRCLE);
363
 
364
        if (column != -1 || page_addr != -1) {
365
                au1550_hwcontrol(mtd, NAND_CTL_SETALE);
366
 
367
                /* Serially input address */
368
                if (column != -1) {
369
                        /* Adjust columns for 16 bit buswidth */
370
                        if (this->options & NAND_BUSWIDTH_16)
371
                                column >>= 1;
372
                        au1550_write_byte(mtd, column);
373
                }
374
                if (page_addr != -1) {
375
                        au1550_write_byte(mtd, (u8)(page_addr & 0xff));
376
 
377
                        if (command == NAND_CMD_READ0 ||
378
                            command == NAND_CMD_READ1 ||
379
                            command == NAND_CMD_READOOB) {
380
                                /*
381
                                 * NAND controller will release -CE after
382
                                 * the last address byte is written, so we'll
383
                                 * have to forcibly assert it. No interrupts
384
                                 * are allowed while we do this as we don't
385
                                 * want the NOR flash or PCMCIA drivers to
386
                                 * steal our precious bytes of data...
387
                                 */
388
                                ce_override = 1;
389
                                local_irq_save(flags);
390
                                au1550_hwcontrol(mtd, NAND_CTL_SETNCE);
391
                        }
392
 
393
                        au1550_write_byte(mtd, (u8)(page_addr >> 8));
394
 
395
                        /* One more address cycle for devices > 32MiB */
396
                        if (this->chipsize > (32 << 20))
397
                                au1550_write_byte(mtd, (u8)((page_addr >> 16) & 0x0f));
398
                }
399
                /* Latch in address */
400
                au1550_hwcontrol(mtd, NAND_CTL_CLRALE);
401
        }
402
 
403
        /*
404
         * Program and erase have their own busy handlers.
405
         * Status and sequential in need no delay.
406
         */
407
        switch (command) {
408
 
409
        case NAND_CMD_PAGEPROG:
410
        case NAND_CMD_ERASE1:
411
        case NAND_CMD_ERASE2:
412
        case NAND_CMD_SEQIN:
413
        case NAND_CMD_STATUS:
414
                return;
415
 
416
        case NAND_CMD_RESET:
417
                break;
418
 
419
        case NAND_CMD_READ0:
420
        case NAND_CMD_READ1:
421
        case NAND_CMD_READOOB:
422
                /* Check if we're really driving -CE low (just in case) */
423
                if (unlikely(!ce_override))
424
                        break;
425
 
426
                /* Apply a short delay always to ensure that we do wait tWB. */
427
                ndelay(100);
428
                /* Wait for a chip to become ready... */
429
                for (i = this->chip_delay; !this->dev_ready(mtd) && i > 0; --i)
430
                        udelay(1);
431
 
432
                /* Release -CE and re-enable interrupts. */
433
                au1550_hwcontrol(mtd, NAND_CTL_CLRNCE);
434
                local_irq_restore(flags);
435
                return;
436
        }
437
        /* Apply this short delay always to ensure that we do wait tWB. */
438
        ndelay(100);
439
 
440
        while(!this->dev_ready(mtd));
441
}
442
 
443
 
444
/*
445
 * Main initialization routine
446
 */
447
static int __init au1xxx_nand_init(void)
448
{
449
        struct nand_chip *this;
450
        u16 boot_swapboot = 0;   /* default value */
451
        int retval;
452
        u32 mem_staddr;
453
        u32 nand_phys;
454
 
455
        /* Allocate memory for MTD device structure and private data */
456
        au1550_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
457
        if (!au1550_mtd) {
458
                printk("Unable to allocate NAND MTD dev structure.\n");
459
                return -ENOMEM;
460
        }
461
 
462
        /* Get pointer to private data */
463
        this = (struct nand_chip *)(&au1550_mtd[1]);
464
 
465
        /* Initialize structures */
466
        memset(au1550_mtd, 0, sizeof(struct mtd_info));
467
        memset(this, 0, sizeof(struct nand_chip));
468
 
469
        /* Link the private data with the MTD structure */
470
        au1550_mtd->priv = this;
471
        au1550_mtd->owner = THIS_MODULE;
472
 
473
 
474
        /* MEM_STNDCTL: disable ints, disable nand boot */
475
        au_writel(0, MEM_STNDCTL);
476
 
477
#ifdef CONFIG_MIPS_PB1550
478
        /* set gpio206 high */
479
        au_writel(au_readl(GPIO2_DIR) & ~(1 << 6), GPIO2_DIR);
480
 
481
        boot_swapboot = (au_readl(MEM_STSTAT) & (0x7 << 1)) | ((bcsr->status >> 6) & 0x1);
482
        switch (boot_swapboot) {
483
        case 0:
484
        case 2:
485
        case 8:
486
        case 0xC:
487
        case 0xD:
488
                /* x16 NAND Flash */
489
                nand_width = 0;
490
                break;
491
        case 1:
492
        case 9:
493
        case 3:
494
        case 0xE:
495
        case 0xF:
496
                /* x8 NAND Flash */
497
                nand_width = 1;
498
                break;
499
        default:
500
                printk("Pb1550 NAND: bad boot:swap\n");
501
                retval = -EINVAL;
502
                goto outmem;
503
        }
504
#endif
505
 
506
        /* Configure chip-select; normally done by boot code, e.g. YAMON */
507
#ifdef NAND_STCFG
508
        if (NAND_CS == 0) {
509
                au_writel(NAND_STCFG,  MEM_STCFG0);
510
                au_writel(NAND_STTIME, MEM_STTIME0);
511
                au_writel(NAND_STADDR, MEM_STADDR0);
512
        }
513
        if (NAND_CS == 1) {
514
                au_writel(NAND_STCFG,  MEM_STCFG1);
515
                au_writel(NAND_STTIME, MEM_STTIME1);
516
                au_writel(NAND_STADDR, MEM_STADDR1);
517
        }
518
        if (NAND_CS == 2) {
519
                au_writel(NAND_STCFG,  MEM_STCFG2);
520
                au_writel(NAND_STTIME, MEM_STTIME2);
521
                au_writel(NAND_STADDR, MEM_STADDR2);
522
        }
523
        if (NAND_CS == 3) {
524
                au_writel(NAND_STCFG,  MEM_STCFG3);
525
                au_writel(NAND_STTIME, MEM_STTIME3);
526
                au_writel(NAND_STADDR, MEM_STADDR3);
527
        }
528
#endif
529
 
530
        /* Locate NAND chip-select in order to determine NAND phys address */
531
        mem_staddr = 0x00000000;
532
        if (((au_readl(MEM_STCFG0) & 0x7) == 0x5) && (NAND_CS == 0))
533
                mem_staddr = au_readl(MEM_STADDR0);
534
        else if (((au_readl(MEM_STCFG1) & 0x7) == 0x5) && (NAND_CS == 1))
535
                mem_staddr = au_readl(MEM_STADDR1);
536
        else if (((au_readl(MEM_STCFG2) & 0x7) == 0x5) && (NAND_CS == 2))
537
                mem_staddr = au_readl(MEM_STADDR2);
538
        else if (((au_readl(MEM_STCFG3) & 0x7) == 0x5) && (NAND_CS == 3))
539
                mem_staddr = au_readl(MEM_STADDR3);
540
 
541
        if (mem_staddr == 0x00000000) {
542
                printk("Au1xxx NAND: ERROR WITH NAND CHIP-SELECT\n");
543
                kfree(au1550_mtd);
544
                return 1;
545
        }
546
        nand_phys = (mem_staddr << 4) & 0xFFFC0000;
547
 
548
        p_nand = (void __iomem *)ioremap(nand_phys, 0x1000);
549
 
550
        /* make controller and MTD agree */
551
        if (NAND_CS == 0)
552
                nand_width = au_readl(MEM_STCFG0) & (1 << 22);
553
        if (NAND_CS == 1)
554
                nand_width = au_readl(MEM_STCFG1) & (1 << 22);
555
        if (NAND_CS == 2)
556
                nand_width = au_readl(MEM_STCFG2) & (1 << 22);
557
        if (NAND_CS == 3)
558
                nand_width = au_readl(MEM_STCFG3) & (1 << 22);
559
 
560
        /* Set address of hardware control function */
561
        this->dev_ready = au1550_device_ready;
562
        this->select_chip = au1550_select_chip;
563
        this->cmdfunc = au1550_command;
564
 
565
        /* 30 us command delay time */
566
        this->chip_delay = 30;
567
        this->ecc.mode = NAND_ECC_SOFT;
568
 
569
        this->options = NAND_NO_AUTOINCR;
570
 
571
        if (!nand_width)
572
                this->options |= NAND_BUSWIDTH_16;
573
 
574
        this->read_byte = (!nand_width) ? au_read_byte16 : au_read_byte;
575
        au1550_write_byte = (!nand_width) ? au_write_byte16 : au_write_byte;
576
        this->read_word = au_read_word;
577
        this->write_buf = (!nand_width) ? au_write_buf16 : au_write_buf;
578
        this->read_buf = (!nand_width) ? au_read_buf16 : au_read_buf;
579
        this->verify_buf = (!nand_width) ? au_verify_buf16 : au_verify_buf;
580
 
581
        /* Scan to find existence of the device */
582
        if (nand_scan(au1550_mtd, 1)) {
583
                retval = -ENXIO;
584
                goto outio;
585
        }
586
 
587
        /* Register the partitions */
588
        add_mtd_partitions(au1550_mtd, partition_info, ARRAY_SIZE(partition_info));
589
 
590
        return 0;
591
 
592
 outio:
593
        iounmap((void *)p_nand);
594
 
595
 outmem:
596
        kfree(au1550_mtd);
597
        return retval;
598
}
599
 
600
module_init(au1xxx_nand_init);
601
 
602
/*
603
 * Clean up routine
604
 */
605
static void __exit au1550_cleanup(void)
606
{
607
        struct nand_chip *this = (struct nand_chip *)&au1550_mtd[1];
608
 
609
        /* Release resources, unregister device */
610
        nand_release(au1550_mtd);
611
 
612
        /* Free the MTD device structure */
613
        kfree(au1550_mtd);
614
 
615
        /* Unmap */
616
        iounmap((void *)p_nand);
617
}
618
 
619
module_exit(au1550_cleanup);
620
 
621
MODULE_LICENSE("GPL");
622
MODULE_AUTHOR("Embedded Edge, LLC");
623
MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Pb1550 board");

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.