OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [drivers/] [mtd/] [nand/] [rtc_from4.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 *  drivers/mtd/nand/rtc_from4.c
3
 *
4
 *  Copyright (C) 2004  Red Hat, Inc.
5
 *
6
 *  Derived from drivers/mtd/nand/spia.c
7
 *       Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
8
 *
9
 * $Id: rtc_from4.c,v 1.10 2005/11/07 11:14:31 gleixner Exp $
10
 *
11
 * This program is free software; you can redistribute it and/or modify
12
 * it under the terms of the GNU General Public License version 2 as
13
 * published by the Free Software Foundation.
14
 *
15
 * Overview:
16
 *   This is a device driver for the AG-AND flash device found on the
17
 *   Renesas Technology Corp. Flash ROM 4-slot interface board (FROM_BOARD4),
18
 *   which utilizes the Renesas HN29V1G91T-30 part.
19
 *   This chip is a 1 GBibit (128MiB x 8 bits) AG-AND flash device.
20
 */
21
 
22
#include <linux/delay.h>
23
#include <linux/kernel.h>
24
#include <linux/init.h>
25
#include <linux/slab.h>
26
#include <linux/rslib.h>
27
#include <linux/bitrev.h>
28
#include <linux/module.h>
29
#include <linux/mtd/compatmac.h>
30
#include <linux/mtd/mtd.h>
31
#include <linux/mtd/nand.h>
32
#include <linux/mtd/partitions.h>
33
#include <asm/io.h>
34
 
35
/*
36
 * MTD structure for Renesas board
37
 */
38
static struct mtd_info *rtc_from4_mtd = NULL;
39
 
40
#define RTC_FROM4_MAX_CHIPS     2
41
 
42
/* HS77x9 processor register defines */
43
#define SH77X9_BCR1     ((volatile unsigned short *)(0xFFFFFF60))
44
#define SH77X9_BCR2     ((volatile unsigned short *)(0xFFFFFF62))
45
#define SH77X9_WCR1     ((volatile unsigned short *)(0xFFFFFF64))
46
#define SH77X9_WCR2     ((volatile unsigned short *)(0xFFFFFF66))
47
#define SH77X9_MCR      ((volatile unsigned short *)(0xFFFFFF68))
48
#define SH77X9_PCR      ((volatile unsigned short *)(0xFFFFFF6C))
49
#define SH77X9_FRQCR    ((volatile unsigned short *)(0xFFFFFF80))
50
 
51
/*
52
 * Values specific to the Renesas Technology Corp. FROM_BOARD4 (used with HS77x9 processor)
53
 */
54
/* Address where flash is mapped */
55
#define RTC_FROM4_FIO_BASE      0x14000000
56
 
57
/* CLE and ALE are tied to address lines 5 & 4, respectively */
58
#define RTC_FROM4_CLE           (1 << 5)
59
#define RTC_FROM4_ALE           (1 << 4)
60
 
61
/* address lines A24-A22 used for chip selection */
62
#define RTC_FROM4_NAND_ADDR_SLOT3       (0x00800000)
63
#define RTC_FROM4_NAND_ADDR_SLOT4       (0x00C00000)
64
#define RTC_FROM4_NAND_ADDR_FPGA        (0x01000000)
65
/* mask address lines A24-A22 used for chip selection */
66
#define RTC_FROM4_NAND_ADDR_MASK        (RTC_FROM4_NAND_ADDR_SLOT3 | RTC_FROM4_NAND_ADDR_SLOT4 | RTC_FROM4_NAND_ADDR_FPGA)
67
 
68
/* FPGA status register for checking device ready (bit zero) */
69
#define RTC_FROM4_FPGA_SR               (RTC_FROM4_NAND_ADDR_FPGA | 0x00000002)
70
#define RTC_FROM4_DEVICE_READY          0x0001
71
 
72
/* FPGA Reed-Solomon ECC Control register */
73
 
74
#define RTC_FROM4_RS_ECC_CTL            (RTC_FROM4_NAND_ADDR_FPGA | 0x00000050)
75
#define RTC_FROM4_RS_ECC_CTL_CLR        (1 << 7)
76
#define RTC_FROM4_RS_ECC_CTL_GEN        (1 << 6)
77
#define RTC_FROM4_RS_ECC_CTL_FD_E       (1 << 5)
78
 
79
/* FPGA Reed-Solomon ECC code base */
80
#define RTC_FROM4_RS_ECC                (RTC_FROM4_NAND_ADDR_FPGA | 0x00000060)
81
#define RTC_FROM4_RS_ECCN               (RTC_FROM4_NAND_ADDR_FPGA | 0x00000080)
82
 
83
/* FPGA Reed-Solomon ECC check register */
84
#define RTC_FROM4_RS_ECC_CHK            (RTC_FROM4_NAND_ADDR_FPGA | 0x00000070)
85
#define RTC_FROM4_RS_ECC_CHK_ERROR      (1 << 7)
86
 
87
#define ERR_STAT_ECC_AVAILABLE          0x20
88
 
89
/* Undefine for software ECC */
90
#define RTC_FROM4_HWECC 1
91
 
92
/* Define as 1 for no virtual erase blocks (in JFFS2) */
93
#define RTC_FROM4_NO_VIRTBLOCKS 0
94
 
95
/*
96
 * Module stuff
97
 */
98
static void __iomem *rtc_from4_fio_base = (void *)P2SEGADDR(RTC_FROM4_FIO_BASE);
99
 
100
static const struct mtd_partition partition_info[] = {
101
        {
102
         .name = "Renesas flash partition 1",
103
         .offset = 0,
104
         .size = MTDPART_SIZ_FULL},
105
};
106
 
107
#define NUM_PARTITIONS 1
108
 
109
/*
110
 *      hardware specific flash bbt decriptors
111
 *      Note: this is to allow debugging by disabling
112
 *              NAND_BBT_CREATE and/or NAND_BBT_WRITE
113
 *
114
 */
115
static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
116
static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
117
 
118
static struct nand_bbt_descr rtc_from4_bbt_main_descr = {
119
        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
120
                | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
121
        .offs = 40,
122
        .len = 4,
123
        .veroffs = 44,
124
        .maxblocks = 4,
125
        .pattern = bbt_pattern
126
};
127
 
128
static struct nand_bbt_descr rtc_from4_bbt_mirror_descr = {
129
        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
130
                | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
131
        .offs = 40,
132
        .len = 4,
133
        .veroffs = 44,
134
        .maxblocks = 4,
135
        .pattern = mirror_pattern
136
};
137
 
138
#ifdef RTC_FROM4_HWECC
139
 
140
/* the Reed Solomon control structure */
141
static struct rs_control *rs_decoder;
142
 
143
/*
144
 *      hardware specific Out Of Band information
145
 */
146
static struct nand_ecclayout rtc_from4_nand_oobinfo = {
147
        .eccbytes = 32,
148
        .eccpos = {
149
                   0, 1, 2, 3, 4, 5, 6, 7,
150
                   8, 9, 10, 11, 12, 13, 14, 15,
151
                   16, 17, 18, 19, 20, 21, 22, 23,
152
                   24, 25, 26, 27, 28, 29, 30, 31},
153
        .oobfree = {{32, 32}}
154
};
155
 
156
#endif
157
 
158
/*
159
 * rtc_from4_hwcontrol - hardware specific access to control-lines
160
 * @mtd:        MTD device structure
161
 * @cmd:        hardware control command
162
 *
163
 * Address lines (A5 and A4) are used to control Command and Address Latch
164
 * Enable on this board, so set the read/write address appropriately.
165
 *
166
 * Chip Enable is also controlled by the Chip Select (CS5) and
167
 * Address lines (A24-A22), so no action is required here.
168
 *
169
 */
170
static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd,
171
                                unsigned int ctrl)
172
{
173
        struct nand_chip *chip = (mtd->priv);
174
 
175
        if (cmd == NAND_CMD_NONE)
176
                return;
177
 
178
        if (ctrl & NAND_CLE)
179
                writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_CLE);
180
        else
181
                writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_ALE);
182
}
183
 
184
/*
185
 * rtc_from4_nand_select_chip - hardware specific chip select
186
 * @mtd:        MTD device structure
187
 * @chip:       Chip to select (0 == slot 3, 1 == slot 4)
188
 *
189
 * The chip select is based on address lines A24-A22.
190
 * This driver uses flash slots 3 and 4 (A23-A22).
191
 *
192
 */
193
static void rtc_from4_nand_select_chip(struct mtd_info *mtd, int chip)
194
{
195
        struct nand_chip *this = mtd->priv;
196
 
197
        this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R & ~RTC_FROM4_NAND_ADDR_MASK);
198
        this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_NAND_ADDR_MASK);
199
 
200
        switch (chip) {
201
 
202
        case 0:          /* select slot 3 chip */
203
                this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT3);
204
                this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT3);
205
                break;
206
        case 1:         /* select slot 4 chip */
207
                this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT4);
208
                this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT4);
209
                break;
210
 
211
        }
212
}
213
 
214
/*
215
 * rtc_from4_nand_device_ready - hardware specific ready/busy check
216
 * @mtd:        MTD device structure
217
 *
218
 * This board provides the Ready/Busy state in the status register
219
 * of the FPGA.  Bit zero indicates the RDY(1)/BSY(0) signal.
220
 *
221
 */
222
static int rtc_from4_nand_device_ready(struct mtd_info *mtd)
223
{
224
        unsigned short status;
225
 
226
        status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_FPGA_SR));
227
 
228
        return (status & RTC_FROM4_DEVICE_READY);
229
 
230
}
231
 
232
/*
233
 * deplete - code to perform device recovery in case there was a power loss
234
 * @mtd:        MTD device structure
235
 * @chip:       Chip to select (0 == slot 3, 1 == slot 4)
236
 *
237
 * If there was a sudden loss of power during an erase operation, a
238
 * "device recovery" operation must be performed when power is restored
239
 * to ensure correct operation.  This routine performs the required steps
240
 * for the requested chip.
241
 *
242
 * See page 86 of the data sheet for details.
243
 *
244
 */
245
static void deplete(struct mtd_info *mtd, int chip)
246
{
247
        struct nand_chip *this = mtd->priv;
248
 
249
        /* wait until device is ready */
250
        while (!this->dev_ready(mtd)) ;
251
 
252
        this->select_chip(mtd, chip);
253
 
254
        /* Send the commands for device recovery, phase 1 */
255
        this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0000);
256
        this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
257
 
258
        /* Send the commands for device recovery, phase 2 */
259
        this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0004);
260
        this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
261
 
262
}
263
 
264
#ifdef RTC_FROM4_HWECC
265
/*
266
 * rtc_from4_enable_hwecc - hardware specific hardware ECC enable function
267
 * @mtd:        MTD device structure
268
 * @mode:       I/O mode; read or write
269
 *
270
 * enable hardware ECC for data read or write
271
 *
272
 */
273
static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode)
274
{
275
        volatile unsigned short *rs_ecc_ctl = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CTL);
276
        unsigned short status;
277
 
278
        switch (mode) {
279
        case NAND_ECC_READ:
280
                status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_FD_E;
281
 
282
                *rs_ecc_ctl = status;
283
                break;
284
 
285
        case NAND_ECC_READSYN:
286
                status = 0x00;
287
 
288
                *rs_ecc_ctl = status;
289
                break;
290
 
291
        case NAND_ECC_WRITE:
292
                status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_GEN | RTC_FROM4_RS_ECC_CTL_FD_E;
293
 
294
                *rs_ecc_ctl = status;
295
                break;
296
 
297
        default:
298
                BUG();
299
                break;
300
        }
301
 
302
}
303
 
304
/*
305
 * rtc_from4_calculate_ecc - hardware specific code to read ECC code
306
 * @mtd:        MTD device structure
307
 * @dat:        buffer containing the data to generate ECC codes
308
 * @ecc_code    ECC codes calculated
309
 *
310
 * The ECC code is calculated by the FPGA.  All we have to do is read the values
311
 * from the FPGA registers.
312
 *
313
 * Note: We read from the inverted registers, since data is inverted before
314
 * the code is calculated. So all 0xff data (blank page) results in all 0xff rs code
315
 *
316
 */
317
static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
318
{
319
        volatile unsigned short *rs_eccn = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECCN);
320
        unsigned short value;
321
        int i;
322
 
323
        for (i = 0; i < 8; i++) {
324
                value = *rs_eccn;
325
                ecc_code[i] = (unsigned char)value;
326
                rs_eccn++;
327
        }
328
        ecc_code[7] |= 0x0f;    /* set the last four bits (not used) */
329
}
330
 
331
/*
332
 * rtc_from4_correct_data - hardware specific code to correct data using ECC code
333
 * @mtd:        MTD device structure
334
 * @buf:        buffer containing the data to generate ECC codes
335
 * @ecc1        ECC codes read
336
 * @ecc2        ECC codes calculated
337
 *
338
 * The FPGA tells us fast, if there's an error or not. If no, we go back happy
339
 * else we read the ecc results from the fpga and call the rs library to decode
340
 * and hopefully correct the error.
341
 *
342
 */
343
static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_char *ecc1, u_char *ecc2)
344
{
345
        int i, j, res;
346
        unsigned short status;
347
        uint16_t par[6], syn[6];
348
        uint8_t ecc[8];
349
        volatile unsigned short *rs_ecc;
350
 
351
        status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CHK));
352
 
353
        if (!(status & RTC_FROM4_RS_ECC_CHK_ERROR)) {
354
                return 0;
355
        }
356
 
357
        /* Read the syndrom pattern from the FPGA and correct the bitorder */
358
        rs_ecc = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC);
359
        for (i = 0; i < 8; i++) {
360
                ecc[i] = bitrev8(*rs_ecc);
361
                rs_ecc++;
362
        }
363
 
364
        /* convert into 6 10bit syndrome fields */
365
        par[5] = rs_decoder->index_of[(((uint16_t) ecc[0] >> 0) & 0x0ff) | (((uint16_t) ecc[1] << 8) & 0x300)];
366
        par[4] = rs_decoder->index_of[(((uint16_t) ecc[1] >> 2) & 0x03f) | (((uint16_t) ecc[2] << 6) & 0x3c0)];
367
        par[3] = rs_decoder->index_of[(((uint16_t) ecc[2] >> 4) & 0x00f) | (((uint16_t) ecc[3] << 4) & 0x3f0)];
368
        par[2] = rs_decoder->index_of[(((uint16_t) ecc[3] >> 6) & 0x003) | (((uint16_t) ecc[4] << 2) & 0x3fc)];
369
        par[1] = rs_decoder->index_of[(((uint16_t) ecc[5] >> 0) & 0x0ff) | (((uint16_t) ecc[6] << 8) & 0x300)];
370
        par[0] = (((uint16_t) ecc[6] >> 2) & 0x03f) | (((uint16_t) ecc[7] << 6) & 0x3c0);
371
 
372
        /* Convert to computable syndrome */
373
        for (i = 0; i < 6; i++) {
374
                syn[i] = par[0];
375
                for (j = 1; j < 6; j++)
376
                        if (par[j] != rs_decoder->nn)
377
                                syn[i] ^= rs_decoder->alpha_to[rs_modnn(rs_decoder, par[j] + i * j)];
378
 
379
                /* Convert to index form */
380
                syn[i] = rs_decoder->index_of[syn[i]];
381
        }
382
 
383
        /* Let the library code do its magic. */
384
        res = decode_rs8(rs_decoder, (uint8_t *) buf, par, 512, syn, 0, NULL, 0xff, NULL);
385
        if (res > 0) {
386
                DEBUG(MTD_DEBUG_LEVEL0, "rtc_from4_correct_data: " "ECC corrected %d errors on read\n", res);
387
        }
388
        return res;
389
}
390
 
391
/**
392
 * rtc_from4_errstat - perform additional error status checks
393
 * @mtd:        MTD device structure
394
 * @this:       NAND chip structure
395
 * @state:      state or the operation
396
 * @status:     status code returned from read status
397
 * @page:       startpage inside the chip, must be called with (page & this->pagemask)
398
 *
399
 * Perform additional error status checks on erase and write failures
400
 * to determine if errors are correctable.  For this device, correctable
401
 * 1-bit errors on erase and write are considered acceptable.
402
 *
403
 * note: see pages 34..37 of data sheet for details.
404
 *
405
 */
406
static int rtc_from4_errstat(struct mtd_info *mtd, struct nand_chip *this,
407
                             int state, int status, int page)
408
{
409
        int er_stat = 0;
410
        int rtn, retlen;
411
        size_t len;
412
        uint8_t *buf;
413
        int i;
414
 
415
        this->cmdfunc(mtd, NAND_CMD_STATUS_CLEAR, -1, -1);
416
 
417
        if (state == FL_ERASING) {
418
 
419
                for (i = 0; i < 4; i++) {
420
                        if (!(status & 1 << (i + 1)))
421
                                continue;
422
                        this->cmdfunc(mtd, (NAND_CMD_STATUS_ERROR + i + 1),
423
                                      -1, -1);
424
                        rtn = this->read_byte(mtd);
425
                        this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
426
 
427
                        /* err_ecc_not_avail */
428
                        if (!(rtn & ERR_STAT_ECC_AVAILABLE))
429
                                er_stat |= 1 << (i + 1);
430
                }
431
 
432
        } else if (state == FL_WRITING) {
433
 
434
                unsigned long corrected = mtd->ecc_stats.corrected;
435
 
436
                /* single bank write logic */
437
                this->cmdfunc(mtd, NAND_CMD_STATUS_ERROR, -1, -1);
438
                rtn = this->read_byte(mtd);
439
                this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
440
 
441
                if (!(rtn & ERR_STAT_ECC_AVAILABLE)) {
442
                        /* err_ecc_not_avail */
443
                        er_stat |= 1 << 1;
444
                        goto out;
445
                }
446
 
447
                len = mtd->writesize;
448
                buf = kmalloc(len, GFP_KERNEL);
449
                if (!buf) {
450
                        printk(KERN_ERR "rtc_from4_errstat: Out of memory!\n");
451
                        er_stat = 1;
452
                        goto out;
453
                }
454
 
455
                /* recovery read */
456
                rtn = nand_do_read(mtd, page, len, &retlen, buf);
457
 
458
                /* if read failed or > 1-bit error corrected */
459
                if (rtn || (mtd->ecc_stats.corrected - corrected) > 1)
460
                        er_stat |= 1 << 1;
461
                kfree(buf);
462
        }
463
 
464
        rtn = status;
465
        if (er_stat == 0) {      /* if ECC is available   */
466
                rtn = (status & ~NAND_STATUS_FAIL);     /*   clear the error bit */
467
        }
468
 
469
        return rtn;
470
}
471
#endif
472
 
473
/*
474
 * Main initialization routine
475
 */
476
static int __init rtc_from4_init(void)
477
{
478
        struct nand_chip *this;
479
        unsigned short bcr1, bcr2, wcr2;
480
        int i;
481
 
482
        /* Allocate memory for MTD device structure and private data */
483
        rtc_from4_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
484
        if (!rtc_from4_mtd) {
485
                printk("Unable to allocate Renesas NAND MTD device structure.\n");
486
                return -ENOMEM;
487
        }
488
 
489
        /* Get pointer to private data */
490
        this = (struct nand_chip *)(&rtc_from4_mtd[1]);
491
 
492
        /* Initialize structures */
493
        memset(rtc_from4_mtd, 0, sizeof(struct mtd_info));
494
        memset(this, 0, sizeof(struct nand_chip));
495
 
496
        /* Link the private data with the MTD structure */
497
        rtc_from4_mtd->priv = this;
498
        rtc_from4_mtd->owner = THIS_MODULE;
499
 
500
        /* set area 5 as PCMCIA mode to clear the spec of tDH(Data hold time;9ns min) */
501
        bcr1 = *SH77X9_BCR1 & ~0x0002;
502
        bcr1 |= 0x0002;
503
        *SH77X9_BCR1 = bcr1;
504
 
505
        /* set */
506
        bcr2 = *SH77X9_BCR2 & ~0x0c00;
507
        bcr2 |= 0x0800;
508
        *SH77X9_BCR2 = bcr2;
509
 
510
        /* set area 5 wait states */
511
        wcr2 = *SH77X9_WCR2 & ~0x1c00;
512
        wcr2 |= 0x1c00;
513
        *SH77X9_WCR2 = wcr2;
514
 
515
        /* Set address of NAND IO lines */
516
        this->IO_ADDR_R = rtc_from4_fio_base;
517
        this->IO_ADDR_W = rtc_from4_fio_base;
518
        /* Set address of hardware control function */
519
        this->cmd_ctrl = rtc_from4_hwcontrol;
520
        /* Set address of chip select function */
521
        this->select_chip = rtc_from4_nand_select_chip;
522
        /* command delay time (in us) */
523
        this->chip_delay = 100;
524
        /* return the status of the Ready/Busy line */
525
        this->dev_ready = rtc_from4_nand_device_ready;
526
 
527
#ifdef RTC_FROM4_HWECC
528
        printk(KERN_INFO "rtc_from4_init: using hardware ECC detection.\n");
529
 
530
        this->ecc.mode = NAND_ECC_HW_SYNDROME;
531
        this->ecc.size = 512;
532
        this->ecc.bytes = 8;
533
        /* return the status of extra status and ECC checks */
534
        this->errstat = rtc_from4_errstat;
535
        /* set the nand_oobinfo to support FPGA H/W error detection */
536
        this->ecc.layout = &rtc_from4_nand_oobinfo;
537
        this->ecc.hwctl = rtc_from4_enable_hwecc;
538
        this->ecc.calculate = rtc_from4_calculate_ecc;
539
        this->ecc.correct = rtc_from4_correct_data;
540
#else
541
        printk(KERN_INFO "rtc_from4_init: using software ECC detection.\n");
542
 
543
        this->ecc.mode = NAND_ECC_SOFT;
544
#endif
545
 
546
        /* set the bad block tables to support debugging */
547
        this->bbt_td = &rtc_from4_bbt_main_descr;
548
        this->bbt_md = &rtc_from4_bbt_mirror_descr;
549
 
550
        /* Scan to find existence of the device */
551
        if (nand_scan(rtc_from4_mtd, RTC_FROM4_MAX_CHIPS)) {
552
                kfree(rtc_from4_mtd);
553
                return -ENXIO;
554
        }
555
 
556
        /* Perform 'device recovery' for each chip in case there was a power loss. */
557
        for (i = 0; i < this->numchips; i++) {
558
                deplete(rtc_from4_mtd, i);
559
        }
560
 
561
#if RTC_FROM4_NO_VIRTBLOCKS
562
        /* use a smaller erase block to minimize wasted space when a block is bad */
563
        /* note: this uses eight times as much RAM as using the default and makes */
564
        /*       mounts take four times as long. */
565
        rtc_from4_mtd->flags |= MTD_NO_VIRTBLOCKS;
566
#endif
567
 
568
        /* Register the partitions */
569
        add_mtd_partitions(rtc_from4_mtd, partition_info, NUM_PARTITIONS);
570
 
571
#ifdef RTC_FROM4_HWECC
572
        /* We could create the decoder on demand, if memory is a concern.
573
         * This way we have it handy, if an error happens
574
         *
575
         * Symbolsize is 10 (bits)
576
         * Primitve polynomial is x^10+x^3+1
577
         * first consecutive root is 0
578
         * primitve element to generate roots = 1
579
         * generator polinomial degree = 6
580
         */
581
        rs_decoder = init_rs(10, 0x409, 0, 1, 6);
582
        if (!rs_decoder) {
583
                printk(KERN_ERR "Could not create a RS decoder\n");
584
                nand_release(rtc_from4_mtd);
585
                kfree(rtc_from4_mtd);
586
                return -ENOMEM;
587
        }
588
#endif
589
        /* Return happy */
590
        return 0;
591
}
592
 
593
module_init(rtc_from4_init);
594
 
595
/*
596
 * Clean up routine
597
 */
598
static void __exit rtc_from4_cleanup(void)
599
{
600
        /* Release resource, unregister partitions */
601
        nand_release(rtc_from4_mtd);
602
 
603
        /* Free the MTD device structure */
604
        kfree(rtc_from4_mtd);
605
 
606
#ifdef RTC_FROM4_HWECC
607
        /* Free the reed solomon resources */
608
        if (rs_decoder) {
609
                free_rs(rs_decoder);
610
        }
611
#endif
612
}
613
 
614
module_exit(rtc_from4_cleanup);
615
 
616
MODULE_LICENSE("GPL");
617
MODULE_AUTHOR("d.marlin <dmarlin@redhat.com");
618
MODULE_DESCRIPTION("Board-specific glue layer for AG-AND flash on Renesas FROM_BOARD4");

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.