OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [drivers/] [net/] [cassini.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
2
 *
3
 * Copyright (C) 2004 Sun Microsystems Inc.
4
 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
5
 *
6
 * This program is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU General Public License as
8
 * published by the Free Software Foundation; either version 2 of the
9
 * License, or (at your option) any later version.
10
 *
11
 * This program is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
 * GNU General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU General Public License
17
 * along with this program; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
19
 * 02111-1307, USA.
20
 *
21
 * This driver uses the sungem driver (c) David Miller
22
 * (davem@redhat.com) as its basis.
23
 *
24
 * The cassini chip has a number of features that distinguish it from
25
 * the gem chip:
26
 *  4 transmit descriptor rings that are used for either QoS (VLAN) or
27
 *      load balancing (non-VLAN mode)
28
 *  batching of multiple packets
29
 *  multiple CPU dispatching
30
 *  page-based RX descriptor engine with separate completion rings
31
 *  Gigabit support (GMII and PCS interface)
32
 *  MIF link up/down detection works
33
 *
34
 * RX is handled by page sized buffers that are attached as fragments to
35
 * the skb. here's what's done:
36
 *  -- driver allocates pages at a time and keeps reference counts
37
 *     on them.
38
 *  -- the upper protocol layers assume that the header is in the skb
39
 *     itself. as a result, cassini will copy a small amount (64 bytes)
40
 *     to make them happy.
41
 *  -- driver appends the rest of the data pages as frags to skbuffs
42
 *     and increments the reference count
43
 *  -- on page reclamation, the driver swaps the page with a spare page.
44
 *     if that page is still in use, it frees its reference to that page,
45
 *     and allocates a new page for use. otherwise, it just recycles the
46
 *     the page.
47
 *
48
 * NOTE: cassini can parse the header. however, it's not worth it
49
 *       as long as the network stack requires a header copy.
50
 *
51
 * TX has 4 queues. currently these queues are used in a round-robin
52
 * fashion for load balancing. They can also be used for QoS. for that
53
 * to work, however, QoS information needs to be exposed down to the driver
54
 * level so that subqueues get targetted to particular transmit rings.
55
 * alternatively, the queues can be configured via use of the all-purpose
56
 * ioctl.
57
 *
58
 * RX DATA: the rx completion ring has all the info, but the rx desc
59
 * ring has all of the data. RX can conceivably come in under multiple
60
 * interrupts, but the INT# assignment needs to be set up properly by
61
 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62
 * that. also, the two descriptor rings are designed to distinguish between
63
 * encrypted and non-encrypted packets, but we use them for buffering
64
 * instead.
65
 *
66
 * by default, the selective clear mask is set up to process rx packets.
67
 */
68
 
69
 
70
#include <linux/module.h>
71
#include <linux/kernel.h>
72
#include <linux/types.h>
73
#include <linux/compiler.h>
74
#include <linux/slab.h>
75
#include <linux/delay.h>
76
#include <linux/init.h>
77
#include <linux/ioport.h>
78
#include <linux/pci.h>
79
#include <linux/mm.h>
80
#include <linux/highmem.h>
81
#include <linux/list.h>
82
#include <linux/dma-mapping.h>
83
 
84
#include <linux/netdevice.h>
85
#include <linux/etherdevice.h>
86
#include <linux/skbuff.h>
87
#include <linux/ethtool.h>
88
#include <linux/crc32.h>
89
#include <linux/random.h>
90
#include <linux/mii.h>
91
#include <linux/ip.h>
92
#include <linux/tcp.h>
93
#include <linux/mutex.h>
94
 
95
#include <net/checksum.h>
96
 
97
#include <asm/atomic.h>
98
#include <asm/system.h>
99
#include <asm/io.h>
100
#include <asm/byteorder.h>
101
#include <asm/uaccess.h>
102
 
103
#define cas_page_map(x)      kmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
104
#define cas_page_unmap(x)    kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
105
#define CAS_NCPUS            num_online_cpus()
106
 
107
#if defined(CONFIG_CASSINI_NAPI) && defined(HAVE_NETDEV_POLL)
108
#define USE_NAPI
109
#define cas_skb_release(x)  netif_receive_skb(x)
110
#else
111
#define cas_skb_release(x)  netif_rx(x)
112
#endif
113
 
114
/* select which firmware to use */
115
#define USE_HP_WORKAROUND
116
#define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
117
#define CAS_HP_ALT_FIRMWARE   cas_prog_null /* alternate firmware */
118
 
119
#include "cassini.h"
120
 
121
#define USE_TX_COMPWB      /* use completion writeback registers */
122
#define USE_CSMA_CD_PROTO  /* standard CSMA/CD */
123
#define USE_RX_BLANK       /* hw interrupt mitigation */
124
#undef USE_ENTROPY_DEV     /* don't test for entropy device */
125
 
126
/* NOTE: these aren't useable unless PCI interrupts can be assigned.
127
 * also, we need to make cp->lock finer-grained.
128
 */
129
#undef  USE_PCI_INTB
130
#undef  USE_PCI_INTC
131
#undef  USE_PCI_INTD
132
#undef  USE_QOS
133
 
134
#undef  USE_VPD_DEBUG       /* debug vpd information if defined */
135
 
136
/* rx processing options */
137
#define USE_PAGE_ORDER      /* specify to allocate large rx pages */
138
#define RX_DONT_BATCH  0    /* if 1, don't batch flows */
139
#define RX_COPY_ALWAYS 0    /* if 0, use frags */
140
#define RX_COPY_MIN    64   /* copy a little to make upper layers happy */
141
#undef  RX_COUNT_BUFFERS    /* define to calculate RX buffer stats */
142
 
143
#define DRV_MODULE_NAME         "cassini"
144
#define PFX DRV_MODULE_NAME     ": "
145
#define DRV_MODULE_VERSION      "1.5"
146
#define DRV_MODULE_RELDATE      "4 Jan 2008"
147
 
148
#define CAS_DEF_MSG_ENABLE        \
149
        (NETIF_MSG_DRV          | \
150
         NETIF_MSG_PROBE        | \
151
         NETIF_MSG_LINK         | \
152
         NETIF_MSG_TIMER        | \
153
         NETIF_MSG_IFDOWN       | \
154
         NETIF_MSG_IFUP         | \
155
         NETIF_MSG_RX_ERR       | \
156
         NETIF_MSG_TX_ERR)
157
 
158
/* length of time before we decide the hardware is borked,
159
 * and dev->tx_timeout() should be called to fix the problem
160
 */
161
#define CAS_TX_TIMEOUT                  (HZ)
162
#define CAS_LINK_TIMEOUT                (22*HZ/10)
163
#define CAS_LINK_FAST_TIMEOUT           (1)
164
 
165
/* timeout values for state changing. these specify the number
166
 * of 10us delays to be used before giving up.
167
 */
168
#define STOP_TRIES_PHY 1000
169
#define STOP_TRIES     5000
170
 
171
/* specify a minimum frame size to deal with some fifo issues
172
 * max mtu == 2 * page size - ethernet header - 64 - swivel =
173
 *            2 * page_size - 0x50
174
 */
175
#define CAS_MIN_FRAME                   97
176
#define CAS_1000MB_MIN_FRAME            255
177
#define CAS_MIN_MTU                     60
178
#define CAS_MAX_MTU                     min(((cp->page_size << 1) - 0x50), 9000)
179
 
180
#if 1
181
/*
182
 * Eliminate these and use separate atomic counters for each, to
183
 * avoid a race condition.
184
 */
185
#else
186
#define CAS_RESET_MTU                   1
187
#define CAS_RESET_ALL                   2
188
#define CAS_RESET_SPARE                 3
189
#endif
190
 
191
static char version[] __devinitdata =
192
        DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
193
 
194
static int cassini_debug = -1;  /* -1 == use CAS_DEF_MSG_ENABLE as value */
195
static int link_mode;
196
 
197
MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
198
MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
199
MODULE_LICENSE("GPL");
200
module_param(cassini_debug, int, 0);
201
MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
202
module_param(link_mode, int, 0);
203
MODULE_PARM_DESC(link_mode, "default link mode");
204
 
205
/*
206
 * Work around for a PCS bug in which the link goes down due to the chip
207
 * being confused and never showing a link status of "up."
208
 */
209
#define DEFAULT_LINKDOWN_TIMEOUT 5
210
/*
211
 * Value in seconds, for user input.
212
 */
213
static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
214
module_param(linkdown_timeout, int, 0);
215
MODULE_PARM_DESC(linkdown_timeout,
216
"min reset interval in sec. for PCS linkdown issue; disabled if not positive");
217
 
218
/*
219
 * value in 'ticks' (units used by jiffies). Set when we init the
220
 * module because 'HZ' in actually a function call on some flavors of
221
 * Linux.  This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
222
 */
223
static int link_transition_timeout;
224
 
225
 
226
 
227
static u16 link_modes[] __devinitdata = {
228
        BMCR_ANENABLE,                   /* 0 : autoneg */
229
        0,                                /* 1 : 10bt half duplex */
230
        BMCR_SPEED100,                   /* 2 : 100bt half duplex */
231
        BMCR_FULLDPLX,                   /* 3 : 10bt full duplex */
232
        BMCR_SPEED100|BMCR_FULLDPLX,     /* 4 : 100bt full duplex */
233
        CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
234
};
235
 
236
static struct pci_device_id cas_pci_tbl[] __devinitdata = {
237
        { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
238
          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
239
        { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
240
          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
241
        { 0, }
242
};
243
 
244
MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
245
 
246
static void cas_set_link_modes(struct cas *cp);
247
 
248
static inline void cas_lock_tx(struct cas *cp)
249
{
250
        int i;
251
 
252
        for (i = 0; i < N_TX_RINGS; i++)
253
                spin_lock(&cp->tx_lock[i]);
254
}
255
 
256
static inline void cas_lock_all(struct cas *cp)
257
{
258
        spin_lock_irq(&cp->lock);
259
        cas_lock_tx(cp);
260
}
261
 
262
/* WTZ: QA was finding deadlock problems with the previous
263
 * versions after long test runs with multiple cards per machine.
264
 * See if replacing cas_lock_all with safer versions helps. The
265
 * symptoms QA is reporting match those we'd expect if interrupts
266
 * aren't being properly restored, and we fixed a previous deadlock
267
 * with similar symptoms by using save/restore versions in other
268
 * places.
269
 */
270
#define cas_lock_all_save(cp, flags) \
271
do { \
272
        struct cas *xxxcp = (cp); \
273
        spin_lock_irqsave(&xxxcp->lock, flags); \
274
        cas_lock_tx(xxxcp); \
275
} while (0)
276
 
277
static inline void cas_unlock_tx(struct cas *cp)
278
{
279
        int i;
280
 
281
        for (i = N_TX_RINGS; i > 0; i--)
282
                spin_unlock(&cp->tx_lock[i - 1]);
283
}
284
 
285
static inline void cas_unlock_all(struct cas *cp)
286
{
287
        cas_unlock_tx(cp);
288
        spin_unlock_irq(&cp->lock);
289
}
290
 
291
#define cas_unlock_all_restore(cp, flags) \
292
do { \
293
        struct cas *xxxcp = (cp); \
294
        cas_unlock_tx(xxxcp); \
295
        spin_unlock_irqrestore(&xxxcp->lock, flags); \
296
} while (0)
297
 
298
static void cas_disable_irq(struct cas *cp, const int ring)
299
{
300
        /* Make sure we won't get any more interrupts */
301
        if (ring == 0) {
302
                writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
303
                return;
304
        }
305
 
306
        /* disable completion interrupts and selectively mask */
307
        if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
308
                switch (ring) {
309
#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
310
#ifdef USE_PCI_INTB
311
                case 1:
312
#endif
313
#ifdef USE_PCI_INTC
314
                case 2:
315
#endif
316
#ifdef USE_PCI_INTD
317
                case 3:
318
#endif
319
                        writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
320
                               cp->regs + REG_PLUS_INTRN_MASK(ring));
321
                        break;
322
#endif
323
                default:
324
                        writel(INTRN_MASK_CLEAR_ALL, cp->regs +
325
                               REG_PLUS_INTRN_MASK(ring));
326
                        break;
327
                }
328
        }
329
}
330
 
331
static inline void cas_mask_intr(struct cas *cp)
332
{
333
        int i;
334
 
335
        for (i = 0; i < N_RX_COMP_RINGS; i++)
336
                cas_disable_irq(cp, i);
337
}
338
 
339
static void cas_enable_irq(struct cas *cp, const int ring)
340
{
341
        if (ring == 0) { /* all but TX_DONE */
342
                writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
343
                return;
344
        }
345
 
346
        if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
347
                switch (ring) {
348
#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
349
#ifdef USE_PCI_INTB
350
                case 1:
351
#endif
352
#ifdef USE_PCI_INTC
353
                case 2:
354
#endif
355
#ifdef USE_PCI_INTD
356
                case 3:
357
#endif
358
                        writel(INTRN_MASK_RX_EN, cp->regs +
359
                               REG_PLUS_INTRN_MASK(ring));
360
                        break;
361
#endif
362
                default:
363
                        break;
364
                }
365
        }
366
}
367
 
368
static inline void cas_unmask_intr(struct cas *cp)
369
{
370
        int i;
371
 
372
        for (i = 0; i < N_RX_COMP_RINGS; i++)
373
                cas_enable_irq(cp, i);
374
}
375
 
376
static inline void cas_entropy_gather(struct cas *cp)
377
{
378
#ifdef USE_ENTROPY_DEV
379
        if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
380
                return;
381
 
382
        batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
383
                            readl(cp->regs + REG_ENTROPY_IV),
384
                            sizeof(uint64_t)*8);
385
#endif
386
}
387
 
388
static inline void cas_entropy_reset(struct cas *cp)
389
{
390
#ifdef USE_ENTROPY_DEV
391
        if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
392
                return;
393
 
394
        writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
395
               cp->regs + REG_BIM_LOCAL_DEV_EN);
396
        writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
397
        writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
398
 
399
        /* if we read back 0x0, we don't have an entropy device */
400
        if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
401
                cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
402
#endif
403
}
404
 
405
/* access to the phy. the following assumes that we've initialized the MIF to
406
 * be in frame rather than bit-bang mode
407
 */
408
static u16 cas_phy_read(struct cas *cp, int reg)
409
{
410
        u32 cmd;
411
        int limit = STOP_TRIES_PHY;
412
 
413
        cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
414
        cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
415
        cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
416
        cmd |= MIF_FRAME_TURN_AROUND_MSB;
417
        writel(cmd, cp->regs + REG_MIF_FRAME);
418
 
419
        /* poll for completion */
420
        while (limit-- > 0) {
421
                udelay(10);
422
                cmd = readl(cp->regs + REG_MIF_FRAME);
423
                if (cmd & MIF_FRAME_TURN_AROUND_LSB)
424
                        return (cmd & MIF_FRAME_DATA_MASK);
425
        }
426
        return 0xFFFF; /* -1 */
427
}
428
 
429
static int cas_phy_write(struct cas *cp, int reg, u16 val)
430
{
431
        int limit = STOP_TRIES_PHY;
432
        u32 cmd;
433
 
434
        cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
435
        cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
436
        cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
437
        cmd |= MIF_FRAME_TURN_AROUND_MSB;
438
        cmd |= val & MIF_FRAME_DATA_MASK;
439
        writel(cmd, cp->regs + REG_MIF_FRAME);
440
 
441
        /* poll for completion */
442
        while (limit-- > 0) {
443
                udelay(10);
444
                cmd = readl(cp->regs + REG_MIF_FRAME);
445
                if (cmd & MIF_FRAME_TURN_AROUND_LSB)
446
                        return 0;
447
        }
448
        return -1;
449
}
450
 
451
static void cas_phy_powerup(struct cas *cp)
452
{
453
        u16 ctl = cas_phy_read(cp, MII_BMCR);
454
 
455
        if ((ctl & BMCR_PDOWN) == 0)
456
                return;
457
        ctl &= ~BMCR_PDOWN;
458
        cas_phy_write(cp, MII_BMCR, ctl);
459
}
460
 
461
static void cas_phy_powerdown(struct cas *cp)
462
{
463
        u16 ctl = cas_phy_read(cp, MII_BMCR);
464
 
465
        if (ctl & BMCR_PDOWN)
466
                return;
467
        ctl |= BMCR_PDOWN;
468
        cas_phy_write(cp, MII_BMCR, ctl);
469
}
470
 
471
/* cp->lock held. note: the last put_page will free the buffer */
472
static int cas_page_free(struct cas *cp, cas_page_t *page)
473
{
474
        pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
475
                       PCI_DMA_FROMDEVICE);
476
        __free_pages(page->buffer, cp->page_order);
477
        kfree(page);
478
        return 0;
479
}
480
 
481
#ifdef RX_COUNT_BUFFERS
482
#define RX_USED_ADD(x, y)       ((x)->used += (y))
483
#define RX_USED_SET(x, y)       ((x)->used  = (y))
484
#else
485
#define RX_USED_ADD(x, y)
486
#define RX_USED_SET(x, y)
487
#endif
488
 
489
/* local page allocation routines for the receive buffers. jumbo pages
490
 * require at least 8K contiguous and 8K aligned buffers.
491
 */
492
static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
493
{
494
        cas_page_t *page;
495
 
496
        page = kmalloc(sizeof(cas_page_t), flags);
497
        if (!page)
498
                return NULL;
499
 
500
        INIT_LIST_HEAD(&page->list);
501
        RX_USED_SET(page, 0);
502
        page->buffer = alloc_pages(flags, cp->page_order);
503
        if (!page->buffer)
504
                goto page_err;
505
        page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
506
                                      cp->page_size, PCI_DMA_FROMDEVICE);
507
        return page;
508
 
509
page_err:
510
        kfree(page);
511
        return NULL;
512
}
513
 
514
/* initialize spare pool of rx buffers, but allocate during the open */
515
static void cas_spare_init(struct cas *cp)
516
{
517
        spin_lock(&cp->rx_inuse_lock);
518
        INIT_LIST_HEAD(&cp->rx_inuse_list);
519
        spin_unlock(&cp->rx_inuse_lock);
520
 
521
        spin_lock(&cp->rx_spare_lock);
522
        INIT_LIST_HEAD(&cp->rx_spare_list);
523
        cp->rx_spares_needed = RX_SPARE_COUNT;
524
        spin_unlock(&cp->rx_spare_lock);
525
}
526
 
527
/* used on close. free all the spare buffers. */
528
static void cas_spare_free(struct cas *cp)
529
{
530
        struct list_head list, *elem, *tmp;
531
 
532
        /* free spare buffers */
533
        INIT_LIST_HEAD(&list);
534
        spin_lock(&cp->rx_spare_lock);
535
        list_splice(&cp->rx_spare_list, &list);
536
        INIT_LIST_HEAD(&cp->rx_spare_list);
537
        spin_unlock(&cp->rx_spare_lock);
538
        list_for_each_safe(elem, tmp, &list) {
539
                cas_page_free(cp, list_entry(elem, cas_page_t, list));
540
        }
541
 
542
        INIT_LIST_HEAD(&list);
543
#if 1
544
        /*
545
         * Looks like Adrian had protected this with a different
546
         * lock than used everywhere else to manipulate this list.
547
         */
548
        spin_lock(&cp->rx_inuse_lock);
549
        list_splice(&cp->rx_inuse_list, &list);
550
        INIT_LIST_HEAD(&cp->rx_inuse_list);
551
        spin_unlock(&cp->rx_inuse_lock);
552
#else
553
        spin_lock(&cp->rx_spare_lock);
554
        list_splice(&cp->rx_inuse_list, &list);
555
        INIT_LIST_HEAD(&cp->rx_inuse_list);
556
        spin_unlock(&cp->rx_spare_lock);
557
#endif
558
        list_for_each_safe(elem, tmp, &list) {
559
                cas_page_free(cp, list_entry(elem, cas_page_t, list));
560
        }
561
}
562
 
563
/* replenish spares if needed */
564
static void cas_spare_recover(struct cas *cp, const gfp_t flags)
565
{
566
        struct list_head list, *elem, *tmp;
567
        int needed, i;
568
 
569
        /* check inuse list. if we don't need any more free buffers,
570
         * just free it
571
         */
572
 
573
        /* make a local copy of the list */
574
        INIT_LIST_HEAD(&list);
575
        spin_lock(&cp->rx_inuse_lock);
576
        list_splice(&cp->rx_inuse_list, &list);
577
        INIT_LIST_HEAD(&cp->rx_inuse_list);
578
        spin_unlock(&cp->rx_inuse_lock);
579
 
580
        list_for_each_safe(elem, tmp, &list) {
581
                cas_page_t *page = list_entry(elem, cas_page_t, list);
582
 
583
                if (page_count(page->buffer) > 1)
584
                        continue;
585
 
586
                list_del(elem);
587
                spin_lock(&cp->rx_spare_lock);
588
                if (cp->rx_spares_needed > 0) {
589
                        list_add(elem, &cp->rx_spare_list);
590
                        cp->rx_spares_needed--;
591
                        spin_unlock(&cp->rx_spare_lock);
592
                } else {
593
                        spin_unlock(&cp->rx_spare_lock);
594
                        cas_page_free(cp, page);
595
                }
596
        }
597
 
598
        /* put any inuse buffers back on the list */
599
        if (!list_empty(&list)) {
600
                spin_lock(&cp->rx_inuse_lock);
601
                list_splice(&list, &cp->rx_inuse_list);
602
                spin_unlock(&cp->rx_inuse_lock);
603
        }
604
 
605
        spin_lock(&cp->rx_spare_lock);
606
        needed = cp->rx_spares_needed;
607
        spin_unlock(&cp->rx_spare_lock);
608
        if (!needed)
609
                return;
610
 
611
        /* we still need spares, so try to allocate some */
612
        INIT_LIST_HEAD(&list);
613
        i = 0;
614
        while (i < needed) {
615
                cas_page_t *spare = cas_page_alloc(cp, flags);
616
                if (!spare)
617
                        break;
618
                list_add(&spare->list, &list);
619
                i++;
620
        }
621
 
622
        spin_lock(&cp->rx_spare_lock);
623
        list_splice(&list, &cp->rx_spare_list);
624
        cp->rx_spares_needed -= i;
625
        spin_unlock(&cp->rx_spare_lock);
626
}
627
 
628
/* pull a page from the list. */
629
static cas_page_t *cas_page_dequeue(struct cas *cp)
630
{
631
        struct list_head *entry;
632
        int recover;
633
 
634
        spin_lock(&cp->rx_spare_lock);
635
        if (list_empty(&cp->rx_spare_list)) {
636
                /* try to do a quick recovery */
637
                spin_unlock(&cp->rx_spare_lock);
638
                cas_spare_recover(cp, GFP_ATOMIC);
639
                spin_lock(&cp->rx_spare_lock);
640
                if (list_empty(&cp->rx_spare_list)) {
641
                        if (netif_msg_rx_err(cp))
642
                                printk(KERN_ERR "%s: no spare buffers "
643
                                       "available.\n", cp->dev->name);
644
                        spin_unlock(&cp->rx_spare_lock);
645
                        return NULL;
646
                }
647
        }
648
 
649
        entry = cp->rx_spare_list.next;
650
        list_del(entry);
651
        recover = ++cp->rx_spares_needed;
652
        spin_unlock(&cp->rx_spare_lock);
653
 
654
        /* trigger the timer to do the recovery */
655
        if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
656
#if 1
657
                atomic_inc(&cp->reset_task_pending);
658
                atomic_inc(&cp->reset_task_pending_spare);
659
                schedule_work(&cp->reset_task);
660
#else
661
                atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
662
                schedule_work(&cp->reset_task);
663
#endif
664
        }
665
        return list_entry(entry, cas_page_t, list);
666
}
667
 
668
 
669
static void cas_mif_poll(struct cas *cp, const int enable)
670
{
671
        u32 cfg;
672
 
673
        cfg  = readl(cp->regs + REG_MIF_CFG);
674
        cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
675
 
676
        if (cp->phy_type & CAS_PHY_MII_MDIO1)
677
                cfg |= MIF_CFG_PHY_SELECT;
678
 
679
        /* poll and interrupt on link status change. */
680
        if (enable) {
681
                cfg |= MIF_CFG_POLL_EN;
682
                cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
683
                cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
684
        }
685
        writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
686
               cp->regs + REG_MIF_MASK);
687
        writel(cfg, cp->regs + REG_MIF_CFG);
688
}
689
 
690
/* Must be invoked under cp->lock */
691
static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
692
{
693
        u16 ctl;
694
#if 1
695
        int lcntl;
696
        int changed = 0;
697
        int oldstate = cp->lstate;
698
        int link_was_not_down = !(oldstate == link_down);
699
#endif
700
        /* Setup link parameters */
701
        if (!ep)
702
                goto start_aneg;
703
        lcntl = cp->link_cntl;
704
        if (ep->autoneg == AUTONEG_ENABLE)
705
                cp->link_cntl = BMCR_ANENABLE;
706
        else {
707
                cp->link_cntl = 0;
708
                if (ep->speed == SPEED_100)
709
                        cp->link_cntl |= BMCR_SPEED100;
710
                else if (ep->speed == SPEED_1000)
711
                        cp->link_cntl |= CAS_BMCR_SPEED1000;
712
                if (ep->duplex == DUPLEX_FULL)
713
                        cp->link_cntl |= BMCR_FULLDPLX;
714
        }
715
#if 1
716
        changed = (lcntl != cp->link_cntl);
717
#endif
718
start_aneg:
719
        if (cp->lstate == link_up) {
720
                printk(KERN_INFO "%s: PCS link down.\n",
721
                       cp->dev->name);
722
        } else {
723
                if (changed) {
724
                        printk(KERN_INFO "%s: link configuration changed\n",
725
                               cp->dev->name);
726
                }
727
        }
728
        cp->lstate = link_down;
729
        cp->link_transition = LINK_TRANSITION_LINK_DOWN;
730
        if (!cp->hw_running)
731
                return;
732
#if 1
733
        /*
734
         * WTZ: If the old state was link_up, we turn off the carrier
735
         * to replicate everything we do elsewhere on a link-down
736
         * event when we were already in a link-up state..
737
         */
738
        if (oldstate == link_up)
739
                netif_carrier_off(cp->dev);
740
        if (changed  && link_was_not_down) {
741
                /*
742
                 * WTZ: This branch will simply schedule a full reset after
743
                 * we explicitly changed link modes in an ioctl. See if this
744
                 * fixes the link-problems we were having for forced mode.
745
                 */
746
                atomic_inc(&cp->reset_task_pending);
747
                atomic_inc(&cp->reset_task_pending_all);
748
                schedule_work(&cp->reset_task);
749
                cp->timer_ticks = 0;
750
                mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
751
                return;
752
        }
753
#endif
754
        if (cp->phy_type & CAS_PHY_SERDES) {
755
                u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
756
 
757
                if (cp->link_cntl & BMCR_ANENABLE) {
758
                        val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
759
                        cp->lstate = link_aneg;
760
                } else {
761
                        if (cp->link_cntl & BMCR_FULLDPLX)
762
                                val |= PCS_MII_CTRL_DUPLEX;
763
                        val &= ~PCS_MII_AUTONEG_EN;
764
                        cp->lstate = link_force_ok;
765
                }
766
                cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
767
                writel(val, cp->regs + REG_PCS_MII_CTRL);
768
 
769
        } else {
770
                cas_mif_poll(cp, 0);
771
                ctl = cas_phy_read(cp, MII_BMCR);
772
                ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
773
                         CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
774
                ctl |= cp->link_cntl;
775
                if (ctl & BMCR_ANENABLE) {
776
                        ctl |= BMCR_ANRESTART;
777
                        cp->lstate = link_aneg;
778
                } else {
779
                        cp->lstate = link_force_ok;
780
                }
781
                cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
782
                cas_phy_write(cp, MII_BMCR, ctl);
783
                cas_mif_poll(cp, 1);
784
        }
785
 
786
        cp->timer_ticks = 0;
787
        mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
788
}
789
 
790
/* Must be invoked under cp->lock. */
791
static int cas_reset_mii_phy(struct cas *cp)
792
{
793
        int limit = STOP_TRIES_PHY;
794
        u16 val;
795
 
796
        cas_phy_write(cp, MII_BMCR, BMCR_RESET);
797
        udelay(100);
798
        while (limit--) {
799
                val = cas_phy_read(cp, MII_BMCR);
800
                if ((val & BMCR_RESET) == 0)
801
                        break;
802
                udelay(10);
803
        }
804
        return (limit <= 0);
805
}
806
 
807
static void cas_saturn_firmware_load(struct cas *cp)
808
{
809
        cas_saturn_patch_t *patch = cas_saturn_patch;
810
 
811
        cas_phy_powerdown(cp);
812
 
813
        /* expanded memory access mode */
814
        cas_phy_write(cp, DP83065_MII_MEM, 0x0);
815
 
816
        /* pointer configuration for new firmware */
817
        cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
818
        cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
819
        cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
820
        cas_phy_write(cp, DP83065_MII_REGD, 0x82);
821
        cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
822
        cas_phy_write(cp, DP83065_MII_REGD, 0x0);
823
        cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
824
        cas_phy_write(cp, DP83065_MII_REGD, 0x39);
825
 
826
        /* download new firmware */
827
        cas_phy_write(cp, DP83065_MII_MEM, 0x1);
828
        cas_phy_write(cp, DP83065_MII_REGE, patch->addr);
829
        while (patch->addr) {
830
                cas_phy_write(cp, DP83065_MII_REGD, patch->val);
831
                patch++;
832
        }
833
 
834
        /* enable firmware */
835
        cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
836
        cas_phy_write(cp, DP83065_MII_REGD, 0x1);
837
}
838
 
839
 
840
/* phy initialization */
841
static void cas_phy_init(struct cas *cp)
842
{
843
        u16 val;
844
 
845
        /* if we're in MII/GMII mode, set up phy */
846
        if (CAS_PHY_MII(cp->phy_type)) {
847
                writel(PCS_DATAPATH_MODE_MII,
848
                       cp->regs + REG_PCS_DATAPATH_MODE);
849
 
850
                cas_mif_poll(cp, 0);
851
                cas_reset_mii_phy(cp); /* take out of isolate mode */
852
 
853
                if (PHY_LUCENT_B0 == cp->phy_id) {
854
                        /* workaround link up/down issue with lucent */
855
                        cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
856
                        cas_phy_write(cp, MII_BMCR, 0x00f1);
857
                        cas_phy_write(cp, LUCENT_MII_REG, 0x0);
858
 
859
                } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
860
                        /* workarounds for broadcom phy */
861
                        cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
862
                        cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
863
                        cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
864
                        cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
865
                        cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
866
                        cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
867
                        cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
868
                        cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
869
                        cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
870
                        cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
871
                        cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
872
 
873
                } else if (PHY_BROADCOM_5411 == cp->phy_id) {
874
                        val = cas_phy_read(cp, BROADCOM_MII_REG4);
875
                        val = cas_phy_read(cp, BROADCOM_MII_REG4);
876
                        if (val & 0x0080) {
877
                                /* link workaround */
878
                                cas_phy_write(cp, BROADCOM_MII_REG4,
879
                                              val & ~0x0080);
880
                        }
881
 
882
                } else if (cp->cas_flags & CAS_FLAG_SATURN) {
883
                        writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
884
                               SATURN_PCFG_FSI : 0x0,
885
                               cp->regs + REG_SATURN_PCFG);
886
 
887
                        /* load firmware to address 10Mbps auto-negotiation
888
                         * issue. NOTE: this will need to be changed if the
889
                         * default firmware gets fixed.
890
                         */
891
                        if (PHY_NS_DP83065 == cp->phy_id) {
892
                                cas_saturn_firmware_load(cp);
893
                        }
894
                        cas_phy_powerup(cp);
895
                }
896
 
897
                /* advertise capabilities */
898
                val = cas_phy_read(cp, MII_BMCR);
899
                val &= ~BMCR_ANENABLE;
900
                cas_phy_write(cp, MII_BMCR, val);
901
                udelay(10);
902
 
903
                cas_phy_write(cp, MII_ADVERTISE,
904
                              cas_phy_read(cp, MII_ADVERTISE) |
905
                              (ADVERTISE_10HALF | ADVERTISE_10FULL |
906
                               ADVERTISE_100HALF | ADVERTISE_100FULL |
907
                               CAS_ADVERTISE_PAUSE |
908
                               CAS_ADVERTISE_ASYM_PAUSE));
909
 
910
                if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
911
                        /* make sure that we don't advertise half
912
                         * duplex to avoid a chip issue
913
                         */
914
                        val  = cas_phy_read(cp, CAS_MII_1000_CTRL);
915
                        val &= ~CAS_ADVERTISE_1000HALF;
916
                        val |= CAS_ADVERTISE_1000FULL;
917
                        cas_phy_write(cp, CAS_MII_1000_CTRL, val);
918
                }
919
 
920
        } else {
921
                /* reset pcs for serdes */
922
                u32 val;
923
                int limit;
924
 
925
                writel(PCS_DATAPATH_MODE_SERDES,
926
                       cp->regs + REG_PCS_DATAPATH_MODE);
927
 
928
                /* enable serdes pins on saturn */
929
                if (cp->cas_flags & CAS_FLAG_SATURN)
930
                        writel(0, cp->regs + REG_SATURN_PCFG);
931
 
932
                /* Reset PCS unit. */
933
                val = readl(cp->regs + REG_PCS_MII_CTRL);
934
                val |= PCS_MII_RESET;
935
                writel(val, cp->regs + REG_PCS_MII_CTRL);
936
 
937
                limit = STOP_TRIES;
938
                while (limit-- > 0) {
939
                        udelay(10);
940
                        if ((readl(cp->regs + REG_PCS_MII_CTRL) &
941
                             PCS_MII_RESET) == 0)
942
                                break;
943
                }
944
                if (limit <= 0)
945
                        printk(KERN_WARNING "%s: PCS reset bit would not "
946
                               "clear [%08x].\n", cp->dev->name,
947
                               readl(cp->regs + REG_PCS_STATE_MACHINE));
948
 
949
                /* Make sure PCS is disabled while changing advertisement
950
                 * configuration.
951
                 */
952
                writel(0x0, cp->regs + REG_PCS_CFG);
953
 
954
                /* Advertise all capabilities except half-duplex. */
955
                val  = readl(cp->regs + REG_PCS_MII_ADVERT);
956
                val &= ~PCS_MII_ADVERT_HD;
957
                val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
958
                        PCS_MII_ADVERT_ASYM_PAUSE);
959
                writel(val, cp->regs + REG_PCS_MII_ADVERT);
960
 
961
                /* enable PCS */
962
                writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
963
 
964
                /* pcs workaround: enable sync detect */
965
                writel(PCS_SERDES_CTRL_SYNCD_EN,
966
                       cp->regs + REG_PCS_SERDES_CTRL);
967
        }
968
}
969
 
970
 
971
static int cas_pcs_link_check(struct cas *cp)
972
{
973
        u32 stat, state_machine;
974
        int retval = 0;
975
 
976
        /* The link status bit latches on zero, so you must
977
         * read it twice in such a case to see a transition
978
         * to the link being up.
979
         */
980
        stat = readl(cp->regs + REG_PCS_MII_STATUS);
981
        if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
982
                stat = readl(cp->regs + REG_PCS_MII_STATUS);
983
 
984
        /* The remote-fault indication is only valid
985
         * when autoneg has completed.
986
         */
987
        if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
988
                     PCS_MII_STATUS_REMOTE_FAULT)) ==
989
            (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT)) {
990
                if (netif_msg_link(cp))
991
                        printk(KERN_INFO "%s: PCS RemoteFault\n",
992
                               cp->dev->name);
993
        }
994
 
995
        /* work around link detection issue by querying the PCS state
996
         * machine directly.
997
         */
998
        state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
999
        if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1000
                stat &= ~PCS_MII_STATUS_LINK_STATUS;
1001
        } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1002
                stat |= PCS_MII_STATUS_LINK_STATUS;
1003
        }
1004
 
1005
        if (stat & PCS_MII_STATUS_LINK_STATUS) {
1006
                if (cp->lstate != link_up) {
1007
                        if (cp->opened) {
1008
                                cp->lstate = link_up;
1009
                                cp->link_transition = LINK_TRANSITION_LINK_UP;
1010
 
1011
                                cas_set_link_modes(cp);
1012
                                netif_carrier_on(cp->dev);
1013
                        }
1014
                }
1015
        } else if (cp->lstate == link_up) {
1016
                cp->lstate = link_down;
1017
                if (link_transition_timeout != 0 &&
1018
                    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1019
                    !cp->link_transition_jiffies_valid) {
1020
                        /*
1021
                         * force a reset, as a workaround for the
1022
                         * link-failure problem. May want to move this to a
1023
                         * point a bit earlier in the sequence. If we had
1024
                         * generated a reset a short time ago, we'll wait for
1025
                         * the link timer to check the status until a
1026
                         * timer expires (link_transistion_jiffies_valid is
1027
                         * true when the timer is running.)  Instead of using
1028
                         * a system timer, we just do a check whenever the
1029
                         * link timer is running - this clears the flag after
1030
                         * a suitable delay.
1031
                         */
1032
                        retval = 1;
1033
                        cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1034
                        cp->link_transition_jiffies = jiffies;
1035
                        cp->link_transition_jiffies_valid = 1;
1036
                } else {
1037
                        cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1038
                }
1039
                netif_carrier_off(cp->dev);
1040
                if (cp->opened && netif_msg_link(cp)) {
1041
                        printk(KERN_INFO "%s: PCS link down.\n",
1042
                               cp->dev->name);
1043
                }
1044
 
1045
                /* Cassini only: if you force a mode, there can be
1046
                 * sync problems on link down. to fix that, the following
1047
                 * things need to be checked:
1048
                 * 1) read serialink state register
1049
                 * 2) read pcs status register to verify link down.
1050
                 * 3) if link down and serial link == 0x03, then you need
1051
                 *    to global reset the chip.
1052
                 */
1053
                if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1054
                        /* should check to see if we're in a forced mode */
1055
                        stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1056
                        if (stat == 0x03)
1057
                                return 1;
1058
                }
1059
        } else if (cp->lstate == link_down) {
1060
                if (link_transition_timeout != 0 &&
1061
                    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1062
                    !cp->link_transition_jiffies_valid) {
1063
                        /* force a reset, as a workaround for the
1064
                         * link-failure problem.  May want to move
1065
                         * this to a point a bit earlier in the
1066
                         * sequence.
1067
                         */
1068
                        retval = 1;
1069
                        cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1070
                        cp->link_transition_jiffies = jiffies;
1071
                        cp->link_transition_jiffies_valid = 1;
1072
                } else {
1073
                        cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1074
                }
1075
        }
1076
 
1077
        return retval;
1078
}
1079
 
1080
static int cas_pcs_interrupt(struct net_device *dev,
1081
                             struct cas *cp, u32 status)
1082
{
1083
        u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1084
 
1085
        if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1086
                return 0;
1087
        return cas_pcs_link_check(cp);
1088
}
1089
 
1090
static int cas_txmac_interrupt(struct net_device *dev,
1091
                               struct cas *cp, u32 status)
1092
{
1093
        u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1094
 
1095
        if (!txmac_stat)
1096
                return 0;
1097
 
1098
        if (netif_msg_intr(cp))
1099
                printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
1100
                        cp->dev->name, txmac_stat);
1101
 
1102
        /* Defer timer expiration is quite normal,
1103
         * don't even log the event.
1104
         */
1105
        if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1106
            !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1107
                return 0;
1108
 
1109
        spin_lock(&cp->stat_lock[0]);
1110
        if (txmac_stat & MAC_TX_UNDERRUN) {
1111
                printk(KERN_ERR "%s: TX MAC xmit underrun.\n",
1112
                       dev->name);
1113
                cp->net_stats[0].tx_fifo_errors++;
1114
        }
1115
 
1116
        if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1117
                printk(KERN_ERR "%s: TX MAC max packet size error.\n",
1118
                       dev->name);
1119
                cp->net_stats[0].tx_errors++;
1120
        }
1121
 
1122
        /* The rest are all cases of one of the 16-bit TX
1123
         * counters expiring.
1124
         */
1125
        if (txmac_stat & MAC_TX_COLL_NORMAL)
1126
                cp->net_stats[0].collisions += 0x10000;
1127
 
1128
        if (txmac_stat & MAC_TX_COLL_EXCESS) {
1129
                cp->net_stats[0].tx_aborted_errors += 0x10000;
1130
                cp->net_stats[0].collisions += 0x10000;
1131
        }
1132
 
1133
        if (txmac_stat & MAC_TX_COLL_LATE) {
1134
                cp->net_stats[0].tx_aborted_errors += 0x10000;
1135
                cp->net_stats[0].collisions += 0x10000;
1136
        }
1137
        spin_unlock(&cp->stat_lock[0]);
1138
 
1139
        /* We do not keep track of MAC_TX_COLL_FIRST and
1140
         * MAC_TX_PEAK_ATTEMPTS events.
1141
         */
1142
        return 0;
1143
}
1144
 
1145
static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1146
{
1147
        cas_hp_inst_t *inst;
1148
        u32 val;
1149
        int i;
1150
 
1151
        i = 0;
1152
        while ((inst = firmware) && inst->note) {
1153
                writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1154
 
1155
                val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1156
                val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1157
                writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1158
 
1159
                val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1160
                val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1161
                val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1162
                val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1163
                val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1164
                val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1165
                val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1166
                writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1167
 
1168
                val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1169
                val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1170
                val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1171
                val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1172
                writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1173
                ++firmware;
1174
                ++i;
1175
        }
1176
}
1177
 
1178
static void cas_init_rx_dma(struct cas *cp)
1179
{
1180
        u64 desc_dma = cp->block_dvma;
1181
        u32 val;
1182
        int i, size;
1183
 
1184
        /* rx free descriptors */
1185
        val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1186
        val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1187
        val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1188
        if ((N_RX_DESC_RINGS > 1) &&
1189
            (cp->cas_flags & CAS_FLAG_REG_PLUS))  /* do desc 2 */
1190
                val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1191
        writel(val, cp->regs + REG_RX_CFG);
1192
 
1193
        val = (unsigned long) cp->init_rxds[0] -
1194
                (unsigned long) cp->init_block;
1195
        writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1196
        writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1197
        writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1198
 
1199
        if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1200
                /* rx desc 2 is for IPSEC packets. however,
1201
                 * we don't it that for that purpose.
1202
                 */
1203
                val = (unsigned long) cp->init_rxds[1] -
1204
                        (unsigned long) cp->init_block;
1205
                writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1206
                writel((desc_dma + val) & 0xffffffff, cp->regs +
1207
                       REG_PLUS_RX_DB1_LOW);
1208
                writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1209
                       REG_PLUS_RX_KICK1);
1210
        }
1211
 
1212
        /* rx completion registers */
1213
        val = (unsigned long) cp->init_rxcs[0] -
1214
                (unsigned long) cp->init_block;
1215
        writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1216
        writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1217
 
1218
        if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1219
                /* rx comp 2-4 */
1220
                for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1221
                        val = (unsigned long) cp->init_rxcs[i] -
1222
                                (unsigned long) cp->init_block;
1223
                        writel((desc_dma + val) >> 32, cp->regs +
1224
                               REG_PLUS_RX_CBN_HI(i));
1225
                        writel((desc_dma + val) & 0xffffffff, cp->regs +
1226
                               REG_PLUS_RX_CBN_LOW(i));
1227
                }
1228
        }
1229
 
1230
        /* read selective clear regs to prevent spurious interrupts
1231
         * on reset because complete == kick.
1232
         * selective clear set up to prevent interrupts on resets
1233
         */
1234
        readl(cp->regs + REG_INTR_STATUS_ALIAS);
1235
        writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1236
        if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1237
                for (i = 1; i < N_RX_COMP_RINGS; i++)
1238
                        readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1239
 
1240
                /* 2 is different from 3 and 4 */
1241
                if (N_RX_COMP_RINGS > 1)
1242
                        writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1243
                               cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1244
 
1245
                for (i = 2; i < N_RX_COMP_RINGS; i++)
1246
                        writel(INTR_RX_DONE_ALT,
1247
                               cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1248
        }
1249
 
1250
        /* set up pause thresholds */
1251
        val  = CAS_BASE(RX_PAUSE_THRESH_OFF,
1252
                        cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1253
        val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1254
                        cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1255
        writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1256
 
1257
        /* zero out dma reassembly buffers */
1258
        for (i = 0; i < 64; i++) {
1259
                writel(i, cp->regs + REG_RX_TABLE_ADDR);
1260
                writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1261
                writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1262
                writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1263
        }
1264
 
1265
        /* make sure address register is 0 for normal operation */
1266
        writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1267
        writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1268
 
1269
        /* interrupt mitigation */
1270
#ifdef USE_RX_BLANK
1271
        val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1272
        val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1273
        writel(val, cp->regs + REG_RX_BLANK);
1274
#else
1275
        writel(0x0, cp->regs + REG_RX_BLANK);
1276
#endif
1277
 
1278
        /* interrupt generation as a function of low water marks for
1279
         * free desc and completion entries. these are used to trigger
1280
         * housekeeping for rx descs. we don't use the free interrupt
1281
         * as it's not very useful
1282
         */
1283
        /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1284
        val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1285
        writel(val, cp->regs + REG_RX_AE_THRESH);
1286
        if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1287
                val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1288
                writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1289
        }
1290
 
1291
        /* Random early detect registers. useful for congestion avoidance.
1292
         * this should be tunable.
1293
         */
1294
        writel(0x0, cp->regs + REG_RX_RED);
1295
 
1296
        /* receive page sizes. default == 2K (0x800) */
1297
        val = 0;
1298
        if (cp->page_size == 0x1000)
1299
                val = 0x1;
1300
        else if (cp->page_size == 0x2000)
1301
                val = 0x2;
1302
        else if (cp->page_size == 0x4000)
1303
                val = 0x3;
1304
 
1305
        /* round mtu + offset. constrain to page size. */
1306
        size = cp->dev->mtu + 64;
1307
        if (size > cp->page_size)
1308
                size = cp->page_size;
1309
 
1310
        if (size <= 0x400)
1311
                i = 0x0;
1312
        else if (size <= 0x800)
1313
                i = 0x1;
1314
        else if (size <= 0x1000)
1315
                i = 0x2;
1316
        else
1317
                i = 0x3;
1318
 
1319
        cp->mtu_stride = 1 << (i + 10);
1320
        val  = CAS_BASE(RX_PAGE_SIZE, val);
1321
        val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1322
        val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1323
        val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1324
        writel(val, cp->regs + REG_RX_PAGE_SIZE);
1325
 
1326
        /* enable the header parser if desired */
1327
        if (CAS_HP_FIRMWARE == cas_prog_null)
1328
                return;
1329
 
1330
        val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1331
        val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1332
        val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1333
        writel(val, cp->regs + REG_HP_CFG);
1334
}
1335
 
1336
static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1337
{
1338
        memset(rxc, 0, sizeof(*rxc));
1339
        rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1340
}
1341
 
1342
/* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1343
 * flipping is protected by the fact that the chip will not
1344
 * hand back the same page index while it's being processed.
1345
 */
1346
static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1347
{
1348
        cas_page_t *page = cp->rx_pages[1][index];
1349
        cas_page_t *new;
1350
 
1351
        if (page_count(page->buffer) == 1)
1352
                return page;
1353
 
1354
        new = cas_page_dequeue(cp);
1355
        if (new) {
1356
                spin_lock(&cp->rx_inuse_lock);
1357
                list_add(&page->list, &cp->rx_inuse_list);
1358
                spin_unlock(&cp->rx_inuse_lock);
1359
        }
1360
        return new;
1361
}
1362
 
1363
/* this needs to be changed if we actually use the ENC RX DESC ring */
1364
static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1365
                                 const int index)
1366
{
1367
        cas_page_t **page0 = cp->rx_pages[0];
1368
        cas_page_t **page1 = cp->rx_pages[1];
1369
 
1370
        /* swap if buffer is in use */
1371
        if (page_count(page0[index]->buffer) > 1) {
1372
                cas_page_t *new = cas_page_spare(cp, index);
1373
                if (new) {
1374
                        page1[index] = page0[index];
1375
                        page0[index] = new;
1376
                }
1377
        }
1378
        RX_USED_SET(page0[index], 0);
1379
        return page0[index];
1380
}
1381
 
1382
static void cas_clean_rxds(struct cas *cp)
1383
{
1384
        /* only clean ring 0 as ring 1 is used for spare buffers */
1385
        struct cas_rx_desc *rxd = cp->init_rxds[0];
1386
        int i, size;
1387
 
1388
        /* release all rx flows */
1389
        for (i = 0; i < N_RX_FLOWS; i++) {
1390
                struct sk_buff *skb;
1391
                while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1392
                        cas_skb_release(skb);
1393
                }
1394
        }
1395
 
1396
        /* initialize descriptors */
1397
        size = RX_DESC_RINGN_SIZE(0);
1398
        for (i = 0; i < size; i++) {
1399
                cas_page_t *page = cas_page_swap(cp, 0, i);
1400
                rxd[i].buffer = cpu_to_le64(page->dma_addr);
1401
                rxd[i].index  = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1402
                                            CAS_BASE(RX_INDEX_RING, 0));
1403
        }
1404
 
1405
        cp->rx_old[0]  = RX_DESC_RINGN_SIZE(0) - 4;
1406
        cp->rx_last[0] = 0;
1407
        cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1408
}
1409
 
1410
static void cas_clean_rxcs(struct cas *cp)
1411
{
1412
        int i, j;
1413
 
1414
        /* take ownership of rx comp descriptors */
1415
        memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1416
        memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1417
        for (i = 0; i < N_RX_COMP_RINGS; i++) {
1418
                struct cas_rx_comp *rxc = cp->init_rxcs[i];
1419
                for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1420
                        cas_rxc_init(rxc + j);
1421
                }
1422
        }
1423
}
1424
 
1425
#if 0
1426
/* When we get a RX fifo overflow, the RX unit is probably hung
1427
 * so we do the following.
1428
 *
1429
 * If any part of the reset goes wrong, we return 1 and that causes the
1430
 * whole chip to be reset.
1431
 */
1432
static int cas_rxmac_reset(struct cas *cp)
1433
{
1434
        struct net_device *dev = cp->dev;
1435
        int limit;
1436
        u32 val;
1437
 
1438
        /* First, reset MAC RX. */
1439
        writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1440
        for (limit = 0; limit < STOP_TRIES; limit++) {
1441
                if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1442
                        break;
1443
                udelay(10);
1444
        }
1445
        if (limit == STOP_TRIES) {
1446
                printk(KERN_ERR "%s: RX MAC will not disable, resetting whole "
1447
                       "chip.\n", dev->name);
1448
                return 1;
1449
        }
1450
 
1451
        /* Second, disable RX DMA. */
1452
        writel(0, cp->regs + REG_RX_CFG);
1453
        for (limit = 0; limit < STOP_TRIES; limit++) {
1454
                if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1455
                        break;
1456
                udelay(10);
1457
        }
1458
        if (limit == STOP_TRIES) {
1459
                printk(KERN_ERR "%s: RX DMA will not disable, resetting whole "
1460
                       "chip.\n", dev->name);
1461
                return 1;
1462
        }
1463
 
1464
        mdelay(5);
1465
 
1466
        /* Execute RX reset command. */
1467
        writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1468
        for (limit = 0; limit < STOP_TRIES; limit++) {
1469
                if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1470
                        break;
1471
                udelay(10);
1472
        }
1473
        if (limit == STOP_TRIES) {
1474
                printk(KERN_ERR "%s: RX reset command will not execute, "
1475
                       "resetting whole chip.\n", dev->name);
1476
                return 1;
1477
        }
1478
 
1479
        /* reset driver rx state */
1480
        cas_clean_rxds(cp);
1481
        cas_clean_rxcs(cp);
1482
 
1483
        /* Now, reprogram the rest of RX unit. */
1484
        cas_init_rx_dma(cp);
1485
 
1486
        /* re-enable */
1487
        val = readl(cp->regs + REG_RX_CFG);
1488
        writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1489
        writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1490
        val = readl(cp->regs + REG_MAC_RX_CFG);
1491
        writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1492
        return 0;
1493
}
1494
#endif
1495
 
1496
static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1497
                               u32 status)
1498
{
1499
        u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1500
 
1501
        if (!stat)
1502
                return 0;
1503
 
1504
        if (netif_msg_intr(cp))
1505
                printk(KERN_DEBUG "%s: rxmac interrupt, stat: 0x%x\n",
1506
                        cp->dev->name, stat);
1507
 
1508
        /* these are all rollovers */
1509
        spin_lock(&cp->stat_lock[0]);
1510
        if (stat & MAC_RX_ALIGN_ERR)
1511
                cp->net_stats[0].rx_frame_errors += 0x10000;
1512
 
1513
        if (stat & MAC_RX_CRC_ERR)
1514
                cp->net_stats[0].rx_crc_errors += 0x10000;
1515
 
1516
        if (stat & MAC_RX_LEN_ERR)
1517
                cp->net_stats[0].rx_length_errors += 0x10000;
1518
 
1519
        if (stat & MAC_RX_OVERFLOW) {
1520
                cp->net_stats[0].rx_over_errors++;
1521
                cp->net_stats[0].rx_fifo_errors++;
1522
        }
1523
 
1524
        /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1525
         * events.
1526
         */
1527
        spin_unlock(&cp->stat_lock[0]);
1528
        return 0;
1529
}
1530
 
1531
static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1532
                             u32 status)
1533
{
1534
        u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1535
 
1536
        if (!stat)
1537
                return 0;
1538
 
1539
        if (netif_msg_intr(cp))
1540
                printk(KERN_DEBUG "%s: mac interrupt, stat: 0x%x\n",
1541
                        cp->dev->name, stat);
1542
 
1543
        /* This interrupt is just for pause frame and pause
1544
         * tracking.  It is useful for diagnostics and debug
1545
         * but probably by default we will mask these events.
1546
         */
1547
        if (stat & MAC_CTRL_PAUSE_STATE)
1548
                cp->pause_entered++;
1549
 
1550
        if (stat & MAC_CTRL_PAUSE_RECEIVED)
1551
                cp->pause_last_time_recvd = (stat >> 16);
1552
 
1553
        return 0;
1554
}
1555
 
1556
 
1557
/* Must be invoked under cp->lock. */
1558
static inline int cas_mdio_link_not_up(struct cas *cp)
1559
{
1560
        u16 val;
1561
 
1562
        switch (cp->lstate) {
1563
        case link_force_ret:
1564
                if (netif_msg_link(cp))
1565
                        printk(KERN_INFO "%s: Autoneg failed again, keeping"
1566
                                " forced mode\n", cp->dev->name);
1567
                cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1568
                cp->timer_ticks = 5;
1569
                cp->lstate = link_force_ok;
1570
                cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1571
                break;
1572
 
1573
        case link_aneg:
1574
                val = cas_phy_read(cp, MII_BMCR);
1575
 
1576
                /* Try forced modes. we try things in the following order:
1577
                 * 1000 full -> 100 full/half -> 10 half
1578
                 */
1579
                val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1580
                val |= BMCR_FULLDPLX;
1581
                val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1582
                        CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1583
                cas_phy_write(cp, MII_BMCR, val);
1584
                cp->timer_ticks = 5;
1585
                cp->lstate = link_force_try;
1586
                cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1587
                break;
1588
 
1589
        case link_force_try:
1590
                /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1591
                val = cas_phy_read(cp, MII_BMCR);
1592
                cp->timer_ticks = 5;
1593
                if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1594
                        val &= ~CAS_BMCR_SPEED1000;
1595
                        val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1596
                        cas_phy_write(cp, MII_BMCR, val);
1597
                        break;
1598
                }
1599
 
1600
                if (val & BMCR_SPEED100) {
1601
                        if (val & BMCR_FULLDPLX) /* fd failed */
1602
                                val &= ~BMCR_FULLDPLX;
1603
                        else { /* 100Mbps failed */
1604
                                val &= ~BMCR_SPEED100;
1605
                        }
1606
                        cas_phy_write(cp, MII_BMCR, val);
1607
                        break;
1608
                }
1609
        default:
1610
                break;
1611
        }
1612
        return 0;
1613
}
1614
 
1615
 
1616
/* must be invoked with cp->lock held */
1617
static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1618
{
1619
        int restart;
1620
 
1621
        if (bmsr & BMSR_LSTATUS) {
1622
                /* Ok, here we got a link. If we had it due to a forced
1623
                 * fallback, and we were configured for autoneg, we
1624
                 * retry a short autoneg pass. If you know your hub is
1625
                 * broken, use ethtool ;)
1626
                 */
1627
                if ((cp->lstate == link_force_try) &&
1628
                    (cp->link_cntl & BMCR_ANENABLE)) {
1629
                        cp->lstate = link_force_ret;
1630
                        cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1631
                        cas_mif_poll(cp, 0);
1632
                        cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1633
                        cp->timer_ticks = 5;
1634
                        if (cp->opened && netif_msg_link(cp))
1635
                                printk(KERN_INFO "%s: Got link after fallback, retrying"
1636
                                       " autoneg once...\n", cp->dev->name);
1637
                        cas_phy_write(cp, MII_BMCR,
1638
                                      cp->link_fcntl | BMCR_ANENABLE |
1639
                                      BMCR_ANRESTART);
1640
                        cas_mif_poll(cp, 1);
1641
 
1642
                } else if (cp->lstate != link_up) {
1643
                        cp->lstate = link_up;
1644
                        cp->link_transition = LINK_TRANSITION_LINK_UP;
1645
 
1646
                        if (cp->opened) {
1647
                                cas_set_link_modes(cp);
1648
                                netif_carrier_on(cp->dev);
1649
                        }
1650
                }
1651
                return 0;
1652
        }
1653
 
1654
        /* link not up. if the link was previously up, we restart the
1655
         * whole process
1656
         */
1657
        restart = 0;
1658
        if (cp->lstate == link_up) {
1659
                cp->lstate = link_down;
1660
                cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1661
 
1662
                netif_carrier_off(cp->dev);
1663
                if (cp->opened && netif_msg_link(cp))
1664
                        printk(KERN_INFO "%s: Link down\n",
1665
                               cp->dev->name);
1666
                restart = 1;
1667
 
1668
        } else if (++cp->timer_ticks > 10)
1669
                cas_mdio_link_not_up(cp);
1670
 
1671
        return restart;
1672
}
1673
 
1674
static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1675
                             u32 status)
1676
{
1677
        u32 stat = readl(cp->regs + REG_MIF_STATUS);
1678
        u16 bmsr;
1679
 
1680
        /* check for a link change */
1681
        if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1682
                return 0;
1683
 
1684
        bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1685
        return cas_mii_link_check(cp, bmsr);
1686
}
1687
 
1688
static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1689
                             u32 status)
1690
{
1691
        u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1692
 
1693
        if (!stat)
1694
                return 0;
1695
 
1696
        printk(KERN_ERR "%s: PCI error [%04x:%04x] ", dev->name, stat,
1697
               readl(cp->regs + REG_BIM_DIAG));
1698
 
1699
        /* cassini+ has this reserved */
1700
        if ((stat & PCI_ERR_BADACK) &&
1701
            ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1702
                printk("<No ACK64# during ABS64 cycle> ");
1703
 
1704
        if (stat & PCI_ERR_DTRTO)
1705
                printk("<Delayed transaction timeout> ");
1706
        if (stat & PCI_ERR_OTHER)
1707
                printk("<other> ");
1708
        if (stat & PCI_ERR_BIM_DMA_WRITE)
1709
                printk("<BIM DMA 0 write req> ");
1710
        if (stat & PCI_ERR_BIM_DMA_READ)
1711
                printk("<BIM DMA 0 read req> ");
1712
        printk("\n");
1713
 
1714
        if (stat & PCI_ERR_OTHER) {
1715
                u16 cfg;
1716
 
1717
                /* Interrogate PCI config space for the
1718
                 * true cause.
1719
                 */
1720
                pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1721
                printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n",
1722
                       dev->name, cfg);
1723
                if (cfg & PCI_STATUS_PARITY)
1724
                        printk(KERN_ERR "%s: PCI parity error detected.\n",
1725
                               dev->name);
1726
                if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1727
                        printk(KERN_ERR "%s: PCI target abort.\n",
1728
                               dev->name);
1729
                if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1730
                        printk(KERN_ERR "%s: PCI master acks target abort.\n",
1731
                               dev->name);
1732
                if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1733
                        printk(KERN_ERR "%s: PCI master abort.\n", dev->name);
1734
                if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1735
                        printk(KERN_ERR "%s: PCI system error SERR#.\n",
1736
                               dev->name);
1737
                if (cfg & PCI_STATUS_DETECTED_PARITY)
1738
                        printk(KERN_ERR "%s: PCI parity error.\n",
1739
                               dev->name);
1740
 
1741
                /* Write the error bits back to clear them. */
1742
                cfg &= (PCI_STATUS_PARITY |
1743
                        PCI_STATUS_SIG_TARGET_ABORT |
1744
                        PCI_STATUS_REC_TARGET_ABORT |
1745
                        PCI_STATUS_REC_MASTER_ABORT |
1746
                        PCI_STATUS_SIG_SYSTEM_ERROR |
1747
                        PCI_STATUS_DETECTED_PARITY);
1748
                pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1749
        }
1750
 
1751
        /* For all PCI errors, we should reset the chip. */
1752
        return 1;
1753
}
1754
 
1755
/* All non-normal interrupt conditions get serviced here.
1756
 * Returns non-zero if we should just exit the interrupt
1757
 * handler right now (ie. if we reset the card which invalidates
1758
 * all of the other original irq status bits).
1759
 */
1760
static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1761
                            u32 status)
1762
{
1763
        if (status & INTR_RX_TAG_ERROR) {
1764
                /* corrupt RX tag framing */
1765
                if (netif_msg_rx_err(cp))
1766
                        printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
1767
                                cp->dev->name);
1768
                spin_lock(&cp->stat_lock[0]);
1769
                cp->net_stats[0].rx_errors++;
1770
                spin_unlock(&cp->stat_lock[0]);
1771
                goto do_reset;
1772
        }
1773
 
1774
        if (status & INTR_RX_LEN_MISMATCH) {
1775
                /* length mismatch. */
1776
                if (netif_msg_rx_err(cp))
1777
                        printk(KERN_DEBUG "%s: length mismatch for rx frame\n",
1778
                                cp->dev->name);
1779
                spin_lock(&cp->stat_lock[0]);
1780
                cp->net_stats[0].rx_errors++;
1781
                spin_unlock(&cp->stat_lock[0]);
1782
                goto do_reset;
1783
        }
1784
 
1785
        if (status & INTR_PCS_STATUS) {
1786
                if (cas_pcs_interrupt(dev, cp, status))
1787
                        goto do_reset;
1788
        }
1789
 
1790
        if (status & INTR_TX_MAC_STATUS) {
1791
                if (cas_txmac_interrupt(dev, cp, status))
1792
                        goto do_reset;
1793
        }
1794
 
1795
        if (status & INTR_RX_MAC_STATUS) {
1796
                if (cas_rxmac_interrupt(dev, cp, status))
1797
                        goto do_reset;
1798
        }
1799
 
1800
        if (status & INTR_MAC_CTRL_STATUS) {
1801
                if (cas_mac_interrupt(dev, cp, status))
1802
                        goto do_reset;
1803
        }
1804
 
1805
        if (status & INTR_MIF_STATUS) {
1806
                if (cas_mif_interrupt(dev, cp, status))
1807
                        goto do_reset;
1808
        }
1809
 
1810
        if (status & INTR_PCI_ERROR_STATUS) {
1811
                if (cas_pci_interrupt(dev, cp, status))
1812
                        goto do_reset;
1813
        }
1814
        return 0;
1815
 
1816
do_reset:
1817
#if 1
1818
        atomic_inc(&cp->reset_task_pending);
1819
        atomic_inc(&cp->reset_task_pending_all);
1820
        printk(KERN_ERR "%s:reset called in cas_abnormal_irq [0x%x]\n",
1821
               dev->name, status);
1822
        schedule_work(&cp->reset_task);
1823
#else
1824
        atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1825
        printk(KERN_ERR "reset called in cas_abnormal_irq\n");
1826
        schedule_work(&cp->reset_task);
1827
#endif
1828
        return 1;
1829
}
1830
 
1831
/* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1832
 *       determining whether to do a netif_stop/wakeup
1833
 */
1834
#define CAS_TABORT(x)      (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1835
#define CAS_ROUND_PAGE(x)  (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1836
static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1837
                                  const int len)
1838
{
1839
        unsigned long off = addr + len;
1840
 
1841
        if (CAS_TABORT(cp) == 1)
1842
                return 0;
1843
        if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1844
                return 0;
1845
        return TX_TARGET_ABORT_LEN;
1846
}
1847
 
1848
static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1849
{
1850
        struct cas_tx_desc *txds;
1851
        struct sk_buff **skbs;
1852
        struct net_device *dev = cp->dev;
1853
        int entry, count;
1854
 
1855
        spin_lock(&cp->tx_lock[ring]);
1856
        txds = cp->init_txds[ring];
1857
        skbs = cp->tx_skbs[ring];
1858
        entry = cp->tx_old[ring];
1859
 
1860
        count = TX_BUFF_COUNT(ring, entry, limit);
1861
        while (entry != limit) {
1862
                struct sk_buff *skb = skbs[entry];
1863
                dma_addr_t daddr;
1864
                u32 dlen;
1865
                int frag;
1866
 
1867
                if (!skb) {
1868
                        /* this should never occur */
1869
                        entry = TX_DESC_NEXT(ring, entry);
1870
                        continue;
1871
                }
1872
 
1873
                /* however, we might get only a partial skb release. */
1874
                count -= skb_shinfo(skb)->nr_frags +
1875
                        + cp->tx_tiny_use[ring][entry].nbufs + 1;
1876
                if (count < 0)
1877
                        break;
1878
 
1879
                if (netif_msg_tx_done(cp))
1880
                        printk(KERN_DEBUG "%s: tx[%d] done, slot %d\n",
1881
                               cp->dev->name, ring, entry);
1882
 
1883
                skbs[entry] = NULL;
1884
                cp->tx_tiny_use[ring][entry].nbufs = 0;
1885
 
1886
                for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1887
                        struct cas_tx_desc *txd = txds + entry;
1888
 
1889
                        daddr = le64_to_cpu(txd->buffer);
1890
                        dlen = CAS_VAL(TX_DESC_BUFLEN,
1891
                                       le64_to_cpu(txd->control));
1892
                        pci_unmap_page(cp->pdev, daddr, dlen,
1893
                                       PCI_DMA_TODEVICE);
1894
                        entry = TX_DESC_NEXT(ring, entry);
1895
 
1896
                        /* tiny buffer may follow */
1897
                        if (cp->tx_tiny_use[ring][entry].used) {
1898
                                cp->tx_tiny_use[ring][entry].used = 0;
1899
                                entry = TX_DESC_NEXT(ring, entry);
1900
                        }
1901
                }
1902
 
1903
                spin_lock(&cp->stat_lock[ring]);
1904
                cp->net_stats[ring].tx_packets++;
1905
                cp->net_stats[ring].tx_bytes += skb->len;
1906
                spin_unlock(&cp->stat_lock[ring]);
1907
                dev_kfree_skb_irq(skb);
1908
        }
1909
        cp->tx_old[ring] = entry;
1910
 
1911
        /* this is wrong for multiple tx rings. the net device needs
1912
         * multiple queues for this to do the right thing.  we wait
1913
         * for 2*packets to be available when using tiny buffers
1914
         */
1915
        if (netif_queue_stopped(dev) &&
1916
            (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1917
                netif_wake_queue(dev);
1918
        spin_unlock(&cp->tx_lock[ring]);
1919
}
1920
 
1921
static void cas_tx(struct net_device *dev, struct cas *cp,
1922
                   u32 status)
1923
{
1924
        int limit, ring;
1925
#ifdef USE_TX_COMPWB
1926
        u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1927
#endif
1928
        if (netif_msg_intr(cp))
1929
                printk(KERN_DEBUG "%s: tx interrupt, status: 0x%x, %llx\n",
1930
                        cp->dev->name, status, (unsigned long long)compwb);
1931
        /* process all the rings */
1932
        for (ring = 0; ring < N_TX_RINGS; ring++) {
1933
#ifdef USE_TX_COMPWB
1934
                /* use the completion writeback registers */
1935
                limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1936
                        CAS_VAL(TX_COMPWB_LSB, compwb);
1937
                compwb = TX_COMPWB_NEXT(compwb);
1938
#else
1939
                limit = readl(cp->regs + REG_TX_COMPN(ring));
1940
#endif
1941
                if (cp->tx_old[ring] != limit)
1942
                        cas_tx_ringN(cp, ring, limit);
1943
        }
1944
}
1945
 
1946
 
1947
static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1948
                              int entry, const u64 *words,
1949
                              struct sk_buff **skbref)
1950
{
1951
        int dlen, hlen, len, i, alloclen;
1952
        int off, swivel = RX_SWIVEL_OFF_VAL;
1953
        struct cas_page *page;
1954
        struct sk_buff *skb;
1955
        void *addr, *crcaddr;
1956
        __sum16 csum;
1957
        char *p;
1958
 
1959
        hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1960
        dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1961
        len  = hlen + dlen;
1962
 
1963
        if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1964
                alloclen = len;
1965
        else
1966
                alloclen = max(hlen, RX_COPY_MIN);
1967
 
1968
        skb = dev_alloc_skb(alloclen + swivel + cp->crc_size);
1969
        if (skb == NULL)
1970
                return -1;
1971
 
1972
        *skbref = skb;
1973
        skb_reserve(skb, swivel);
1974
 
1975
        p = skb->data;
1976
        addr = crcaddr = NULL;
1977
        if (hlen) { /* always copy header pages */
1978
                i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1979
                page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1980
                off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1981
                        swivel;
1982
 
1983
                i = hlen;
1984
                if (!dlen) /* attach FCS */
1985
                        i += cp->crc_size;
1986
                pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
1987
                                    PCI_DMA_FROMDEVICE);
1988
                addr = cas_page_map(page->buffer);
1989
                memcpy(p, addr + off, i);
1990
                pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
1991
                                    PCI_DMA_FROMDEVICE);
1992
                cas_page_unmap(addr);
1993
                RX_USED_ADD(page, 0x100);
1994
                p += hlen;
1995
                swivel = 0;
1996
        }
1997
 
1998
 
1999
        if (alloclen < (hlen + dlen)) {
2000
                skb_frag_t *frag = skb_shinfo(skb)->frags;
2001
 
2002
                /* normal or jumbo packets. we use frags */
2003
                i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2004
                page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2005
                off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2006
 
2007
                hlen = min(cp->page_size - off, dlen);
2008
                if (hlen < 0) {
2009
                        if (netif_msg_rx_err(cp)) {
2010
                                printk(KERN_DEBUG "%s: rx page overflow: "
2011
                                       "%d\n", cp->dev->name, hlen);
2012
                        }
2013
                        dev_kfree_skb_irq(skb);
2014
                        return -1;
2015
                }
2016
                i = hlen;
2017
                if (i == dlen)  /* attach FCS */
2018
                        i += cp->crc_size;
2019
                pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2020
                                    PCI_DMA_FROMDEVICE);
2021
 
2022
                /* make sure we always copy a header */
2023
                swivel = 0;
2024
                if (p == (char *) skb->data) { /* not split */
2025
                        addr = cas_page_map(page->buffer);
2026
                        memcpy(p, addr + off, RX_COPY_MIN);
2027
                        pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2028
                                        PCI_DMA_FROMDEVICE);
2029
                        cas_page_unmap(addr);
2030
                        off += RX_COPY_MIN;
2031
                        swivel = RX_COPY_MIN;
2032
                        RX_USED_ADD(page, cp->mtu_stride);
2033
                } else {
2034
                        RX_USED_ADD(page, hlen);
2035
                }
2036
                skb_put(skb, alloclen);
2037
 
2038
                skb_shinfo(skb)->nr_frags++;
2039
                skb->data_len += hlen - swivel;
2040
                skb->truesize += hlen - swivel;
2041
                skb->len      += hlen - swivel;
2042
 
2043
                get_page(page->buffer);
2044
                frag->page = page->buffer;
2045
                frag->page_offset = off;
2046
                frag->size = hlen - swivel;
2047
 
2048
                /* any more data? */
2049
                if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2050
                        hlen = dlen;
2051
                        off = 0;
2052
 
2053
                        i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2054
                        page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2055
                        pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2056
                                            hlen + cp->crc_size,
2057
                                            PCI_DMA_FROMDEVICE);
2058
                        pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2059
                                            hlen + cp->crc_size,
2060
                                            PCI_DMA_FROMDEVICE);
2061
 
2062
                        skb_shinfo(skb)->nr_frags++;
2063
                        skb->data_len += hlen;
2064
                        skb->len      += hlen;
2065
                        frag++;
2066
 
2067
                        get_page(page->buffer);
2068
                        frag->page = page->buffer;
2069
                        frag->page_offset = 0;
2070
                        frag->size = hlen;
2071
                        RX_USED_ADD(page, hlen + cp->crc_size);
2072
                }
2073
 
2074
                if (cp->crc_size) {
2075
                        addr = cas_page_map(page->buffer);
2076
                        crcaddr  = addr + off + hlen;
2077
                }
2078
 
2079
        } else {
2080
                /* copying packet */
2081
                if (!dlen)
2082
                        goto end_copy_pkt;
2083
 
2084
                i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2085
                page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2086
                off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2087
                hlen = min(cp->page_size - off, dlen);
2088
                if (hlen < 0) {
2089
                        if (netif_msg_rx_err(cp)) {
2090
                                printk(KERN_DEBUG "%s: rx page overflow: "
2091
                                       "%d\n", cp->dev->name, hlen);
2092
                        }
2093
                        dev_kfree_skb_irq(skb);
2094
                        return -1;
2095
                }
2096
                i = hlen;
2097
                if (i == dlen) /* attach FCS */
2098
                        i += cp->crc_size;
2099
                pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2100
                                    PCI_DMA_FROMDEVICE);
2101
                addr = cas_page_map(page->buffer);
2102
                memcpy(p, addr + off, i);
2103
                pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2104
                                    PCI_DMA_FROMDEVICE);
2105
                cas_page_unmap(addr);
2106
                if (p == (char *) skb->data) /* not split */
2107
                        RX_USED_ADD(page, cp->mtu_stride);
2108
                else
2109
                        RX_USED_ADD(page, i);
2110
 
2111
                /* any more data? */
2112
                if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2113
                        p += hlen;
2114
                        i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2115
                        page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2116
                        pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2117
                                            dlen + cp->crc_size,
2118
                                            PCI_DMA_FROMDEVICE);
2119
                        addr = cas_page_map(page->buffer);
2120
                        memcpy(p, addr, dlen + cp->crc_size);
2121
                        pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2122
                                            dlen + cp->crc_size,
2123
                                            PCI_DMA_FROMDEVICE);
2124
                        cas_page_unmap(addr);
2125
                        RX_USED_ADD(page, dlen + cp->crc_size);
2126
                }
2127
end_copy_pkt:
2128
                if (cp->crc_size) {
2129
                        addr    = NULL;
2130
                        crcaddr = skb->data + alloclen;
2131
                }
2132
                skb_put(skb, alloclen);
2133
        }
2134
 
2135
        csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2136
        if (cp->crc_size) {
2137
                /* checksum includes FCS. strip it out. */
2138
                csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2139
                                              csum_unfold(csum)));
2140
                if (addr)
2141
                        cas_page_unmap(addr);
2142
        }
2143
        skb->csum = csum_unfold(~csum);
2144
        skb->ip_summed = CHECKSUM_COMPLETE;
2145
        skb->protocol = eth_type_trans(skb, cp->dev);
2146
        return len;
2147
}
2148
 
2149
 
2150
/* we can handle up to 64 rx flows at a time. we do the same thing
2151
 * as nonreassm except that we batch up the buffers.
2152
 * NOTE: we currently just treat each flow as a bunch of packets that
2153
 *       we pass up. a better way would be to coalesce the packets
2154
 *       into a jumbo packet. to do that, we need to do the following:
2155
 *       1) the first packet will have a clean split between header and
2156
 *          data. save both.
2157
 *       2) each time the next flow packet comes in, extend the
2158
 *          data length and merge the checksums.
2159
 *       3) on flow release, fix up the header.
2160
 *       4) make sure the higher layer doesn't care.
2161
 * because packets get coalesced, we shouldn't run into fragment count
2162
 * issues.
2163
 */
2164
static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2165
                                   struct sk_buff *skb)
2166
{
2167
        int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2168
        struct sk_buff_head *flow = &cp->rx_flows[flowid];
2169
 
2170
        /* this is protected at a higher layer, so no need to
2171
         * do any additional locking here. stick the buffer
2172
         * at the end.
2173
         */
2174
        __skb_insert(skb, flow->prev, (struct sk_buff *) flow, flow);
2175
        if (words[0] & RX_COMP1_RELEASE_FLOW) {
2176
                while ((skb = __skb_dequeue(flow))) {
2177
                        cas_skb_release(skb);
2178
                }
2179
        }
2180
}
2181
 
2182
/* put rx descriptor back on ring. if a buffer is in use by a higher
2183
 * layer, this will need to put in a replacement.
2184
 */
2185
static void cas_post_page(struct cas *cp, const int ring, const int index)
2186
{
2187
        cas_page_t *new;
2188
        int entry;
2189
 
2190
        entry = cp->rx_old[ring];
2191
 
2192
        new = cas_page_swap(cp, ring, index);
2193
        cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2194
        cp->init_rxds[ring][entry].index  =
2195
                cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2196
                            CAS_BASE(RX_INDEX_RING, ring));
2197
 
2198
        entry = RX_DESC_ENTRY(ring, entry + 1);
2199
        cp->rx_old[ring] = entry;
2200
 
2201
        if (entry % 4)
2202
                return;
2203
 
2204
        if (ring == 0)
2205
                writel(entry, cp->regs + REG_RX_KICK);
2206
        else if ((N_RX_DESC_RINGS > 1) &&
2207
                 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2208
                writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2209
}
2210
 
2211
 
2212
/* only when things are bad */
2213
static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2214
{
2215
        unsigned int entry, last, count, released;
2216
        int cluster;
2217
        cas_page_t **page = cp->rx_pages[ring];
2218
 
2219
        entry = cp->rx_old[ring];
2220
 
2221
        if (netif_msg_intr(cp))
2222
                printk(KERN_DEBUG "%s: rxd[%d] interrupt, done: %d\n",
2223
                       cp->dev->name, ring, entry);
2224
 
2225
        cluster = -1;
2226
        count = entry & 0x3;
2227
        last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2228
        released = 0;
2229
        while (entry != last) {
2230
                /* make a new buffer if it's still in use */
2231
                if (page_count(page[entry]->buffer) > 1) {
2232
                        cas_page_t *new = cas_page_dequeue(cp);
2233
                        if (!new) {
2234
                                /* let the timer know that we need to
2235
                                 * do this again
2236
                                 */
2237
                                cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2238
                                if (!timer_pending(&cp->link_timer))
2239
                                        mod_timer(&cp->link_timer, jiffies +
2240
                                                  CAS_LINK_FAST_TIMEOUT);
2241
                                cp->rx_old[ring]  = entry;
2242
                                cp->rx_last[ring] = num ? num - released : 0;
2243
                                return -ENOMEM;
2244
                        }
2245
                        spin_lock(&cp->rx_inuse_lock);
2246
                        list_add(&page[entry]->list, &cp->rx_inuse_list);
2247
                        spin_unlock(&cp->rx_inuse_lock);
2248
                        cp->init_rxds[ring][entry].buffer =
2249
                                cpu_to_le64(new->dma_addr);
2250
                        page[entry] = new;
2251
 
2252
                }
2253
 
2254
                if (++count == 4) {
2255
                        cluster = entry;
2256
                        count = 0;
2257
                }
2258
                released++;
2259
                entry = RX_DESC_ENTRY(ring, entry + 1);
2260
        }
2261
        cp->rx_old[ring] = entry;
2262
 
2263
        if (cluster < 0)
2264
                return 0;
2265
 
2266
        if (ring == 0)
2267
                writel(cluster, cp->regs + REG_RX_KICK);
2268
        else if ((N_RX_DESC_RINGS > 1) &&
2269
                 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2270
                writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2271
        return 0;
2272
}
2273
 
2274
 
2275
/* process a completion ring. packets are set up in three basic ways:
2276
 * small packets: should be copied header + data in single buffer.
2277
 * large packets: header and data in a single buffer.
2278
 * split packets: header in a separate buffer from data.
2279
 *                data may be in multiple pages. data may be > 256
2280
 *                bytes but in a single page.
2281
 *
2282
 * NOTE: RX page posting is done in this routine as well. while there's
2283
 *       the capability of using multiple RX completion rings, it isn't
2284
 *       really worthwhile due to the fact that the page posting will
2285
 *       force serialization on the single descriptor ring.
2286
 */
2287
static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2288
{
2289
        struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2290
        int entry, drops;
2291
        int npackets = 0;
2292
 
2293
        if (netif_msg_intr(cp))
2294
                printk(KERN_DEBUG "%s: rx[%d] interrupt, done: %d/%d\n",
2295
                       cp->dev->name, ring,
2296
                       readl(cp->regs + REG_RX_COMP_HEAD),
2297
                       cp->rx_new[ring]);
2298
 
2299
        entry = cp->rx_new[ring];
2300
        drops = 0;
2301
        while (1) {
2302
                struct cas_rx_comp *rxc = rxcs + entry;
2303
                struct sk_buff *skb;
2304
                int type, len;
2305
                u64 words[4];
2306
                int i, dring;
2307
 
2308
                words[0] = le64_to_cpu(rxc->word1);
2309
                words[1] = le64_to_cpu(rxc->word2);
2310
                words[2] = le64_to_cpu(rxc->word3);
2311
                words[3] = le64_to_cpu(rxc->word4);
2312
 
2313
                /* don't touch if still owned by hw */
2314
                type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2315
                if (type == 0)
2316
                        break;
2317
 
2318
                /* hw hasn't cleared the zero bit yet */
2319
                if (words[3] & RX_COMP4_ZERO) {
2320
                        break;
2321
                }
2322
 
2323
                /* get info on the packet */
2324
                if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2325
                        spin_lock(&cp->stat_lock[ring]);
2326
                        cp->net_stats[ring].rx_errors++;
2327
                        if (words[3] & RX_COMP4_LEN_MISMATCH)
2328
                                cp->net_stats[ring].rx_length_errors++;
2329
                        if (words[3] & RX_COMP4_BAD)
2330
                                cp->net_stats[ring].rx_crc_errors++;
2331
                        spin_unlock(&cp->stat_lock[ring]);
2332
 
2333
                        /* We'll just return it to Cassini. */
2334
                drop_it:
2335
                        spin_lock(&cp->stat_lock[ring]);
2336
                        ++cp->net_stats[ring].rx_dropped;
2337
                        spin_unlock(&cp->stat_lock[ring]);
2338
                        goto next;
2339
                }
2340
 
2341
                len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2342
                if (len < 0) {
2343
                        ++drops;
2344
                        goto drop_it;
2345
                }
2346
 
2347
                /* see if it's a flow re-assembly or not. the driver
2348
                 * itself handles release back up.
2349
                 */
2350
                if (RX_DONT_BATCH || (type == 0x2)) {
2351
                        /* non-reassm: these always get released */
2352
                        cas_skb_release(skb);
2353
                } else {
2354
                        cas_rx_flow_pkt(cp, words, skb);
2355
                }
2356
 
2357
                spin_lock(&cp->stat_lock[ring]);
2358
                cp->net_stats[ring].rx_packets++;
2359
                cp->net_stats[ring].rx_bytes += len;
2360
                spin_unlock(&cp->stat_lock[ring]);
2361
                cp->dev->last_rx = jiffies;
2362
 
2363
        next:
2364
                npackets++;
2365
 
2366
                /* should it be released? */
2367
                if (words[0] & RX_COMP1_RELEASE_HDR) {
2368
                        i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2369
                        dring = CAS_VAL(RX_INDEX_RING, i);
2370
                        i = CAS_VAL(RX_INDEX_NUM, i);
2371
                        cas_post_page(cp, dring, i);
2372
                }
2373
 
2374
                if (words[0] & RX_COMP1_RELEASE_DATA) {
2375
                        i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2376
                        dring = CAS_VAL(RX_INDEX_RING, i);
2377
                        i = CAS_VAL(RX_INDEX_NUM, i);
2378
                        cas_post_page(cp, dring, i);
2379
                }
2380
 
2381
                if (words[0] & RX_COMP1_RELEASE_NEXT) {
2382
                        i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2383
                        dring = CAS_VAL(RX_INDEX_RING, i);
2384
                        i = CAS_VAL(RX_INDEX_NUM, i);
2385
                        cas_post_page(cp, dring, i);
2386
                }
2387
 
2388
                /* skip to the next entry */
2389
                entry = RX_COMP_ENTRY(ring, entry + 1 +
2390
                                      CAS_VAL(RX_COMP1_SKIP, words[0]));
2391
#ifdef USE_NAPI
2392
                if (budget && (npackets >= budget))
2393
                        break;
2394
#endif
2395
        }
2396
        cp->rx_new[ring] = entry;
2397
 
2398
        if (drops)
2399
                printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
2400
                       cp->dev->name);
2401
        return npackets;
2402
}
2403
 
2404
 
2405
/* put completion entries back on the ring */
2406
static void cas_post_rxcs_ringN(struct net_device *dev,
2407
                                struct cas *cp, int ring)
2408
{
2409
        struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2410
        int last, entry;
2411
 
2412
        last = cp->rx_cur[ring];
2413
        entry = cp->rx_new[ring];
2414
        if (netif_msg_intr(cp))
2415
                printk(KERN_DEBUG "%s: rxc[%d] interrupt, done: %d/%d\n",
2416
                       dev->name, ring, readl(cp->regs + REG_RX_COMP_HEAD),
2417
                       entry);
2418
 
2419
        /* zero and re-mark descriptors */
2420
        while (last != entry) {
2421
                cas_rxc_init(rxc + last);
2422
                last = RX_COMP_ENTRY(ring, last + 1);
2423
        }
2424
        cp->rx_cur[ring] = last;
2425
 
2426
        if (ring == 0)
2427
                writel(last, cp->regs + REG_RX_COMP_TAIL);
2428
        else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2429
                writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2430
}
2431
 
2432
 
2433
 
2434
/* cassini can use all four PCI interrupts for the completion ring.
2435
 * rings 3 and 4 are identical
2436
 */
2437
#if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2438
static inline void cas_handle_irqN(struct net_device *dev,
2439
                                   struct cas *cp, const u32 status,
2440
                                   const int ring)
2441
{
2442
        if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2443
                cas_post_rxcs_ringN(dev, cp, ring);
2444
}
2445
 
2446
static irqreturn_t cas_interruptN(int irq, void *dev_id)
2447
{
2448
        struct net_device *dev = dev_id;
2449
        struct cas *cp = netdev_priv(dev);
2450
        unsigned long flags;
2451
        int ring;
2452
        u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2453
 
2454
        /* check for shared irq */
2455
        if (status == 0)
2456
                return IRQ_NONE;
2457
 
2458
        ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2459
        spin_lock_irqsave(&cp->lock, flags);
2460
        if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2461
#ifdef USE_NAPI
2462
                cas_mask_intr(cp);
2463
                netif_rx_schedule(dev, &cp->napi);
2464
#else
2465
                cas_rx_ringN(cp, ring, 0);
2466
#endif
2467
                status &= ~INTR_RX_DONE_ALT;
2468
        }
2469
 
2470
        if (status)
2471
                cas_handle_irqN(dev, cp, status, ring);
2472
        spin_unlock_irqrestore(&cp->lock, flags);
2473
        return IRQ_HANDLED;
2474
}
2475
#endif
2476
 
2477
#ifdef USE_PCI_INTB
2478
/* everything but rx packets */
2479
static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2480
{
2481
        if (status & INTR_RX_BUF_UNAVAIL_1) {
2482
                /* Frame arrived, no free RX buffers available.
2483
                 * NOTE: we can get this on a link transition. */
2484
                cas_post_rxds_ringN(cp, 1, 0);
2485
                spin_lock(&cp->stat_lock[1]);
2486
                cp->net_stats[1].rx_dropped++;
2487
                spin_unlock(&cp->stat_lock[1]);
2488
        }
2489
 
2490
        if (status & INTR_RX_BUF_AE_1)
2491
                cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2492
                                    RX_AE_FREEN_VAL(1));
2493
 
2494
        if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2495
                cas_post_rxcs_ringN(cp, 1);
2496
}
2497
 
2498
/* ring 2 handles a few more events than 3 and 4 */
2499
static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2500
{
2501
        struct net_device *dev = dev_id;
2502
        struct cas *cp = netdev_priv(dev);
2503
        unsigned long flags;
2504
        u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2505
 
2506
        /* check for shared interrupt */
2507
        if (status == 0)
2508
                return IRQ_NONE;
2509
 
2510
        spin_lock_irqsave(&cp->lock, flags);
2511
        if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2512
#ifdef USE_NAPI
2513
                cas_mask_intr(cp);
2514
                netif_rx_schedule(dev, &cp->napi);
2515
#else
2516
                cas_rx_ringN(cp, 1, 0);
2517
#endif
2518
                status &= ~INTR_RX_DONE_ALT;
2519
        }
2520
        if (status)
2521
                cas_handle_irq1(cp, status);
2522
        spin_unlock_irqrestore(&cp->lock, flags);
2523
        return IRQ_HANDLED;
2524
}
2525
#endif
2526
 
2527
static inline void cas_handle_irq(struct net_device *dev,
2528
                                  struct cas *cp, const u32 status)
2529
{
2530
        /* housekeeping interrupts */
2531
        if (status & INTR_ERROR_MASK)
2532
                cas_abnormal_irq(dev, cp, status);
2533
 
2534
        if (status & INTR_RX_BUF_UNAVAIL) {
2535
                /* Frame arrived, no free RX buffers available.
2536
                 * NOTE: we can get this on a link transition.
2537
                 */
2538
                cas_post_rxds_ringN(cp, 0, 0);
2539
                spin_lock(&cp->stat_lock[0]);
2540
                cp->net_stats[0].rx_dropped++;
2541
                spin_unlock(&cp->stat_lock[0]);
2542
        } else if (status & INTR_RX_BUF_AE) {
2543
                cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2544
                                    RX_AE_FREEN_VAL(0));
2545
        }
2546
 
2547
        if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2548
                cas_post_rxcs_ringN(dev, cp, 0);
2549
}
2550
 
2551
static irqreturn_t cas_interrupt(int irq, void *dev_id)
2552
{
2553
        struct net_device *dev = dev_id;
2554
        struct cas *cp = netdev_priv(dev);
2555
        unsigned long flags;
2556
        u32 status = readl(cp->regs + REG_INTR_STATUS);
2557
 
2558
        if (status == 0)
2559
                return IRQ_NONE;
2560
 
2561
        spin_lock_irqsave(&cp->lock, flags);
2562
        if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2563
                cas_tx(dev, cp, status);
2564
                status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2565
        }
2566
 
2567
        if (status & INTR_RX_DONE) {
2568
#ifdef USE_NAPI
2569
                cas_mask_intr(cp);
2570
                netif_rx_schedule(dev, &cp->napi);
2571
#else
2572
                cas_rx_ringN(cp, 0, 0);
2573
#endif
2574
                status &= ~INTR_RX_DONE;
2575
        }
2576
 
2577
        if (status)
2578
                cas_handle_irq(dev, cp, status);
2579
        spin_unlock_irqrestore(&cp->lock, flags);
2580
        return IRQ_HANDLED;
2581
}
2582
 
2583
 
2584
#ifdef USE_NAPI
2585
static int cas_poll(struct napi_struct *napi, int budget)
2586
{
2587
        struct cas *cp = container_of(napi, struct cas, napi);
2588
        struct net_device *dev = cp->dev;
2589
        int i, enable_intr, credits;
2590
        u32 status = readl(cp->regs + REG_INTR_STATUS);
2591
        unsigned long flags;
2592
 
2593
        spin_lock_irqsave(&cp->lock, flags);
2594
        cas_tx(dev, cp, status);
2595
        spin_unlock_irqrestore(&cp->lock, flags);
2596
 
2597
        /* NAPI rx packets. we spread the credits across all of the
2598
         * rxc rings
2599
         *
2600
         * to make sure we're fair with the work we loop through each
2601
         * ring N_RX_COMP_RING times with a request of
2602
         * budget / N_RX_COMP_RINGS
2603
         */
2604
        enable_intr = 1;
2605
        credits = 0;
2606
        for (i = 0; i < N_RX_COMP_RINGS; i++) {
2607
                int j;
2608
                for (j = 0; j < N_RX_COMP_RINGS; j++) {
2609
                        credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2610
                        if (credits >= budget) {
2611
                                enable_intr = 0;
2612
                                goto rx_comp;
2613
                        }
2614
                }
2615
        }
2616
 
2617
rx_comp:
2618
        /* final rx completion */
2619
        spin_lock_irqsave(&cp->lock, flags);
2620
        if (status)
2621
                cas_handle_irq(dev, cp, status);
2622
 
2623
#ifdef USE_PCI_INTB
2624
        if (N_RX_COMP_RINGS > 1) {
2625
                status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2626
                if (status)
2627
                        cas_handle_irq1(dev, cp, status);
2628
        }
2629
#endif
2630
 
2631
#ifdef USE_PCI_INTC
2632
        if (N_RX_COMP_RINGS > 2) {
2633
                status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2634
                if (status)
2635
                        cas_handle_irqN(dev, cp, status, 2);
2636
        }
2637
#endif
2638
 
2639
#ifdef USE_PCI_INTD
2640
        if (N_RX_COMP_RINGS > 3) {
2641
                status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2642
                if (status)
2643
                        cas_handle_irqN(dev, cp, status, 3);
2644
        }
2645
#endif
2646
        spin_unlock_irqrestore(&cp->lock, flags);
2647
        if (enable_intr) {
2648
                netif_rx_complete(dev, napi);
2649
                cas_unmask_intr(cp);
2650
        }
2651
        return credits;
2652
}
2653
#endif
2654
 
2655
#ifdef CONFIG_NET_POLL_CONTROLLER
2656
static void cas_netpoll(struct net_device *dev)
2657
{
2658
        struct cas *cp = netdev_priv(dev);
2659
 
2660
        cas_disable_irq(cp, 0);
2661
        cas_interrupt(cp->pdev->irq, dev);
2662
        cas_enable_irq(cp, 0);
2663
 
2664
#ifdef USE_PCI_INTB
2665
        if (N_RX_COMP_RINGS > 1) {
2666
                /* cas_interrupt1(); */
2667
        }
2668
#endif
2669
#ifdef USE_PCI_INTC
2670
        if (N_RX_COMP_RINGS > 2) {
2671
                /* cas_interruptN(); */
2672
        }
2673
#endif
2674
#ifdef USE_PCI_INTD
2675
        if (N_RX_COMP_RINGS > 3) {
2676
                /* cas_interruptN(); */
2677
        }
2678
#endif
2679
}
2680
#endif
2681
 
2682
static void cas_tx_timeout(struct net_device *dev)
2683
{
2684
        struct cas *cp = netdev_priv(dev);
2685
 
2686
        printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2687
        if (!cp->hw_running) {
2688
                printk("%s: hrm.. hw not running!\n", dev->name);
2689
                return;
2690
        }
2691
 
2692
        printk(KERN_ERR "%s: MIF_STATE[%08x]\n",
2693
               dev->name, readl(cp->regs + REG_MIF_STATE_MACHINE));
2694
 
2695
        printk(KERN_ERR "%s: MAC_STATE[%08x]\n",
2696
               dev->name, readl(cp->regs + REG_MAC_STATE_MACHINE));
2697
 
2698
        printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x] "
2699
               "FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2700
               dev->name,
2701
               readl(cp->regs + REG_TX_CFG),
2702
               readl(cp->regs + REG_MAC_TX_STATUS),
2703
               readl(cp->regs + REG_MAC_TX_CFG),
2704
               readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2705
               readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2706
               readl(cp->regs + REG_TX_FIFO_READ_PTR),
2707
               readl(cp->regs + REG_TX_SM_1),
2708
               readl(cp->regs + REG_TX_SM_2));
2709
 
2710
        printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n",
2711
               dev->name,
2712
               readl(cp->regs + REG_RX_CFG),
2713
               readl(cp->regs + REG_MAC_RX_STATUS),
2714
               readl(cp->regs + REG_MAC_RX_CFG));
2715
 
2716
        printk(KERN_ERR "%s: HP_STATE[%08x:%08x:%08x:%08x]\n",
2717
               dev->name,
2718
               readl(cp->regs + REG_HP_STATE_MACHINE),
2719
               readl(cp->regs + REG_HP_STATUS0),
2720
               readl(cp->regs + REG_HP_STATUS1),
2721
               readl(cp->regs + REG_HP_STATUS2));
2722
 
2723
#if 1
2724
        atomic_inc(&cp->reset_task_pending);
2725
        atomic_inc(&cp->reset_task_pending_all);
2726
        schedule_work(&cp->reset_task);
2727
#else
2728
        atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2729
        schedule_work(&cp->reset_task);
2730
#endif
2731
}
2732
 
2733
static inline int cas_intme(int ring, int entry)
2734
{
2735
        /* Algorithm: IRQ every 1/2 of descriptors. */
2736
        if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2737
                return 1;
2738
        return 0;
2739
}
2740
 
2741
 
2742
static void cas_write_txd(struct cas *cp, int ring, int entry,
2743
                          dma_addr_t mapping, int len, u64 ctrl, int last)
2744
{
2745
        struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2746
 
2747
        ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2748
        if (cas_intme(ring, entry))
2749
                ctrl |= TX_DESC_INTME;
2750
        if (last)
2751
                ctrl |= TX_DESC_EOF;
2752
        txd->control = cpu_to_le64(ctrl);
2753
        txd->buffer = cpu_to_le64(mapping);
2754
}
2755
 
2756
static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2757
                                const int entry)
2758
{
2759
        return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2760
}
2761
 
2762
static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2763
                                     const int entry, const int tentry)
2764
{
2765
        cp->tx_tiny_use[ring][tentry].nbufs++;
2766
        cp->tx_tiny_use[ring][entry].used = 1;
2767
        return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2768
}
2769
 
2770
static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2771
                                    struct sk_buff *skb)
2772
{
2773
        struct net_device *dev = cp->dev;
2774
        int entry, nr_frags, frag, tabort, tentry;
2775
        dma_addr_t mapping;
2776
        unsigned long flags;
2777
        u64 ctrl;
2778
        u32 len;
2779
 
2780
        spin_lock_irqsave(&cp->tx_lock[ring], flags);
2781
 
2782
        /* This is a hard error, log it. */
2783
        if (TX_BUFFS_AVAIL(cp, ring) <=
2784
            CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2785
                netif_stop_queue(dev);
2786
                spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2787
                printk(KERN_ERR PFX "%s: BUG! Tx Ring full when "
2788
                       "queue awake!\n", dev->name);
2789
                return 1;
2790
        }
2791
 
2792
        ctrl = 0;
2793
        if (skb->ip_summed == CHECKSUM_PARTIAL) {
2794
                const u64 csum_start_off = skb_transport_offset(skb);
2795
                const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2796
 
2797
                ctrl =  TX_DESC_CSUM_EN |
2798
                        CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2799
                        CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2800
        }
2801
 
2802
        entry = cp->tx_new[ring];
2803
        cp->tx_skbs[ring][entry] = skb;
2804
 
2805
        nr_frags = skb_shinfo(skb)->nr_frags;
2806
        len = skb_headlen(skb);
2807
        mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2808
                               offset_in_page(skb->data), len,
2809
                               PCI_DMA_TODEVICE);
2810
 
2811
        tentry = entry;
2812
        tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2813
        if (unlikely(tabort)) {
2814
                /* NOTE: len is always >  tabort */
2815
                cas_write_txd(cp, ring, entry, mapping, len - tabort,
2816
                              ctrl | TX_DESC_SOF, 0);
2817
                entry = TX_DESC_NEXT(ring, entry);
2818
 
2819
                skb_copy_from_linear_data_offset(skb, len - tabort,
2820
                              tx_tiny_buf(cp, ring, entry), tabort);
2821
                mapping = tx_tiny_map(cp, ring, entry, tentry);
2822
                cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2823
                              (nr_frags == 0));
2824
        } else {
2825
                cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2826
                              TX_DESC_SOF, (nr_frags == 0));
2827
        }
2828
        entry = TX_DESC_NEXT(ring, entry);
2829
 
2830
        for (frag = 0; frag < nr_frags; frag++) {
2831
                skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2832
 
2833
                len = fragp->size;
2834
                mapping = pci_map_page(cp->pdev, fragp->page,
2835
                                       fragp->page_offset, len,
2836
                                       PCI_DMA_TODEVICE);
2837
 
2838
                tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2839
                if (unlikely(tabort)) {
2840
                        void *addr;
2841
 
2842
                        /* NOTE: len is always > tabort */
2843
                        cas_write_txd(cp, ring, entry, mapping, len - tabort,
2844
                                      ctrl, 0);
2845
                        entry = TX_DESC_NEXT(ring, entry);
2846
 
2847
                        addr = cas_page_map(fragp->page);
2848
                        memcpy(tx_tiny_buf(cp, ring, entry),
2849
                               addr + fragp->page_offset + len - tabort,
2850
                               tabort);
2851
                        cas_page_unmap(addr);
2852
                        mapping = tx_tiny_map(cp, ring, entry, tentry);
2853
                        len     = tabort;
2854
                }
2855
 
2856
                cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2857
                              (frag + 1 == nr_frags));
2858
                entry = TX_DESC_NEXT(ring, entry);
2859
        }
2860
 
2861
        cp->tx_new[ring] = entry;
2862
        if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2863
                netif_stop_queue(dev);
2864
 
2865
        if (netif_msg_tx_queued(cp))
2866
                printk(KERN_DEBUG "%s: tx[%d] queued, slot %d, skblen %d, "
2867
                       "avail %d\n",
2868
                       dev->name, ring, entry, skb->len,
2869
                       TX_BUFFS_AVAIL(cp, ring));
2870
        writel(entry, cp->regs + REG_TX_KICKN(ring));
2871
        spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2872
        return 0;
2873
}
2874
 
2875
static int cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2876
{
2877
        struct cas *cp = netdev_priv(dev);
2878
 
2879
        /* this is only used as a load-balancing hint, so it doesn't
2880
         * need to be SMP safe
2881
         */
2882
        static int ring;
2883
 
2884
        if (skb_padto(skb, cp->min_frame_size))
2885
                return 0;
2886
 
2887
        /* XXX: we need some higher-level QoS hooks to steer packets to
2888
         *      individual queues.
2889
         */
2890
        if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2891
                return 1;
2892
        dev->trans_start = jiffies;
2893
        return 0;
2894
}
2895
 
2896
static void cas_init_tx_dma(struct cas *cp)
2897
{
2898
        u64 desc_dma = cp->block_dvma;
2899
        unsigned long off;
2900
        u32 val;
2901
        int i;
2902
 
2903
        /* set up tx completion writeback registers. must be 8-byte aligned */
2904
#ifdef USE_TX_COMPWB
2905
        off = offsetof(struct cas_init_block, tx_compwb);
2906
        writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2907
        writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2908
#endif
2909
 
2910
        /* enable completion writebacks, enable paced mode,
2911
         * disable read pipe, and disable pre-interrupt compwbs
2912
         */
2913
        val =   TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2914
                TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2915
                TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2916
                TX_CFG_INTR_COMPWB_DIS;
2917
 
2918
        /* write out tx ring info and tx desc bases */
2919
        for (i = 0; i < MAX_TX_RINGS; i++) {
2920
                off = (unsigned long) cp->init_txds[i] -
2921
                        (unsigned long) cp->init_block;
2922
 
2923
                val |= CAS_TX_RINGN_BASE(i);
2924
                writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2925
                writel((desc_dma + off) & 0xffffffff, cp->regs +
2926
                       REG_TX_DBN_LOW(i));
2927
                /* don't zero out the kick register here as the system
2928
                 * will wedge
2929
                 */
2930
        }
2931
        writel(val, cp->regs + REG_TX_CFG);
2932
 
2933
        /* program max burst sizes. these numbers should be different
2934
         * if doing QoS.
2935
         */
2936
#ifdef USE_QOS
2937
        writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2938
        writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2939
        writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2940
        writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2941
#else
2942
        writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2943
        writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2944
        writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2945
        writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2946
#endif
2947
}
2948
 
2949
/* Must be invoked under cp->lock. */
2950
static inline void cas_init_dma(struct cas *cp)
2951
{
2952
        cas_init_tx_dma(cp);
2953
        cas_init_rx_dma(cp);
2954
}
2955
 
2956
/* Must be invoked under cp->lock. */
2957
static u32 cas_setup_multicast(struct cas *cp)
2958
{
2959
        u32 rxcfg = 0;
2960
        int i;
2961
 
2962
        if (cp->dev->flags & IFF_PROMISC) {
2963
                rxcfg |= MAC_RX_CFG_PROMISC_EN;
2964
 
2965
        } else if (cp->dev->flags & IFF_ALLMULTI) {
2966
                for (i=0; i < 16; i++)
2967
                        writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2968
                rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2969
 
2970
        } else {
2971
                u16 hash_table[16];
2972
                u32 crc;
2973
                struct dev_mc_list *dmi = cp->dev->mc_list;
2974
                int i;
2975
 
2976
                /* use the alternate mac address registers for the
2977
                 * first 15 multicast addresses
2978
                 */
2979
                for (i = 1; i <= CAS_MC_EXACT_MATCH_SIZE; i++) {
2980
                        if (!dmi) {
2981
                                writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 0));
2982
                                writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 1));
2983
                                writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 2));
2984
                                continue;
2985
                        }
2986
                        writel((dmi->dmi_addr[4] << 8) | dmi->dmi_addr[5],
2987
                               cp->regs + REG_MAC_ADDRN(i*3 + 0));
2988
                        writel((dmi->dmi_addr[2] << 8) | dmi->dmi_addr[3],
2989
                               cp->regs + REG_MAC_ADDRN(i*3 + 1));
2990
                        writel((dmi->dmi_addr[0] << 8) | dmi->dmi_addr[1],
2991
                               cp->regs + REG_MAC_ADDRN(i*3 + 2));
2992
                        dmi = dmi->next;
2993
                }
2994
 
2995
                /* use hw hash table for the next series of
2996
                 * multicast addresses
2997
                 */
2998
                memset(hash_table, 0, sizeof(hash_table));
2999
                while (dmi) {
3000
                        crc = ether_crc_le(ETH_ALEN, dmi->dmi_addr);
3001
                        crc >>= 24;
3002
                        hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
3003
                        dmi = dmi->next;
3004
                }
3005
                for (i=0; i < 16; i++)
3006
                        writel(hash_table[i], cp->regs +
3007
                               REG_MAC_HASH_TABLEN(i));
3008
                rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3009
        }
3010
 
3011
        return rxcfg;
3012
}
3013
 
3014
/* must be invoked under cp->stat_lock[N_TX_RINGS] */
3015
static void cas_clear_mac_err(struct cas *cp)
3016
{
3017
        writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3018
        writel(0, cp->regs + REG_MAC_COLL_FIRST);
3019
        writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3020
        writel(0, cp->regs + REG_MAC_COLL_LATE);
3021
        writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3022
        writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3023
        writel(0, cp->regs + REG_MAC_RECV_FRAME);
3024
        writel(0, cp->regs + REG_MAC_LEN_ERR);
3025
        writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3026
        writel(0, cp->regs + REG_MAC_FCS_ERR);
3027
        writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3028
}
3029
 
3030
 
3031
static void cas_mac_reset(struct cas *cp)
3032
{
3033
        int i;
3034
 
3035
        /* do both TX and RX reset */
3036
        writel(0x1, cp->regs + REG_MAC_TX_RESET);
3037
        writel(0x1, cp->regs + REG_MAC_RX_RESET);
3038
 
3039
        /* wait for TX */
3040
        i = STOP_TRIES;
3041
        while (i-- > 0) {
3042
                if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3043
                        break;
3044
                udelay(10);
3045
        }
3046
 
3047
        /* wait for RX */
3048
        i = STOP_TRIES;
3049
        while (i-- > 0) {
3050
                if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3051
                        break;
3052
                udelay(10);
3053
        }
3054
 
3055
        if (readl(cp->regs + REG_MAC_TX_RESET) |
3056
            readl(cp->regs + REG_MAC_RX_RESET))
3057
                printk(KERN_ERR "%s: mac tx[%d]/rx[%d] reset failed [%08x]\n",
3058
                       cp->dev->name, readl(cp->regs + REG_MAC_TX_RESET),
3059
                       readl(cp->regs + REG_MAC_RX_RESET),
3060
                       readl(cp->regs + REG_MAC_STATE_MACHINE));
3061
}
3062
 
3063
 
3064
/* Must be invoked under cp->lock. */
3065
static void cas_init_mac(struct cas *cp)
3066
{
3067
        unsigned char *e = &cp->dev->dev_addr[0];
3068
        int i;
3069
#ifdef CONFIG_CASSINI_MULTICAST_REG_WRITE
3070
        u32 rxcfg;
3071
#endif
3072
        cas_mac_reset(cp);
3073
 
3074
        /* setup core arbitration weight register */
3075
        writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3076
 
3077
        /* XXX Use pci_dma_burst_advice() */
3078
#if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3079
        /* set the infinite burst register for chips that don't have
3080
         * pci issues.
3081
         */
3082
        if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3083
                writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3084
#endif
3085
 
3086
        writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3087
 
3088
        writel(0x00, cp->regs + REG_MAC_IPG0);
3089
        writel(0x08, cp->regs + REG_MAC_IPG1);
3090
        writel(0x04, cp->regs + REG_MAC_IPG2);
3091
 
3092
        /* change later for 802.3z */
3093
        writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3094
 
3095
        /* min frame + FCS */
3096
        writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3097
 
3098
        /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3099
         * specify the maximum frame size to prevent RX tag errors on
3100
         * oversized frames.
3101
         */
3102
        writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3103
               CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3104
                        (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3105
               cp->regs + REG_MAC_FRAMESIZE_MAX);
3106
 
3107
        /* NOTE: crc_size is used as a surrogate for half-duplex.
3108
         * workaround saturn half-duplex issue by increasing preamble
3109
         * size to 65 bytes.
3110
         */
3111
        if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3112
                writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3113
        else
3114
                writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3115
        writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3116
        writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3117
        writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3118
 
3119
        writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3120
 
3121
        writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3122
        writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3123
        writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3124
        writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3125
        writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3126
 
3127
        /* setup mac address in perfect filter array */
3128
        for (i = 0; i < 45; i++)
3129
                writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3130
 
3131
        writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3132
        writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3133
        writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3134
 
3135
        writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3136
        writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3137
        writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3138
 
3139
#ifndef CONFIG_CASSINI_MULTICAST_REG_WRITE
3140
        cp->mac_rx_cfg = cas_setup_multicast(cp);
3141
#else
3142
        /* WTZ: Do what Adrian did in cas_set_multicast. Doing
3143
         * a writel does not seem to be necessary because Cassini
3144
         * seems to preserve the configuration when we do the reset.
3145
         * If the chip is in trouble, though, it is not clear if we
3146
         * can really count on this behavior. cas_set_multicast uses
3147
         * spin_lock_irqsave, but we are called only in cas_init_hw and
3148
         * cas_init_hw is protected by cas_lock_all, which calls
3149
         * spin_lock_irq (so it doesn't need to save the flags, and
3150
         * we should be OK for the writel, as that is the only
3151
         * difference).
3152
         */
3153
        cp->mac_rx_cfg = rxcfg = cas_setup_multicast(cp);
3154
        writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
3155
#endif
3156
        spin_lock(&cp->stat_lock[N_TX_RINGS]);
3157
        cas_clear_mac_err(cp);
3158
        spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3159
 
3160
        /* Setup MAC interrupts.  We want to get all of the interesting
3161
         * counter expiration events, but we do not want to hear about
3162
         * normal rx/tx as the DMA engine tells us that.
3163
         */
3164
        writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3165
        writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3166
 
3167
        /* Don't enable even the PAUSE interrupts for now, we
3168
         * make no use of those events other than to record them.
3169
         */
3170
        writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3171
}
3172
 
3173
/* Must be invoked under cp->lock. */
3174
static void cas_init_pause_thresholds(struct cas *cp)
3175
{
3176
        /* Calculate pause thresholds.  Setting the OFF threshold to the
3177
         * full RX fifo size effectively disables PAUSE generation
3178
         */
3179
        if (cp->rx_fifo_size <= (2 * 1024)) {
3180
                cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3181
        } else {
3182
                int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3183
                if (max_frame * 3 > cp->rx_fifo_size) {
3184
                        cp->rx_pause_off = 7104;
3185
                        cp->rx_pause_on  = 960;
3186
                } else {
3187
                        int off = (cp->rx_fifo_size - (max_frame * 2));
3188
                        int on = off - max_frame;
3189
                        cp->rx_pause_off = off;
3190
                        cp->rx_pause_on = on;
3191
                }
3192
        }
3193
}
3194
 
3195
static int cas_vpd_match(const void __iomem *p, const char *str)
3196
{
3197
        int len = strlen(str) + 1;
3198
        int i;
3199
 
3200
        for (i = 0; i < len; i++) {
3201
                if (readb(p + i) != str[i])
3202
                        return 0;
3203
        }
3204
        return 1;
3205
}
3206
 
3207
 
3208
/* get the mac address by reading the vpd information in the rom.
3209
 * also get the phy type and determine if there's an entropy generator.
3210
 * NOTE: this is a bit convoluted for the following reasons:
3211
 *  1) vpd info has order-dependent mac addresses for multinic cards
3212
 *  2) the only way to determine the nic order is to use the slot
3213
 *     number.
3214
 *  3) fiber cards don't have bridges, so their slot numbers don't
3215
 *     mean anything.
3216
 *  4) we don't actually know we have a fiber card until after
3217
 *     the mac addresses are parsed.
3218
 */
3219
static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3220
                            const int offset)
3221
{
3222
        void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3223
        void __iomem *base, *kstart;
3224
        int i, len;
3225
        int found = 0;
3226
#define VPD_FOUND_MAC        0x01
3227
#define VPD_FOUND_PHY        0x02
3228
 
3229
        int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3230
        int mac_off  = 0;
3231
 
3232
        /* give us access to the PROM */
3233
        writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3234
               cp->regs + REG_BIM_LOCAL_DEV_EN);
3235
 
3236
        /* check for an expansion rom */
3237
        if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3238
                goto use_random_mac_addr;
3239
 
3240
        /* search for beginning of vpd */
3241
        base = NULL;
3242
        for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3243
                /* check for PCIR */
3244
                if ((readb(p + i + 0) == 0x50) &&
3245
                    (readb(p + i + 1) == 0x43) &&
3246
                    (readb(p + i + 2) == 0x49) &&
3247
                    (readb(p + i + 3) == 0x52)) {
3248
                        base = p + (readb(p + i + 8) |
3249
                                    (readb(p + i + 9) << 8));
3250
                        break;
3251
                }
3252
        }
3253
 
3254
        if (!base || (readb(base) != 0x82))
3255
                goto use_random_mac_addr;
3256
 
3257
        i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3258
        while (i < EXPANSION_ROM_SIZE) {
3259
                if (readb(base + i) != 0x90) /* no vpd found */
3260
                        goto use_random_mac_addr;
3261
 
3262
                /* found a vpd field */
3263
                len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3264
 
3265
                /* extract keywords */
3266
                kstart = base + i + 3;
3267
                p = kstart;
3268
                while ((p - kstart) < len) {
3269
                        int klen = readb(p + 2);
3270
                        int j;
3271
                        char type;
3272
 
3273
                        p += 3;
3274
 
3275
                        /* look for the following things:
3276
                         * -- correct length == 29
3277
                         * 3 (type) + 2 (size) +
3278
                         * 18 (strlen("local-mac-address") + 1) +
3279
                         * 6 (mac addr)
3280
                         * -- VPD Instance 'I'
3281
                         * -- VPD Type Bytes 'B'
3282
                         * -- VPD data length == 6
3283
                         * -- property string == local-mac-address
3284
                         *
3285
                         * -- correct length == 24
3286
                         * 3 (type) + 2 (size) +
3287
                         * 12 (strlen("entropy-dev") + 1) +
3288
                         * 7 (strlen("vms110") + 1)
3289
                         * -- VPD Instance 'I'
3290
                         * -- VPD Type String 'B'
3291
                         * -- VPD data length == 7
3292
                         * -- property string == entropy-dev
3293
                         *
3294
                         * -- correct length == 18
3295
                         * 3 (type) + 2 (size) +
3296
                         * 9 (strlen("phy-type") + 1) +
3297
                         * 4 (strlen("pcs") + 1)
3298
                         * -- VPD Instance 'I'
3299
                         * -- VPD Type String 'S'
3300
                         * -- VPD data length == 4
3301
                         * -- property string == phy-type
3302
                         *
3303
                         * -- correct length == 23
3304
                         * 3 (type) + 2 (size) +
3305
                         * 14 (strlen("phy-interface") + 1) +
3306
                         * 4 (strlen("pcs") + 1)
3307
                         * -- VPD Instance 'I'
3308
                         * -- VPD Type String 'S'
3309
                         * -- VPD data length == 4
3310
                         * -- property string == phy-interface
3311
                         */
3312
                        if (readb(p) != 'I')
3313
                                goto next;
3314
 
3315
                        /* finally, check string and length */
3316
                        type = readb(p + 3);
3317
                        if (type == 'B') {
3318
                                if ((klen == 29) && readb(p + 4) == 6 &&
3319
                                    cas_vpd_match(p + 5,
3320
                                                  "local-mac-address")) {
3321
                                        if (mac_off++ > offset)
3322
                                                goto next;
3323
 
3324
                                        /* set mac address */
3325
                                        for (j = 0; j < 6; j++)
3326
                                                dev_addr[j] =
3327
                                                        readb(p + 23 + j);
3328
                                        goto found_mac;
3329
                                }
3330
                        }
3331
 
3332
                        if (type != 'S')
3333
                                goto next;
3334
 
3335
#ifdef USE_ENTROPY_DEV
3336
                        if ((klen == 24) &&
3337
                            cas_vpd_match(p + 5, "entropy-dev") &&
3338
                            cas_vpd_match(p + 17, "vms110")) {
3339
                                cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3340
                                goto next;
3341
                        }
3342
#endif
3343
 
3344
                        if (found & VPD_FOUND_PHY)
3345
                                goto next;
3346
 
3347
                        if ((klen == 18) && readb(p + 4) == 4 &&
3348
                            cas_vpd_match(p + 5, "phy-type")) {
3349
                                if (cas_vpd_match(p + 14, "pcs")) {
3350
                                        phy_type = CAS_PHY_SERDES;
3351
                                        goto found_phy;
3352
                                }
3353
                        }
3354
 
3355
                        if ((klen == 23) && readb(p + 4) == 4 &&
3356
                            cas_vpd_match(p + 5, "phy-interface")) {
3357
                                if (cas_vpd_match(p + 19, "pcs")) {
3358
                                        phy_type = CAS_PHY_SERDES;
3359
                                        goto found_phy;
3360
                                }
3361
                        }
3362
found_mac:
3363
                        found |= VPD_FOUND_MAC;
3364
                        goto next;
3365
 
3366
found_phy:
3367
                        found |= VPD_FOUND_PHY;
3368
 
3369
next:
3370
                        p += klen;
3371
                }
3372
                i += len + 3;
3373
        }
3374
 
3375
use_random_mac_addr:
3376
        if (found & VPD_FOUND_MAC)
3377
                goto done;
3378
 
3379
        /* Sun MAC prefix then 3 random bytes. */
3380
        printk(PFX "MAC address not found in ROM VPD\n");
3381
        dev_addr[0] = 0x08;
3382
        dev_addr[1] = 0x00;
3383
        dev_addr[2] = 0x20;
3384
        get_random_bytes(dev_addr + 3, 3);
3385
 
3386
done:
3387
        writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3388
        return phy_type;
3389
}
3390
 
3391
/* check pci invariants */
3392
static void cas_check_pci_invariants(struct cas *cp)
3393
{
3394
        struct pci_dev *pdev = cp->pdev;
3395
 
3396
        cp->cas_flags = 0;
3397
        if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3398
            (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3399
                if (pdev->revision >= CAS_ID_REVPLUS)
3400
                        cp->cas_flags |= CAS_FLAG_REG_PLUS;
3401
                if (pdev->revision < CAS_ID_REVPLUS02u)
3402
                        cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3403
 
3404
                /* Original Cassini supports HW CSUM, but it's not
3405
                 * enabled by default as it can trigger TX hangs.
3406
                 */
3407
                if (pdev->revision < CAS_ID_REV2)
3408
                        cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3409
        } else {
3410
                /* Only sun has original cassini chips.  */
3411
                cp->cas_flags |= CAS_FLAG_REG_PLUS;
3412
 
3413
                /* We use a flag because the same phy might be externally
3414
                 * connected.
3415
                 */
3416
                if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3417
                    (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3418
                        cp->cas_flags |= CAS_FLAG_SATURN;
3419
        }
3420
}
3421
 
3422
 
3423
static int cas_check_invariants(struct cas *cp)
3424
{
3425
        struct pci_dev *pdev = cp->pdev;
3426
        u32 cfg;
3427
        int i;
3428
 
3429
        /* get page size for rx buffers. */
3430
        cp->page_order = 0;
3431
#ifdef USE_PAGE_ORDER
3432
        if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3433
                /* see if we can allocate larger pages */
3434
                struct page *page = alloc_pages(GFP_ATOMIC,
3435
                                                CAS_JUMBO_PAGE_SHIFT -
3436
                                                PAGE_SHIFT);
3437
                if (page) {
3438
                        __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3439
                        cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3440
                } else {
3441
                        printk(PFX "MTU limited to %d bytes\n", CAS_MAX_MTU);
3442
                }
3443
        }
3444
#endif
3445
        cp->page_size = (PAGE_SIZE << cp->page_order);
3446
 
3447
        /* Fetch the FIFO configurations. */
3448
        cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3449
        cp->rx_fifo_size = RX_FIFO_SIZE;
3450
 
3451
        /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3452
         * they're both connected.
3453
         */
3454
        cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3455
                                        PCI_SLOT(pdev->devfn));
3456
        if (cp->phy_type & CAS_PHY_SERDES) {
3457
                cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3458
                return 0; /* no more checking needed */
3459
        }
3460
 
3461
        /* MII */
3462
        cfg = readl(cp->regs + REG_MIF_CFG);
3463
        if (cfg & MIF_CFG_MDIO_1) {
3464
                cp->phy_type = CAS_PHY_MII_MDIO1;
3465
        } else if (cfg & MIF_CFG_MDIO_0) {
3466
                cp->phy_type = CAS_PHY_MII_MDIO0;
3467
        }
3468
 
3469
        cas_mif_poll(cp, 0);
3470
        writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3471
 
3472
        for (i = 0; i < 32; i++) {
3473
                u32 phy_id;
3474
                int j;
3475
 
3476
                for (j = 0; j < 3; j++) {
3477
                        cp->phy_addr = i;
3478
                        phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3479
                        phy_id |= cas_phy_read(cp, MII_PHYSID2);
3480
                        if (phy_id && (phy_id != 0xFFFFFFFF)) {
3481
                                cp->phy_id = phy_id;
3482
                                goto done;
3483
                        }
3484
                }
3485
        }
3486
        printk(KERN_ERR PFX "MII phy did not respond [%08x]\n",
3487
               readl(cp->regs + REG_MIF_STATE_MACHINE));
3488
        return -1;
3489
 
3490
done:
3491
        /* see if we can do gigabit */
3492
        cfg = cas_phy_read(cp, MII_BMSR);
3493
        if ((cfg & CAS_BMSR_1000_EXTEND) &&
3494
            cas_phy_read(cp, CAS_MII_1000_EXTEND))
3495
                cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3496
        return 0;
3497
}
3498
 
3499
/* Must be invoked under cp->lock. */
3500
static inline void cas_start_dma(struct cas *cp)
3501
{
3502
        int i;
3503
        u32 val;
3504
        int txfailed = 0;
3505
 
3506
        /* enable dma */
3507
        val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3508
        writel(val, cp->regs + REG_TX_CFG);
3509
        val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3510
        writel(val, cp->regs + REG_RX_CFG);
3511
 
3512
        /* enable the mac */
3513
        val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3514
        writel(val, cp->regs + REG_MAC_TX_CFG);
3515
        val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3516
        writel(val, cp->regs + REG_MAC_RX_CFG);
3517
 
3518
        i = STOP_TRIES;
3519
        while (i-- > 0) {
3520
                val = readl(cp->regs + REG_MAC_TX_CFG);
3521
                if ((val & MAC_TX_CFG_EN))
3522
                        break;
3523
                udelay(10);
3524
        }
3525
        if (i < 0) txfailed = 1;
3526
        i = STOP_TRIES;
3527
        while (i-- > 0) {
3528
                val = readl(cp->regs + REG_MAC_RX_CFG);
3529
                if ((val & MAC_RX_CFG_EN)) {
3530
                        if (txfailed) {
3531
                          printk(KERN_ERR
3532
                                 "%s: enabling mac failed [tx:%08x:%08x].\n",
3533
                                 cp->dev->name,
3534
                                 readl(cp->regs + REG_MIF_STATE_MACHINE),
3535
                                 readl(cp->regs + REG_MAC_STATE_MACHINE));
3536
                        }
3537
                        goto enable_rx_done;
3538
                }
3539
                udelay(10);
3540
        }
3541
        printk(KERN_ERR "%s: enabling mac failed [%s:%08x:%08x].\n",
3542
               cp->dev->name,
3543
               (txfailed? "tx,rx":"rx"),
3544
               readl(cp->regs + REG_MIF_STATE_MACHINE),
3545
               readl(cp->regs + REG_MAC_STATE_MACHINE));
3546
 
3547
enable_rx_done:
3548
        cas_unmask_intr(cp); /* enable interrupts */
3549
        writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3550
        writel(0, cp->regs + REG_RX_COMP_TAIL);
3551
 
3552
        if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3553
                if (N_RX_DESC_RINGS > 1)
3554
                        writel(RX_DESC_RINGN_SIZE(1) - 4,
3555
                               cp->regs + REG_PLUS_RX_KICK1);
3556
 
3557
                for (i = 1; i < N_RX_COMP_RINGS; i++)
3558
                        writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3559
        }
3560
}
3561
 
3562
/* Must be invoked under cp->lock. */
3563
static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3564
                                   int *pause)
3565
{
3566
        u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3567
        *fd     = (val & PCS_MII_LPA_FD) ? 1 : 0;
3568
        *pause  = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3569
        if (val & PCS_MII_LPA_ASYM_PAUSE)
3570
                *pause |= 0x10;
3571
        *spd = 1000;
3572
}
3573
 
3574
/* Must be invoked under cp->lock. */
3575
static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3576
                                   int *pause)
3577
{
3578
        u32 val;
3579
 
3580
        *fd = 0;
3581
        *spd = 10;
3582
        *pause = 0;
3583
 
3584
        /* use GMII registers */
3585
        val = cas_phy_read(cp, MII_LPA);
3586
        if (val & CAS_LPA_PAUSE)
3587
                *pause = 0x01;
3588
 
3589
        if (val & CAS_LPA_ASYM_PAUSE)
3590
                *pause |= 0x10;
3591
 
3592
        if (val & LPA_DUPLEX)
3593
                *fd = 1;
3594
        if (val & LPA_100)
3595
                *spd = 100;
3596
 
3597
        if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3598
                val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3599
                if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3600
                        *spd = 1000;
3601
                if (val & CAS_LPA_1000FULL)
3602
                        *fd = 1;
3603
        }
3604
}
3605
 
3606
/* A link-up condition has occurred, initialize and enable the
3607
 * rest of the chip.
3608
 *
3609
 * Must be invoked under cp->lock.
3610
 */
3611
static void cas_set_link_modes(struct cas *cp)
3612
{
3613
        u32 val;
3614
        int full_duplex, speed, pause;
3615
 
3616
        full_duplex = 0;
3617
        speed = 10;
3618
        pause = 0;
3619
 
3620
        if (CAS_PHY_MII(cp->phy_type)) {
3621
                cas_mif_poll(cp, 0);
3622
                val = cas_phy_read(cp, MII_BMCR);
3623
                if (val & BMCR_ANENABLE) {
3624
                        cas_read_mii_link_mode(cp, &full_duplex, &speed,
3625
                                               &pause);
3626
                } else {
3627
                        if (val & BMCR_FULLDPLX)
3628
                                full_duplex = 1;
3629
 
3630
                        if (val & BMCR_SPEED100)
3631
                                speed = 100;
3632
                        else if (val & CAS_BMCR_SPEED1000)
3633
                                speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3634
                                        1000 : 100;
3635
                }
3636
                cas_mif_poll(cp, 1);
3637
 
3638
        } else {
3639
                val = readl(cp->regs + REG_PCS_MII_CTRL);
3640
                cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3641
                if ((val & PCS_MII_AUTONEG_EN) == 0) {
3642
                        if (val & PCS_MII_CTRL_DUPLEX)
3643
                                full_duplex = 1;
3644
                }
3645
        }
3646
 
3647
        if (netif_msg_link(cp))
3648
                printk(KERN_INFO "%s: Link up at %d Mbps, %s-duplex.\n",
3649
                       cp->dev->name, speed, (full_duplex ? "full" : "half"));
3650
 
3651
        val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3652
        if (CAS_PHY_MII(cp->phy_type)) {
3653
                val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3654
                if (!full_duplex)
3655
                        val |= MAC_XIF_DISABLE_ECHO;
3656
        }
3657
        if (full_duplex)
3658
                val |= MAC_XIF_FDPLX_LED;
3659
        if (speed == 1000)
3660
                val |= MAC_XIF_GMII_MODE;
3661
        writel(val, cp->regs + REG_MAC_XIF_CFG);
3662
 
3663
        /* deal with carrier and collision detect. */
3664
        val = MAC_TX_CFG_IPG_EN;
3665
        if (full_duplex) {
3666
                val |= MAC_TX_CFG_IGNORE_CARRIER;
3667
                val |= MAC_TX_CFG_IGNORE_COLL;
3668
        } else {
3669
#ifndef USE_CSMA_CD_PROTO
3670
                val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3671
                val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3672
#endif
3673
        }
3674
        /* val now set up for REG_MAC_TX_CFG */
3675
 
3676
        /* If gigabit and half-duplex, enable carrier extension
3677
         * mode.  increase slot time to 512 bytes as well.
3678
         * else, disable it and make sure slot time is 64 bytes.
3679
         * also activate checksum bug workaround
3680
         */
3681
        if ((speed == 1000) && !full_duplex) {
3682
                writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3683
                       cp->regs + REG_MAC_TX_CFG);
3684
 
3685
                val = readl(cp->regs + REG_MAC_RX_CFG);
3686
                val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3687
                writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3688
                       cp->regs + REG_MAC_RX_CFG);
3689
 
3690
                writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3691
 
3692
                cp->crc_size = 4;
3693
                /* minimum size gigabit frame at half duplex */
3694
                cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3695
 
3696
        } else {
3697
                writel(val, cp->regs + REG_MAC_TX_CFG);
3698
 
3699
                /* checksum bug workaround. don't strip FCS when in
3700
                 * half-duplex mode
3701
                 */
3702
                val = readl(cp->regs + REG_MAC_RX_CFG);
3703
                if (full_duplex) {
3704
                        val |= MAC_RX_CFG_STRIP_FCS;
3705
                        cp->crc_size = 0;
3706
                        cp->min_frame_size = CAS_MIN_MTU;
3707
                } else {
3708
                        val &= ~MAC_RX_CFG_STRIP_FCS;
3709
                        cp->crc_size = 4;
3710
                        cp->min_frame_size = CAS_MIN_FRAME;
3711
                }
3712
                writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3713
                       cp->regs + REG_MAC_RX_CFG);
3714
                writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3715
        }
3716
 
3717
        if (netif_msg_link(cp)) {
3718
                if (pause & 0x01) {
3719
                        printk(KERN_INFO "%s: Pause is enabled "
3720
                               "(rxfifo: %d off: %d on: %d)\n",
3721
                               cp->dev->name,
3722
                               cp->rx_fifo_size,
3723
                               cp->rx_pause_off,
3724
                               cp->rx_pause_on);
3725
                } else if (pause & 0x10) {
3726
                        printk(KERN_INFO "%s: TX pause enabled\n",
3727
                               cp->dev->name);
3728
                } else {
3729
                        printk(KERN_INFO "%s: Pause is disabled\n",
3730
                               cp->dev->name);
3731
                }
3732
        }
3733
 
3734
        val = readl(cp->regs + REG_MAC_CTRL_CFG);
3735
        val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3736
        if (pause) { /* symmetric or asymmetric pause */
3737
                val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3738
                if (pause & 0x01) { /* symmetric pause */
3739
                        val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3740
                }
3741
        }
3742
        writel(val, cp->regs + REG_MAC_CTRL_CFG);
3743
        cas_start_dma(cp);
3744
}
3745
 
3746
/* Must be invoked under cp->lock. */
3747
static void cas_init_hw(struct cas *cp, int restart_link)
3748
{
3749
        if (restart_link)
3750
                cas_phy_init(cp);
3751
 
3752
        cas_init_pause_thresholds(cp);
3753
        cas_init_mac(cp);
3754
        cas_init_dma(cp);
3755
 
3756
        if (restart_link) {
3757
                /* Default aneg parameters */
3758
                cp->timer_ticks = 0;
3759
                cas_begin_auto_negotiation(cp, NULL);
3760
        } else if (cp->lstate == link_up) {
3761
                cas_set_link_modes(cp);
3762
                netif_carrier_on(cp->dev);
3763
        }
3764
}
3765
 
3766
/* Must be invoked under cp->lock. on earlier cassini boards,
3767
 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3768
 * let it settle out, and then restore pci state.
3769
 */
3770
static void cas_hard_reset(struct cas *cp)
3771
{
3772
        writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3773
        udelay(20);
3774
        pci_restore_state(cp->pdev);
3775
}
3776
 
3777
 
3778
static void cas_global_reset(struct cas *cp, int blkflag)
3779
{
3780
        int limit;
3781
 
3782
        /* issue a global reset. don't use RSTOUT. */
3783
        if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3784
                /* For PCS, when the blkflag is set, we should set the
3785
                 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3786
                 * the last autonegotiation from being cleared.  We'll
3787
                 * need some special handling if the chip is set into a
3788
                 * loopback mode.
3789
                 */
3790
                writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3791
                       cp->regs + REG_SW_RESET);
3792
        } else {
3793
                writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3794
        }
3795
 
3796
        /* need to wait at least 3ms before polling register */
3797
        mdelay(3);
3798
 
3799
        limit = STOP_TRIES;
3800
        while (limit-- > 0) {
3801
                u32 val = readl(cp->regs + REG_SW_RESET);
3802
                if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3803
                        goto done;
3804
                udelay(10);
3805
        }
3806
        printk(KERN_ERR "%s: sw reset failed.\n", cp->dev->name);
3807
 
3808
done:
3809
        /* enable various BIM interrupts */
3810
        writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3811
               BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3812
 
3813
        /* clear out pci error status mask for handled errors.
3814
         * we don't deal with DMA counter overflows as they happen
3815
         * all the time.
3816
         */
3817
        writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3818
                               PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3819
                               PCI_ERR_BIM_DMA_READ), cp->regs +
3820
               REG_PCI_ERR_STATUS_MASK);
3821
 
3822
        /* set up for MII by default to address mac rx reset timeout
3823
         * issue
3824
         */
3825
        writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3826
}
3827
 
3828
static void cas_reset(struct cas *cp, int blkflag)
3829
{
3830
        u32 val;
3831
 
3832
        cas_mask_intr(cp);
3833
        cas_global_reset(cp, blkflag);
3834
        cas_mac_reset(cp);
3835
        cas_entropy_reset(cp);
3836
 
3837
        /* disable dma engines. */
3838
        val = readl(cp->regs + REG_TX_CFG);
3839
        val &= ~TX_CFG_DMA_EN;
3840
        writel(val, cp->regs + REG_TX_CFG);
3841
 
3842
        val = readl(cp->regs + REG_RX_CFG);
3843
        val &= ~RX_CFG_DMA_EN;
3844
        writel(val, cp->regs + REG_RX_CFG);
3845
 
3846
        /* program header parser */
3847
        if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3848
            (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3849
                cas_load_firmware(cp, CAS_HP_FIRMWARE);
3850
        } else {
3851
                cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3852
        }
3853
 
3854
        /* clear out error registers */
3855
        spin_lock(&cp->stat_lock[N_TX_RINGS]);
3856
        cas_clear_mac_err(cp);
3857
        spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3858
}
3859
 
3860
/* Shut down the chip, must be called with pm_mutex held.  */
3861
static void cas_shutdown(struct cas *cp)
3862
{
3863
        unsigned long flags;
3864
 
3865
        /* Make us not-running to avoid timers respawning */
3866
        cp->hw_running = 0;
3867
 
3868
        del_timer_sync(&cp->link_timer);
3869
 
3870
        /* Stop the reset task */
3871
#if 0
3872
        while (atomic_read(&cp->reset_task_pending_mtu) ||
3873
               atomic_read(&cp->reset_task_pending_spare) ||
3874
               atomic_read(&cp->reset_task_pending_all))
3875
                schedule();
3876
 
3877
#else
3878
        while (atomic_read(&cp->reset_task_pending))
3879
                schedule();
3880
#endif
3881
        /* Actually stop the chip */
3882
        cas_lock_all_save(cp, flags);
3883
        cas_reset(cp, 0);
3884
        if (cp->cas_flags & CAS_FLAG_SATURN)
3885
                cas_phy_powerdown(cp);
3886
        cas_unlock_all_restore(cp, flags);
3887
}
3888
 
3889
static int cas_change_mtu(struct net_device *dev, int new_mtu)
3890
{
3891
        struct cas *cp = netdev_priv(dev);
3892
 
3893
        if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
3894
                return -EINVAL;
3895
 
3896
        dev->mtu = new_mtu;
3897
        if (!netif_running(dev) || !netif_device_present(dev))
3898
                return 0;
3899
 
3900
        /* let the reset task handle it */
3901
#if 1
3902
        atomic_inc(&cp->reset_task_pending);
3903
        if ((cp->phy_type & CAS_PHY_SERDES)) {
3904
                atomic_inc(&cp->reset_task_pending_all);
3905
        } else {
3906
                atomic_inc(&cp->reset_task_pending_mtu);
3907
        }
3908
        schedule_work(&cp->reset_task);
3909
#else
3910
        atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3911
                   CAS_RESET_ALL : CAS_RESET_MTU);
3912
        printk(KERN_ERR "reset called in cas_change_mtu\n");
3913
        schedule_work(&cp->reset_task);
3914
#endif
3915
 
3916
        flush_scheduled_work();
3917
        return 0;
3918
}
3919
 
3920
static void cas_clean_txd(struct cas *cp, int ring)
3921
{
3922
        struct cas_tx_desc *txd = cp->init_txds[ring];
3923
        struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3924
        u64 daddr, dlen;
3925
        int i, size;
3926
 
3927
        size = TX_DESC_RINGN_SIZE(ring);
3928
        for (i = 0; i < size; i++) {
3929
                int frag;
3930
 
3931
                if (skbs[i] == NULL)
3932
                        continue;
3933
 
3934
                skb = skbs[i];
3935
                skbs[i] = NULL;
3936
 
3937
                for (frag = 0; frag <= skb_shinfo(skb)->nr_frags;  frag++) {
3938
                        int ent = i & (size - 1);
3939
 
3940
                        /* first buffer is never a tiny buffer and so
3941
                         * needs to be unmapped.
3942
                         */
3943
                        daddr = le64_to_cpu(txd[ent].buffer);
3944
                        dlen  =  CAS_VAL(TX_DESC_BUFLEN,
3945
                                         le64_to_cpu(txd[ent].control));
3946
                        pci_unmap_page(cp->pdev, daddr, dlen,
3947
                                       PCI_DMA_TODEVICE);
3948
 
3949
                        if (frag != skb_shinfo(skb)->nr_frags) {
3950
                                i++;
3951
 
3952
                                /* next buffer might by a tiny buffer.
3953
                                 * skip past it.
3954
                                 */
3955
                                ent = i & (size - 1);
3956
                                if (cp->tx_tiny_use[ring][ent].used)
3957
                                        i++;
3958
                        }
3959
                }
3960
                dev_kfree_skb_any(skb);
3961
        }
3962
 
3963
        /* zero out tiny buf usage */
3964
        memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3965
}
3966
 
3967
/* freed on close */
3968
static inline void cas_free_rx_desc(struct cas *cp, int ring)
3969
{
3970
        cas_page_t **page = cp->rx_pages[ring];
3971
        int i, size;
3972
 
3973
        size = RX_DESC_RINGN_SIZE(ring);
3974
        for (i = 0; i < size; i++) {
3975
                if (page[i]) {
3976
                        cas_page_free(cp, page[i]);
3977
                        page[i] = NULL;
3978
                }
3979
        }
3980
}
3981
 
3982
static void cas_free_rxds(struct cas *cp)
3983
{
3984
        int i;
3985
 
3986
        for (i = 0; i < N_RX_DESC_RINGS; i++)
3987
                cas_free_rx_desc(cp, i);
3988
}
3989
 
3990
/* Must be invoked under cp->lock. */
3991
static void cas_clean_rings(struct cas *cp)
3992
{
3993
        int i;
3994
 
3995
        /* need to clean all tx rings */
3996
        memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3997
        memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3998
        for (i = 0; i < N_TX_RINGS; i++)
3999
                cas_clean_txd(cp, i);
4000
 
4001
        /* zero out init block */
4002
        memset(cp->init_block, 0, sizeof(struct cas_init_block));
4003
        cas_clean_rxds(cp);
4004
        cas_clean_rxcs(cp);
4005
}
4006
 
4007
/* allocated on open */
4008
static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
4009
{
4010
        cas_page_t **page = cp->rx_pages[ring];
4011
        int size, i = 0;
4012
 
4013
        size = RX_DESC_RINGN_SIZE(ring);
4014
        for (i = 0; i < size; i++) {
4015
                if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
4016
                        return -1;
4017
        }
4018
        return 0;
4019
}
4020
 
4021
static int cas_alloc_rxds(struct cas *cp)
4022
{
4023
        int i;
4024
 
4025
        for (i = 0; i < N_RX_DESC_RINGS; i++) {
4026
                if (cas_alloc_rx_desc(cp, i) < 0) {
4027
                        cas_free_rxds(cp);
4028
                        return -1;
4029
                }
4030
        }
4031
        return 0;
4032
}
4033
 
4034
static void cas_reset_task(struct work_struct *work)
4035
{
4036
        struct cas *cp = container_of(work, struct cas, reset_task);
4037
#if 0
4038
        int pending = atomic_read(&cp->reset_task_pending);
4039
#else
4040
        int pending_all = atomic_read(&cp->reset_task_pending_all);
4041
        int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4042
        int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4043
 
4044
        if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4045
                /* We can have more tasks scheduled than actually
4046
                 * needed.
4047
                 */
4048
                atomic_dec(&cp->reset_task_pending);
4049
                return;
4050
        }
4051
#endif
4052
        /* The link went down, we reset the ring, but keep
4053
         * DMA stopped. Use this function for reset
4054
         * on error as well.
4055
         */
4056
        if (cp->hw_running) {
4057
                unsigned long flags;
4058
 
4059
                /* Make sure we don't get interrupts or tx packets */
4060
                netif_device_detach(cp->dev);
4061
                cas_lock_all_save(cp, flags);
4062
 
4063
                if (cp->opened) {
4064
                        /* We call cas_spare_recover when we call cas_open.
4065
                         * but we do not initialize the lists cas_spare_recover
4066
                         * uses until cas_open is called.
4067
                         */
4068
                        cas_spare_recover(cp, GFP_ATOMIC);
4069
                }
4070
#if 1
4071
                /* test => only pending_spare set */
4072
                if (!pending_all && !pending_mtu)
4073
                        goto done;
4074
#else
4075
                if (pending == CAS_RESET_SPARE)
4076
                        goto done;
4077
#endif
4078
                /* when pending == CAS_RESET_ALL, the following
4079
                 * call to cas_init_hw will restart auto negotiation.
4080
                 * Setting the second argument of cas_reset to
4081
                 * !(pending == CAS_RESET_ALL) will set this argument
4082
                 * to 1 (avoiding reinitializing the PHY for the normal
4083
                 * PCS case) when auto negotiation is not restarted.
4084
                 */
4085
#if 1
4086
                cas_reset(cp, !(pending_all > 0));
4087
                if (cp->opened)
4088
                        cas_clean_rings(cp);
4089
                cas_init_hw(cp, (pending_all > 0));
4090
#else
4091
                cas_reset(cp, !(pending == CAS_RESET_ALL));
4092
                if (cp->opened)
4093
                        cas_clean_rings(cp);
4094
                cas_init_hw(cp, pending == CAS_RESET_ALL);
4095
#endif
4096
 
4097
done:
4098
                cas_unlock_all_restore(cp, flags);
4099
                netif_device_attach(cp->dev);
4100
        }
4101
#if 1
4102
        atomic_sub(pending_all, &cp->reset_task_pending_all);
4103
        atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4104
        atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4105
        atomic_dec(&cp->reset_task_pending);
4106
#else
4107
        atomic_set(&cp->reset_task_pending, 0);
4108
#endif
4109
}
4110
 
4111
static void cas_link_timer(unsigned long data)
4112
{
4113
        struct cas *cp = (struct cas *) data;
4114
        int mask, pending = 0, reset = 0;
4115
        unsigned long flags;
4116
 
4117
        if (link_transition_timeout != 0 &&
4118
            cp->link_transition_jiffies_valid &&
4119
            ((jiffies - cp->link_transition_jiffies) >
4120
              (link_transition_timeout))) {
4121
                /* One-second counter so link-down workaround doesn't
4122
                 * cause resets to occur so fast as to fool the switch
4123
                 * into thinking the link is down.
4124
                 */
4125
                cp->link_transition_jiffies_valid = 0;
4126
        }
4127
 
4128
        if (!cp->hw_running)
4129
                return;
4130
 
4131
        spin_lock_irqsave(&cp->lock, flags);
4132
        cas_lock_tx(cp);
4133
        cas_entropy_gather(cp);
4134
 
4135
        /* If the link task is still pending, we just
4136
         * reschedule the link timer
4137
         */
4138
#if 1
4139
        if (atomic_read(&cp->reset_task_pending_all) ||
4140
            atomic_read(&cp->reset_task_pending_spare) ||
4141
            atomic_read(&cp->reset_task_pending_mtu))
4142
                goto done;
4143
#else
4144
        if (atomic_read(&cp->reset_task_pending))
4145
                goto done;
4146
#endif
4147
 
4148
        /* check for rx cleaning */
4149
        if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4150
                int i, rmask;
4151
 
4152
                for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4153
                        rmask = CAS_FLAG_RXD_POST(i);
4154
                        if ((mask & rmask) == 0)
4155
                                continue;
4156
 
4157
                        /* post_rxds will do a mod_timer */
4158
                        if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4159
                                pending = 1;
4160
                                continue;
4161
                        }
4162
                        cp->cas_flags &= ~rmask;
4163
                }
4164
        }
4165
 
4166
        if (CAS_PHY_MII(cp->phy_type)) {
4167
                u16 bmsr;
4168
                cas_mif_poll(cp, 0);
4169
                bmsr = cas_phy_read(cp, MII_BMSR);
4170
                /* WTZ: Solaris driver reads this twice, but that
4171
                 * may be due to the PCS case and the use of a
4172
                 * common implementation. Read it twice here to be
4173
                 * safe.
4174
                 */
4175
                bmsr = cas_phy_read(cp, MII_BMSR);
4176
                cas_mif_poll(cp, 1);
4177
                readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4178
                reset = cas_mii_link_check(cp, bmsr);
4179
        } else {
4180
                reset = cas_pcs_link_check(cp);
4181
        }
4182
 
4183
        if (reset)
4184
                goto done;
4185
 
4186
        /* check for tx state machine confusion */
4187
        if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4188
                u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4189
                u32 wptr, rptr;
4190
                int tlm  = CAS_VAL(MAC_SM_TLM, val);
4191
 
4192
                if (((tlm == 0x5) || (tlm == 0x3)) &&
4193
                    (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4194
                        if (netif_msg_tx_err(cp))
4195
                                printk(KERN_DEBUG "%s: tx err: "
4196
                                       "MAC_STATE[%08x]\n",
4197
                                       cp->dev->name, val);
4198
                        reset = 1;
4199
                        goto done;
4200
                }
4201
 
4202
                val  = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4203
                wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4204
                rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4205
                if ((val == 0) && (wptr != rptr)) {
4206
                        if (netif_msg_tx_err(cp))
4207
                                printk(KERN_DEBUG "%s: tx err: "
4208
                                       "TX_FIFO[%08x:%08x:%08x]\n",
4209
                                       cp->dev->name, val, wptr, rptr);
4210
                        reset = 1;
4211
                }
4212
 
4213
                if (reset)
4214
                        cas_hard_reset(cp);
4215
        }
4216
 
4217
done:
4218
        if (reset) {
4219
#if 1
4220
                atomic_inc(&cp->reset_task_pending);
4221
                atomic_inc(&cp->reset_task_pending_all);
4222
                schedule_work(&cp->reset_task);
4223
#else
4224
                atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4225
                printk(KERN_ERR "reset called in cas_link_timer\n");
4226
                schedule_work(&cp->reset_task);
4227
#endif
4228
        }
4229
 
4230
        if (!pending)
4231
                mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4232
        cas_unlock_tx(cp);
4233
        spin_unlock_irqrestore(&cp->lock, flags);
4234
}
4235
 
4236
/* tiny buffers are used to avoid target abort issues with
4237
 * older cassini's
4238
 */
4239
static void cas_tx_tiny_free(struct cas *cp)
4240
{
4241
        struct pci_dev *pdev = cp->pdev;
4242
        int i;
4243
 
4244
        for (i = 0; i < N_TX_RINGS; i++) {
4245
                if (!cp->tx_tiny_bufs[i])
4246
                        continue;
4247
 
4248
                pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4249
                                    cp->tx_tiny_bufs[i],
4250
                                    cp->tx_tiny_dvma[i]);
4251
                cp->tx_tiny_bufs[i] = NULL;
4252
        }
4253
}
4254
 
4255
static int cas_tx_tiny_alloc(struct cas *cp)
4256
{
4257
        struct pci_dev *pdev = cp->pdev;
4258
        int i;
4259
 
4260
        for (i = 0; i < N_TX_RINGS; i++) {
4261
                cp->tx_tiny_bufs[i] =
4262
                        pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4263
                                             &cp->tx_tiny_dvma[i]);
4264
                if (!cp->tx_tiny_bufs[i]) {
4265
                        cas_tx_tiny_free(cp);
4266
                        return -1;
4267
                }
4268
        }
4269
        return 0;
4270
}
4271
 
4272
 
4273
static int cas_open(struct net_device *dev)
4274
{
4275
        struct cas *cp = netdev_priv(dev);
4276
        int hw_was_up, err;
4277
        unsigned long flags;
4278
 
4279
        mutex_lock(&cp->pm_mutex);
4280
 
4281
        hw_was_up = cp->hw_running;
4282
 
4283
        /* The power-management mutex protects the hw_running
4284
         * etc. state so it is safe to do this bit without cp->lock
4285
         */
4286
        if (!cp->hw_running) {
4287
                /* Reset the chip */
4288
                cas_lock_all_save(cp, flags);
4289
                /* We set the second arg to cas_reset to zero
4290
                 * because cas_init_hw below will have its second
4291
                 * argument set to non-zero, which will force
4292
                 * autonegotiation to start.
4293
                 */
4294
                cas_reset(cp, 0);
4295
                cp->hw_running = 1;
4296
                cas_unlock_all_restore(cp, flags);
4297
        }
4298
 
4299
        if (cas_tx_tiny_alloc(cp) < 0)
4300
                return -ENOMEM;
4301
 
4302
        /* alloc rx descriptors */
4303
        err = -ENOMEM;
4304
        if (cas_alloc_rxds(cp) < 0)
4305
                goto err_tx_tiny;
4306
 
4307
        /* allocate spares */
4308
        cas_spare_init(cp);
4309
        cas_spare_recover(cp, GFP_KERNEL);
4310
 
4311
        /* We can now request the interrupt as we know it's masked
4312
         * on the controller. cassini+ has up to 4 interrupts
4313
         * that can be used, but you need to do explicit pci interrupt
4314
         * mapping to expose them
4315
         */
4316
        if (request_irq(cp->pdev->irq, cas_interrupt,
4317
                        IRQF_SHARED, dev->name, (void *) dev)) {
4318
                printk(KERN_ERR "%s: failed to request irq !\n",
4319
                       cp->dev->name);
4320
                err = -EAGAIN;
4321
                goto err_spare;
4322
        }
4323
 
4324
#ifdef USE_NAPI
4325
        napi_enable(&cp->napi);
4326
#endif
4327
        /* init hw */
4328
        cas_lock_all_save(cp, flags);
4329
        cas_clean_rings(cp);
4330
        cas_init_hw(cp, !hw_was_up);
4331
        cp->opened = 1;
4332
        cas_unlock_all_restore(cp, flags);
4333
 
4334
        netif_start_queue(dev);
4335
        mutex_unlock(&cp->pm_mutex);
4336
        return 0;
4337
 
4338
err_spare:
4339
        cas_spare_free(cp);
4340
        cas_free_rxds(cp);
4341
err_tx_tiny:
4342
        cas_tx_tiny_free(cp);
4343
        mutex_unlock(&cp->pm_mutex);
4344
        return err;
4345
}
4346
 
4347
static int cas_close(struct net_device *dev)
4348
{
4349
        unsigned long flags;
4350
        struct cas *cp = netdev_priv(dev);
4351
 
4352
#ifdef USE_NAPI
4353
        napi_disable(&cp->napi);
4354
#endif
4355
        /* Make sure we don't get distracted by suspend/resume */
4356
        mutex_lock(&cp->pm_mutex);
4357
 
4358
        netif_stop_queue(dev);
4359
 
4360
        /* Stop traffic, mark us closed */
4361
        cas_lock_all_save(cp, flags);
4362
        cp->opened = 0;
4363
        cas_reset(cp, 0);
4364
        cas_phy_init(cp);
4365
        cas_begin_auto_negotiation(cp, NULL);
4366
        cas_clean_rings(cp);
4367
        cas_unlock_all_restore(cp, flags);
4368
 
4369
        free_irq(cp->pdev->irq, (void *) dev);
4370
        cas_spare_free(cp);
4371
        cas_free_rxds(cp);
4372
        cas_tx_tiny_free(cp);
4373
        mutex_unlock(&cp->pm_mutex);
4374
        return 0;
4375
}
4376
 
4377
static struct {
4378
        const char name[ETH_GSTRING_LEN];
4379
} ethtool_cassini_statnames[] = {
4380
        {"collisions"},
4381
        {"rx_bytes"},
4382
        {"rx_crc_errors"},
4383
        {"rx_dropped"},
4384
        {"rx_errors"},
4385
        {"rx_fifo_errors"},
4386
        {"rx_frame_errors"},
4387
        {"rx_length_errors"},
4388
        {"rx_over_errors"},
4389
        {"rx_packets"},
4390
        {"tx_aborted_errors"},
4391
        {"tx_bytes"},
4392
        {"tx_dropped"},
4393
        {"tx_errors"},
4394
        {"tx_fifo_errors"},
4395
        {"tx_packets"}
4396
};
4397
#define CAS_NUM_STAT_KEYS (sizeof(ethtool_cassini_statnames)/ETH_GSTRING_LEN)
4398
 
4399
static struct {
4400
        const int offsets;      /* neg. values for 2nd arg to cas_read_phy */
4401
} ethtool_register_table[] = {
4402
        {-MII_BMSR},
4403
        {-MII_BMCR},
4404
        {REG_CAWR},
4405
        {REG_INF_BURST},
4406
        {REG_BIM_CFG},
4407
        {REG_RX_CFG},
4408
        {REG_HP_CFG},
4409
        {REG_MAC_TX_CFG},
4410
        {REG_MAC_RX_CFG},
4411
        {REG_MAC_CTRL_CFG},
4412
        {REG_MAC_XIF_CFG},
4413
        {REG_MIF_CFG},
4414
        {REG_PCS_CFG},
4415
        {REG_SATURN_PCFG},
4416
        {REG_PCS_MII_STATUS},
4417
        {REG_PCS_STATE_MACHINE},
4418
        {REG_MAC_COLL_EXCESS},
4419
        {REG_MAC_COLL_LATE}
4420
};
4421
#define CAS_REG_LEN     ARRAY_SIZE(ethtool_register_table)
4422
#define CAS_MAX_REGS    (sizeof (u32)*CAS_REG_LEN)
4423
 
4424
static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4425
{
4426
        u8 *p;
4427
        int i;
4428
        unsigned long flags;
4429
 
4430
        spin_lock_irqsave(&cp->lock, flags);
4431
        for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4432
                u16 hval;
4433
                u32 val;
4434
                if (ethtool_register_table[i].offsets < 0) {
4435
                        hval = cas_phy_read(cp,
4436
                                    -ethtool_register_table[i].offsets);
4437
                        val = hval;
4438
                } else {
4439
                        val= readl(cp->regs+ethtool_register_table[i].offsets);
4440
                }
4441
                memcpy(p, (u8 *)&val, sizeof(u32));
4442
        }
4443
        spin_unlock_irqrestore(&cp->lock, flags);
4444
}
4445
 
4446
static struct net_device_stats *cas_get_stats(struct net_device *dev)
4447
{
4448
        struct cas *cp = netdev_priv(dev);
4449
        struct net_device_stats *stats = cp->net_stats;
4450
        unsigned long flags;
4451
        int i;
4452
        unsigned long tmp;
4453
 
4454
        /* we collate all of the stats into net_stats[N_TX_RING] */
4455
        if (!cp->hw_running)
4456
                return stats + N_TX_RINGS;
4457
 
4458
        /* collect outstanding stats */
4459
        /* WTZ: the Cassini spec gives these as 16 bit counters but
4460
         * stored in 32-bit words.  Added a mask of 0xffff to be safe,
4461
         * in case the chip somehow puts any garbage in the other bits.
4462
         * Also, counter usage didn't seem to mach what Adrian did
4463
         * in the parts of the code that set these quantities. Made
4464
         * that consistent.
4465
         */
4466
        spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4467
        stats[N_TX_RINGS].rx_crc_errors +=
4468
          readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4469
        stats[N_TX_RINGS].rx_frame_errors +=
4470
                readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4471
        stats[N_TX_RINGS].rx_length_errors +=
4472
                readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4473
#if 1
4474
        tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4475
                (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4476
        stats[N_TX_RINGS].tx_aborted_errors += tmp;
4477
        stats[N_TX_RINGS].collisions +=
4478
          tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4479
#else
4480
        stats[N_TX_RINGS].tx_aborted_errors +=
4481
                readl(cp->regs + REG_MAC_COLL_EXCESS);
4482
        stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4483
                readl(cp->regs + REG_MAC_COLL_LATE);
4484
#endif
4485
        cas_clear_mac_err(cp);
4486
 
4487
        /* saved bits that are unique to ring 0 */
4488
        spin_lock(&cp->stat_lock[0]);
4489
        stats[N_TX_RINGS].collisions        += stats[0].collisions;
4490
        stats[N_TX_RINGS].rx_over_errors    += stats[0].rx_over_errors;
4491
        stats[N_TX_RINGS].rx_frame_errors   += stats[0].rx_frame_errors;
4492
        stats[N_TX_RINGS].rx_fifo_errors    += stats[0].rx_fifo_errors;
4493
        stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4494
        stats[N_TX_RINGS].tx_fifo_errors    += stats[0].tx_fifo_errors;
4495
        spin_unlock(&cp->stat_lock[0]);
4496
 
4497
        for (i = 0; i < N_TX_RINGS; i++) {
4498
                spin_lock(&cp->stat_lock[i]);
4499
                stats[N_TX_RINGS].rx_length_errors +=
4500
                        stats[i].rx_length_errors;
4501
                stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4502
                stats[N_TX_RINGS].rx_packets    += stats[i].rx_packets;
4503
                stats[N_TX_RINGS].tx_packets    += stats[i].tx_packets;
4504
                stats[N_TX_RINGS].rx_bytes      += stats[i].rx_bytes;
4505
                stats[N_TX_RINGS].tx_bytes      += stats[i].tx_bytes;
4506
                stats[N_TX_RINGS].rx_errors     += stats[i].rx_errors;
4507
                stats[N_TX_RINGS].tx_errors     += stats[i].tx_errors;
4508
                stats[N_TX_RINGS].rx_dropped    += stats[i].rx_dropped;
4509
                stats[N_TX_RINGS].tx_dropped    += stats[i].tx_dropped;
4510
                memset(stats + i, 0, sizeof(struct net_device_stats));
4511
                spin_unlock(&cp->stat_lock[i]);
4512
        }
4513
        spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4514
        return stats + N_TX_RINGS;
4515
}
4516
 
4517
 
4518
static void cas_set_multicast(struct net_device *dev)
4519
{
4520
        struct cas *cp = netdev_priv(dev);
4521
        u32 rxcfg, rxcfg_new;
4522
        unsigned long flags;
4523
        int limit = STOP_TRIES;
4524
 
4525
        if (!cp->hw_running)
4526
                return;
4527
 
4528
        spin_lock_irqsave(&cp->lock, flags);
4529
        rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4530
 
4531
        /* disable RX MAC and wait for completion */
4532
        writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4533
        while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4534
                if (!limit--)
4535
                        break;
4536
                udelay(10);
4537
        }
4538
 
4539
        /* disable hash filter and wait for completion */
4540
        limit = STOP_TRIES;
4541
        rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4542
        writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4543
        while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4544
                if (!limit--)
4545
                        break;
4546
                udelay(10);
4547
        }
4548
 
4549
        /* program hash filters */
4550
        cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4551
        rxcfg |= rxcfg_new;
4552
        writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4553
        spin_unlock_irqrestore(&cp->lock, flags);
4554
}
4555
 
4556
static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4557
{
4558
        struct cas *cp = netdev_priv(dev);
4559
        strncpy(info->driver, DRV_MODULE_NAME, ETHTOOL_BUSINFO_LEN);
4560
        strncpy(info->version, DRV_MODULE_VERSION, ETHTOOL_BUSINFO_LEN);
4561
        info->fw_version[0] = '\0';
4562
        strncpy(info->bus_info, pci_name(cp->pdev), ETHTOOL_BUSINFO_LEN);
4563
        info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
4564
                cp->casreg_len : CAS_MAX_REGS;
4565
        info->n_stats = CAS_NUM_STAT_KEYS;
4566
}
4567
 
4568
static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4569
{
4570
        struct cas *cp = netdev_priv(dev);
4571
        u16 bmcr;
4572
        int full_duplex, speed, pause;
4573
        unsigned long flags;
4574
        enum link_state linkstate = link_up;
4575
 
4576
        cmd->advertising = 0;
4577
        cmd->supported = SUPPORTED_Autoneg;
4578
        if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4579
                cmd->supported |= SUPPORTED_1000baseT_Full;
4580
                cmd->advertising |= ADVERTISED_1000baseT_Full;
4581
        }
4582
 
4583
        /* Record PHY settings if HW is on. */
4584
        spin_lock_irqsave(&cp->lock, flags);
4585
        bmcr = 0;
4586
        linkstate = cp->lstate;
4587
        if (CAS_PHY_MII(cp->phy_type)) {
4588
                cmd->port = PORT_MII;
4589
                cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
4590
                        XCVR_INTERNAL : XCVR_EXTERNAL;
4591
                cmd->phy_address = cp->phy_addr;
4592
                cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
4593
                        ADVERTISED_10baseT_Half |
4594
                        ADVERTISED_10baseT_Full |
4595
                        ADVERTISED_100baseT_Half |
4596
                        ADVERTISED_100baseT_Full;
4597
 
4598
                cmd->supported |=
4599
                        (SUPPORTED_10baseT_Half |
4600
                         SUPPORTED_10baseT_Full |
4601
                         SUPPORTED_100baseT_Half |
4602
                         SUPPORTED_100baseT_Full |
4603
                         SUPPORTED_TP | SUPPORTED_MII);
4604
 
4605
                if (cp->hw_running) {
4606
                        cas_mif_poll(cp, 0);
4607
                        bmcr = cas_phy_read(cp, MII_BMCR);
4608
                        cas_read_mii_link_mode(cp, &full_duplex,
4609
                                               &speed, &pause);
4610
                        cas_mif_poll(cp, 1);
4611
                }
4612
 
4613
        } else {
4614
                cmd->port = PORT_FIBRE;
4615
                cmd->transceiver = XCVR_INTERNAL;
4616
                cmd->phy_address = 0;
4617
                cmd->supported   |= SUPPORTED_FIBRE;
4618
                cmd->advertising |= ADVERTISED_FIBRE;
4619
 
4620
                if (cp->hw_running) {
4621
                        /* pcs uses the same bits as mii */
4622
                        bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4623
                        cas_read_pcs_link_mode(cp, &full_duplex,
4624
                                               &speed, &pause);
4625
                }
4626
        }
4627
        spin_unlock_irqrestore(&cp->lock, flags);
4628
 
4629
        if (bmcr & BMCR_ANENABLE) {
4630
                cmd->advertising |= ADVERTISED_Autoneg;
4631
                cmd->autoneg = AUTONEG_ENABLE;
4632
                cmd->speed = ((speed == 10) ?
4633
                              SPEED_10 :
4634
                              ((speed == 1000) ?
4635
                               SPEED_1000 : SPEED_100));
4636
                cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4637
        } else {
4638
                cmd->autoneg = AUTONEG_DISABLE;
4639
                cmd->speed =
4640
                        (bmcr & CAS_BMCR_SPEED1000) ?
4641
                        SPEED_1000 :
4642
                        ((bmcr & BMCR_SPEED100) ? SPEED_100:
4643
                         SPEED_10);
4644
                cmd->duplex =
4645
                        (bmcr & BMCR_FULLDPLX) ?
4646
                        DUPLEX_FULL : DUPLEX_HALF;
4647
        }
4648
        if (linkstate != link_up) {
4649
                /* Force these to "unknown" if the link is not up and
4650
                 * autonogotiation in enabled. We can set the link
4651
                 * speed to 0, but not cmd->duplex,
4652
                 * because its legal values are 0 and 1.  Ethtool will
4653
                 * print the value reported in parentheses after the
4654
                 * word "Unknown" for unrecognized values.
4655
                 *
4656
                 * If in forced mode, we report the speed and duplex
4657
                 * settings that we configured.
4658
                 */
4659
                if (cp->link_cntl & BMCR_ANENABLE) {
4660
                        cmd->speed = 0;
4661
                        cmd->duplex = 0xff;
4662
                } else {
4663
                        cmd->speed = SPEED_10;
4664
                        if (cp->link_cntl & BMCR_SPEED100) {
4665
                                cmd->speed = SPEED_100;
4666
                        } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4667
                                cmd->speed = SPEED_1000;
4668
                        }
4669
                        cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
4670
                                DUPLEX_FULL : DUPLEX_HALF;
4671
                }
4672
        }
4673
        return 0;
4674
}
4675
 
4676
static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4677
{
4678
        struct cas *cp = netdev_priv(dev);
4679
        unsigned long flags;
4680
 
4681
        /* Verify the settings we care about. */
4682
        if (cmd->autoneg != AUTONEG_ENABLE &&
4683
            cmd->autoneg != AUTONEG_DISABLE)
4684
                return -EINVAL;
4685
 
4686
        if (cmd->autoneg == AUTONEG_DISABLE &&
4687
            ((cmd->speed != SPEED_1000 &&
4688
              cmd->speed != SPEED_100 &&
4689
              cmd->speed != SPEED_10) ||
4690
             (cmd->duplex != DUPLEX_HALF &&
4691
              cmd->duplex != DUPLEX_FULL)))
4692
                return -EINVAL;
4693
 
4694
        /* Apply settings and restart link process. */
4695
        spin_lock_irqsave(&cp->lock, flags);
4696
        cas_begin_auto_negotiation(cp, cmd);
4697
        spin_unlock_irqrestore(&cp->lock, flags);
4698
        return 0;
4699
}
4700
 
4701
static int cas_nway_reset(struct net_device *dev)
4702
{
4703
        struct cas *cp = netdev_priv(dev);
4704
        unsigned long flags;
4705
 
4706
        if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4707
                return -EINVAL;
4708
 
4709
        /* Restart link process. */
4710
        spin_lock_irqsave(&cp->lock, flags);
4711
        cas_begin_auto_negotiation(cp, NULL);
4712
        spin_unlock_irqrestore(&cp->lock, flags);
4713
 
4714
        return 0;
4715
}
4716
 
4717
static u32 cas_get_link(struct net_device *dev)
4718
{
4719
        struct cas *cp = netdev_priv(dev);
4720
        return cp->lstate == link_up;
4721
}
4722
 
4723
static u32 cas_get_msglevel(struct net_device *dev)
4724
{
4725
        struct cas *cp = netdev_priv(dev);
4726
        return cp->msg_enable;
4727
}
4728
 
4729
static void cas_set_msglevel(struct net_device *dev, u32 value)
4730
{
4731
        struct cas *cp = netdev_priv(dev);
4732
        cp->msg_enable = value;
4733
}
4734
 
4735
static int cas_get_regs_len(struct net_device *dev)
4736
{
4737
        struct cas *cp = netdev_priv(dev);
4738
        return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4739
}
4740
 
4741
static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4742
                             void *p)
4743
{
4744
        struct cas *cp = netdev_priv(dev);
4745
        regs->version = 0;
4746
        /* cas_read_regs handles locks (cp->lock).  */
4747
        cas_read_regs(cp, p, regs->len / sizeof(u32));
4748
}
4749
 
4750
static int cas_get_sset_count(struct net_device *dev, int sset)
4751
{
4752
        switch (sset) {
4753
        case ETH_SS_STATS:
4754
                return CAS_NUM_STAT_KEYS;
4755
        default:
4756
                return -EOPNOTSUPP;
4757
        }
4758
}
4759
 
4760
static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4761
{
4762
         memcpy(data, &ethtool_cassini_statnames,
4763
                                         CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4764
}
4765
 
4766
static void cas_get_ethtool_stats(struct net_device *dev,
4767
                                      struct ethtool_stats *estats, u64 *data)
4768
{
4769
        struct cas *cp = netdev_priv(dev);
4770
        struct net_device_stats *stats = cas_get_stats(cp->dev);
4771
        int i = 0;
4772
        data[i++] = stats->collisions;
4773
        data[i++] = stats->rx_bytes;
4774
        data[i++] = stats->rx_crc_errors;
4775
        data[i++] = stats->rx_dropped;
4776
        data[i++] = stats->rx_errors;
4777
        data[i++] = stats->rx_fifo_errors;
4778
        data[i++] = stats->rx_frame_errors;
4779
        data[i++] = stats->rx_length_errors;
4780
        data[i++] = stats->rx_over_errors;
4781
        data[i++] = stats->rx_packets;
4782
        data[i++] = stats->tx_aborted_errors;
4783
        data[i++] = stats->tx_bytes;
4784
        data[i++] = stats->tx_dropped;
4785
        data[i++] = stats->tx_errors;
4786
        data[i++] = stats->tx_fifo_errors;
4787
        data[i++] = stats->tx_packets;
4788
        BUG_ON(i != CAS_NUM_STAT_KEYS);
4789
}
4790
 
4791
static const struct ethtool_ops cas_ethtool_ops = {
4792
        .get_drvinfo            = cas_get_drvinfo,
4793
        .get_settings           = cas_get_settings,
4794
        .set_settings           = cas_set_settings,
4795
        .nway_reset             = cas_nway_reset,
4796
        .get_link               = cas_get_link,
4797
        .get_msglevel           = cas_get_msglevel,
4798
        .set_msglevel           = cas_set_msglevel,
4799
        .get_regs_len           = cas_get_regs_len,
4800
        .get_regs               = cas_get_regs,
4801
        .get_sset_count         = cas_get_sset_count,
4802
        .get_strings            = cas_get_strings,
4803
        .get_ethtool_stats      = cas_get_ethtool_stats,
4804
};
4805
 
4806
static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4807
{
4808
        struct cas *cp = netdev_priv(dev);
4809
        struct mii_ioctl_data *data = if_mii(ifr);
4810
        unsigned long flags;
4811
        int rc = -EOPNOTSUPP;
4812
 
4813
        /* Hold the PM mutex while doing ioctl's or we may collide
4814
         * with open/close and power management and oops.
4815
         */
4816
        mutex_lock(&cp->pm_mutex);
4817
        switch (cmd) {
4818
        case SIOCGMIIPHY:               /* Get address of MII PHY in use. */
4819
                data->phy_id = cp->phy_addr;
4820
                /* Fallthrough... */
4821
 
4822
        case SIOCGMIIREG:               /* Read MII PHY register. */
4823
                spin_lock_irqsave(&cp->lock, flags);
4824
                cas_mif_poll(cp, 0);
4825
                data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4826
                cas_mif_poll(cp, 1);
4827
                spin_unlock_irqrestore(&cp->lock, flags);
4828
                rc = 0;
4829
                break;
4830
 
4831
        case SIOCSMIIREG:               /* Write MII PHY register. */
4832
                if (!capable(CAP_NET_ADMIN)) {
4833
                        rc = -EPERM;
4834
                        break;
4835
                }
4836
                spin_lock_irqsave(&cp->lock, flags);
4837
                cas_mif_poll(cp, 0);
4838
                rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4839
                cas_mif_poll(cp, 1);
4840
                spin_unlock_irqrestore(&cp->lock, flags);
4841
                break;
4842
        default:
4843
                break;
4844
        };
4845
 
4846
        mutex_unlock(&cp->pm_mutex);
4847
        return rc;
4848
}
4849
 
4850
/* When this chip sits underneath an Intel 31154 bridge, it is the
4851
 * only subordinate device and we can tweak the bridge settings to
4852
 * reflect that fact.
4853
 */
4854
static void __devinit cas_program_bridge(struct pci_dev *cas_pdev)
4855
{
4856
        struct pci_dev *pdev = cas_pdev->bus->self;
4857
        u32 val;
4858
 
4859
        if (!pdev)
4860
                return;
4861
 
4862
        if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4863
                return;
4864
 
4865
        /* Clear bit 10 (Bus Parking Control) in the Secondary
4866
         * Arbiter Control/Status Register which lives at offset
4867
         * 0x41.  Using a 32-bit word read/modify/write at 0x40
4868
         * is much simpler so that's how we do this.
4869
         */
4870
        pci_read_config_dword(pdev, 0x40, &val);
4871
        val &= ~0x00040000;
4872
        pci_write_config_dword(pdev, 0x40, val);
4873
 
4874
        /* Max out the Multi-Transaction Timer settings since
4875
         * Cassini is the only device present.
4876
         *
4877
         * The register is 16-bit and lives at 0x50.  When the
4878
         * settings are enabled, it extends the GRANT# signal
4879
         * for a requestor after a transaction is complete.  This
4880
         * allows the next request to run without first needing
4881
         * to negotiate the GRANT# signal back.
4882
         *
4883
         * Bits 12:10 define the grant duration:
4884
         *
4885
         *      1       --      16 clocks
4886
         *      2       --      32 clocks
4887
         *      3       --      64 clocks
4888
         *      4       --      128 clocks
4889
         *      5       --      256 clocks
4890
         *
4891
         * All other values are illegal.
4892
         *
4893
         * Bits 09:00 define which REQ/GNT signal pairs get the
4894
         * GRANT# signal treatment.  We set them all.
4895
         */
4896
        pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4897
 
4898
        /* The Read Prefecth Policy register is 16-bit and sits at
4899
         * offset 0x52.  It enables a "smart" pre-fetch policy.  We
4900
         * enable it and max out all of the settings since only one
4901
         * device is sitting underneath and thus bandwidth sharing is
4902
         * not an issue.
4903
         *
4904
         * The register has several 3 bit fields, which indicates a
4905
         * multiplier applied to the base amount of prefetching the
4906
         * chip would do.  These fields are at:
4907
         *
4908
         *      15:13   ---     ReRead Primary Bus
4909
         *      12:10   ---     FirstRead Primary Bus
4910
         *      09:07   ---     ReRead Secondary Bus
4911
         *      06:04   ---     FirstRead Secondary Bus
4912
         *
4913
         * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4914
         * get enabled on.  Bit 3 is a grouped enabler which controls
4915
         * all of the REQ/GNT pairs from [8:3].  Bits 2 to 0 control
4916
         * the individual REQ/GNT pairs [2:0].
4917
         */
4918
        pci_write_config_word(pdev, 0x52,
4919
                              (0x7 << 13) |
4920
                              (0x7 << 10) |
4921
                              (0x7 <<  7) |
4922
                              (0x7 <<  4) |
4923
                              (0xf <<  0));
4924
 
4925
        /* Force cacheline size to 0x8 */
4926
        pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4927
 
4928
        /* Force latency timer to maximum setting so Cassini can
4929
         * sit on the bus as long as it likes.
4930
         */
4931
        pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4932
}
4933
 
4934
static int __devinit cas_init_one(struct pci_dev *pdev,
4935
                                  const struct pci_device_id *ent)
4936
{
4937
        static int cas_version_printed = 0;
4938
        unsigned long casreg_len;
4939
        struct net_device *dev;
4940
        struct cas *cp;
4941
        int i, err, pci_using_dac;
4942
        u16 pci_cmd;
4943
        u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4944
        DECLARE_MAC_BUF(mac);
4945
 
4946
        if (cas_version_printed++ == 0)
4947
                printk(KERN_INFO "%s", version);
4948
 
4949
        err = pci_enable_device(pdev);
4950
        if (err) {
4951
                dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
4952
                return err;
4953
        }
4954
 
4955
        if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4956
                dev_err(&pdev->dev, "Cannot find proper PCI device "
4957
                       "base address, aborting.\n");
4958
                err = -ENODEV;
4959
                goto err_out_disable_pdev;
4960
        }
4961
 
4962
        dev = alloc_etherdev(sizeof(*cp));
4963
        if (!dev) {
4964
                dev_err(&pdev->dev, "Etherdev alloc failed, aborting.\n");
4965
                err = -ENOMEM;
4966
                goto err_out_disable_pdev;
4967
        }
4968
        SET_NETDEV_DEV(dev, &pdev->dev);
4969
 
4970
        err = pci_request_regions(pdev, dev->name);
4971
        if (err) {
4972
                dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
4973
                goto err_out_free_netdev;
4974
        }
4975
        pci_set_master(pdev);
4976
 
4977
        /* we must always turn on parity response or else parity
4978
         * doesn't get generated properly. disable SERR/PERR as well.
4979
         * in addition, we want to turn MWI on.
4980
         */
4981
        pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4982
        pci_cmd &= ~PCI_COMMAND_SERR;
4983
        pci_cmd |= PCI_COMMAND_PARITY;
4984
        pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4985
        if (pci_try_set_mwi(pdev))
4986
                printk(KERN_WARNING PFX "Could not enable MWI for %s\n",
4987
                       pci_name(pdev));
4988
 
4989
        cas_program_bridge(pdev);
4990
 
4991
        /*
4992
         * On some architectures, the default cache line size set
4993
         * by pci_try_set_mwi reduces perforamnce.  We have to increase
4994
         * it for this case.  To start, we'll print some configuration
4995
         * data.
4996
         */
4997
#if 1
4998
        pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4999
                             &orig_cacheline_size);
5000
        if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
5001
                cas_cacheline_size =
5002
                        (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
5003
                        CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
5004
                if (pci_write_config_byte(pdev,
5005
                                          PCI_CACHE_LINE_SIZE,
5006
                                          cas_cacheline_size)) {
5007
                        dev_err(&pdev->dev, "Could not set PCI cache "
5008
                               "line size\n");
5009
                        goto err_write_cacheline;
5010
                }
5011
        }
5012
#endif
5013
 
5014
 
5015
        /* Configure DMA attributes. */
5016
        if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
5017
                pci_using_dac = 1;
5018
                err = pci_set_consistent_dma_mask(pdev,
5019
                                                  DMA_64BIT_MASK);
5020
                if (err < 0) {
5021
                        dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
5022
                               "for consistent allocations\n");
5023
                        goto err_out_free_res;
5024
                }
5025
 
5026
        } else {
5027
                err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
5028
                if (err) {
5029
                        dev_err(&pdev->dev, "No usable DMA configuration, "
5030
                               "aborting.\n");
5031
                        goto err_out_free_res;
5032
                }
5033
                pci_using_dac = 0;
5034
        }
5035
 
5036
        casreg_len = pci_resource_len(pdev, 0);
5037
 
5038
        cp = netdev_priv(dev);
5039
        cp->pdev = pdev;
5040
#if 1
5041
        /* A value of 0 indicates we never explicitly set it */
5042
        cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
5043
#endif
5044
        cp->dev = dev;
5045
        cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
5046
          cassini_debug;
5047
 
5048
        cp->link_transition = LINK_TRANSITION_UNKNOWN;
5049
        cp->link_transition_jiffies_valid = 0;
5050
 
5051
        spin_lock_init(&cp->lock);
5052
        spin_lock_init(&cp->rx_inuse_lock);
5053
        spin_lock_init(&cp->rx_spare_lock);
5054
        for (i = 0; i < N_TX_RINGS; i++) {
5055
                spin_lock_init(&cp->stat_lock[i]);
5056
                spin_lock_init(&cp->tx_lock[i]);
5057
        }
5058
        spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
5059
        mutex_init(&cp->pm_mutex);
5060
 
5061
        init_timer(&cp->link_timer);
5062
        cp->link_timer.function = cas_link_timer;
5063
        cp->link_timer.data = (unsigned long) cp;
5064
 
5065
#if 1
5066
        /* Just in case the implementation of atomic operations
5067
         * change so that an explicit initialization is necessary.
5068
         */
5069
        atomic_set(&cp->reset_task_pending, 0);
5070
        atomic_set(&cp->reset_task_pending_all, 0);
5071
        atomic_set(&cp->reset_task_pending_spare, 0);
5072
        atomic_set(&cp->reset_task_pending_mtu, 0);
5073
#endif
5074
        INIT_WORK(&cp->reset_task, cas_reset_task);
5075
 
5076
        /* Default link parameters */
5077
        if (link_mode >= 0 && link_mode <= 6)
5078
                cp->link_cntl = link_modes[link_mode];
5079
        else
5080
                cp->link_cntl = BMCR_ANENABLE;
5081
        cp->lstate = link_down;
5082
        cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5083
        netif_carrier_off(cp->dev);
5084
        cp->timer_ticks = 0;
5085
 
5086
        /* give us access to cassini registers */
5087
        cp->regs = pci_iomap(pdev, 0, casreg_len);
5088
        if (cp->regs == 0UL) {
5089
                dev_err(&pdev->dev, "Cannot map device registers, aborting.\n");
5090
                goto err_out_free_res;
5091
        }
5092
        cp->casreg_len = casreg_len;
5093
 
5094
        pci_save_state(pdev);
5095
        cas_check_pci_invariants(cp);
5096
        cas_hard_reset(cp);
5097
        cas_reset(cp, 0);
5098
        if (cas_check_invariants(cp))
5099
                goto err_out_iounmap;
5100
 
5101
        cp->init_block = (struct cas_init_block *)
5102
                pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5103
                                     &cp->block_dvma);
5104
        if (!cp->init_block) {
5105
                dev_err(&pdev->dev, "Cannot allocate init block, aborting.\n");
5106
                goto err_out_iounmap;
5107
        }
5108
 
5109
        for (i = 0; i < N_TX_RINGS; i++)
5110
                cp->init_txds[i] = cp->init_block->txds[i];
5111
 
5112
        for (i = 0; i < N_RX_DESC_RINGS; i++)
5113
                cp->init_rxds[i] = cp->init_block->rxds[i];
5114
 
5115
        for (i = 0; i < N_RX_COMP_RINGS; i++)
5116
                cp->init_rxcs[i] = cp->init_block->rxcs[i];
5117
 
5118
        for (i = 0; i < N_RX_FLOWS; i++)
5119
                skb_queue_head_init(&cp->rx_flows[i]);
5120
 
5121
        dev->open = cas_open;
5122
        dev->stop = cas_close;
5123
        dev->hard_start_xmit = cas_start_xmit;
5124
        dev->get_stats = cas_get_stats;
5125
        dev->set_multicast_list = cas_set_multicast;
5126
        dev->do_ioctl = cas_ioctl;
5127
        dev->ethtool_ops = &cas_ethtool_ops;
5128
        dev->tx_timeout = cas_tx_timeout;
5129
        dev->watchdog_timeo = CAS_TX_TIMEOUT;
5130
        dev->change_mtu = cas_change_mtu;
5131
#ifdef USE_NAPI
5132
        netif_napi_add(dev, &cp->napi, cas_poll, 64);
5133
#endif
5134
#ifdef CONFIG_NET_POLL_CONTROLLER
5135
        dev->poll_controller = cas_netpoll;
5136
#endif
5137
        dev->irq = pdev->irq;
5138
        dev->dma = 0;
5139
 
5140
        /* Cassini features. */
5141
        if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5142
                dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5143
 
5144
        if (pci_using_dac)
5145
                dev->features |= NETIF_F_HIGHDMA;
5146
 
5147
        if (register_netdev(dev)) {
5148
                dev_err(&pdev->dev, "Cannot register net device, aborting.\n");
5149
                goto err_out_free_consistent;
5150
        }
5151
 
5152
        i = readl(cp->regs + REG_BIM_CFG);
5153
        printk(KERN_INFO "%s: Sun Cassini%s (%sbit/%sMHz PCI/%s) "
5154
               "Ethernet[%d] %s\n",  dev->name,
5155
               (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5156
               (i & BIM_CFG_32BIT) ? "32" : "64",
5157
               (i & BIM_CFG_66MHZ) ? "66" : "33",
5158
               (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5159
               print_mac(mac, dev->dev_addr));
5160
 
5161
        pci_set_drvdata(pdev, dev);
5162
        cp->hw_running = 1;
5163
        cas_entropy_reset(cp);
5164
        cas_phy_init(cp);
5165
        cas_begin_auto_negotiation(cp, NULL);
5166
        return 0;
5167
 
5168
err_out_free_consistent:
5169
        pci_free_consistent(pdev, sizeof(struct cas_init_block),
5170
                            cp->init_block, cp->block_dvma);
5171
 
5172
err_out_iounmap:
5173
        mutex_lock(&cp->pm_mutex);
5174
        if (cp->hw_running)
5175
                cas_shutdown(cp);
5176
        mutex_unlock(&cp->pm_mutex);
5177
 
5178
        pci_iounmap(pdev, cp->regs);
5179
 
5180
 
5181
err_out_free_res:
5182
        pci_release_regions(pdev);
5183
 
5184
err_write_cacheline:
5185
        /* Try to restore it in case the error occured after we
5186
         * set it.
5187
         */
5188
        pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5189
 
5190
err_out_free_netdev:
5191
        free_netdev(dev);
5192
 
5193
err_out_disable_pdev:
5194
        pci_disable_device(pdev);
5195
        pci_set_drvdata(pdev, NULL);
5196
        return -ENODEV;
5197
}
5198
 
5199
static void __devexit cas_remove_one(struct pci_dev *pdev)
5200
{
5201
        struct net_device *dev = pci_get_drvdata(pdev);
5202
        struct cas *cp;
5203
        if (!dev)
5204
                return;
5205
 
5206
        cp = netdev_priv(dev);
5207
        unregister_netdev(dev);
5208
 
5209
        mutex_lock(&cp->pm_mutex);
5210
        flush_scheduled_work();
5211
        if (cp->hw_running)
5212
                cas_shutdown(cp);
5213
        mutex_unlock(&cp->pm_mutex);
5214
 
5215
#if 1
5216
        if (cp->orig_cacheline_size) {
5217
                /* Restore the cache line size if we had modified
5218
                 * it.
5219
                 */
5220
                pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5221
                                      cp->orig_cacheline_size);
5222
        }
5223
#endif
5224
        pci_free_consistent(pdev, sizeof(struct cas_init_block),
5225
                            cp->init_block, cp->block_dvma);
5226
        pci_iounmap(pdev, cp->regs);
5227
        free_netdev(dev);
5228
        pci_release_regions(pdev);
5229
        pci_disable_device(pdev);
5230
        pci_set_drvdata(pdev, NULL);
5231
}
5232
 
5233
#ifdef CONFIG_PM
5234
static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5235
{
5236
        struct net_device *dev = pci_get_drvdata(pdev);
5237
        struct cas *cp = netdev_priv(dev);
5238
        unsigned long flags;
5239
 
5240
        mutex_lock(&cp->pm_mutex);
5241
 
5242
        /* If the driver is opened, we stop the DMA */
5243
        if (cp->opened) {
5244
                netif_device_detach(dev);
5245
 
5246
                cas_lock_all_save(cp, flags);
5247
 
5248
                /* We can set the second arg of cas_reset to 0
5249
                 * because on resume, we'll call cas_init_hw with
5250
                 * its second arg set so that autonegotiation is
5251
                 * restarted.
5252
                 */
5253
                cas_reset(cp, 0);
5254
                cas_clean_rings(cp);
5255
                cas_unlock_all_restore(cp, flags);
5256
        }
5257
 
5258
        if (cp->hw_running)
5259
                cas_shutdown(cp);
5260
        mutex_unlock(&cp->pm_mutex);
5261
 
5262
        return 0;
5263
}
5264
 
5265
static int cas_resume(struct pci_dev *pdev)
5266
{
5267
        struct net_device *dev = pci_get_drvdata(pdev);
5268
        struct cas *cp = netdev_priv(dev);
5269
 
5270
        printk(KERN_INFO "%s: resuming\n", dev->name);
5271
 
5272
        mutex_lock(&cp->pm_mutex);
5273
        cas_hard_reset(cp);
5274
        if (cp->opened) {
5275
                unsigned long flags;
5276
                cas_lock_all_save(cp, flags);
5277
                cas_reset(cp, 0);
5278
                cp->hw_running = 1;
5279
                cas_clean_rings(cp);
5280
                cas_init_hw(cp, 1);
5281
                cas_unlock_all_restore(cp, flags);
5282
 
5283
                netif_device_attach(dev);
5284
        }
5285
        mutex_unlock(&cp->pm_mutex);
5286
        return 0;
5287
}
5288
#endif /* CONFIG_PM */
5289
 
5290
static struct pci_driver cas_driver = {
5291
        .name           = DRV_MODULE_NAME,
5292
        .id_table       = cas_pci_tbl,
5293
        .probe          = cas_init_one,
5294
        .remove         = __devexit_p(cas_remove_one),
5295
#ifdef CONFIG_PM
5296
        .suspend        = cas_suspend,
5297
        .resume         = cas_resume
5298
#endif
5299
};
5300
 
5301
static int __init cas_init(void)
5302
{
5303
        if (linkdown_timeout > 0)
5304
                link_transition_timeout = linkdown_timeout * HZ;
5305
        else
5306
                link_transition_timeout = 0;
5307
 
5308
        return pci_register_driver(&cas_driver);
5309
}
5310
 
5311
static void __exit cas_cleanup(void)
5312
{
5313
        pci_unregister_driver(&cas_driver);
5314
}
5315
 
5316
module_init(cas_init);
5317
module_exit(cas_cleanup);

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.