OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [drivers/] [net/] [e1000/] [e1000_hw.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*******************************************************************************
2
 
3
  Intel PRO/1000 Linux driver
4
  Copyright(c) 1999 - 2006 Intel Corporation.
5
 
6
  This program is free software; you can redistribute it and/or modify it
7
  under the terms and conditions of the GNU General Public License,
8
  version 2, as published by the Free Software Foundation.
9
 
10
  This program is distributed in the hope it will be useful, but WITHOUT
11
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13
  more details.
14
 
15
  You should have received a copy of the GNU General Public License along with
16
  this program; if not, write to the Free Software Foundation, Inc.,
17
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
 
19
  The full GNU General Public License is included in this distribution in
20
  the file called "COPYING".
21
 
22
  Contact Information:
23
  Linux NICS <linux.nics@intel.com>
24
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
 
27
*******************************************************************************/
28
 
29
/* e1000_hw.c
30
 * Shared functions for accessing and configuring the MAC
31
 */
32
 
33
 
34
#include "e1000_hw.h"
35
 
36
static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
37
static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
38
static int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data);
39
static int32_t e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data);
40
static int32_t e1000_get_software_semaphore(struct e1000_hw *hw);
41
static void e1000_release_software_semaphore(struct e1000_hw *hw);
42
 
43
static uint8_t e1000_arc_subsystem_valid(struct e1000_hw *hw);
44
static int32_t e1000_check_downshift(struct e1000_hw *hw);
45
static int32_t e1000_check_polarity(struct e1000_hw *hw, e1000_rev_polarity *polarity);
46
static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
47
static void e1000_clear_vfta(struct e1000_hw *hw);
48
static int32_t e1000_commit_shadow_ram(struct e1000_hw *hw);
49
static int32_t e1000_config_dsp_after_link_change(struct e1000_hw *hw, boolean_t link_up);
50
static int32_t e1000_config_fc_after_link_up(struct e1000_hw *hw);
51
static int32_t e1000_detect_gig_phy(struct e1000_hw *hw);
52
static int32_t e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t bank);
53
static int32_t e1000_get_auto_rd_done(struct e1000_hw *hw);
54
static int32_t e1000_get_cable_length(struct e1000_hw *hw, uint16_t *min_length, uint16_t *max_length);
55
static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw);
56
static int32_t e1000_get_phy_cfg_done(struct e1000_hw *hw);
57
static int32_t e1000_get_software_flag(struct e1000_hw *hw);
58
static int32_t e1000_ich8_cycle_init(struct e1000_hw *hw);
59
static int32_t e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout);
60
static int32_t e1000_id_led_init(struct e1000_hw *hw);
61
static int32_t e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw, uint32_t cnf_base_addr, uint32_t cnf_size);
62
static int32_t e1000_init_lcd_from_nvm(struct e1000_hw *hw);
63
static void e1000_init_rx_addrs(struct e1000_hw *hw);
64
static void e1000_initialize_hardware_bits(struct e1000_hw *hw);
65
static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw);
66
static int32_t e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw);
67
static int32_t e1000_mng_enable_host_if(struct e1000_hw *hw);
68
static int32_t e1000_mng_host_if_write(struct e1000_hw *hw, uint8_t *buffer, uint16_t length, uint16_t offset, uint8_t *sum);
69
static int32_t e1000_mng_write_cmd_header(struct e1000_hw* hw, struct e1000_host_mng_command_header* hdr);
70
static int32_t e1000_mng_write_commit(struct e1000_hw *hw);
71
static int32_t e1000_phy_ife_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
72
static int32_t e1000_phy_igp_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
73
static int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
74
static int32_t e1000_write_eeprom_eewr(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
75
static int32_t e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd);
76
static int32_t e1000_phy_m88_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
77
static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
78
static int32_t e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t *data);
79
static int32_t e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte);
80
static int32_t e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte);
81
static int32_t e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data);
82
static int32_t e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size, uint16_t *data);
83
static int32_t e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size, uint16_t data);
84
static int32_t e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
85
static int32_t e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
86
static void e1000_release_software_flag(struct e1000_hw *hw);
87
static int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active);
88
static int32_t e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active);
89
static int32_t e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop);
90
static void e1000_set_pci_express_master_disable(struct e1000_hw *hw);
91
static int32_t e1000_wait_autoneg(struct e1000_hw *hw);
92
static void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset, uint32_t value);
93
static int32_t e1000_set_phy_type(struct e1000_hw *hw);
94
static void e1000_phy_init_script(struct e1000_hw *hw);
95
static int32_t e1000_setup_copper_link(struct e1000_hw *hw);
96
static int32_t e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
97
static int32_t e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
98
static int32_t e1000_phy_force_speed_duplex(struct e1000_hw *hw);
99
static int32_t e1000_config_mac_to_phy(struct e1000_hw *hw);
100
static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
101
static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
102
static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data,
103
                                     uint16_t count);
104
static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw);
105
static int32_t e1000_phy_reset_dsp(struct e1000_hw *hw);
106
static int32_t e1000_write_eeprom_spi(struct e1000_hw *hw, uint16_t offset,
107
                                      uint16_t words, uint16_t *data);
108
static int32_t e1000_write_eeprom_microwire(struct e1000_hw *hw,
109
                                            uint16_t offset, uint16_t words,
110
                                            uint16_t *data);
111
static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw);
112
static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
113
static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
114
static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data,
115
                                    uint16_t count);
116
static int32_t e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
117
                                      uint16_t phy_data);
118
static int32_t e1000_read_phy_reg_ex(struct e1000_hw *hw,uint32_t reg_addr,
119
                                     uint16_t *phy_data);
120
static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count);
121
static int32_t e1000_acquire_eeprom(struct e1000_hw *hw);
122
static void e1000_release_eeprom(struct e1000_hw *hw);
123
static void e1000_standby_eeprom(struct e1000_hw *hw);
124
static int32_t e1000_set_vco_speed(struct e1000_hw *hw);
125
static int32_t e1000_polarity_reversal_workaround(struct e1000_hw *hw);
126
static int32_t e1000_set_phy_mode(struct e1000_hw *hw);
127
static int32_t e1000_host_if_read_cookie(struct e1000_hw *hw, uint8_t *buffer);
128
static uint8_t e1000_calculate_mng_checksum(char *buffer, uint32_t length);
129
static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw,
130
                                               uint16_t duplex);
131
static int32_t e1000_configure_kmrn_for_1000(struct e1000_hw *hw);
132
 
133
/* IGP cable length table */
134
static const
135
uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
136
    { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
137
      5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
138
      25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
139
      40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
140
      60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
141
      90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
142
      100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
143
      110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
144
 
145
static const
146
uint16_t e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] =
147
    { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
148
      0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
149
      6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
150
      21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
151
      40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
152
      60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
153
      83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
154
      104, 109, 114, 118, 121, 124};
155
 
156
/******************************************************************************
157
 * Set the phy type member in the hw struct.
158
 *
159
 * hw - Struct containing variables accessed by shared code
160
 *****************************************************************************/
161
static int32_t
162
e1000_set_phy_type(struct e1000_hw *hw)
163
{
164
    DEBUGFUNC("e1000_set_phy_type");
165
 
166
    if (hw->mac_type == e1000_undefined)
167
        return -E1000_ERR_PHY_TYPE;
168
 
169
    switch (hw->phy_id) {
170
    case M88E1000_E_PHY_ID:
171
    case M88E1000_I_PHY_ID:
172
    case M88E1011_I_PHY_ID:
173
    case M88E1111_I_PHY_ID:
174
        hw->phy_type = e1000_phy_m88;
175
        break;
176
    case IGP01E1000_I_PHY_ID:
177
        if (hw->mac_type == e1000_82541 ||
178
            hw->mac_type == e1000_82541_rev_2 ||
179
            hw->mac_type == e1000_82547 ||
180
            hw->mac_type == e1000_82547_rev_2) {
181
            hw->phy_type = e1000_phy_igp;
182
            break;
183
        }
184
    case IGP03E1000_E_PHY_ID:
185
        hw->phy_type = e1000_phy_igp_3;
186
        break;
187
    case IFE_E_PHY_ID:
188
    case IFE_PLUS_E_PHY_ID:
189
    case IFE_C_E_PHY_ID:
190
        hw->phy_type = e1000_phy_ife;
191
        break;
192
    case GG82563_E_PHY_ID:
193
        if (hw->mac_type == e1000_80003es2lan) {
194
            hw->phy_type = e1000_phy_gg82563;
195
            break;
196
        }
197
        /* Fall Through */
198
    default:
199
        /* Should never have loaded on this device */
200
        hw->phy_type = e1000_phy_undefined;
201
        return -E1000_ERR_PHY_TYPE;
202
    }
203
 
204
    return E1000_SUCCESS;
205
}
206
 
207
/******************************************************************************
208
 * IGP phy init script - initializes the GbE PHY
209
 *
210
 * hw - Struct containing variables accessed by shared code
211
 *****************************************************************************/
212
static void
213
e1000_phy_init_script(struct e1000_hw *hw)
214
{
215
    uint32_t ret_val;
216
    uint16_t phy_saved_data;
217
 
218
    DEBUGFUNC("e1000_phy_init_script");
219
 
220
    if (hw->phy_init_script) {
221
        msleep(20);
222
 
223
        /* Save off the current value of register 0x2F5B to be restored at
224
         * the end of this routine. */
225
        ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
226
 
227
        /* Disabled the PHY transmitter */
228
        e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
229
 
230
        msleep(20);
231
 
232
        e1000_write_phy_reg(hw,0x0000,0x0140);
233
 
234
        msleep(5);
235
 
236
        switch (hw->mac_type) {
237
        case e1000_82541:
238
        case e1000_82547:
239
            e1000_write_phy_reg(hw, 0x1F95, 0x0001);
240
 
241
            e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
242
 
243
            e1000_write_phy_reg(hw, 0x1F79, 0x0018);
244
 
245
            e1000_write_phy_reg(hw, 0x1F30, 0x1600);
246
 
247
            e1000_write_phy_reg(hw, 0x1F31, 0x0014);
248
 
249
            e1000_write_phy_reg(hw, 0x1F32, 0x161C);
250
 
251
            e1000_write_phy_reg(hw, 0x1F94, 0x0003);
252
 
253
            e1000_write_phy_reg(hw, 0x1F96, 0x003F);
254
 
255
            e1000_write_phy_reg(hw, 0x2010, 0x0008);
256
            break;
257
 
258
        case e1000_82541_rev_2:
259
        case e1000_82547_rev_2:
260
            e1000_write_phy_reg(hw, 0x1F73, 0x0099);
261
            break;
262
        default:
263
            break;
264
        }
265
 
266
        e1000_write_phy_reg(hw, 0x0000, 0x3300);
267
 
268
        msleep(20);
269
 
270
        /* Now enable the transmitter */
271
        e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
272
 
273
        if (hw->mac_type == e1000_82547) {
274
            uint16_t fused, fine, coarse;
275
 
276
            /* Move to analog registers page */
277
            e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
278
 
279
            if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
280
                e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
281
 
282
                fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
283
                coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
284
 
285
                if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
286
                    coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
287
                    fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
288
                } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
289
                    fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
290
 
291
                fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
292
                        (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
293
                        (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
294
 
295
                e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
296
                e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
297
                                    IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
298
            }
299
        }
300
    }
301
}
302
 
303
/******************************************************************************
304
 * Set the mac type member in the hw struct.
305
 *
306
 * hw - Struct containing variables accessed by shared code
307
 *****************************************************************************/
308
int32_t
309
e1000_set_mac_type(struct e1000_hw *hw)
310
{
311
        DEBUGFUNC("e1000_set_mac_type");
312
 
313
        switch (hw->device_id) {
314
        case E1000_DEV_ID_82542:
315
                switch (hw->revision_id) {
316
                case E1000_82542_2_0_REV_ID:
317
                        hw->mac_type = e1000_82542_rev2_0;
318
                        break;
319
                case E1000_82542_2_1_REV_ID:
320
                        hw->mac_type = e1000_82542_rev2_1;
321
                        break;
322
                default:
323
                        /* Invalid 82542 revision ID */
324
                        return -E1000_ERR_MAC_TYPE;
325
                }
326
                break;
327
        case E1000_DEV_ID_82543GC_FIBER:
328
        case E1000_DEV_ID_82543GC_COPPER:
329
                hw->mac_type = e1000_82543;
330
                break;
331
        case E1000_DEV_ID_82544EI_COPPER:
332
        case E1000_DEV_ID_82544EI_FIBER:
333
        case E1000_DEV_ID_82544GC_COPPER:
334
        case E1000_DEV_ID_82544GC_LOM:
335
                hw->mac_type = e1000_82544;
336
                break;
337
        case E1000_DEV_ID_82540EM:
338
        case E1000_DEV_ID_82540EM_LOM:
339
        case E1000_DEV_ID_82540EP:
340
        case E1000_DEV_ID_82540EP_LOM:
341
        case E1000_DEV_ID_82540EP_LP:
342
                hw->mac_type = e1000_82540;
343
                break;
344
        case E1000_DEV_ID_82545EM_COPPER:
345
        case E1000_DEV_ID_82545EM_FIBER:
346
                hw->mac_type = e1000_82545;
347
                break;
348
        case E1000_DEV_ID_82545GM_COPPER:
349
        case E1000_DEV_ID_82545GM_FIBER:
350
        case E1000_DEV_ID_82545GM_SERDES:
351
                hw->mac_type = e1000_82545_rev_3;
352
                break;
353
        case E1000_DEV_ID_82546EB_COPPER:
354
        case E1000_DEV_ID_82546EB_FIBER:
355
        case E1000_DEV_ID_82546EB_QUAD_COPPER:
356
                hw->mac_type = e1000_82546;
357
                break;
358
        case E1000_DEV_ID_82546GB_COPPER:
359
        case E1000_DEV_ID_82546GB_FIBER:
360
        case E1000_DEV_ID_82546GB_SERDES:
361
        case E1000_DEV_ID_82546GB_PCIE:
362
        case E1000_DEV_ID_82546GB_QUAD_COPPER:
363
        case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
364
                hw->mac_type = e1000_82546_rev_3;
365
                break;
366
        case E1000_DEV_ID_82541EI:
367
        case E1000_DEV_ID_82541EI_MOBILE:
368
        case E1000_DEV_ID_82541ER_LOM:
369
                hw->mac_type = e1000_82541;
370
                break;
371
        case E1000_DEV_ID_82541ER:
372
        case E1000_DEV_ID_82541GI:
373
        case E1000_DEV_ID_82541GI_LF:
374
        case E1000_DEV_ID_82541GI_MOBILE:
375
                hw->mac_type = e1000_82541_rev_2;
376
                break;
377
        case E1000_DEV_ID_82547EI:
378
        case E1000_DEV_ID_82547EI_MOBILE:
379
                hw->mac_type = e1000_82547;
380
                break;
381
        case E1000_DEV_ID_82547GI:
382
                hw->mac_type = e1000_82547_rev_2;
383
                break;
384
        case E1000_DEV_ID_82571EB_COPPER:
385
        case E1000_DEV_ID_82571EB_FIBER:
386
        case E1000_DEV_ID_82571EB_SERDES:
387
        case E1000_DEV_ID_82571EB_SERDES_DUAL:
388
        case E1000_DEV_ID_82571EB_SERDES_QUAD:
389
        case E1000_DEV_ID_82571EB_QUAD_COPPER:
390
        case E1000_DEV_ID_82571PT_QUAD_COPPER:
391
        case E1000_DEV_ID_82571EB_QUAD_FIBER:
392
        case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
393
                hw->mac_type = e1000_82571;
394
                break;
395
        case E1000_DEV_ID_82572EI_COPPER:
396
        case E1000_DEV_ID_82572EI_FIBER:
397
        case E1000_DEV_ID_82572EI_SERDES:
398
        case E1000_DEV_ID_82572EI:
399
                hw->mac_type = e1000_82572;
400
                break;
401
        case E1000_DEV_ID_82573E:
402
        case E1000_DEV_ID_82573E_IAMT:
403
        case E1000_DEV_ID_82573L:
404
                hw->mac_type = e1000_82573;
405
                break;
406
        case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
407
        case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
408
        case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
409
        case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
410
                hw->mac_type = e1000_80003es2lan;
411
                break;
412
        case E1000_DEV_ID_ICH8_IGP_M_AMT:
413
        case E1000_DEV_ID_ICH8_IGP_AMT:
414
        case E1000_DEV_ID_ICH8_IGP_C:
415
        case E1000_DEV_ID_ICH8_IFE:
416
        case E1000_DEV_ID_ICH8_IFE_GT:
417
        case E1000_DEV_ID_ICH8_IFE_G:
418
        case E1000_DEV_ID_ICH8_IGP_M:
419
                hw->mac_type = e1000_ich8lan;
420
                break;
421
        default:
422
                /* Should never have loaded on this device */
423
                return -E1000_ERR_MAC_TYPE;
424
        }
425
 
426
        switch (hw->mac_type) {
427
        case e1000_ich8lan:
428
                hw->swfwhw_semaphore_present = TRUE;
429
                hw->asf_firmware_present = TRUE;
430
                break;
431
        case e1000_80003es2lan:
432
                hw->swfw_sync_present = TRUE;
433
                /* fall through */
434
        case e1000_82571:
435
        case e1000_82572:
436
        case e1000_82573:
437
                hw->eeprom_semaphore_present = TRUE;
438
                /* fall through */
439
        case e1000_82541:
440
        case e1000_82547:
441
        case e1000_82541_rev_2:
442
        case e1000_82547_rev_2:
443
                hw->asf_firmware_present = TRUE;
444
                break;
445
        default:
446
                break;
447
        }
448
 
449
        /* The 82543 chip does not count tx_carrier_errors properly in
450
         * FD mode
451
         */
452
        if (hw->mac_type == e1000_82543)
453
                hw->bad_tx_carr_stats_fd = TRUE;
454
 
455
        /* capable of receiving management packets to the host */
456
        if (hw->mac_type >= e1000_82571)
457
                hw->has_manc2h = TRUE;
458
 
459
        /* In rare occasions, ESB2 systems would end up started without
460
         * the RX unit being turned on.
461
         */
462
        if (hw->mac_type == e1000_80003es2lan)
463
                hw->rx_needs_kicking = TRUE;
464
 
465
        if (hw->mac_type > e1000_82544)
466
                hw->has_smbus = TRUE;
467
 
468
        return E1000_SUCCESS;
469
}
470
 
471
/*****************************************************************************
472
 * Set media type and TBI compatibility.
473
 *
474
 * hw - Struct containing variables accessed by shared code
475
 * **************************************************************************/
476
void
477
e1000_set_media_type(struct e1000_hw *hw)
478
{
479
    uint32_t status;
480
 
481
    DEBUGFUNC("e1000_set_media_type");
482
 
483
    if (hw->mac_type != e1000_82543) {
484
        /* tbi_compatibility is only valid on 82543 */
485
        hw->tbi_compatibility_en = FALSE;
486
    }
487
 
488
    switch (hw->device_id) {
489
    case E1000_DEV_ID_82545GM_SERDES:
490
    case E1000_DEV_ID_82546GB_SERDES:
491
    case E1000_DEV_ID_82571EB_SERDES:
492
    case E1000_DEV_ID_82571EB_SERDES_DUAL:
493
    case E1000_DEV_ID_82571EB_SERDES_QUAD:
494
    case E1000_DEV_ID_82572EI_SERDES:
495
    case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
496
        hw->media_type = e1000_media_type_internal_serdes;
497
        break;
498
    default:
499
        switch (hw->mac_type) {
500
        case e1000_82542_rev2_0:
501
        case e1000_82542_rev2_1:
502
            hw->media_type = e1000_media_type_fiber;
503
            break;
504
        case e1000_ich8lan:
505
        case e1000_82573:
506
            /* The STATUS_TBIMODE bit is reserved or reused for the this
507
             * device.
508
             */
509
            hw->media_type = e1000_media_type_copper;
510
            break;
511
        default:
512
            status = E1000_READ_REG(hw, STATUS);
513
            if (status & E1000_STATUS_TBIMODE) {
514
                hw->media_type = e1000_media_type_fiber;
515
                /* tbi_compatibility not valid on fiber */
516
                hw->tbi_compatibility_en = FALSE;
517
            } else {
518
                hw->media_type = e1000_media_type_copper;
519
            }
520
            break;
521
        }
522
    }
523
}
524
 
525
/******************************************************************************
526
 * Reset the transmit and receive units; mask and clear all interrupts.
527
 *
528
 * hw - Struct containing variables accessed by shared code
529
 *****************************************************************************/
530
int32_t
531
e1000_reset_hw(struct e1000_hw *hw)
532
{
533
    uint32_t ctrl;
534
    uint32_t ctrl_ext;
535
    uint32_t icr;
536
    uint32_t manc;
537
    uint32_t led_ctrl;
538
    uint32_t timeout;
539
    uint32_t extcnf_ctrl;
540
    int32_t ret_val;
541
 
542
    DEBUGFUNC("e1000_reset_hw");
543
 
544
    /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
545
    if (hw->mac_type == e1000_82542_rev2_0) {
546
        DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
547
        e1000_pci_clear_mwi(hw);
548
    }
549
 
550
    if (hw->bus_type == e1000_bus_type_pci_express) {
551
        /* Prevent the PCI-E bus from sticking if there is no TLP connection
552
         * on the last TLP read/write transaction when MAC is reset.
553
         */
554
        if (e1000_disable_pciex_master(hw) != E1000_SUCCESS) {
555
            DEBUGOUT("PCI-E Master disable polling has failed.\n");
556
        }
557
    }
558
 
559
    /* Clear interrupt mask to stop board from generating interrupts */
560
    DEBUGOUT("Masking off all interrupts\n");
561
    E1000_WRITE_REG(hw, IMC, 0xffffffff);
562
 
563
    /* Disable the Transmit and Receive units.  Then delay to allow
564
     * any pending transactions to complete before we hit the MAC with
565
     * the global reset.
566
     */
567
    E1000_WRITE_REG(hw, RCTL, 0);
568
    E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
569
    E1000_WRITE_FLUSH(hw);
570
 
571
    /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
572
    hw->tbi_compatibility_on = FALSE;
573
 
574
    /* Delay to allow any outstanding PCI transactions to complete before
575
     * resetting the device
576
     */
577
    msleep(10);
578
 
579
    ctrl = E1000_READ_REG(hw, CTRL);
580
 
581
    /* Must reset the PHY before resetting the MAC */
582
    if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
583
        E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
584
        msleep(5);
585
    }
586
 
587
    /* Must acquire the MDIO ownership before MAC reset.
588
     * Ownership defaults to firmware after a reset. */
589
    if (hw->mac_type == e1000_82573) {
590
        timeout = 10;
591
 
592
        extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
593
        extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
594
 
595
        do {
596
            E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
597
            extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
598
 
599
            if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
600
                break;
601
            else
602
                extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
603
 
604
            msleep(2);
605
            timeout--;
606
        } while (timeout);
607
    }
608
 
609
    /* Workaround for ICH8 bit corruption issue in FIFO memory */
610
    if (hw->mac_type == e1000_ich8lan) {
611
        /* Set Tx and Rx buffer allocation to 8k apiece. */
612
        E1000_WRITE_REG(hw, PBA, E1000_PBA_8K);
613
        /* Set Packet Buffer Size to 16k. */
614
        E1000_WRITE_REG(hw, PBS, E1000_PBS_16K);
615
    }
616
 
617
    /* Issue a global reset to the MAC.  This will reset the chip's
618
     * transmit, receive, DMA, and link units.  It will not effect
619
     * the current PCI configuration.  The global reset bit is self-
620
     * clearing, and should clear within a microsecond.
621
     */
622
    DEBUGOUT("Issuing a global reset to MAC\n");
623
 
624
    switch (hw->mac_type) {
625
        case e1000_82544:
626
        case e1000_82540:
627
        case e1000_82545:
628
        case e1000_82546:
629
        case e1000_82541:
630
        case e1000_82541_rev_2:
631
            /* These controllers can't ack the 64-bit write when issuing the
632
             * reset, so use IO-mapping as a workaround to issue the reset */
633
            E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
634
            break;
635
        case e1000_82545_rev_3:
636
        case e1000_82546_rev_3:
637
            /* Reset is performed on a shadow of the control register */
638
            E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
639
            break;
640
        case e1000_ich8lan:
641
            if (!hw->phy_reset_disable &&
642
                e1000_check_phy_reset_block(hw) == E1000_SUCCESS) {
643
                /* e1000_ich8lan PHY HW reset requires MAC CORE reset
644
                 * at the same time to make sure the interface between
645
                 * MAC and the external PHY is reset.
646
                 */
647
                ctrl |= E1000_CTRL_PHY_RST;
648
            }
649
 
650
            e1000_get_software_flag(hw);
651
            E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
652
            msleep(5);
653
            break;
654
        default:
655
            E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
656
            break;
657
    }
658
 
659
    /* After MAC reset, force reload of EEPROM to restore power-on settings to
660
     * device.  Later controllers reload the EEPROM automatically, so just wait
661
     * for reload to complete.
662
     */
663
    switch (hw->mac_type) {
664
        case e1000_82542_rev2_0:
665
        case e1000_82542_rev2_1:
666
        case e1000_82543:
667
        case e1000_82544:
668
            /* Wait for reset to complete */
669
            udelay(10);
670
            ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
671
            ctrl_ext |= E1000_CTRL_EXT_EE_RST;
672
            E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
673
            E1000_WRITE_FLUSH(hw);
674
            /* Wait for EEPROM reload */
675
            msleep(2);
676
            break;
677
        case e1000_82541:
678
        case e1000_82541_rev_2:
679
        case e1000_82547:
680
        case e1000_82547_rev_2:
681
            /* Wait for EEPROM reload */
682
            msleep(20);
683
            break;
684
        case e1000_82573:
685
            if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
686
                udelay(10);
687
                ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
688
                ctrl_ext |= E1000_CTRL_EXT_EE_RST;
689
                E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
690
                E1000_WRITE_FLUSH(hw);
691
            }
692
            /* fall through */
693
        default:
694
            /* Auto read done will delay 5ms or poll based on mac type */
695
            ret_val = e1000_get_auto_rd_done(hw);
696
            if (ret_val)
697
                return ret_val;
698
            break;
699
    }
700
 
701
    /* Disable HW ARPs on ASF enabled adapters */
702
    if (hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) {
703
        manc = E1000_READ_REG(hw, MANC);
704
        manc &= ~(E1000_MANC_ARP_EN);
705
        E1000_WRITE_REG(hw, MANC, manc);
706
    }
707
 
708
    if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
709
        e1000_phy_init_script(hw);
710
 
711
        /* Configure activity LED after PHY reset */
712
        led_ctrl = E1000_READ_REG(hw, LEDCTL);
713
        led_ctrl &= IGP_ACTIVITY_LED_MASK;
714
        led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
715
        E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
716
    }
717
 
718
    /* Clear interrupt mask to stop board from generating interrupts */
719
    DEBUGOUT("Masking off all interrupts\n");
720
    E1000_WRITE_REG(hw, IMC, 0xffffffff);
721
 
722
    /* Clear any pending interrupt events. */
723
    icr = E1000_READ_REG(hw, ICR);
724
 
725
    /* If MWI was previously enabled, reenable it. */
726
    if (hw->mac_type == e1000_82542_rev2_0) {
727
        if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
728
            e1000_pci_set_mwi(hw);
729
    }
730
 
731
    if (hw->mac_type == e1000_ich8lan) {
732
        uint32_t kab = E1000_READ_REG(hw, KABGTXD);
733
        kab |= E1000_KABGTXD_BGSQLBIAS;
734
        E1000_WRITE_REG(hw, KABGTXD, kab);
735
    }
736
 
737
    return E1000_SUCCESS;
738
}
739
 
740
/******************************************************************************
741
 *
742
 * Initialize a number of hardware-dependent bits
743
 *
744
 * hw: Struct containing variables accessed by shared code
745
 *
746
 * This function contains hardware limitation workarounds for PCI-E adapters
747
 *
748
 *****************************************************************************/
749
static void
750
e1000_initialize_hardware_bits(struct e1000_hw *hw)
751
{
752
    if ((hw->mac_type >= e1000_82571) && (!hw->initialize_hw_bits_disable)) {
753
        /* Settings common to all PCI-express silicon */
754
        uint32_t reg_ctrl, reg_ctrl_ext;
755
        uint32_t reg_tarc0, reg_tarc1;
756
        uint32_t reg_tctl;
757
        uint32_t reg_txdctl, reg_txdctl1;
758
 
759
        /* link autonegotiation/sync workarounds */
760
        reg_tarc0 = E1000_READ_REG(hw, TARC0);
761
        reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
762
 
763
        /* Enable not-done TX descriptor counting */
764
        reg_txdctl = E1000_READ_REG(hw, TXDCTL);
765
        reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
766
        E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
767
        reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
768
        reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
769
        E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
770
 
771
        switch (hw->mac_type) {
772
            case e1000_82571:
773
            case e1000_82572:
774
                /* Clear PHY TX compatible mode bits */
775
                reg_tarc1 = E1000_READ_REG(hw, TARC1);
776
                reg_tarc1 &= ~((1 << 30)|(1 << 29));
777
 
778
                /* link autonegotiation/sync workarounds */
779
                reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
780
 
781
                /* TX ring control fixes */
782
                reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
783
 
784
                /* Multiple read bit is reversed polarity */
785
                reg_tctl = E1000_READ_REG(hw, TCTL);
786
                if (reg_tctl & E1000_TCTL_MULR)
787
                    reg_tarc1 &= ~(1 << 28);
788
                else
789
                    reg_tarc1 |= (1 << 28);
790
 
791
                E1000_WRITE_REG(hw, TARC1, reg_tarc1);
792
                break;
793
            case e1000_82573:
794
                reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
795
                reg_ctrl_ext &= ~(1 << 23);
796
                reg_ctrl_ext |= (1 << 22);
797
 
798
                /* TX byte count fix */
799
                reg_ctrl = E1000_READ_REG(hw, CTRL);
800
                reg_ctrl &= ~(1 << 29);
801
 
802
                E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
803
                E1000_WRITE_REG(hw, CTRL, reg_ctrl);
804
                break;
805
            case e1000_80003es2lan:
806
                /* improve small packet performace for fiber/serdes */
807
                if ((hw->media_type == e1000_media_type_fiber) ||
808
                    (hw->media_type == e1000_media_type_internal_serdes)) {
809
                    reg_tarc0 &= ~(1 << 20);
810
                }
811
 
812
                /* Multiple read bit is reversed polarity */
813
                reg_tctl = E1000_READ_REG(hw, TCTL);
814
                reg_tarc1 = E1000_READ_REG(hw, TARC1);
815
                if (reg_tctl & E1000_TCTL_MULR)
816
                    reg_tarc1 &= ~(1 << 28);
817
                else
818
                    reg_tarc1 |= (1 << 28);
819
 
820
                E1000_WRITE_REG(hw, TARC1, reg_tarc1);
821
                break;
822
            case e1000_ich8lan:
823
                /* Reduce concurrent DMA requests to 3 from 4 */
824
                if ((hw->revision_id < 3) ||
825
                    ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
826
                     (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
827
                    reg_tarc0 |= ((1 << 29)|(1 << 28));
828
 
829
                reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
830
                reg_ctrl_ext |= (1 << 22);
831
                E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
832
 
833
                /* workaround TX hang with TSO=on */
834
                reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
835
 
836
                /* Multiple read bit is reversed polarity */
837
                reg_tctl = E1000_READ_REG(hw, TCTL);
838
                reg_tarc1 = E1000_READ_REG(hw, TARC1);
839
                if (reg_tctl & E1000_TCTL_MULR)
840
                    reg_tarc1 &= ~(1 << 28);
841
                else
842
                    reg_tarc1 |= (1 << 28);
843
 
844
                /* workaround TX hang with TSO=on */
845
                reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
846
 
847
                E1000_WRITE_REG(hw, TARC1, reg_tarc1);
848
                break;
849
            default:
850
                break;
851
        }
852
 
853
        E1000_WRITE_REG(hw, TARC0, reg_tarc0);
854
    }
855
}
856
 
857
/******************************************************************************
858
 * Performs basic configuration of the adapter.
859
 *
860
 * hw - Struct containing variables accessed by shared code
861
 *
862
 * Assumes that the controller has previously been reset and is in a
863
 * post-reset uninitialized state. Initializes the receive address registers,
864
 * multicast table, and VLAN filter table. Calls routines to setup link
865
 * configuration and flow control settings. Clears all on-chip counters. Leaves
866
 * the transmit and receive units disabled and uninitialized.
867
 *****************************************************************************/
868
int32_t
869
e1000_init_hw(struct e1000_hw *hw)
870
{
871
    uint32_t ctrl;
872
    uint32_t i;
873
    int32_t ret_val;
874
    uint32_t mta_size;
875
    uint32_t reg_data;
876
    uint32_t ctrl_ext;
877
 
878
    DEBUGFUNC("e1000_init_hw");
879
 
880
    /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
881
    if ((hw->mac_type == e1000_ich8lan) &&
882
        ((hw->revision_id < 3) ||
883
         ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
884
          (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
885
            reg_data = E1000_READ_REG(hw, STATUS);
886
            reg_data &= ~0x80000000;
887
            E1000_WRITE_REG(hw, STATUS, reg_data);
888
    }
889
 
890
    /* Initialize Identification LED */
891
    ret_val = e1000_id_led_init(hw);
892
    if (ret_val) {
893
        DEBUGOUT("Error Initializing Identification LED\n");
894
        return ret_val;
895
    }
896
 
897
    /* Set the media type and TBI compatibility */
898
    e1000_set_media_type(hw);
899
 
900
    /* Must be called after e1000_set_media_type because media_type is used */
901
    e1000_initialize_hardware_bits(hw);
902
 
903
    /* Disabling VLAN filtering. */
904
    DEBUGOUT("Initializing the IEEE VLAN\n");
905
    /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
906
    if (hw->mac_type != e1000_ich8lan) {
907
        if (hw->mac_type < e1000_82545_rev_3)
908
            E1000_WRITE_REG(hw, VET, 0);
909
        e1000_clear_vfta(hw);
910
    }
911
 
912
    /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
913
    if (hw->mac_type == e1000_82542_rev2_0) {
914
        DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
915
        e1000_pci_clear_mwi(hw);
916
        E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
917
        E1000_WRITE_FLUSH(hw);
918
        msleep(5);
919
    }
920
 
921
    /* Setup the receive address. This involves initializing all of the Receive
922
     * Address Registers (RARs 0 - 15).
923
     */
924
    e1000_init_rx_addrs(hw);
925
 
926
    /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
927
    if (hw->mac_type == e1000_82542_rev2_0) {
928
        E1000_WRITE_REG(hw, RCTL, 0);
929
        E1000_WRITE_FLUSH(hw);
930
        msleep(1);
931
        if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
932
            e1000_pci_set_mwi(hw);
933
    }
934
 
935
    /* Zero out the Multicast HASH table */
936
    DEBUGOUT("Zeroing the MTA\n");
937
    mta_size = E1000_MC_TBL_SIZE;
938
    if (hw->mac_type == e1000_ich8lan)
939
        mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
940
    for (i = 0; i < mta_size; i++) {
941
        E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
942
        /* use write flush to prevent Memory Write Block (MWB) from
943
         * occuring when accessing our register space */
944
        E1000_WRITE_FLUSH(hw);
945
    }
946
 
947
    /* Set the PCI priority bit correctly in the CTRL register.  This
948
     * determines if the adapter gives priority to receives, or if it
949
     * gives equal priority to transmits and receives.  Valid only on
950
     * 82542 and 82543 silicon.
951
     */
952
    if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
953
        ctrl = E1000_READ_REG(hw, CTRL);
954
        E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
955
    }
956
 
957
    switch (hw->mac_type) {
958
    case e1000_82545_rev_3:
959
    case e1000_82546_rev_3:
960
        break;
961
    default:
962
        /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
963
        if (hw->bus_type == e1000_bus_type_pcix && e1000_pcix_get_mmrbc(hw) > 2048)
964
                e1000_pcix_set_mmrbc(hw, 2048);
965
        break;
966
    }
967
 
968
    /* More time needed for PHY to initialize */
969
    if (hw->mac_type == e1000_ich8lan)
970
        msleep(15);
971
 
972
    /* Call a subroutine to configure the link and setup flow control. */
973
    ret_val = e1000_setup_link(hw);
974
 
975
    /* Set the transmit descriptor write-back policy */
976
    if (hw->mac_type > e1000_82544) {
977
        ctrl = E1000_READ_REG(hw, TXDCTL);
978
        ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
979
        E1000_WRITE_REG(hw, TXDCTL, ctrl);
980
    }
981
 
982
    if (hw->mac_type == e1000_82573) {
983
        e1000_enable_tx_pkt_filtering(hw);
984
    }
985
 
986
    switch (hw->mac_type) {
987
    default:
988
        break;
989
    case e1000_80003es2lan:
990
        /* Enable retransmit on late collisions */
991
        reg_data = E1000_READ_REG(hw, TCTL);
992
        reg_data |= E1000_TCTL_RTLC;
993
        E1000_WRITE_REG(hw, TCTL, reg_data);
994
 
995
        /* Configure Gigabit Carry Extend Padding */
996
        reg_data = E1000_READ_REG(hw, TCTL_EXT);
997
        reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
998
        reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
999
        E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1000
 
1001
        /* Configure Transmit Inter-Packet Gap */
1002
        reg_data = E1000_READ_REG(hw, TIPG);
1003
        reg_data &= ~E1000_TIPG_IPGT_MASK;
1004
        reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1005
        E1000_WRITE_REG(hw, TIPG, reg_data);
1006
 
1007
        reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1008
        reg_data &= ~0x00100000;
1009
        E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1010
        /* Fall through */
1011
    case e1000_82571:
1012
    case e1000_82572:
1013
    case e1000_ich8lan:
1014
        ctrl = E1000_READ_REG(hw, TXDCTL1);
1015
        ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
1016
        E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1017
        break;
1018
    }
1019
 
1020
 
1021
    if (hw->mac_type == e1000_82573) {
1022
        uint32_t gcr = E1000_READ_REG(hw, GCR);
1023
        gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1024
        E1000_WRITE_REG(hw, GCR, gcr);
1025
    }
1026
 
1027
    /* Clear all of the statistics registers (clear on read).  It is
1028
     * important that we do this after we have tried to establish link
1029
     * because the symbol error count will increment wildly if there
1030
     * is no link.
1031
     */
1032
    e1000_clear_hw_cntrs(hw);
1033
 
1034
    /* ICH8 No-snoop bits are opposite polarity.
1035
     * Set to snoop by default after reset. */
1036
    if (hw->mac_type == e1000_ich8lan)
1037
        e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
1038
 
1039
    if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1040
        hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1041
        ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1042
        /* Relaxed ordering must be disabled to avoid a parity
1043
         * error crash in a PCI slot. */
1044
        ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1045
        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1046
    }
1047
 
1048
    return ret_val;
1049
}
1050
 
1051
/******************************************************************************
1052
 * Adjust SERDES output amplitude based on EEPROM setting.
1053
 *
1054
 * hw - Struct containing variables accessed by shared code.
1055
 *****************************************************************************/
1056
static int32_t
1057
e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
1058
{
1059
    uint16_t eeprom_data;
1060
    int32_t  ret_val;
1061
 
1062
    DEBUGFUNC("e1000_adjust_serdes_amplitude");
1063
 
1064
    if (hw->media_type != e1000_media_type_internal_serdes)
1065
        return E1000_SUCCESS;
1066
 
1067
    switch (hw->mac_type) {
1068
    case e1000_82545_rev_3:
1069
    case e1000_82546_rev_3:
1070
        break;
1071
    default:
1072
        return E1000_SUCCESS;
1073
    }
1074
 
1075
    ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data);
1076
    if (ret_val) {
1077
        return ret_val;
1078
    }
1079
 
1080
    if (eeprom_data != EEPROM_RESERVED_WORD) {
1081
        /* Adjust SERDES output amplitude only. */
1082
        eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
1083
        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
1084
        if (ret_val)
1085
            return ret_val;
1086
    }
1087
 
1088
    return E1000_SUCCESS;
1089
}
1090
 
1091
/******************************************************************************
1092
 * Configures flow control and link settings.
1093
 *
1094
 * hw - Struct containing variables accessed by shared code
1095
 *
1096
 * Determines which flow control settings to use. Calls the apropriate media-
1097
 * specific link configuration function. Configures the flow control settings.
1098
 * Assuming the adapter has a valid link partner, a valid link should be
1099
 * established. Assumes the hardware has previously been reset and the
1100
 * transmitter and receiver are not enabled.
1101
 *****************************************************************************/
1102
int32_t
1103
e1000_setup_link(struct e1000_hw *hw)
1104
{
1105
    uint32_t ctrl_ext;
1106
    int32_t ret_val;
1107
    uint16_t eeprom_data;
1108
 
1109
    DEBUGFUNC("e1000_setup_link");
1110
 
1111
    /* In the case of the phy reset being blocked, we already have a link.
1112
     * We do not have to set it up again. */
1113
    if (e1000_check_phy_reset_block(hw))
1114
        return E1000_SUCCESS;
1115
 
1116
    /* Read and store word 0x0F of the EEPROM. This word contains bits
1117
     * that determine the hardware's default PAUSE (flow control) mode,
1118
     * a bit that determines whether the HW defaults to enabling or
1119
     * disabling auto-negotiation, and the direction of the
1120
     * SW defined pins. If there is no SW over-ride of the flow
1121
     * control setting, then the variable hw->fc will
1122
     * be initialized based on a value in the EEPROM.
1123
     */
1124
    if (hw->fc == E1000_FC_DEFAULT) {
1125
        switch (hw->mac_type) {
1126
        case e1000_ich8lan:
1127
        case e1000_82573:
1128
            hw->fc = E1000_FC_FULL;
1129
            break;
1130
        default:
1131
            ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
1132
                                        1, &eeprom_data);
1133
            if (ret_val) {
1134
                DEBUGOUT("EEPROM Read Error\n");
1135
                return -E1000_ERR_EEPROM;
1136
            }
1137
            if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1138
                hw->fc = E1000_FC_NONE;
1139
            else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1140
                    EEPROM_WORD0F_ASM_DIR)
1141
                hw->fc = E1000_FC_TX_PAUSE;
1142
            else
1143
                hw->fc = E1000_FC_FULL;
1144
            break;
1145
        }
1146
    }
1147
 
1148
    /* We want to save off the original Flow Control configuration just
1149
     * in case we get disconnected and then reconnected into a different
1150
     * hub or switch with different Flow Control capabilities.
1151
     */
1152
    if (hw->mac_type == e1000_82542_rev2_0)
1153
        hw->fc &= (~E1000_FC_TX_PAUSE);
1154
 
1155
    if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1156
        hw->fc &= (~E1000_FC_RX_PAUSE);
1157
 
1158
    hw->original_fc = hw->fc;
1159
 
1160
    DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
1161
 
1162
    /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1163
     * polarity value for the SW controlled pins, and setup the
1164
     * Extended Device Control reg with that info.
1165
     * This is needed because one of the SW controlled pins is used for
1166
     * signal detection.  So this should be done before e1000_setup_pcs_link()
1167
     * or e1000_phy_setup() is called.
1168
     */
1169
    if (hw->mac_type == e1000_82543) {
1170
        ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
1171
                                    1, &eeprom_data);
1172
        if (ret_val) {
1173
            DEBUGOUT("EEPROM Read Error\n");
1174
            return -E1000_ERR_EEPROM;
1175
        }
1176
        ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1177
                    SWDPIO__EXT_SHIFT);
1178
        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1179
    }
1180
 
1181
    /* Call the necessary subroutine to configure the link. */
1182
    ret_val = (hw->media_type == e1000_media_type_copper) ?
1183
              e1000_setup_copper_link(hw) :
1184
              e1000_setup_fiber_serdes_link(hw);
1185
 
1186
    /* Initialize the flow control address, type, and PAUSE timer
1187
     * registers to their default values.  This is done even if flow
1188
     * control is disabled, because it does not hurt anything to
1189
     * initialize these registers.
1190
     */
1191
    DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
1192
 
1193
    /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1194
    if (hw->mac_type != e1000_ich8lan) {
1195
        E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1196
        E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1197
        E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1198
    }
1199
 
1200
    E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1201
 
1202
    /* Set the flow control receive threshold registers.  Normally,
1203
     * these registers will be set to a default threshold that may be
1204
     * adjusted later by the driver's runtime code.  However, if the
1205
     * ability to transmit pause frames in not enabled, then these
1206
     * registers will be set to 0.
1207
     */
1208
    if (!(hw->fc & E1000_FC_TX_PAUSE)) {
1209
        E1000_WRITE_REG(hw, FCRTL, 0);
1210
        E1000_WRITE_REG(hw, FCRTH, 0);
1211
    } else {
1212
        /* We need to set up the Receive Threshold high and low water marks
1213
         * as well as (optionally) enabling the transmission of XON frames.
1214
         */
1215
        if (hw->fc_send_xon) {
1216
            E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
1217
            E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1218
        } else {
1219
            E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1220
            E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1221
        }
1222
    }
1223
    return ret_val;
1224
}
1225
 
1226
/******************************************************************************
1227
 * Sets up link for a fiber based or serdes based adapter
1228
 *
1229
 * hw - Struct containing variables accessed by shared code
1230
 *
1231
 * Manipulates Physical Coding Sublayer functions in order to configure
1232
 * link. Assumes the hardware has been previously reset and the transmitter
1233
 * and receiver are not enabled.
1234
 *****************************************************************************/
1235
static int32_t
1236
e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
1237
{
1238
    uint32_t ctrl;
1239
    uint32_t status;
1240
    uint32_t txcw = 0;
1241
    uint32_t i;
1242
    uint32_t signal = 0;
1243
    int32_t ret_val;
1244
 
1245
    DEBUGFUNC("e1000_setup_fiber_serdes_link");
1246
 
1247
    /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists
1248
     * until explicitly turned off or a power cycle is performed.  A read to
1249
     * the register does not indicate its status.  Therefore, we ensure
1250
     * loopback mode is disabled during initialization.
1251
     */
1252
    if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572)
1253
        E1000_WRITE_REG(hw, SCTL, E1000_DISABLE_SERDES_LOOPBACK);
1254
 
1255
    /* On adapters with a MAC newer than 82544, SWDP 1 will be
1256
     * set when the optics detect a signal. On older adapters, it will be
1257
     * cleared when there is a signal.  This applies to fiber media only.
1258
     * If we're on serdes media, adjust the output amplitude to value
1259
     * set in the EEPROM.
1260
     */
1261
    ctrl = E1000_READ_REG(hw, CTRL);
1262
    if (hw->media_type == e1000_media_type_fiber)
1263
        signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
1264
 
1265
    ret_val = e1000_adjust_serdes_amplitude(hw);
1266
    if (ret_val)
1267
        return ret_val;
1268
 
1269
    /* Take the link out of reset */
1270
    ctrl &= ~(E1000_CTRL_LRST);
1271
 
1272
    /* Adjust VCO speed to improve BER performance */
1273
    ret_val = e1000_set_vco_speed(hw);
1274
    if (ret_val)
1275
        return ret_val;
1276
 
1277
    e1000_config_collision_dist(hw);
1278
 
1279
    /* Check for a software override of the flow control settings, and setup
1280
     * the device accordingly.  If auto-negotiation is enabled, then software
1281
     * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1282
     * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
1283
     * auto-negotiation is disabled, then software will have to manually
1284
     * configure the two flow control enable bits in the CTRL register.
1285
     *
1286
     * The possible values of the "fc" parameter are:
1287
     *      0:  Flow control is completely disabled
1288
     *      1:  Rx flow control is enabled (we can receive pause frames, but
1289
     *          not send pause frames).
1290
     *      2:  Tx flow control is enabled (we can send pause frames but we do
1291
     *          not support receiving pause frames).
1292
     *      3:  Both Rx and TX flow control (symmetric) are enabled.
1293
     */
1294
    switch (hw->fc) {
1295
    case E1000_FC_NONE:
1296
        /* Flow control is completely disabled by a software over-ride. */
1297
        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1298
        break;
1299
    case E1000_FC_RX_PAUSE:
1300
        /* RX Flow control is enabled and TX Flow control is disabled by a
1301
         * software over-ride. Since there really isn't a way to advertise
1302
         * that we are capable of RX Pause ONLY, we will advertise that we
1303
         * support both symmetric and asymmetric RX PAUSE. Later, we will
1304
         *  disable the adapter's ability to send PAUSE frames.
1305
         */
1306
        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1307
        break;
1308
    case E1000_FC_TX_PAUSE:
1309
        /* TX Flow control is enabled, and RX Flow control is disabled, by a
1310
         * software over-ride.
1311
         */
1312
        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1313
        break;
1314
    case E1000_FC_FULL:
1315
        /* Flow control (both RX and TX) is enabled by a software over-ride. */
1316
        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1317
        break;
1318
    default:
1319
        DEBUGOUT("Flow control param set incorrectly\n");
1320
        return -E1000_ERR_CONFIG;
1321
        break;
1322
    }
1323
 
1324
    /* Since auto-negotiation is enabled, take the link out of reset (the link
1325
     * will be in reset, because we previously reset the chip). This will
1326
     * restart auto-negotiation.  If auto-neogtiation is successful then the
1327
     * link-up status bit will be set and the flow control enable bits (RFCE
1328
     * and TFCE) will be set according to their negotiated value.
1329
     */
1330
    DEBUGOUT("Auto-negotiation enabled\n");
1331
 
1332
    E1000_WRITE_REG(hw, TXCW, txcw);
1333
    E1000_WRITE_REG(hw, CTRL, ctrl);
1334
    E1000_WRITE_FLUSH(hw);
1335
 
1336
    hw->txcw = txcw;
1337
    msleep(1);
1338
 
1339
    /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
1340
     * indication in the Device Status Register.  Time-out if a link isn't
1341
     * seen in 500 milliseconds seconds (Auto-negotiation should complete in
1342
     * less than 500 milliseconds even if the other end is doing it in SW).
1343
     * For internal serdes, we just assume a signal is present, then poll.
1344
     */
1345
    if (hw->media_type == e1000_media_type_internal_serdes ||
1346
       (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
1347
        DEBUGOUT("Looking for Link\n");
1348
        for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
1349
            msleep(10);
1350
            status = E1000_READ_REG(hw, STATUS);
1351
            if (status & E1000_STATUS_LU) break;
1352
        }
1353
        if (i == (LINK_UP_TIMEOUT / 10)) {
1354
            DEBUGOUT("Never got a valid link from auto-neg!!!\n");
1355
            hw->autoneg_failed = 1;
1356
            /* AutoNeg failed to achieve a link, so we'll call
1357
             * e1000_check_for_link. This routine will force the link up if
1358
             * we detect a signal. This will allow us to communicate with
1359
             * non-autonegotiating link partners.
1360
             */
1361
            ret_val = e1000_check_for_link(hw);
1362
            if (ret_val) {
1363
                DEBUGOUT("Error while checking for link\n");
1364
                return ret_val;
1365
            }
1366
            hw->autoneg_failed = 0;
1367
        } else {
1368
            hw->autoneg_failed = 0;
1369
            DEBUGOUT("Valid Link Found\n");
1370
        }
1371
    } else {
1372
        DEBUGOUT("No Signal Detected\n");
1373
    }
1374
    return E1000_SUCCESS;
1375
}
1376
 
1377
/******************************************************************************
1378
* Make sure we have a valid PHY and change PHY mode before link setup.
1379
*
1380
* hw - Struct containing variables accessed by shared code
1381
******************************************************************************/
1382
static int32_t
1383
e1000_copper_link_preconfig(struct e1000_hw *hw)
1384
{
1385
    uint32_t ctrl;
1386
    int32_t ret_val;
1387
    uint16_t phy_data;
1388
 
1389
    DEBUGFUNC("e1000_copper_link_preconfig");
1390
 
1391
    ctrl = E1000_READ_REG(hw, CTRL);
1392
    /* With 82543, we need to force speed and duplex on the MAC equal to what
1393
     * the PHY speed and duplex configuration is. In addition, we need to
1394
     * perform a hardware reset on the PHY to take it out of reset.
1395
     */
1396
    if (hw->mac_type > e1000_82543) {
1397
        ctrl |= E1000_CTRL_SLU;
1398
        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1399
        E1000_WRITE_REG(hw, CTRL, ctrl);
1400
    } else {
1401
        ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1402
        E1000_WRITE_REG(hw, CTRL, ctrl);
1403
        ret_val = e1000_phy_hw_reset(hw);
1404
        if (ret_val)
1405
            return ret_val;
1406
    }
1407
 
1408
    /* Make sure we have a valid PHY */
1409
    ret_val = e1000_detect_gig_phy(hw);
1410
    if (ret_val) {
1411
        DEBUGOUT("Error, did not detect valid phy.\n");
1412
        return ret_val;
1413
    }
1414
    DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
1415
 
1416
    /* Set PHY to class A mode (if necessary) */
1417
    ret_val = e1000_set_phy_mode(hw);
1418
    if (ret_val)
1419
        return ret_val;
1420
 
1421
    if ((hw->mac_type == e1000_82545_rev_3) ||
1422
       (hw->mac_type == e1000_82546_rev_3)) {
1423
        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1424
        phy_data |= 0x00000008;
1425
        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1426
    }
1427
 
1428
    if (hw->mac_type <= e1000_82543 ||
1429
        hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1430
        hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2)
1431
        hw->phy_reset_disable = FALSE;
1432
 
1433
   return E1000_SUCCESS;
1434
}
1435
 
1436
 
1437
/********************************************************************
1438
* Copper link setup for e1000_phy_igp series.
1439
*
1440
* hw - Struct containing variables accessed by shared code
1441
*********************************************************************/
1442
static int32_t
1443
e1000_copper_link_igp_setup(struct e1000_hw *hw)
1444
{
1445
    uint32_t led_ctrl;
1446
    int32_t ret_val;
1447
    uint16_t phy_data;
1448
 
1449
    DEBUGFUNC("e1000_copper_link_igp_setup");
1450
 
1451
    if (hw->phy_reset_disable)
1452
        return E1000_SUCCESS;
1453
 
1454
    ret_val = e1000_phy_reset(hw);
1455
    if (ret_val) {
1456
        DEBUGOUT("Error Resetting the PHY\n");
1457
        return ret_val;
1458
    }
1459
 
1460
    /* Wait 15ms for MAC to configure PHY from eeprom settings */
1461
    msleep(15);
1462
    if (hw->mac_type != e1000_ich8lan) {
1463
    /* Configure activity LED after PHY reset */
1464
    led_ctrl = E1000_READ_REG(hw, LEDCTL);
1465
    led_ctrl &= IGP_ACTIVITY_LED_MASK;
1466
    led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1467
    E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
1468
    }
1469
 
1470
    /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1471
    if (hw->phy_type == e1000_phy_igp) {
1472
        /* disable lplu d3 during driver init */
1473
        ret_val = e1000_set_d3_lplu_state(hw, FALSE);
1474
        if (ret_val) {
1475
            DEBUGOUT("Error Disabling LPLU D3\n");
1476
            return ret_val;
1477
        }
1478
    }
1479
 
1480
    /* disable lplu d0 during driver init */
1481
    ret_val = e1000_set_d0_lplu_state(hw, FALSE);
1482
    if (ret_val) {
1483
        DEBUGOUT("Error Disabling LPLU D0\n");
1484
        return ret_val;
1485
    }
1486
    /* Configure mdi-mdix settings */
1487
    ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1488
    if (ret_val)
1489
        return ret_val;
1490
 
1491
    if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1492
        hw->dsp_config_state = e1000_dsp_config_disabled;
1493
        /* Force MDI for earlier revs of the IGP PHY */
1494
        phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX);
1495
        hw->mdix = 1;
1496
 
1497
    } else {
1498
        hw->dsp_config_state = e1000_dsp_config_enabled;
1499
        phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1500
 
1501
        switch (hw->mdix) {
1502
        case 1:
1503
            phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1504
            break;
1505
        case 2:
1506
            phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1507
            break;
1508
        case 0:
1509
        default:
1510
            phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1511
            break;
1512
        }
1513
    }
1514
    ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1515
    if (ret_val)
1516
        return ret_val;
1517
 
1518
    /* set auto-master slave resolution settings */
1519
    if (hw->autoneg) {
1520
        e1000_ms_type phy_ms_setting = hw->master_slave;
1521
 
1522
        if (hw->ffe_config_state == e1000_ffe_config_active)
1523
            hw->ffe_config_state = e1000_ffe_config_enabled;
1524
 
1525
        if (hw->dsp_config_state == e1000_dsp_config_activated)
1526
            hw->dsp_config_state = e1000_dsp_config_enabled;
1527
 
1528
        /* when autonegotiation advertisment is only 1000Mbps then we
1529
          * should disable SmartSpeed and enable Auto MasterSlave
1530
          * resolution as hardware default. */
1531
        if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1532
            /* Disable SmartSpeed */
1533
            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1534
                                         &phy_data);
1535
            if (ret_val)
1536
                return ret_val;
1537
            phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1538
            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1539
                                          phy_data);
1540
            if (ret_val)
1541
                return ret_val;
1542
            /* Set auto Master/Slave resolution process */
1543
            ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1544
            if (ret_val)
1545
                return ret_val;
1546
            phy_data &= ~CR_1000T_MS_ENABLE;
1547
            ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1548
            if (ret_val)
1549
                return ret_val;
1550
        }
1551
 
1552
        ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1553
        if (ret_val)
1554
            return ret_val;
1555
 
1556
        /* load defaults for future use */
1557
        hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1558
                                        ((phy_data & CR_1000T_MS_VALUE) ?
1559
                                         e1000_ms_force_master :
1560
                                         e1000_ms_force_slave) :
1561
                                         e1000_ms_auto;
1562
 
1563
        switch (phy_ms_setting) {
1564
        case e1000_ms_force_master:
1565
            phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1566
            break;
1567
        case e1000_ms_force_slave:
1568
            phy_data |= CR_1000T_MS_ENABLE;
1569
            phy_data &= ~(CR_1000T_MS_VALUE);
1570
            break;
1571
        case e1000_ms_auto:
1572
            phy_data &= ~CR_1000T_MS_ENABLE;
1573
            default:
1574
            break;
1575
        }
1576
        ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1577
        if (ret_val)
1578
            return ret_val;
1579
    }
1580
 
1581
    return E1000_SUCCESS;
1582
}
1583
 
1584
/********************************************************************
1585
* Copper link setup for e1000_phy_gg82563 series.
1586
*
1587
* hw - Struct containing variables accessed by shared code
1588
*********************************************************************/
1589
static int32_t
1590
e1000_copper_link_ggp_setup(struct e1000_hw *hw)
1591
{
1592
    int32_t ret_val;
1593
    uint16_t phy_data;
1594
    uint32_t reg_data;
1595
 
1596
    DEBUGFUNC("e1000_copper_link_ggp_setup");
1597
 
1598
    if (!hw->phy_reset_disable) {
1599
 
1600
        /* Enable CRS on TX for half-duplex operation. */
1601
        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
1602
                                     &phy_data);
1603
        if (ret_val)
1604
            return ret_val;
1605
 
1606
        phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
1607
        /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
1608
        phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
1609
 
1610
        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
1611
                                      phy_data);
1612
        if (ret_val)
1613
            return ret_val;
1614
 
1615
        /* Options:
1616
         *   MDI/MDI-X = 0 (default)
1617
         *   0 - Auto for all speeds
1618
         *   1 - MDI mode
1619
         *   2 - MDI-X mode
1620
         *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1621
         */
1622
        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data);
1623
        if (ret_val)
1624
            return ret_val;
1625
 
1626
        phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
1627
 
1628
        switch (hw->mdix) {
1629
        case 1:
1630
            phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
1631
            break;
1632
        case 2:
1633
            phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
1634
            break;
1635
        case 0:
1636
        default:
1637
            phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
1638
            break;
1639
        }
1640
 
1641
        /* Options:
1642
         *   disable_polarity_correction = 0 (default)
1643
         *       Automatic Correction for Reversed Cable Polarity
1644
         *   0 - Disabled
1645
         *   1 - Enabled
1646
         */
1647
        phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1648
        if (hw->disable_polarity_correction == 1)
1649
            phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1650
        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
1651
 
1652
        if (ret_val)
1653
            return ret_val;
1654
 
1655
        /* SW Reset the PHY so all changes take effect */
1656
        ret_val = e1000_phy_reset(hw);
1657
        if (ret_val) {
1658
            DEBUGOUT("Error Resetting the PHY\n");
1659
            return ret_val;
1660
        }
1661
    } /* phy_reset_disable */
1662
 
1663
    if (hw->mac_type == e1000_80003es2lan) {
1664
        /* Bypass RX and TX FIFO's */
1665
        ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
1666
                                       E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
1667
                                       E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
1668
        if (ret_val)
1669
            return ret_val;
1670
 
1671
        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data);
1672
        if (ret_val)
1673
            return ret_val;
1674
 
1675
        phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
1676
        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data);
1677
 
1678
        if (ret_val)
1679
            return ret_val;
1680
 
1681
        reg_data = E1000_READ_REG(hw, CTRL_EXT);
1682
        reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
1683
        E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
1684
 
1685
        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
1686
                                          &phy_data);
1687
        if (ret_val)
1688
            return ret_val;
1689
 
1690
        /* Do not init these registers when the HW is in IAMT mode, since the
1691
         * firmware will have already initialized them.  We only initialize
1692
         * them if the HW is not in IAMT mode.
1693
         */
1694
        if (e1000_check_mng_mode(hw) == FALSE) {
1695
            /* Enable Electrical Idle on the PHY */
1696
            phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
1697
            ret_val = e1000_write_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
1698
                                          phy_data);
1699
            if (ret_val)
1700
                return ret_val;
1701
 
1702
            ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1703
                                         &phy_data);
1704
            if (ret_val)
1705
                return ret_val;
1706
 
1707
            phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1708
            ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1709
                                          phy_data);
1710
 
1711
            if (ret_val)
1712
                return ret_val;
1713
        }
1714
 
1715
        /* Workaround: Disable padding in Kumeran interface in the MAC
1716
         * and in the PHY to avoid CRC errors.
1717
         */
1718
        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
1719
                                     &phy_data);
1720
        if (ret_val)
1721
            return ret_val;
1722
        phy_data |= GG82563_ICR_DIS_PADDING;
1723
        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
1724
                                      phy_data);
1725
        if (ret_val)
1726
            return ret_val;
1727
    }
1728
 
1729
    return E1000_SUCCESS;
1730
}
1731
 
1732
/********************************************************************
1733
* Copper link setup for e1000_phy_m88 series.
1734
*
1735
* hw - Struct containing variables accessed by shared code
1736
*********************************************************************/
1737
static int32_t
1738
e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1739
{
1740
    int32_t ret_val;
1741
    uint16_t phy_data;
1742
 
1743
    DEBUGFUNC("e1000_copper_link_mgp_setup");
1744
 
1745
    if (hw->phy_reset_disable)
1746
        return E1000_SUCCESS;
1747
 
1748
    /* Enable CRS on TX. This must be set for half-duplex operation. */
1749
    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1750
    if (ret_val)
1751
        return ret_val;
1752
 
1753
    phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1754
 
1755
    /* Options:
1756
     *   MDI/MDI-X = 0 (default)
1757
     *   0 - Auto for all speeds
1758
     *   1 - MDI mode
1759
     *   2 - MDI-X mode
1760
     *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1761
     */
1762
    phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1763
 
1764
    switch (hw->mdix) {
1765
    case 1:
1766
        phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1767
        break;
1768
    case 2:
1769
        phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1770
        break;
1771
    case 3:
1772
        phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1773
        break;
1774
    case 0:
1775
    default:
1776
        phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1777
        break;
1778
    }
1779
 
1780
    /* Options:
1781
     *   disable_polarity_correction = 0 (default)
1782
     *       Automatic Correction for Reversed Cable Polarity
1783
     *   0 - Disabled
1784
     *   1 - Enabled
1785
     */
1786
    phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1787
    if (hw->disable_polarity_correction == 1)
1788
        phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1789
    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1790
    if (ret_val)
1791
        return ret_val;
1792
 
1793
    if (hw->phy_revision < M88E1011_I_REV_4) {
1794
        /* Force TX_CLK in the Extended PHY Specific Control Register
1795
         * to 25MHz clock.
1796
         */
1797
        ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1798
        if (ret_val)
1799
            return ret_val;
1800
 
1801
        phy_data |= M88E1000_EPSCR_TX_CLK_25;
1802
 
1803
        if ((hw->phy_revision == E1000_REVISION_2) &&
1804
            (hw->phy_id == M88E1111_I_PHY_ID)) {
1805
            /* Vidalia Phy, set the downshift counter to 5x */
1806
            phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1807
            phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1808
            ret_val = e1000_write_phy_reg(hw,
1809
                                        M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1810
            if (ret_val)
1811
                return ret_val;
1812
        } else {
1813
            /* Configure Master and Slave downshift values */
1814
            phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1815
                              M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1816
            phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1817
                             M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1818
            ret_val = e1000_write_phy_reg(hw,
1819
                                        M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1820
            if (ret_val)
1821
               return ret_val;
1822
        }
1823
    }
1824
 
1825
    /* SW Reset the PHY so all changes take effect */
1826
    ret_val = e1000_phy_reset(hw);
1827
    if (ret_val) {
1828
        DEBUGOUT("Error Resetting the PHY\n");
1829
        return ret_val;
1830
    }
1831
 
1832
   return E1000_SUCCESS;
1833
}
1834
 
1835
/********************************************************************
1836
* Setup auto-negotiation and flow control advertisements,
1837
* and then perform auto-negotiation.
1838
*
1839
* hw - Struct containing variables accessed by shared code
1840
*********************************************************************/
1841
static int32_t
1842
e1000_copper_link_autoneg(struct e1000_hw *hw)
1843
{
1844
    int32_t ret_val;
1845
    uint16_t phy_data;
1846
 
1847
    DEBUGFUNC("e1000_copper_link_autoneg");
1848
 
1849
    /* Perform some bounds checking on the hw->autoneg_advertised
1850
     * parameter.  If this variable is zero, then set it to the default.
1851
     */
1852
    hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1853
 
1854
    /* If autoneg_advertised is zero, we assume it was not defaulted
1855
     * by the calling code so we set to advertise full capability.
1856
     */
1857
    if (hw->autoneg_advertised == 0)
1858
        hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1859
 
1860
    /* IFE phy only supports 10/100 */
1861
    if (hw->phy_type == e1000_phy_ife)
1862
        hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1863
 
1864
    DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
1865
    ret_val = e1000_phy_setup_autoneg(hw);
1866
    if (ret_val) {
1867
        DEBUGOUT("Error Setting up Auto-Negotiation\n");
1868
        return ret_val;
1869
    }
1870
    DEBUGOUT("Restarting Auto-Neg\n");
1871
 
1872
    /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1873
     * the Auto Neg Restart bit in the PHY control register.
1874
     */
1875
    ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1876
    if (ret_val)
1877
        return ret_val;
1878
 
1879
    phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1880
    ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1881
    if (ret_val)
1882
        return ret_val;
1883
 
1884
    /* Does the user want to wait for Auto-Neg to complete here, or
1885
     * check at a later time (for example, callback routine).
1886
     */
1887
    if (hw->wait_autoneg_complete) {
1888
        ret_val = e1000_wait_autoneg(hw);
1889
        if (ret_val) {
1890
            DEBUGOUT("Error while waiting for autoneg to complete\n");
1891
            return ret_val;
1892
        }
1893
    }
1894
 
1895
    hw->get_link_status = TRUE;
1896
 
1897
    return E1000_SUCCESS;
1898
}
1899
 
1900
/******************************************************************************
1901
* Config the MAC and the PHY after link is up.
1902
*   1) Set up the MAC to the current PHY speed/duplex
1903
*      if we are on 82543.  If we
1904
*      are on newer silicon, we only need to configure
1905
*      collision distance in the Transmit Control Register.
1906
*   2) Set up flow control on the MAC to that established with
1907
*      the link partner.
1908
*   3) Config DSP to improve Gigabit link quality for some PHY revisions.
1909
*
1910
* hw - Struct containing variables accessed by shared code
1911
******************************************************************************/
1912
static int32_t
1913
e1000_copper_link_postconfig(struct e1000_hw *hw)
1914
{
1915
    int32_t ret_val;
1916
    DEBUGFUNC("e1000_copper_link_postconfig");
1917
 
1918
    if (hw->mac_type >= e1000_82544) {
1919
        e1000_config_collision_dist(hw);
1920
    } else {
1921
        ret_val = e1000_config_mac_to_phy(hw);
1922
        if (ret_val) {
1923
            DEBUGOUT("Error configuring MAC to PHY settings\n");
1924
            return ret_val;
1925
        }
1926
    }
1927
    ret_val = e1000_config_fc_after_link_up(hw);
1928
    if (ret_val) {
1929
        DEBUGOUT("Error Configuring Flow Control\n");
1930
        return ret_val;
1931
    }
1932
 
1933
    /* Config DSP to improve Giga link quality */
1934
    if (hw->phy_type == e1000_phy_igp) {
1935
        ret_val = e1000_config_dsp_after_link_change(hw, TRUE);
1936
        if (ret_val) {
1937
            DEBUGOUT("Error Configuring DSP after link up\n");
1938
            return ret_val;
1939
        }
1940
    }
1941
 
1942
    return E1000_SUCCESS;
1943
}
1944
 
1945
/******************************************************************************
1946
* Detects which PHY is present and setup the speed and duplex
1947
*
1948
* hw - Struct containing variables accessed by shared code
1949
******************************************************************************/
1950
static int32_t
1951
e1000_setup_copper_link(struct e1000_hw *hw)
1952
{
1953
    int32_t ret_val;
1954
    uint16_t i;
1955
    uint16_t phy_data;
1956
    uint16_t reg_data;
1957
 
1958
    DEBUGFUNC("e1000_setup_copper_link");
1959
 
1960
    switch (hw->mac_type) {
1961
    case e1000_80003es2lan:
1962
    case e1000_ich8lan:
1963
        /* Set the mac to wait the maximum time between each
1964
         * iteration and increase the max iterations when
1965
         * polling the phy; this fixes erroneous timeouts at 10Mbps. */
1966
        ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
1967
        if (ret_val)
1968
            return ret_val;
1969
        ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
1970
        if (ret_val)
1971
            return ret_val;
1972
        reg_data |= 0x3F;
1973
        ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
1974
        if (ret_val)
1975
            return ret_val;
1976
    default:
1977
        break;
1978
    }
1979
 
1980
    /* Check if it is a valid PHY and set PHY mode if necessary. */
1981
    ret_val = e1000_copper_link_preconfig(hw);
1982
    if (ret_val)
1983
        return ret_val;
1984
 
1985
    switch (hw->mac_type) {
1986
    case e1000_80003es2lan:
1987
        /* Kumeran registers are written-only */
1988
        reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
1989
        reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
1990
        ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
1991
                                       reg_data);
1992
        if (ret_val)
1993
            return ret_val;
1994
        break;
1995
    default:
1996
        break;
1997
    }
1998
 
1999
    if (hw->phy_type == e1000_phy_igp ||
2000
        hw->phy_type == e1000_phy_igp_3 ||
2001
        hw->phy_type == e1000_phy_igp_2) {
2002
        ret_val = e1000_copper_link_igp_setup(hw);
2003
        if (ret_val)
2004
            return ret_val;
2005
    } else if (hw->phy_type == e1000_phy_m88) {
2006
        ret_val = e1000_copper_link_mgp_setup(hw);
2007
        if (ret_val)
2008
            return ret_val;
2009
    } else if (hw->phy_type == e1000_phy_gg82563) {
2010
        ret_val = e1000_copper_link_ggp_setup(hw);
2011
        if (ret_val)
2012
            return ret_val;
2013
    }
2014
 
2015
    if (hw->autoneg) {
2016
        /* Setup autoneg and flow control advertisement
2017
          * and perform autonegotiation */
2018
        ret_val = e1000_copper_link_autoneg(hw);
2019
        if (ret_val)
2020
            return ret_val;
2021
    } else {
2022
        /* PHY will be set to 10H, 10F, 100H,or 100F
2023
          * depending on value from forced_speed_duplex. */
2024
        DEBUGOUT("Forcing speed and duplex\n");
2025
        ret_val = e1000_phy_force_speed_duplex(hw);
2026
        if (ret_val) {
2027
            DEBUGOUT("Error Forcing Speed and Duplex\n");
2028
            return ret_val;
2029
        }
2030
    }
2031
 
2032
    /* Check link status. Wait up to 100 microseconds for link to become
2033
     * valid.
2034
     */
2035
    for (i = 0; i < 10; i++) {
2036
        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2037
        if (ret_val)
2038
            return ret_val;
2039
        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2040
        if (ret_val)
2041
            return ret_val;
2042
 
2043
        if (phy_data & MII_SR_LINK_STATUS) {
2044
            /* Config the MAC and PHY after link is up */
2045
            ret_val = e1000_copper_link_postconfig(hw);
2046
            if (ret_val)
2047
                return ret_val;
2048
 
2049
            DEBUGOUT("Valid link established!!!\n");
2050
            return E1000_SUCCESS;
2051
        }
2052
        udelay(10);
2053
    }
2054
 
2055
    DEBUGOUT("Unable to establish link!!!\n");
2056
    return E1000_SUCCESS;
2057
}
2058
 
2059
/******************************************************************************
2060
* Configure the MAC-to-PHY interface for 10/100Mbps
2061
*
2062
* hw - Struct containing variables accessed by shared code
2063
******************************************************************************/
2064
static int32_t
2065
e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
2066
{
2067
    int32_t ret_val = E1000_SUCCESS;
2068
    uint32_t tipg;
2069
    uint16_t reg_data;
2070
 
2071
    DEBUGFUNC("e1000_configure_kmrn_for_10_100");
2072
 
2073
    reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
2074
    ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
2075
                                   reg_data);
2076
    if (ret_val)
2077
        return ret_val;
2078
 
2079
    /* Configure Transmit Inter-Packet Gap */
2080
    tipg = E1000_READ_REG(hw, TIPG);
2081
    tipg &= ~E1000_TIPG_IPGT_MASK;
2082
    tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
2083
    E1000_WRITE_REG(hw, TIPG, tipg);
2084
 
2085
    ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
2086
 
2087
    if (ret_val)
2088
        return ret_val;
2089
 
2090
    if (duplex == HALF_DUPLEX)
2091
        reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
2092
    else
2093
        reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2094
 
2095
    ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
2096
 
2097
    return ret_val;
2098
}
2099
 
2100
static int32_t
2101
e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
2102
{
2103
    int32_t ret_val = E1000_SUCCESS;
2104
    uint16_t reg_data;
2105
    uint32_t tipg;
2106
 
2107
    DEBUGFUNC("e1000_configure_kmrn_for_1000");
2108
 
2109
    reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
2110
    ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
2111
                                   reg_data);
2112
    if (ret_val)
2113
        return ret_val;
2114
 
2115
    /* Configure Transmit Inter-Packet Gap */
2116
    tipg = E1000_READ_REG(hw, TIPG);
2117
    tipg &= ~E1000_TIPG_IPGT_MASK;
2118
    tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
2119
    E1000_WRITE_REG(hw, TIPG, tipg);
2120
 
2121
    ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
2122
 
2123
    if (ret_val)
2124
        return ret_val;
2125
 
2126
    reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2127
    ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
2128
 
2129
    return ret_val;
2130
}
2131
 
2132
/******************************************************************************
2133
* Configures PHY autoneg and flow control advertisement settings
2134
*
2135
* hw - Struct containing variables accessed by shared code
2136
******************************************************************************/
2137
int32_t
2138
e1000_phy_setup_autoneg(struct e1000_hw *hw)
2139
{
2140
    int32_t ret_val;
2141
    uint16_t mii_autoneg_adv_reg;
2142
    uint16_t mii_1000t_ctrl_reg;
2143
 
2144
    DEBUGFUNC("e1000_phy_setup_autoneg");
2145
 
2146
    /* Read the MII Auto-Neg Advertisement Register (Address 4). */
2147
    ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
2148
    if (ret_val)
2149
        return ret_val;
2150
 
2151
    if (hw->phy_type != e1000_phy_ife) {
2152
        /* Read the MII 1000Base-T Control Register (Address 9). */
2153
        ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
2154
        if (ret_val)
2155
            return ret_val;
2156
    } else
2157
        mii_1000t_ctrl_reg=0;
2158
 
2159
    /* Need to parse both autoneg_advertised and fc and set up
2160
     * the appropriate PHY registers.  First we will parse for
2161
     * autoneg_advertised software override.  Since we can advertise
2162
     * a plethora of combinations, we need to check each bit
2163
     * individually.
2164
     */
2165
 
2166
    /* First we clear all the 10/100 mb speed bits in the Auto-Neg
2167
     * Advertisement Register (Address 4) and the 1000 mb speed bits in
2168
     * the  1000Base-T Control Register (Address 9).
2169
     */
2170
    mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
2171
    mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
2172
 
2173
    DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
2174
 
2175
    /* Do we want to advertise 10 Mb Half Duplex? */
2176
    if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
2177
        DEBUGOUT("Advertise 10mb Half duplex\n");
2178
        mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
2179
    }
2180
 
2181
    /* Do we want to advertise 10 Mb Full Duplex? */
2182
    if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
2183
        DEBUGOUT("Advertise 10mb Full duplex\n");
2184
        mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
2185
    }
2186
 
2187
    /* Do we want to advertise 100 Mb Half Duplex? */
2188
    if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
2189
        DEBUGOUT("Advertise 100mb Half duplex\n");
2190
        mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
2191
    }
2192
 
2193
    /* Do we want to advertise 100 Mb Full Duplex? */
2194
    if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
2195
        DEBUGOUT("Advertise 100mb Full duplex\n");
2196
        mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
2197
    }
2198
 
2199
    /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
2200
    if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
2201
        DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
2202
    }
2203
 
2204
    /* Do we want to advertise 1000 Mb Full Duplex? */
2205
    if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
2206
        DEBUGOUT("Advertise 1000mb Full duplex\n");
2207
        mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
2208
        if (hw->phy_type == e1000_phy_ife) {
2209
            DEBUGOUT("e1000_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n");
2210
        }
2211
    }
2212
 
2213
    /* Check for a software override of the flow control settings, and
2214
     * setup the PHY advertisement registers accordingly.  If
2215
     * auto-negotiation is enabled, then software will have to set the
2216
     * "PAUSE" bits to the correct value in the Auto-Negotiation
2217
     * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
2218
     *
2219
     * The possible values of the "fc" parameter are:
2220
     *      0:  Flow control is completely disabled
2221
     *      1:  Rx flow control is enabled (we can receive pause frames
2222
     *          but not send pause frames).
2223
     *      2:  Tx flow control is enabled (we can send pause frames
2224
     *          but we do not support receiving pause frames).
2225
     *      3:  Both Rx and TX flow control (symmetric) are enabled.
2226
     *  other:  No software override.  The flow control configuration
2227
     *          in the EEPROM is used.
2228
     */
2229
    switch (hw->fc) {
2230
    case E1000_FC_NONE: /* 0 */
2231
        /* Flow control (RX & TX) is completely disabled by a
2232
         * software over-ride.
2233
         */
2234
        mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
2235
        break;
2236
    case E1000_FC_RX_PAUSE: /* 1 */
2237
        /* RX Flow control is enabled, and TX Flow control is
2238
         * disabled, by a software over-ride.
2239
         */
2240
        /* Since there really isn't a way to advertise that we are
2241
         * capable of RX Pause ONLY, we will advertise that we
2242
         * support both symmetric and asymmetric RX PAUSE.  Later
2243
         * (in e1000_config_fc_after_link_up) we will disable the
2244
         *hw's ability to send PAUSE frames.
2245
         */
2246
        mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
2247
        break;
2248
    case E1000_FC_TX_PAUSE: /* 2 */
2249
        /* TX Flow control is enabled, and RX Flow control is
2250
         * disabled, by a software over-ride.
2251
         */
2252
        mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
2253
        mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
2254
        break;
2255
    case E1000_FC_FULL: /* 3 */
2256
        /* Flow control (both RX and TX) is enabled by a software
2257
         * over-ride.
2258
         */
2259
        mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
2260
        break;
2261
    default:
2262
        DEBUGOUT("Flow control param set incorrectly\n");
2263
        return -E1000_ERR_CONFIG;
2264
    }
2265
 
2266
    ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
2267
    if (ret_val)
2268
        return ret_val;
2269
 
2270
    DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
2271
 
2272
    if (hw->phy_type != e1000_phy_ife) {
2273
        ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
2274
        if (ret_val)
2275
            return ret_val;
2276
    }
2277
 
2278
    return E1000_SUCCESS;
2279
}
2280
 
2281
/******************************************************************************
2282
* Force PHY speed and duplex settings to hw->forced_speed_duplex
2283
*
2284
* hw - Struct containing variables accessed by shared code
2285
******************************************************************************/
2286
static int32_t
2287
e1000_phy_force_speed_duplex(struct e1000_hw *hw)
2288
{
2289
    uint32_t ctrl;
2290
    int32_t ret_val;
2291
    uint16_t mii_ctrl_reg;
2292
    uint16_t mii_status_reg;
2293
    uint16_t phy_data;
2294
    uint16_t i;
2295
 
2296
    DEBUGFUNC("e1000_phy_force_speed_duplex");
2297
 
2298
    /* Turn off Flow control if we are forcing speed and duplex. */
2299
    hw->fc = E1000_FC_NONE;
2300
 
2301
    DEBUGOUT1("hw->fc = %d\n", hw->fc);
2302
 
2303
    /* Read the Device Control Register. */
2304
    ctrl = E1000_READ_REG(hw, CTRL);
2305
 
2306
    /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
2307
    ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2308
    ctrl &= ~(DEVICE_SPEED_MASK);
2309
 
2310
    /* Clear the Auto Speed Detect Enable bit. */
2311
    ctrl &= ~E1000_CTRL_ASDE;
2312
 
2313
    /* Read the MII Control Register. */
2314
    ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
2315
    if (ret_val)
2316
        return ret_val;
2317
 
2318
    /* We need to disable autoneg in order to force link and duplex. */
2319
 
2320
    mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
2321
 
2322
    /* Are we forcing Full or Half Duplex? */
2323
    if (hw->forced_speed_duplex == e1000_100_full ||
2324
        hw->forced_speed_duplex == e1000_10_full) {
2325
        /* We want to force full duplex so we SET the full duplex bits in the
2326
         * Device and MII Control Registers.
2327
         */
2328
        ctrl |= E1000_CTRL_FD;
2329
        mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
2330
        DEBUGOUT("Full Duplex\n");
2331
    } else {
2332
        /* We want to force half duplex so we CLEAR the full duplex bits in
2333
         * the Device and MII Control Registers.
2334
         */
2335
        ctrl &= ~E1000_CTRL_FD;
2336
        mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
2337
        DEBUGOUT("Half Duplex\n");
2338
    }
2339
 
2340
    /* Are we forcing 100Mbps??? */
2341
    if (hw->forced_speed_duplex == e1000_100_full ||
2342
       hw->forced_speed_duplex == e1000_100_half) {
2343
        /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
2344
        ctrl |= E1000_CTRL_SPD_100;
2345
        mii_ctrl_reg |= MII_CR_SPEED_100;
2346
        mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
2347
        DEBUGOUT("Forcing 100mb ");
2348
    } else {
2349
        /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
2350
        ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2351
        mii_ctrl_reg |= MII_CR_SPEED_10;
2352
        mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
2353
        DEBUGOUT("Forcing 10mb ");
2354
    }
2355
 
2356
    e1000_config_collision_dist(hw);
2357
 
2358
    /* Write the configured values back to the Device Control Reg. */
2359
    E1000_WRITE_REG(hw, CTRL, ctrl);
2360
 
2361
    if ((hw->phy_type == e1000_phy_m88) ||
2362
        (hw->phy_type == e1000_phy_gg82563)) {
2363
        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2364
        if (ret_val)
2365
            return ret_val;
2366
 
2367
        /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
2368
         * forced whenever speed are duplex are forced.
2369
         */
2370
        phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2371
        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2372
        if (ret_val)
2373
            return ret_val;
2374
 
2375
        DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
2376
 
2377
        /* Need to reset the PHY or these changes will be ignored */
2378
        mii_ctrl_reg |= MII_CR_RESET;
2379
 
2380
    /* Disable MDI-X support for 10/100 */
2381
    } else if (hw->phy_type == e1000_phy_ife) {
2382
        ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
2383
        if (ret_val)
2384
            return ret_val;
2385
 
2386
        phy_data &= ~IFE_PMC_AUTO_MDIX;
2387
        phy_data &= ~IFE_PMC_FORCE_MDIX;
2388
 
2389
        ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data);
2390
        if (ret_val)
2391
            return ret_val;
2392
 
2393
    } else {
2394
        /* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
2395
         * forced whenever speed or duplex are forced.
2396
         */
2397
        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2398
        if (ret_val)
2399
            return ret_val;
2400
 
2401
        phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2402
        phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2403
 
2404
        ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2405
        if (ret_val)
2406
            return ret_val;
2407
    }
2408
 
2409
    /* Write back the modified PHY MII control register. */
2410
    ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
2411
    if (ret_val)
2412
        return ret_val;
2413
 
2414
    udelay(1);
2415
 
2416
    /* The wait_autoneg_complete flag may be a little misleading here.
2417
     * Since we are forcing speed and duplex, Auto-Neg is not enabled.
2418
     * But we do want to delay for a period while forcing only so we
2419
     * don't generate false No Link messages.  So we will wait here
2420
     * only if the user has set wait_autoneg_complete to 1, which is
2421
     * the default.
2422
     */
2423
    if (hw->wait_autoneg_complete) {
2424
        /* We will wait for autoneg to complete. */
2425
        DEBUGOUT("Waiting for forced speed/duplex link.\n");
2426
        mii_status_reg = 0;
2427
 
2428
        /* We will wait for autoneg to complete or 4.5 seconds to expire. */
2429
        for (i = PHY_FORCE_TIME; i > 0; i--) {
2430
            /* Read the MII Status Register and wait for Auto-Neg Complete bit
2431
             * to be set.
2432
             */
2433
            ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2434
            if (ret_val)
2435
                return ret_val;
2436
 
2437
            ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2438
            if (ret_val)
2439
                return ret_val;
2440
 
2441
            if (mii_status_reg & MII_SR_LINK_STATUS) break;
2442
            msleep(100);
2443
        }
2444
        if ((i == 0) &&
2445
           ((hw->phy_type == e1000_phy_m88) ||
2446
            (hw->phy_type == e1000_phy_gg82563))) {
2447
            /* We didn't get link.  Reset the DSP and wait again for link. */
2448
            ret_val = e1000_phy_reset_dsp(hw);
2449
            if (ret_val) {
2450
                DEBUGOUT("Error Resetting PHY DSP\n");
2451
                return ret_val;
2452
            }
2453
        }
2454
        /* This loop will early-out if the link condition has been met.  */
2455
        for (i = PHY_FORCE_TIME; i > 0; i--) {
2456
            if (mii_status_reg & MII_SR_LINK_STATUS) break;
2457
            msleep(100);
2458
            /* Read the MII Status Register and wait for Auto-Neg Complete bit
2459
             * to be set.
2460
             */
2461
            ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2462
            if (ret_val)
2463
                return ret_val;
2464
 
2465
            ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2466
            if (ret_val)
2467
                return ret_val;
2468
        }
2469
    }
2470
 
2471
    if (hw->phy_type == e1000_phy_m88) {
2472
        /* Because we reset the PHY above, we need to re-force TX_CLK in the
2473
         * Extended PHY Specific Control Register to 25MHz clock.  This value
2474
         * defaults back to a 2.5MHz clock when the PHY is reset.
2475
         */
2476
        ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2477
        if (ret_val)
2478
            return ret_val;
2479
 
2480
        phy_data |= M88E1000_EPSCR_TX_CLK_25;
2481
        ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2482
        if (ret_val)
2483
            return ret_val;
2484
 
2485
        /* In addition, because of the s/w reset above, we need to enable CRS on
2486
         * TX.  This must be set for both full and half duplex operation.
2487
         */
2488
        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2489
        if (ret_val)
2490
            return ret_val;
2491
 
2492
        phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2493
        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2494
        if (ret_val)
2495
            return ret_val;
2496
 
2497
        if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
2498
            (!hw->autoneg) && (hw->forced_speed_duplex == e1000_10_full ||
2499
             hw->forced_speed_duplex == e1000_10_half)) {
2500
            ret_val = e1000_polarity_reversal_workaround(hw);
2501
            if (ret_val)
2502
                return ret_val;
2503
        }
2504
    } else if (hw->phy_type == e1000_phy_gg82563) {
2505
        /* The TX_CLK of the Extended PHY Specific Control Register defaults
2506
         * to 2.5MHz on a reset.  We need to re-force it back to 25MHz, if
2507
         * we're not in a forced 10/duplex configuration. */
2508
        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2509
        if (ret_val)
2510
            return ret_val;
2511
 
2512
        phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
2513
        if ((hw->forced_speed_duplex == e1000_10_full) ||
2514
            (hw->forced_speed_duplex == e1000_10_half))
2515
            phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ;
2516
        else
2517
            phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25MHZ;
2518
 
2519
        /* Also due to the reset, we need to enable CRS on Tx. */
2520
        phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2521
 
2522
        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2523
        if (ret_val)
2524
            return ret_val;
2525
    }
2526
    return E1000_SUCCESS;
2527
}
2528
 
2529
/******************************************************************************
2530
* Sets the collision distance in the Transmit Control register
2531
*
2532
* hw - Struct containing variables accessed by shared code
2533
*
2534
* Link should have been established previously. Reads the speed and duplex
2535
* information from the Device Status register.
2536
******************************************************************************/
2537
void
2538
e1000_config_collision_dist(struct e1000_hw *hw)
2539
{
2540
    uint32_t tctl, coll_dist;
2541
 
2542
    DEBUGFUNC("e1000_config_collision_dist");
2543
 
2544
    if (hw->mac_type < e1000_82543)
2545
        coll_dist = E1000_COLLISION_DISTANCE_82542;
2546
    else
2547
        coll_dist = E1000_COLLISION_DISTANCE;
2548
 
2549
    tctl = E1000_READ_REG(hw, TCTL);
2550
 
2551
    tctl &= ~E1000_TCTL_COLD;
2552
    tctl |= coll_dist << E1000_COLD_SHIFT;
2553
 
2554
    E1000_WRITE_REG(hw, TCTL, tctl);
2555
    E1000_WRITE_FLUSH(hw);
2556
}
2557
 
2558
/******************************************************************************
2559
* Sets MAC speed and duplex settings to reflect the those in the PHY
2560
*
2561
* hw - Struct containing variables accessed by shared code
2562
* mii_reg - data to write to the MII control register
2563
*
2564
* The contents of the PHY register containing the needed information need to
2565
* be passed in.
2566
******************************************************************************/
2567
static int32_t
2568
e1000_config_mac_to_phy(struct e1000_hw *hw)
2569
{
2570
    uint32_t ctrl;
2571
    int32_t ret_val;
2572
    uint16_t phy_data;
2573
 
2574
    DEBUGFUNC("e1000_config_mac_to_phy");
2575
 
2576
    /* 82544 or newer MAC, Auto Speed Detection takes care of
2577
    * MAC speed/duplex configuration.*/
2578
    if (hw->mac_type >= e1000_82544)
2579
        return E1000_SUCCESS;
2580
 
2581
    /* Read the Device Control Register and set the bits to Force Speed
2582
     * and Duplex.
2583
     */
2584
    ctrl = E1000_READ_REG(hw, CTRL);
2585
    ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2586
    ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
2587
 
2588
    /* Set up duplex in the Device Control and Transmit Control
2589
     * registers depending on negotiated values.
2590
     */
2591
    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
2592
    if (ret_val)
2593
        return ret_val;
2594
 
2595
    if (phy_data & M88E1000_PSSR_DPLX)
2596
        ctrl |= E1000_CTRL_FD;
2597
    else
2598
        ctrl &= ~E1000_CTRL_FD;
2599
 
2600
    e1000_config_collision_dist(hw);
2601
 
2602
    /* Set up speed in the Device Control register depending on
2603
     * negotiated values.
2604
     */
2605
    if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
2606
        ctrl |= E1000_CTRL_SPD_1000;
2607
    else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
2608
        ctrl |= E1000_CTRL_SPD_100;
2609
 
2610
    /* Write the configured values back to the Device Control Reg. */
2611
    E1000_WRITE_REG(hw, CTRL, ctrl);
2612
    return E1000_SUCCESS;
2613
}
2614
 
2615
/******************************************************************************
2616
 * Forces the MAC's flow control settings.
2617
 *
2618
 * hw - Struct containing variables accessed by shared code
2619
 *
2620
 * Sets the TFCE and RFCE bits in the device control register to reflect
2621
 * the adapter settings. TFCE and RFCE need to be explicitly set by
2622
 * software when a Copper PHY is used because autonegotiation is managed
2623
 * by the PHY rather than the MAC. Software must also configure these
2624
 * bits when link is forced on a fiber connection.
2625
 *****************************************************************************/
2626
int32_t
2627
e1000_force_mac_fc(struct e1000_hw *hw)
2628
{
2629
    uint32_t ctrl;
2630
 
2631
    DEBUGFUNC("e1000_force_mac_fc");
2632
 
2633
    /* Get the current configuration of the Device Control Register */
2634
    ctrl = E1000_READ_REG(hw, CTRL);
2635
 
2636
    /* Because we didn't get link via the internal auto-negotiation
2637
     * mechanism (we either forced link or we got link via PHY
2638
     * auto-neg), we have to manually enable/disable transmit an
2639
     * receive flow control.
2640
     *
2641
     * The "Case" statement below enables/disable flow control
2642
     * according to the "hw->fc" parameter.
2643
     *
2644
     * The possible values of the "fc" parameter are:
2645
     *      0:  Flow control is completely disabled
2646
     *      1:  Rx flow control is enabled (we can receive pause
2647
     *          frames but not send pause frames).
2648
     *      2:  Tx flow control is enabled (we can send pause frames
2649
     *          frames but we do not receive pause frames).
2650
     *      3:  Both Rx and TX flow control (symmetric) is enabled.
2651
     *  other:  No other values should be possible at this point.
2652
     */
2653
 
2654
    switch (hw->fc) {
2655
    case E1000_FC_NONE:
2656
        ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2657
        break;
2658
    case E1000_FC_RX_PAUSE:
2659
        ctrl &= (~E1000_CTRL_TFCE);
2660
        ctrl |= E1000_CTRL_RFCE;
2661
        break;
2662
    case E1000_FC_TX_PAUSE:
2663
        ctrl &= (~E1000_CTRL_RFCE);
2664
        ctrl |= E1000_CTRL_TFCE;
2665
        break;
2666
    case E1000_FC_FULL:
2667
        ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2668
        break;
2669
    default:
2670
        DEBUGOUT("Flow control param set incorrectly\n");
2671
        return -E1000_ERR_CONFIG;
2672
    }
2673
 
2674
    /* Disable TX Flow Control for 82542 (rev 2.0) */
2675
    if (hw->mac_type == e1000_82542_rev2_0)
2676
        ctrl &= (~E1000_CTRL_TFCE);
2677
 
2678
    E1000_WRITE_REG(hw, CTRL, ctrl);
2679
    return E1000_SUCCESS;
2680
}
2681
 
2682
/******************************************************************************
2683
 * Configures flow control settings after link is established
2684
 *
2685
 * hw - Struct containing variables accessed by shared code
2686
 *
2687
 * Should be called immediately after a valid link has been established.
2688
 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2689
 * and autonegotiation is enabled, the MAC flow control settings will be set
2690
 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2691
 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
2692
 *****************************************************************************/
2693
static int32_t
2694
e1000_config_fc_after_link_up(struct e1000_hw *hw)
2695
{
2696
    int32_t ret_val;
2697
    uint16_t mii_status_reg;
2698
    uint16_t mii_nway_adv_reg;
2699
    uint16_t mii_nway_lp_ability_reg;
2700
    uint16_t speed;
2701
    uint16_t duplex;
2702
 
2703
    DEBUGFUNC("e1000_config_fc_after_link_up");
2704
 
2705
    /* Check for the case where we have fiber media and auto-neg failed
2706
     * so we had to force link.  In this case, we need to force the
2707
     * configuration of the MAC to match the "fc" parameter.
2708
     */
2709
    if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) ||
2710
        ((hw->media_type == e1000_media_type_internal_serdes) &&
2711
         (hw->autoneg_failed)) ||
2712
        ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) {
2713
        ret_val = e1000_force_mac_fc(hw);
2714
        if (ret_val) {
2715
            DEBUGOUT("Error forcing flow control settings\n");
2716
            return ret_val;
2717
        }
2718
    }
2719
 
2720
    /* Check for the case where we have copper media and auto-neg is
2721
     * enabled.  In this case, we need to check and see if Auto-Neg
2722
     * has completed, and if so, how the PHY and link partner has
2723
     * flow control configured.
2724
     */
2725
    if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2726
        /* Read the MII Status Register and check to see if AutoNeg
2727
         * has completed.  We read this twice because this reg has
2728
         * some "sticky" (latched) bits.
2729
         */
2730
        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2731
        if (ret_val)
2732
            return ret_val;
2733
        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2734
        if (ret_val)
2735
            return ret_val;
2736
 
2737
        if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2738
            /* The AutoNeg process has completed, so we now need to
2739
             * read both the Auto Negotiation Advertisement Register
2740
             * (Address 4) and the Auto_Negotiation Base Page Ability
2741
             * Register (Address 5) to determine how flow control was
2742
             * negotiated.
2743
             */
2744
            ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2745
                                         &mii_nway_adv_reg);
2746
            if (ret_val)
2747
                return ret_val;
2748
            ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2749
                                         &mii_nway_lp_ability_reg);
2750
            if (ret_val)
2751
                return ret_val;
2752
 
2753
            /* Two bits in the Auto Negotiation Advertisement Register
2754
             * (Address 4) and two bits in the Auto Negotiation Base
2755
             * Page Ability Register (Address 5) determine flow control
2756
             * for both the PHY and the link partner.  The following
2757
             * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
2758
             * 1999, describes these PAUSE resolution bits and how flow
2759
             * control is determined based upon these settings.
2760
             * NOTE:  DC = Don't Care
2761
             *
2762
             *   LOCAL DEVICE  |   LINK PARTNER
2763
             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2764
             *-------|---------|-------|---------|--------------------
2765
             *   0   |    0    |  DC   |   DC    | E1000_FC_NONE
2766
             *   0   |    1    |   0   |   DC    | E1000_FC_NONE
2767
             *   0   |    1    |   1   |    0    | E1000_FC_NONE
2768
             *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2769
             *   1   |    0    |   0   |   DC    | E1000_FC_NONE
2770
             *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2771
             *   1   |    1    |   0   |    0    | E1000_FC_NONE
2772
             *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2773
             *
2774
             */
2775
            /* Are both PAUSE bits set to 1?  If so, this implies
2776
             * Symmetric Flow Control is enabled at both ends.  The
2777
             * ASM_DIR bits are irrelevant per the spec.
2778
             *
2779
             * For Symmetric Flow Control:
2780
             *
2781
             *   LOCAL DEVICE  |   LINK PARTNER
2782
             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2783
             *-------|---------|-------|---------|--------------------
2784
             *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2785
             *
2786
             */
2787
            if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2788
                (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
2789
                /* Now we need to check if the user selected RX ONLY
2790
                 * of pause frames.  In this case, we had to advertise
2791
                 * FULL flow control because we could not advertise RX
2792
                 * ONLY. Hence, we must now check to see if we need to
2793
                 * turn OFF  the TRANSMISSION of PAUSE frames.
2794
                 */
2795
                if (hw->original_fc == E1000_FC_FULL) {
2796
                    hw->fc = E1000_FC_FULL;
2797
                    DEBUGOUT("Flow Control = FULL.\n");
2798
                } else {
2799
                    hw->fc = E1000_FC_RX_PAUSE;
2800
                    DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2801
                }
2802
            }
2803
            /* For receiving PAUSE frames ONLY.
2804
             *
2805
             *   LOCAL DEVICE  |   LINK PARTNER
2806
             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2807
             *-------|---------|-------|---------|--------------------
2808
             *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2809
             *
2810
             */
2811
            else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2812
                     (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2813
                     (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2814
                     (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2815
                hw->fc = E1000_FC_TX_PAUSE;
2816
                DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2817
            }
2818
            /* For transmitting PAUSE frames ONLY.
2819
             *
2820
             *   LOCAL DEVICE  |   LINK PARTNER
2821
             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2822
             *-------|---------|-------|---------|--------------------
2823
             *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2824
             *
2825
             */
2826
            else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2827
                     (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2828
                     !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2829
                     (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2830
                hw->fc = E1000_FC_RX_PAUSE;
2831
                DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2832
            }
2833
            /* Per the IEEE spec, at this point flow control should be
2834
             * disabled.  However, we want to consider that we could
2835
             * be connected to a legacy switch that doesn't advertise
2836
             * desired flow control, but can be forced on the link
2837
             * partner.  So if we advertised no flow control, that is
2838
             * what we will resolve to.  If we advertised some kind of
2839
             * receive capability (Rx Pause Only or Full Flow Control)
2840
             * and the link partner advertised none, we will configure
2841
             * ourselves to enable Rx Flow Control only.  We can do
2842
             * this safely for two reasons:  If the link partner really
2843
             * didn't want flow control enabled, and we enable Rx, no
2844
             * harm done since we won't be receiving any PAUSE frames
2845
             * anyway.  If the intent on the link partner was to have
2846
             * flow control enabled, then by us enabling RX only, we
2847
             * can at least receive pause frames and process them.
2848
             * This is a good idea because in most cases, since we are
2849
             * predominantly a server NIC, more times than not we will
2850
             * be asked to delay transmission of packets than asking
2851
             * our link partner to pause transmission of frames.
2852
             */
2853
            else if ((hw->original_fc == E1000_FC_NONE ||
2854
                      hw->original_fc == E1000_FC_TX_PAUSE) ||
2855
                      hw->fc_strict_ieee) {
2856
                hw->fc = E1000_FC_NONE;
2857
                DEBUGOUT("Flow Control = NONE.\n");
2858
            } else {
2859
                hw->fc = E1000_FC_RX_PAUSE;
2860
                DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2861
            }
2862
 
2863
            /* Now we need to do one last check...  If we auto-
2864
             * negotiated to HALF DUPLEX, flow control should not be
2865
             * enabled per IEEE 802.3 spec.
2866
             */
2867
            ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
2868
            if (ret_val) {
2869
                DEBUGOUT("Error getting link speed and duplex\n");
2870
                return ret_val;
2871
            }
2872
 
2873
            if (duplex == HALF_DUPLEX)
2874
                hw->fc = E1000_FC_NONE;
2875
 
2876
            /* Now we call a subroutine to actually force the MAC
2877
             * controller to use the correct flow control settings.
2878
             */
2879
            ret_val = e1000_force_mac_fc(hw);
2880
            if (ret_val) {
2881
                DEBUGOUT("Error forcing flow control settings\n");
2882
                return ret_val;
2883
            }
2884
        } else {
2885
            DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
2886
        }
2887
    }
2888
    return E1000_SUCCESS;
2889
}
2890
 
2891
/******************************************************************************
2892
 * Checks to see if the link status of the hardware has changed.
2893
 *
2894
 * hw - Struct containing variables accessed by shared code
2895
 *
2896
 * Called by any function that needs to check the link status of the adapter.
2897
 *****************************************************************************/
2898
int32_t
2899
e1000_check_for_link(struct e1000_hw *hw)
2900
{
2901
    uint32_t rxcw = 0;
2902
    uint32_t ctrl;
2903
    uint32_t status;
2904
    uint32_t rctl;
2905
    uint32_t icr;
2906
    uint32_t signal = 0;
2907
    int32_t ret_val;
2908
    uint16_t phy_data;
2909
 
2910
    DEBUGFUNC("e1000_check_for_link");
2911
 
2912
    ctrl = E1000_READ_REG(hw, CTRL);
2913
    status = E1000_READ_REG(hw, STATUS);
2914
 
2915
    /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
2916
     * set when the optics detect a signal. On older adapters, it will be
2917
     * cleared when there is a signal.  This applies to fiber media only.
2918
     */
2919
    if ((hw->media_type == e1000_media_type_fiber) ||
2920
        (hw->media_type == e1000_media_type_internal_serdes)) {
2921
        rxcw = E1000_READ_REG(hw, RXCW);
2922
 
2923
        if (hw->media_type == e1000_media_type_fiber) {
2924
            signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
2925
            if (status & E1000_STATUS_LU)
2926
                hw->get_link_status = FALSE;
2927
        }
2928
    }
2929
 
2930
    /* If we have a copper PHY then we only want to go out to the PHY
2931
     * registers to see if Auto-Neg has completed and/or if our link
2932
     * status has changed.  The get_link_status flag will be set if we
2933
     * receive a Link Status Change interrupt or we have Rx Sequence
2934
     * Errors.
2935
     */
2936
    if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2937
        /* First we want to see if the MII Status Register reports
2938
         * link.  If so, then we want to get the current speed/duplex
2939
         * of the PHY.
2940
         * Read the register twice since the link bit is sticky.
2941
         */
2942
        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2943
        if (ret_val)
2944
            return ret_val;
2945
        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2946
        if (ret_val)
2947
            return ret_val;
2948
 
2949
        if (phy_data & MII_SR_LINK_STATUS) {
2950
            hw->get_link_status = FALSE;
2951
            /* Check if there was DownShift, must be checked immediately after
2952
             * link-up */
2953
            e1000_check_downshift(hw);
2954
 
2955
            /* If we are on 82544 or 82543 silicon and speed/duplex
2956
             * are forced to 10H or 10F, then we will implement the polarity
2957
             * reversal workaround.  We disable interrupts first, and upon
2958
             * returning, place the devices interrupt state to its previous
2959
             * value except for the link status change interrupt which will
2960
             * happen due to the execution of this workaround.
2961
             */
2962
 
2963
            if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
2964
                (!hw->autoneg) &&
2965
                (hw->forced_speed_duplex == e1000_10_full ||
2966
                 hw->forced_speed_duplex == e1000_10_half)) {
2967
                E1000_WRITE_REG(hw, IMC, 0xffffffff);
2968
                ret_val = e1000_polarity_reversal_workaround(hw);
2969
                icr = E1000_READ_REG(hw, ICR);
2970
                E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC));
2971
                E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK);
2972
            }
2973
 
2974
        } else {
2975
            /* No link detected */
2976
            e1000_config_dsp_after_link_change(hw, FALSE);
2977
            return 0;
2978
        }
2979
 
2980
        /* If we are forcing speed/duplex, then we simply return since
2981
         * we have already determined whether we have link or not.
2982
         */
2983
        if (!hw->autoneg) return -E1000_ERR_CONFIG;
2984
 
2985
        /* optimize the dsp settings for the igp phy */
2986
        e1000_config_dsp_after_link_change(hw, TRUE);
2987
 
2988
        /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
2989
         * have Si on board that is 82544 or newer, Auto
2990
         * Speed Detection takes care of MAC speed/duplex
2991
         * configuration.  So we only need to configure Collision
2992
         * Distance in the MAC.  Otherwise, we need to force
2993
         * speed/duplex on the MAC to the current PHY speed/duplex
2994
         * settings.
2995
         */
2996
        if (hw->mac_type >= e1000_82544)
2997
            e1000_config_collision_dist(hw);
2998
        else {
2999
            ret_val = e1000_config_mac_to_phy(hw);
3000
            if (ret_val) {
3001
                DEBUGOUT("Error configuring MAC to PHY settings\n");
3002
                return ret_val;
3003
            }
3004
        }
3005
 
3006
        /* Configure Flow Control now that Auto-Neg has completed. First, we
3007
         * need to restore the desired flow control settings because we may
3008
         * have had to re-autoneg with a different link partner.
3009
         */
3010
        ret_val = e1000_config_fc_after_link_up(hw);
3011
        if (ret_val) {
3012
            DEBUGOUT("Error configuring flow control\n");
3013
            return ret_val;
3014
        }
3015
 
3016
        /* At this point we know that we are on copper and we have
3017
         * auto-negotiated link.  These are conditions for checking the link
3018
         * partner capability register.  We use the link speed to determine if
3019
         * TBI compatibility needs to be turned on or off.  If the link is not
3020
         * at gigabit speed, then TBI compatibility is not needed.  If we are
3021
         * at gigabit speed, we turn on TBI compatibility.
3022
         */
3023
        if (hw->tbi_compatibility_en) {
3024
            uint16_t speed, duplex;
3025
            ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
3026
            if (ret_val) {
3027
                DEBUGOUT("Error getting link speed and duplex\n");
3028
                return ret_val;
3029
            }
3030
            if (speed != SPEED_1000) {
3031
                /* If link speed is not set to gigabit speed, we do not need
3032
                 * to enable TBI compatibility.
3033
                 */
3034
                if (hw->tbi_compatibility_on) {
3035
                    /* If we previously were in the mode, turn it off. */
3036
                    rctl = E1000_READ_REG(hw, RCTL);
3037
                    rctl &= ~E1000_RCTL_SBP;
3038
                    E1000_WRITE_REG(hw, RCTL, rctl);
3039
                    hw->tbi_compatibility_on = FALSE;
3040
                }
3041
            } else {
3042
                /* If TBI compatibility is was previously off, turn it on. For
3043
                 * compatibility with a TBI link partner, we will store bad
3044
                 * packets. Some frames have an additional byte on the end and
3045
                 * will look like CRC errors to to the hardware.
3046
                 */
3047
                if (!hw->tbi_compatibility_on) {
3048
                    hw->tbi_compatibility_on = TRUE;
3049
                    rctl = E1000_READ_REG(hw, RCTL);
3050
                    rctl |= E1000_RCTL_SBP;
3051
                    E1000_WRITE_REG(hw, RCTL, rctl);
3052
                }
3053
            }
3054
        }
3055
    }
3056
    /* If we don't have link (auto-negotiation failed or link partner cannot
3057
     * auto-negotiate), the cable is plugged in (we have signal), and our
3058
     * link partner is not trying to auto-negotiate with us (we are receiving
3059
     * idles or data), we need to force link up. We also need to give
3060
     * auto-negotiation time to complete, in case the cable was just plugged
3061
     * in. The autoneg_failed flag does this.
3062
     */
3063
    else if ((((hw->media_type == e1000_media_type_fiber) &&
3064
              ((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
3065
              (hw->media_type == e1000_media_type_internal_serdes)) &&
3066
              (!(status & E1000_STATUS_LU)) &&
3067
              (!(rxcw & E1000_RXCW_C))) {
3068
        if (hw->autoneg_failed == 0) {
3069
            hw->autoneg_failed = 1;
3070
            return 0;
3071
        }
3072
        DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
3073
 
3074
        /* Disable auto-negotiation in the TXCW register */
3075
        E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3076
 
3077
        /* Force link-up and also force full-duplex. */
3078
        ctrl = E1000_READ_REG(hw, CTRL);
3079
        ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3080
        E1000_WRITE_REG(hw, CTRL, ctrl);
3081
 
3082
        /* Configure Flow Control after forcing link up. */
3083
        ret_val = e1000_config_fc_after_link_up(hw);
3084
        if (ret_val) {
3085
            DEBUGOUT("Error configuring flow control\n");
3086
            return ret_val;
3087
        }
3088
    }
3089
    /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3090
     * auto-negotiation in the TXCW register and disable forced link in the
3091
     * Device Control register in an attempt to auto-negotiate with our link
3092
     * partner.
3093
     */
3094
    else if (((hw->media_type == e1000_media_type_fiber) ||
3095
              (hw->media_type == e1000_media_type_internal_serdes)) &&
3096
              (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3097
        DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
3098
        E1000_WRITE_REG(hw, TXCW, hw->txcw);
3099
        E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3100
 
3101
        hw->serdes_link_down = FALSE;
3102
    }
3103
    /* If we force link for non-auto-negotiation switch, check link status
3104
     * based on MAC synchronization for internal serdes media type.
3105
     */
3106
    else if ((hw->media_type == e1000_media_type_internal_serdes) &&
3107
             !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
3108
        /* SYNCH bit and IV bit are sticky. */
3109
        udelay(10);
3110
        if (E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
3111
            if (!(rxcw & E1000_RXCW_IV)) {
3112
                hw->serdes_link_down = FALSE;
3113
                DEBUGOUT("SERDES: Link is up.\n");
3114
            }
3115
        } else {
3116
            hw->serdes_link_down = TRUE;
3117
            DEBUGOUT("SERDES: Link is down.\n");
3118
        }
3119
    }
3120
    if ((hw->media_type == e1000_media_type_internal_serdes) &&
3121
        (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
3122
        hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS));
3123
    }
3124
    return E1000_SUCCESS;
3125
}
3126
 
3127
/******************************************************************************
3128
 * Detects the current speed and duplex settings of the hardware.
3129
 *
3130
 * hw - Struct containing variables accessed by shared code
3131
 * speed - Speed of the connection
3132
 * duplex - Duplex setting of the connection
3133
 *****************************************************************************/
3134
int32_t
3135
e1000_get_speed_and_duplex(struct e1000_hw *hw,
3136
                           uint16_t *speed,
3137
                           uint16_t *duplex)
3138
{
3139
    uint32_t status;
3140
    int32_t ret_val;
3141
    uint16_t phy_data;
3142
 
3143
    DEBUGFUNC("e1000_get_speed_and_duplex");
3144
 
3145
    if (hw->mac_type >= e1000_82543) {
3146
        status = E1000_READ_REG(hw, STATUS);
3147
        if (status & E1000_STATUS_SPEED_1000) {
3148
            *speed = SPEED_1000;
3149
            DEBUGOUT("1000 Mbs, ");
3150
        } else if (status & E1000_STATUS_SPEED_100) {
3151
            *speed = SPEED_100;
3152
            DEBUGOUT("100 Mbs, ");
3153
        } else {
3154
            *speed = SPEED_10;
3155
            DEBUGOUT("10 Mbs, ");
3156
        }
3157
 
3158
        if (status & E1000_STATUS_FD) {
3159
            *duplex = FULL_DUPLEX;
3160
            DEBUGOUT("Full Duplex\n");
3161
        } else {
3162
            *duplex = HALF_DUPLEX;
3163
            DEBUGOUT(" Half Duplex\n");
3164
        }
3165
    } else {
3166
        DEBUGOUT("1000 Mbs, Full Duplex\n");
3167
        *speed = SPEED_1000;
3168
        *duplex = FULL_DUPLEX;
3169
    }
3170
 
3171
    /* IGP01 PHY may advertise full duplex operation after speed downgrade even
3172
     * if it is operating at half duplex.  Here we set the duplex settings to
3173
     * match the duplex in the link partner's capabilities.
3174
     */
3175
    if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3176
        ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3177
        if (ret_val)
3178
            return ret_val;
3179
 
3180
        if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3181
            *duplex = HALF_DUPLEX;
3182
        else {
3183
            ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
3184
            if (ret_val)
3185
                return ret_val;
3186
            if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
3187
               (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3188
                *duplex = HALF_DUPLEX;
3189
        }
3190
    }
3191
 
3192
    if ((hw->mac_type == e1000_80003es2lan) &&
3193
        (hw->media_type == e1000_media_type_copper)) {
3194
        if (*speed == SPEED_1000)
3195
            ret_val = e1000_configure_kmrn_for_1000(hw);
3196
        else
3197
            ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3198
        if (ret_val)
3199
            return ret_val;
3200
    }
3201
 
3202
    if ((hw->phy_type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
3203
        ret_val = e1000_kumeran_lock_loss_workaround(hw);
3204
        if (ret_val)
3205
            return ret_val;
3206
    }
3207
 
3208
    return E1000_SUCCESS;
3209
}
3210
 
3211
/******************************************************************************
3212
* Blocks until autoneg completes or times out (~4.5 seconds)
3213
*
3214
* hw - Struct containing variables accessed by shared code
3215
******************************************************************************/
3216
static int32_t
3217
e1000_wait_autoneg(struct e1000_hw *hw)
3218
{
3219
    int32_t ret_val;
3220
    uint16_t i;
3221
    uint16_t phy_data;
3222
 
3223
    DEBUGFUNC("e1000_wait_autoneg");
3224
    DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3225
 
3226
    /* We will wait for autoneg to complete or 4.5 seconds to expire. */
3227
    for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
3228
        /* Read the MII Status Register and wait for Auto-Neg
3229
         * Complete bit to be set.
3230
         */
3231
        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3232
        if (ret_val)
3233
            return ret_val;
3234
        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3235
        if (ret_val)
3236
            return ret_val;
3237
        if (phy_data & MII_SR_AUTONEG_COMPLETE) {
3238
            return E1000_SUCCESS;
3239
        }
3240
        msleep(100);
3241
    }
3242
    return E1000_SUCCESS;
3243
}
3244
 
3245
/******************************************************************************
3246
* Raises the Management Data Clock
3247
*
3248
* hw - Struct containing variables accessed by shared code
3249
* ctrl - Device control register's current value
3250
******************************************************************************/
3251
static void
3252
e1000_raise_mdi_clk(struct e1000_hw *hw,
3253
                    uint32_t *ctrl)
3254
{
3255
    /* Raise the clock input to the Management Data Clock (by setting the MDC
3256
     * bit), and then delay 10 microseconds.
3257
     */
3258
    E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
3259
    E1000_WRITE_FLUSH(hw);
3260
    udelay(10);
3261
}
3262
 
3263
/******************************************************************************
3264
* Lowers the Management Data Clock
3265
*
3266
* hw - Struct containing variables accessed by shared code
3267
* ctrl - Device control register's current value
3268
******************************************************************************/
3269
static void
3270
e1000_lower_mdi_clk(struct e1000_hw *hw,
3271
                    uint32_t *ctrl)
3272
{
3273
    /* Lower the clock input to the Management Data Clock (by clearing the MDC
3274
     * bit), and then delay 10 microseconds.
3275
     */
3276
    E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
3277
    E1000_WRITE_FLUSH(hw);
3278
    udelay(10);
3279
}
3280
 
3281
/******************************************************************************
3282
* Shifts data bits out to the PHY
3283
*
3284
* hw - Struct containing variables accessed by shared code
3285
* data - Data to send out to the PHY
3286
* count - Number of bits to shift out
3287
*
3288
* Bits are shifted out in MSB to LSB order.
3289
******************************************************************************/
3290
static void
3291
e1000_shift_out_mdi_bits(struct e1000_hw *hw,
3292
                         uint32_t data,
3293
                         uint16_t count)
3294
{
3295
    uint32_t ctrl;
3296
    uint32_t mask;
3297
 
3298
    /* We need to shift "count" number of bits out to the PHY. So, the value
3299
     * in the "data" parameter will be shifted out to the PHY one bit at a
3300
     * time. In order to do this, "data" must be broken down into bits.
3301
     */
3302
    mask = 0x01;
3303
    mask <<= (count - 1);
3304
 
3305
    ctrl = E1000_READ_REG(hw, CTRL);
3306
 
3307
    /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
3308
    ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
3309
 
3310
    while (mask) {
3311
        /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
3312
         * then raising and lowering the Management Data Clock. A "0" is
3313
         * shifted out to the PHY by setting the MDIO bit to "0" and then
3314
         * raising and lowering the clock.
3315
         */
3316
        if (data & mask)
3317
            ctrl |= E1000_CTRL_MDIO;
3318
        else
3319
            ctrl &= ~E1000_CTRL_MDIO;
3320
 
3321
        E1000_WRITE_REG(hw, CTRL, ctrl);
3322
        E1000_WRITE_FLUSH(hw);
3323
 
3324
        udelay(10);
3325
 
3326
        e1000_raise_mdi_clk(hw, &ctrl);
3327
        e1000_lower_mdi_clk(hw, &ctrl);
3328
 
3329
        mask = mask >> 1;
3330
    }
3331
}
3332
 
3333
/******************************************************************************
3334
* Shifts data bits in from the PHY
3335
*
3336
* hw - Struct containing variables accessed by shared code
3337
*
3338
* Bits are shifted in in MSB to LSB order.
3339
******************************************************************************/
3340
static uint16_t
3341
e1000_shift_in_mdi_bits(struct e1000_hw *hw)
3342
{
3343
    uint32_t ctrl;
3344
    uint16_t data = 0;
3345
    uint8_t i;
3346
 
3347
    /* In order to read a register from the PHY, we need to shift in a total
3348
     * of 18 bits from the PHY. The first two bit (turnaround) times are used
3349
     * to avoid contention on the MDIO pin when a read operation is performed.
3350
     * These two bits are ignored by us and thrown away. Bits are "shifted in"
3351
     * by raising the input to the Management Data Clock (setting the MDC bit),
3352
     * and then reading the value of the MDIO bit.
3353
     */
3354
    ctrl = E1000_READ_REG(hw, CTRL);
3355
 
3356
    /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
3357
    ctrl &= ~E1000_CTRL_MDIO_DIR;
3358
    ctrl &= ~E1000_CTRL_MDIO;
3359
 
3360
    E1000_WRITE_REG(hw, CTRL, ctrl);
3361
    E1000_WRITE_FLUSH(hw);
3362
 
3363
    /* Raise and Lower the clock before reading in the data. This accounts for
3364
     * the turnaround bits. The first clock occurred when we clocked out the
3365
     * last bit of the Register Address.
3366
     */
3367
    e1000_raise_mdi_clk(hw, &ctrl);
3368
    e1000_lower_mdi_clk(hw, &ctrl);
3369
 
3370
    for (data = 0, i = 0; i < 16; i++) {
3371
        data = data << 1;
3372
        e1000_raise_mdi_clk(hw, &ctrl);
3373
        ctrl = E1000_READ_REG(hw, CTRL);
3374
        /* Check to see if we shifted in a "1". */
3375
        if (ctrl & E1000_CTRL_MDIO)
3376
            data |= 1;
3377
        e1000_lower_mdi_clk(hw, &ctrl);
3378
    }
3379
 
3380
    e1000_raise_mdi_clk(hw, &ctrl);
3381
    e1000_lower_mdi_clk(hw, &ctrl);
3382
 
3383
    return data;
3384
}
3385
 
3386
static int32_t
3387
e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
3388
{
3389
    uint32_t swfw_sync = 0;
3390
    uint32_t swmask = mask;
3391
    uint32_t fwmask = mask << 16;
3392
    int32_t timeout = 200;
3393
 
3394
    DEBUGFUNC("e1000_swfw_sync_acquire");
3395
 
3396
    if (hw->swfwhw_semaphore_present)
3397
        return e1000_get_software_flag(hw);
3398
 
3399
    if (!hw->swfw_sync_present)
3400
        return e1000_get_hw_eeprom_semaphore(hw);
3401
 
3402
    while (timeout) {
3403
            if (e1000_get_hw_eeprom_semaphore(hw))
3404
                return -E1000_ERR_SWFW_SYNC;
3405
 
3406
            swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
3407
            if (!(swfw_sync & (fwmask | swmask))) {
3408
                break;
3409
            }
3410
 
3411
            /* firmware currently using resource (fwmask) */
3412
            /* or other software thread currently using resource (swmask) */
3413
            e1000_put_hw_eeprom_semaphore(hw);
3414
            mdelay(5);
3415
            timeout--;
3416
    }
3417
 
3418
    if (!timeout) {
3419
        DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
3420
        return -E1000_ERR_SWFW_SYNC;
3421
    }
3422
 
3423
    swfw_sync |= swmask;
3424
    E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
3425
 
3426
    e1000_put_hw_eeprom_semaphore(hw);
3427
    return E1000_SUCCESS;
3428
}
3429
 
3430
static void
3431
e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
3432
{
3433
    uint32_t swfw_sync;
3434
    uint32_t swmask = mask;
3435
 
3436
    DEBUGFUNC("e1000_swfw_sync_release");
3437
 
3438
    if (hw->swfwhw_semaphore_present) {
3439
        e1000_release_software_flag(hw);
3440
        return;
3441
    }
3442
 
3443
    if (!hw->swfw_sync_present) {
3444
        e1000_put_hw_eeprom_semaphore(hw);
3445
        return;
3446
    }
3447
 
3448
    /* if (e1000_get_hw_eeprom_semaphore(hw))
3449
     *    return -E1000_ERR_SWFW_SYNC; */
3450
    while (e1000_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS);
3451
        /* empty */
3452
 
3453
    swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
3454
    swfw_sync &= ~swmask;
3455
    E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
3456
 
3457
    e1000_put_hw_eeprom_semaphore(hw);
3458
}
3459
 
3460
/*****************************************************************************
3461
* Reads the value from a PHY register, if the value is on a specific non zero
3462
* page, sets the page first.
3463
* hw - Struct containing variables accessed by shared code
3464
* reg_addr - address of the PHY register to read
3465
******************************************************************************/
3466
int32_t
3467
e1000_read_phy_reg(struct e1000_hw *hw,
3468
                   uint32_t reg_addr,
3469
                   uint16_t *phy_data)
3470
{
3471
    uint32_t ret_val;
3472
    uint16_t swfw;
3473
 
3474
    DEBUGFUNC("e1000_read_phy_reg");
3475
 
3476
    if ((hw->mac_type == e1000_80003es2lan) &&
3477
        (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3478
        swfw = E1000_SWFW_PHY1_SM;
3479
    } else {
3480
        swfw = E1000_SWFW_PHY0_SM;
3481
    }
3482
    if (e1000_swfw_sync_acquire(hw, swfw))
3483
        return -E1000_ERR_SWFW_SYNC;
3484
 
3485
    if ((hw->phy_type == e1000_phy_igp ||
3486
        hw->phy_type == e1000_phy_igp_3 ||
3487
        hw->phy_type == e1000_phy_igp_2) &&
3488
       (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
3489
        ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
3490
                                         (uint16_t)reg_addr);
3491
        if (ret_val) {
3492
            e1000_swfw_sync_release(hw, swfw);
3493
            return ret_val;
3494
        }
3495
    } else if (hw->phy_type == e1000_phy_gg82563) {
3496
        if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
3497
            (hw->mac_type == e1000_80003es2lan)) {
3498
            /* Select Configuration Page */
3499
            if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
3500
                ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
3501
                          (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
3502
            } else {
3503
                /* Use Alternative Page Select register to access
3504
                 * registers 30 and 31
3505
                 */
3506
                ret_val = e1000_write_phy_reg_ex(hw,
3507
                                                 GG82563_PHY_PAGE_SELECT_ALT,
3508
                          (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
3509
            }
3510
 
3511
            if (ret_val) {
3512
                e1000_swfw_sync_release(hw, swfw);
3513
                return ret_val;
3514
            }
3515
        }
3516
    }
3517
 
3518
    ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
3519
                                    phy_data);
3520
 
3521
    e1000_swfw_sync_release(hw, swfw);
3522
    return ret_val;
3523
}
3524
 
3525
static int32_t
3526
e1000_read_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
3527
                      uint16_t *phy_data)
3528
{
3529
    uint32_t i;
3530
    uint32_t mdic = 0;
3531
    const uint32_t phy_addr = 1;
3532
 
3533
    DEBUGFUNC("e1000_read_phy_reg_ex");
3534
 
3535
    if (reg_addr > MAX_PHY_REG_ADDRESS) {
3536
        DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
3537
        return -E1000_ERR_PARAM;
3538
    }
3539
 
3540
    if (hw->mac_type > e1000_82543) {
3541
        /* Set up Op-code, Phy Address, and register address in the MDI
3542
         * Control register.  The MAC will take care of interfacing with the
3543
         * PHY to retrieve the desired data.
3544
         */
3545
        mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
3546
                (phy_addr << E1000_MDIC_PHY_SHIFT) |
3547
                (E1000_MDIC_OP_READ));
3548
 
3549
        E1000_WRITE_REG(hw, MDIC, mdic);
3550
 
3551
        /* Poll the ready bit to see if the MDI read completed */
3552
        for (i = 0; i < 64; i++) {
3553
            udelay(50);
3554
            mdic = E1000_READ_REG(hw, MDIC);
3555
            if (mdic & E1000_MDIC_READY) break;
3556
        }
3557
        if (!(mdic & E1000_MDIC_READY)) {
3558
            DEBUGOUT("MDI Read did not complete\n");
3559
            return -E1000_ERR_PHY;
3560
        }
3561
        if (mdic & E1000_MDIC_ERROR) {
3562
            DEBUGOUT("MDI Error\n");
3563
            return -E1000_ERR_PHY;
3564
        }
3565
        *phy_data = (uint16_t) mdic;
3566
    } else {
3567
        /* We must first send a preamble through the MDIO pin to signal the
3568
         * beginning of an MII instruction.  This is done by sending 32
3569
         * consecutive "1" bits.
3570
         */
3571
        e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3572
 
3573
        /* Now combine the next few fields that are required for a read
3574
         * operation.  We use this method instead of calling the
3575
         * e1000_shift_out_mdi_bits routine five different times. The format of
3576
         * a MII read instruction consists of a shift out of 14 bits and is
3577
         * defined as follows:
3578
         *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
3579
         * followed by a shift in of 18 bits.  This first two bits shifted in
3580
         * are TurnAround bits used to avoid contention on the MDIO pin when a
3581
         * READ operation is performed.  These two bits are thrown away
3582
         * followed by a shift in of 16 bits which contains the desired data.
3583
         */
3584
        mdic = ((reg_addr) | (phy_addr << 5) |
3585
                (PHY_OP_READ << 10) | (PHY_SOF << 12));
3586
 
3587
        e1000_shift_out_mdi_bits(hw, mdic, 14);
3588
 
3589
        /* Now that we've shifted out the read command to the MII, we need to
3590
         * "shift in" the 16-bit value (18 total bits) of the requested PHY
3591
         * register address.
3592
         */
3593
        *phy_data = e1000_shift_in_mdi_bits(hw);
3594
    }
3595
    return E1000_SUCCESS;
3596
}
3597
 
3598
/******************************************************************************
3599
* Writes a value to a PHY register
3600
*
3601
* hw - Struct containing variables accessed by shared code
3602
* reg_addr - address of the PHY register to write
3603
* data - data to write to the PHY
3604
******************************************************************************/
3605
int32_t
3606
e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
3607
                    uint16_t phy_data)
3608
{
3609
    uint32_t ret_val;
3610
    uint16_t swfw;
3611
 
3612
    DEBUGFUNC("e1000_write_phy_reg");
3613
 
3614
    if ((hw->mac_type == e1000_80003es2lan) &&
3615
        (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3616
        swfw = E1000_SWFW_PHY1_SM;
3617
    } else {
3618
        swfw = E1000_SWFW_PHY0_SM;
3619
    }
3620
    if (e1000_swfw_sync_acquire(hw, swfw))
3621
        return -E1000_ERR_SWFW_SYNC;
3622
 
3623
    if ((hw->phy_type == e1000_phy_igp ||
3624
        hw->phy_type == e1000_phy_igp_3 ||
3625
        hw->phy_type == e1000_phy_igp_2) &&
3626
       (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
3627
        ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
3628
                                         (uint16_t)reg_addr);
3629
        if (ret_val) {
3630
            e1000_swfw_sync_release(hw, swfw);
3631
            return ret_val;
3632
        }
3633
    } else if (hw->phy_type == e1000_phy_gg82563) {
3634
        if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
3635
            (hw->mac_type == e1000_80003es2lan)) {
3636
            /* Select Configuration Page */
3637
            if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
3638
                ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
3639
                          (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
3640
            } else {
3641
                /* Use Alternative Page Select register to access
3642
                 * registers 30 and 31
3643
                 */
3644
                ret_val = e1000_write_phy_reg_ex(hw,
3645
                                                 GG82563_PHY_PAGE_SELECT_ALT,
3646
                          (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
3647
            }
3648
 
3649
            if (ret_val) {
3650
                e1000_swfw_sync_release(hw, swfw);
3651
                return ret_val;
3652
            }
3653
        }
3654
    }
3655
 
3656
    ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
3657
                                     phy_data);
3658
 
3659
    e1000_swfw_sync_release(hw, swfw);
3660
    return ret_val;
3661
}
3662
 
3663
static int32_t
3664
e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
3665
                       uint16_t phy_data)
3666
{
3667
    uint32_t i;
3668
    uint32_t mdic = 0;
3669
    const uint32_t phy_addr = 1;
3670
 
3671
    DEBUGFUNC("e1000_write_phy_reg_ex");
3672
 
3673
    if (reg_addr > MAX_PHY_REG_ADDRESS) {
3674
        DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
3675
        return -E1000_ERR_PARAM;
3676
    }
3677
 
3678
    if (hw->mac_type > e1000_82543) {
3679
        /* Set up Op-code, Phy Address, register address, and data intended
3680
         * for the PHY register in the MDI Control register.  The MAC will take
3681
         * care of interfacing with the PHY to send the desired data.
3682
         */
3683
        mdic = (((uint32_t) phy_data) |
3684
                (reg_addr << E1000_MDIC_REG_SHIFT) |
3685
                (phy_addr << E1000_MDIC_PHY_SHIFT) |
3686
                (E1000_MDIC_OP_WRITE));
3687
 
3688
        E1000_WRITE_REG(hw, MDIC, mdic);
3689
 
3690
        /* Poll the ready bit to see if the MDI read completed */
3691
        for (i = 0; i < 641; i++) {
3692
            udelay(5);
3693
            mdic = E1000_READ_REG(hw, MDIC);
3694
            if (mdic & E1000_MDIC_READY) break;
3695
        }
3696
        if (!(mdic & E1000_MDIC_READY)) {
3697
            DEBUGOUT("MDI Write did not complete\n");
3698
            return -E1000_ERR_PHY;
3699
        }
3700
    } else {
3701
        /* We'll need to use the SW defined pins to shift the write command
3702
         * out to the PHY. We first send a preamble to the PHY to signal the
3703
         * beginning of the MII instruction.  This is done by sending 32
3704
         * consecutive "1" bits.
3705
         */
3706
        e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3707
 
3708
        /* Now combine the remaining required fields that will indicate a
3709
         * write operation. We use this method instead of calling the
3710
         * e1000_shift_out_mdi_bits routine for each field in the command. The
3711
         * format of a MII write instruction is as follows:
3712
         * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
3713
         */
3714
        mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3715
                (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3716
        mdic <<= 16;
3717
        mdic |= (uint32_t) phy_data;
3718
 
3719
        e1000_shift_out_mdi_bits(hw, mdic, 32);
3720
    }
3721
 
3722
    return E1000_SUCCESS;
3723
}
3724
 
3725
static int32_t
3726
e1000_read_kmrn_reg(struct e1000_hw *hw,
3727
                    uint32_t reg_addr,
3728
                    uint16_t *data)
3729
{
3730
    uint32_t reg_val;
3731
    uint16_t swfw;
3732
    DEBUGFUNC("e1000_read_kmrn_reg");
3733
 
3734
    if ((hw->mac_type == e1000_80003es2lan) &&
3735
        (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3736
        swfw = E1000_SWFW_PHY1_SM;
3737
    } else {
3738
        swfw = E1000_SWFW_PHY0_SM;
3739
    }
3740
    if (e1000_swfw_sync_acquire(hw, swfw))
3741
        return -E1000_ERR_SWFW_SYNC;
3742
 
3743
    /* Write register address */
3744
    reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
3745
              E1000_KUMCTRLSTA_OFFSET) |
3746
              E1000_KUMCTRLSTA_REN;
3747
    E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
3748
    udelay(2);
3749
 
3750
    /* Read the data returned */
3751
    reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
3752
    *data = (uint16_t)reg_val;
3753
 
3754
    e1000_swfw_sync_release(hw, swfw);
3755
    return E1000_SUCCESS;
3756
}
3757
 
3758
static int32_t
3759
e1000_write_kmrn_reg(struct e1000_hw *hw,
3760
                     uint32_t reg_addr,
3761
                     uint16_t data)
3762
{
3763
    uint32_t reg_val;
3764
    uint16_t swfw;
3765
    DEBUGFUNC("e1000_write_kmrn_reg");
3766
 
3767
    if ((hw->mac_type == e1000_80003es2lan) &&
3768
        (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3769
        swfw = E1000_SWFW_PHY1_SM;
3770
    } else {
3771
        swfw = E1000_SWFW_PHY0_SM;
3772
    }
3773
    if (e1000_swfw_sync_acquire(hw, swfw))
3774
        return -E1000_ERR_SWFW_SYNC;
3775
 
3776
    reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
3777
              E1000_KUMCTRLSTA_OFFSET) | data;
3778
    E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
3779
    udelay(2);
3780
 
3781
    e1000_swfw_sync_release(hw, swfw);
3782
    return E1000_SUCCESS;
3783
}
3784
 
3785
/******************************************************************************
3786
* Returns the PHY to the power-on reset state
3787
*
3788
* hw - Struct containing variables accessed by shared code
3789
******************************************************************************/
3790
int32_t
3791
e1000_phy_hw_reset(struct e1000_hw *hw)
3792
{
3793
    uint32_t ctrl, ctrl_ext;
3794
    uint32_t led_ctrl;
3795
    int32_t ret_val;
3796
    uint16_t swfw;
3797
 
3798
    DEBUGFUNC("e1000_phy_hw_reset");
3799
 
3800
    /* In the case of the phy reset being blocked, it's not an error, we
3801
     * simply return success without performing the reset. */
3802
    ret_val = e1000_check_phy_reset_block(hw);
3803
    if (ret_val)
3804
        return E1000_SUCCESS;
3805
 
3806
    DEBUGOUT("Resetting Phy...\n");
3807
 
3808
    if (hw->mac_type > e1000_82543) {
3809
        if ((hw->mac_type == e1000_80003es2lan) &&
3810
            (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3811
            swfw = E1000_SWFW_PHY1_SM;
3812
        } else {
3813
            swfw = E1000_SWFW_PHY0_SM;
3814
        }
3815
        if (e1000_swfw_sync_acquire(hw, swfw)) {
3816
            DEBUGOUT("Unable to acquire swfw sync\n");
3817
            return -E1000_ERR_SWFW_SYNC;
3818
        }
3819
        /* Read the device control register and assert the E1000_CTRL_PHY_RST
3820
         * bit. Then, take it out of reset.
3821
         * For pre-e1000_82571 hardware, we delay for 10ms between the assert
3822
         * and deassert.  For e1000_82571 hardware and later, we instead delay
3823
         * for 50us between and 10ms after the deassertion.
3824
         */
3825
        ctrl = E1000_READ_REG(hw, CTRL);
3826
        E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
3827
        E1000_WRITE_FLUSH(hw);
3828
 
3829
        if (hw->mac_type < e1000_82571)
3830
            msleep(10);
3831
        else
3832
            udelay(100);
3833
 
3834
        E1000_WRITE_REG(hw, CTRL, ctrl);
3835
        E1000_WRITE_FLUSH(hw);
3836
 
3837
        if (hw->mac_type >= e1000_82571)
3838
            mdelay(10);
3839
 
3840
        e1000_swfw_sync_release(hw, swfw);
3841
    } else {
3842
        /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
3843
         * bit to put the PHY into reset. Then, take it out of reset.
3844
         */
3845
        ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
3846
        ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3847
        ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3848
        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
3849
        E1000_WRITE_FLUSH(hw);
3850
        msleep(10);
3851
        ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3852
        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
3853
        E1000_WRITE_FLUSH(hw);
3854
    }
3855
    udelay(150);
3856
 
3857
    if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
3858
        /* Configure activity LED after PHY reset */
3859
        led_ctrl = E1000_READ_REG(hw, LEDCTL);
3860
        led_ctrl &= IGP_ACTIVITY_LED_MASK;
3861
        led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3862
        E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
3863
    }
3864
 
3865
    /* Wait for FW to finish PHY configuration. */
3866
    ret_val = e1000_get_phy_cfg_done(hw);
3867
    if (ret_val != E1000_SUCCESS)
3868
        return ret_val;
3869
    e1000_release_software_semaphore(hw);
3870
 
3871
    if ((hw->mac_type == e1000_ich8lan) && (hw->phy_type == e1000_phy_igp_3))
3872
        ret_val = e1000_init_lcd_from_nvm(hw);
3873
 
3874
    return ret_val;
3875
}
3876
 
3877
/******************************************************************************
3878
* Resets the PHY
3879
*
3880
* hw - Struct containing variables accessed by shared code
3881
*
3882
* Sets bit 15 of the MII Control register
3883
******************************************************************************/
3884
int32_t
3885
e1000_phy_reset(struct e1000_hw *hw)
3886
{
3887
    int32_t ret_val;
3888
    uint16_t phy_data;
3889
 
3890
    DEBUGFUNC("e1000_phy_reset");
3891
 
3892
    /* In the case of the phy reset being blocked, it's not an error, we
3893
     * simply return success without performing the reset. */
3894
    ret_val = e1000_check_phy_reset_block(hw);
3895
    if (ret_val)
3896
        return E1000_SUCCESS;
3897
 
3898
    switch (hw->phy_type) {
3899
    case e1000_phy_igp:
3900
    case e1000_phy_igp_2:
3901
    case e1000_phy_igp_3:
3902
    case e1000_phy_ife:
3903
        ret_val = e1000_phy_hw_reset(hw);
3904
        if (ret_val)
3905
            return ret_val;
3906
        break;
3907
    default:
3908
        ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3909
        if (ret_val)
3910
            return ret_val;
3911
 
3912
        phy_data |= MII_CR_RESET;
3913
        ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3914
        if (ret_val)
3915
            return ret_val;
3916
 
3917
        udelay(1);
3918
        break;
3919
    }
3920
 
3921
    if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
3922
        e1000_phy_init_script(hw);
3923
 
3924
    return E1000_SUCCESS;
3925
}
3926
 
3927
/******************************************************************************
3928
* Work-around for 82566 power-down: on D3 entry-
3929
* 1) disable gigabit link
3930
* 2) write VR power-down enable
3931
* 3) read it back
3932
* if successful continue, else issue LCD reset and repeat
3933
*
3934
* hw - struct containing variables accessed by shared code
3935
******************************************************************************/
3936
void
3937
e1000_phy_powerdown_workaround(struct e1000_hw *hw)
3938
{
3939
    int32_t reg;
3940
    uint16_t phy_data;
3941
    int32_t retry = 0;
3942
 
3943
    DEBUGFUNC("e1000_phy_powerdown_workaround");
3944
 
3945
    if (hw->phy_type != e1000_phy_igp_3)
3946
        return;
3947
 
3948
    do {
3949
        /* Disable link */
3950
        reg = E1000_READ_REG(hw, PHY_CTRL);
3951
        E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
3952
                        E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3953
 
3954
        /* Write VR power-down enable - bits 9:8 should be 10b */
3955
        e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
3956
        phy_data |= (1 << 9);
3957
        phy_data &= ~(1 << 8);
3958
        e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data);
3959
 
3960
        /* Read it back and test */
3961
        e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
3962
        if (((phy_data & IGP3_VR_CTRL_MODE_MASK) == IGP3_VR_CTRL_MODE_SHUT) || retry)
3963
            break;
3964
 
3965
        /* Issue PHY reset and repeat at most one more time */
3966
        reg = E1000_READ_REG(hw, CTRL);
3967
        E1000_WRITE_REG(hw, CTRL, reg | E1000_CTRL_PHY_RST);
3968
        retry++;
3969
    } while (retry);
3970
 
3971
    return;
3972
 
3973
}
3974
 
3975
/******************************************************************************
3976
* Work-around for 82566 Kumeran PCS lock loss:
3977
* On link status change (i.e. PCI reset, speed change) and link is up and
3978
* speed is gigabit-
3979
* 0) if workaround is optionally disabled do nothing
3980
* 1) wait 1ms for Kumeran link to come up
3981
* 2) check Kumeran Diagnostic register PCS lock loss bit
3982
* 3) if not set the link is locked (all is good), otherwise...
3983
* 4) reset the PHY
3984
* 5) repeat up to 10 times
3985
* Note: this is only called for IGP3 copper when speed is 1gb.
3986
*
3987
* hw - struct containing variables accessed by shared code
3988
******************************************************************************/
3989
static int32_t
3990
e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw)
3991
{
3992
    int32_t ret_val;
3993
    int32_t reg;
3994
    int32_t cnt;
3995
    uint16_t phy_data;
3996
 
3997
    if (hw->kmrn_lock_loss_workaround_disabled)
3998
        return E1000_SUCCESS;
3999
 
4000
    /* Make sure link is up before proceeding.  If not just return.
4001
     * Attempting this while link is negotiating fouled up link
4002
     * stability */
4003
    ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
4004
    ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
4005
 
4006
    if (phy_data & MII_SR_LINK_STATUS) {
4007
        for (cnt = 0; cnt < 10; cnt++) {
4008
            /* read once to clear */
4009
            ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
4010
            if (ret_val)
4011
                return ret_val;
4012
            /* and again to get new status */
4013
            ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
4014
            if (ret_val)
4015
                return ret_val;
4016
 
4017
            /* check for PCS lock */
4018
            if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
4019
                return E1000_SUCCESS;
4020
 
4021
            /* Issue PHY reset */
4022
            e1000_phy_hw_reset(hw);
4023
            mdelay(5);
4024
        }
4025
        /* Disable GigE link negotiation */
4026
        reg = E1000_READ_REG(hw, PHY_CTRL);
4027
        E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
4028
                        E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4029
 
4030
        /* unable to acquire PCS lock */
4031
        return E1000_ERR_PHY;
4032
    }
4033
 
4034
    return E1000_SUCCESS;
4035
}
4036
 
4037
/******************************************************************************
4038
* Probes the expected PHY address for known PHY IDs
4039
*
4040
* hw - Struct containing variables accessed by shared code
4041
******************************************************************************/
4042
static int32_t
4043
e1000_detect_gig_phy(struct e1000_hw *hw)
4044
{
4045
    int32_t phy_init_status, ret_val;
4046
    uint16_t phy_id_high, phy_id_low;
4047
    boolean_t match = FALSE;
4048
 
4049
    DEBUGFUNC("e1000_detect_gig_phy");
4050
 
4051
    if (hw->phy_id != 0)
4052
        return E1000_SUCCESS;
4053
 
4054
    /* The 82571 firmware may still be configuring the PHY.  In this
4055
     * case, we cannot access the PHY until the configuration is done.  So
4056
     * we explicitly set the PHY values. */
4057
    if (hw->mac_type == e1000_82571 ||
4058
        hw->mac_type == e1000_82572) {
4059
        hw->phy_id = IGP01E1000_I_PHY_ID;
4060
        hw->phy_type = e1000_phy_igp_2;
4061
        return E1000_SUCCESS;
4062
    }
4063
 
4064
    /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a work-
4065
     * around that forces PHY page 0 to be set or the reads fail.  The rest of
4066
     * the code in this routine uses e1000_read_phy_reg to read the PHY ID.
4067
     * So for ESB-2 we need to have this set so our reads won't fail.  If the
4068
     * attached PHY is not a e1000_phy_gg82563, the routines below will figure
4069
     * this out as well. */
4070
    if (hw->mac_type == e1000_80003es2lan)
4071
        hw->phy_type = e1000_phy_gg82563;
4072
 
4073
    /* Read the PHY ID Registers to identify which PHY is onboard. */
4074
    ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4075
    if (ret_val)
4076
        return ret_val;
4077
 
4078
    hw->phy_id = (uint32_t) (phy_id_high << 16);
4079
    udelay(20);
4080
    ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4081
    if (ret_val)
4082
        return ret_val;
4083
 
4084
    hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
4085
    hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
4086
 
4087
    switch (hw->mac_type) {
4088
    case e1000_82543:
4089
        if (hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
4090
        break;
4091
    case e1000_82544:
4092
        if (hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
4093
        break;
4094
    case e1000_82540:
4095
    case e1000_82545:
4096
    case e1000_82545_rev_3:
4097
    case e1000_82546:
4098
    case e1000_82546_rev_3:
4099
        if (hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
4100
        break;
4101
    case e1000_82541:
4102
    case e1000_82541_rev_2:
4103
    case e1000_82547:
4104
    case e1000_82547_rev_2:
4105
        if (hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
4106
        break;
4107
    case e1000_82573:
4108
        if (hw->phy_id == M88E1111_I_PHY_ID) match = TRUE;
4109
        break;
4110
    case e1000_80003es2lan:
4111
        if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE;
4112
        break;
4113
    case e1000_ich8lan:
4114
        if (hw->phy_id == IGP03E1000_E_PHY_ID) match = TRUE;
4115
        if (hw->phy_id == IFE_E_PHY_ID) match = TRUE;
4116
        if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = TRUE;
4117
        if (hw->phy_id == IFE_C_E_PHY_ID) match = TRUE;
4118
        break;
4119
    default:
4120
        DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
4121
        return -E1000_ERR_CONFIG;
4122
    }
4123
    phy_init_status = e1000_set_phy_type(hw);
4124
 
4125
    if ((match) && (phy_init_status == E1000_SUCCESS)) {
4126
        DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
4127
        return E1000_SUCCESS;
4128
    }
4129
    DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
4130
    return -E1000_ERR_PHY;
4131
}
4132
 
4133
/******************************************************************************
4134
* Resets the PHY's DSP
4135
*
4136
* hw - Struct containing variables accessed by shared code
4137
******************************************************************************/
4138
static int32_t
4139
e1000_phy_reset_dsp(struct e1000_hw *hw)
4140
{
4141
    int32_t ret_val;
4142
    DEBUGFUNC("e1000_phy_reset_dsp");
4143
 
4144
    do {
4145
        if (hw->phy_type != e1000_phy_gg82563) {
4146
            ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
4147
            if (ret_val) break;
4148
        }
4149
        ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
4150
        if (ret_val) break;
4151
        ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
4152
        if (ret_val) break;
4153
        ret_val = E1000_SUCCESS;
4154
    } while (0);
4155
 
4156
    return ret_val;
4157
}
4158
 
4159
/******************************************************************************
4160
* Get PHY information from various PHY registers for igp PHY only.
4161
*
4162
* hw - Struct containing variables accessed by shared code
4163
* phy_info - PHY information structure
4164
******************************************************************************/
4165
static int32_t
4166
e1000_phy_igp_get_info(struct e1000_hw *hw,
4167
                       struct e1000_phy_info *phy_info)
4168
{
4169
    int32_t ret_val;
4170
    uint16_t phy_data, min_length, max_length, average;
4171
    e1000_rev_polarity polarity;
4172
 
4173
    DEBUGFUNC("e1000_phy_igp_get_info");
4174
 
4175
    /* The downshift status is checked only once, after link is established,
4176
     * and it stored in the hw->speed_downgraded parameter. */
4177
    phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
4178
 
4179
    /* IGP01E1000 does not need to support it. */
4180
    phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
4181
 
4182
    /* IGP01E1000 always correct polarity reversal */
4183
    phy_info->polarity_correction = e1000_polarity_reversal_enabled;
4184
 
4185
    /* Check polarity status */
4186
    ret_val = e1000_check_polarity(hw, &polarity);
4187
    if (ret_val)
4188
        return ret_val;
4189
 
4190
    phy_info->cable_polarity = polarity;
4191
 
4192
    ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
4193
    if (ret_val)
4194
        return ret_val;
4195
 
4196
    phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & IGP01E1000_PSSR_MDIX) >>
4197
                          IGP01E1000_PSSR_MDIX_SHIFT);
4198
 
4199
    if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
4200
       IGP01E1000_PSSR_SPEED_1000MBPS) {
4201
        /* Local/Remote Receiver Information are only valid at 1000 Mbps */
4202
        ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
4203
        if (ret_val)
4204
            return ret_val;
4205
 
4206
        phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
4207
                             SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
4208
                             e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
4209
        phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
4210
                              SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
4211
                              e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
4212
 
4213
        /* Get cable length */
4214
        ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
4215
        if (ret_val)
4216
            return ret_val;
4217
 
4218
        /* Translate to old method */
4219
        average = (max_length + min_length) / 2;
4220
 
4221
        if (average <= e1000_igp_cable_length_50)
4222
            phy_info->cable_length = e1000_cable_length_50;
4223
        else if (average <= e1000_igp_cable_length_80)
4224
            phy_info->cable_length = e1000_cable_length_50_80;
4225
        else if (average <= e1000_igp_cable_length_110)
4226
            phy_info->cable_length = e1000_cable_length_80_110;
4227
        else if (average <= e1000_igp_cable_length_140)
4228
            phy_info->cable_length = e1000_cable_length_110_140;
4229
        else
4230
            phy_info->cable_length = e1000_cable_length_140;
4231
    }
4232
 
4233
    return E1000_SUCCESS;
4234
}
4235
 
4236
/******************************************************************************
4237
* Get PHY information from various PHY registers for ife PHY only.
4238
*
4239
* hw - Struct containing variables accessed by shared code
4240
* phy_info - PHY information structure
4241
******************************************************************************/
4242
static int32_t
4243
e1000_phy_ife_get_info(struct e1000_hw *hw,
4244
                       struct e1000_phy_info *phy_info)
4245
{
4246
    int32_t ret_val;
4247
    uint16_t phy_data;
4248
    e1000_rev_polarity polarity;
4249
 
4250
    DEBUGFUNC("e1000_phy_ife_get_info");
4251
 
4252
    phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
4253
    phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
4254
 
4255
    ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
4256
    if (ret_val)
4257
        return ret_val;
4258
    phy_info->polarity_correction =
4259
                        ((phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >>
4260
                        IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT) ?
4261
                        e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
4262
 
4263
    if (phy_info->polarity_correction == e1000_polarity_reversal_enabled) {
4264
        ret_val = e1000_check_polarity(hw, &polarity);
4265
        if (ret_val)
4266
            return ret_val;
4267
    } else {
4268
        /* Polarity is forced. */
4269
        polarity = ((phy_data & IFE_PSC_FORCE_POLARITY) >>
4270
                     IFE_PSC_FORCE_POLARITY_SHIFT) ?
4271
                     e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
4272
    }
4273
    phy_info->cable_polarity = polarity;
4274
 
4275
    ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
4276
    if (ret_val)
4277
        return ret_val;
4278
 
4279
    phy_info->mdix_mode = (e1000_auto_x_mode)
4280
                     ((phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >>
4281
                     IFE_PMC_MDIX_MODE_SHIFT);
4282
 
4283
    return E1000_SUCCESS;
4284
}
4285
 
4286
/******************************************************************************
4287
* Get PHY information from various PHY registers fot m88 PHY only.
4288
*
4289
* hw - Struct containing variables accessed by shared code
4290
* phy_info - PHY information structure
4291
******************************************************************************/
4292
static int32_t
4293
e1000_phy_m88_get_info(struct e1000_hw *hw,
4294
                       struct e1000_phy_info *phy_info)
4295
{
4296
    int32_t ret_val;
4297
    uint16_t phy_data;
4298
    e1000_rev_polarity polarity;
4299
 
4300
    DEBUGFUNC("e1000_phy_m88_get_info");
4301
 
4302
    /* The downshift status is checked only once, after link is established,
4303
     * and it stored in the hw->speed_downgraded parameter. */
4304
    phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
4305
 
4306
    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
4307
    if (ret_val)
4308
        return ret_val;
4309
 
4310
    phy_info->extended_10bt_distance =
4311
        ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
4312
        M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
4313
        e1000_10bt_ext_dist_enable_lower : e1000_10bt_ext_dist_enable_normal;
4314
 
4315
    phy_info->polarity_correction =
4316
        ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
4317
        M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
4318
        e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
4319
 
4320
    /* Check polarity status */
4321
    ret_val = e1000_check_polarity(hw, &polarity);
4322
    if (ret_val)
4323
        return ret_val;
4324
    phy_info->cable_polarity = polarity;
4325
 
4326
    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
4327
    if (ret_val)
4328
        return ret_val;
4329
 
4330
    phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & M88E1000_PSSR_MDIX) >>
4331
                          M88E1000_PSSR_MDIX_SHIFT);
4332
 
4333
    if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
4334
        /* Cable Length Estimation and Local/Remote Receiver Information
4335
         * are only valid at 1000 Mbps.
4336
         */
4337
        if (hw->phy_type != e1000_phy_gg82563) {
4338
            phy_info->cable_length = (e1000_cable_length)((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
4339
                                      M88E1000_PSSR_CABLE_LENGTH_SHIFT);
4340
        } else {
4341
            ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
4342
                                         &phy_data);
4343
            if (ret_val)
4344
                return ret_val;
4345
 
4346
            phy_info->cable_length = (e1000_cable_length)(phy_data & GG82563_DSPD_CABLE_LENGTH);
4347
        }
4348
 
4349
        ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
4350
        if (ret_val)
4351
            return ret_val;
4352
 
4353
        phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
4354
                             SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
4355
                             e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
4356
        phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
4357
                              SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
4358
                              e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
4359
 
4360
    }
4361
 
4362
    return E1000_SUCCESS;
4363
}
4364
 
4365
/******************************************************************************
4366
* Get PHY information from various PHY registers
4367
*
4368
* hw - Struct containing variables accessed by shared code
4369
* phy_info - PHY information structure
4370
******************************************************************************/
4371
int32_t
4372
e1000_phy_get_info(struct e1000_hw *hw,
4373
                   struct e1000_phy_info *phy_info)
4374
{
4375
    int32_t ret_val;
4376
    uint16_t phy_data;
4377
 
4378
    DEBUGFUNC("e1000_phy_get_info");
4379
 
4380
    phy_info->cable_length = e1000_cable_length_undefined;
4381
    phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
4382
    phy_info->cable_polarity = e1000_rev_polarity_undefined;
4383
    phy_info->downshift = e1000_downshift_undefined;
4384
    phy_info->polarity_correction = e1000_polarity_reversal_undefined;
4385
    phy_info->mdix_mode = e1000_auto_x_mode_undefined;
4386
    phy_info->local_rx = e1000_1000t_rx_status_undefined;
4387
    phy_info->remote_rx = e1000_1000t_rx_status_undefined;
4388
 
4389
    if (hw->media_type != e1000_media_type_copper) {
4390
        DEBUGOUT("PHY info is only valid for copper media\n");
4391
        return -E1000_ERR_CONFIG;
4392
    }
4393
 
4394
    ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
4395
    if (ret_val)
4396
        return ret_val;
4397
 
4398
    ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
4399
    if (ret_val)
4400
        return ret_val;
4401
 
4402
    if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
4403
        DEBUGOUT("PHY info is only valid if link is up\n");
4404
        return -E1000_ERR_CONFIG;
4405
    }
4406
 
4407
    if (hw->phy_type == e1000_phy_igp ||
4408
        hw->phy_type == e1000_phy_igp_3 ||
4409
        hw->phy_type == e1000_phy_igp_2)
4410
        return e1000_phy_igp_get_info(hw, phy_info);
4411
    else if (hw->phy_type == e1000_phy_ife)
4412
        return e1000_phy_ife_get_info(hw, phy_info);
4413
    else
4414
        return e1000_phy_m88_get_info(hw, phy_info);
4415
}
4416
 
4417
int32_t
4418
e1000_validate_mdi_setting(struct e1000_hw *hw)
4419
{
4420
    DEBUGFUNC("e1000_validate_mdi_settings");
4421
 
4422
    if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
4423
        DEBUGOUT("Invalid MDI setting detected\n");
4424
        hw->mdix = 1;
4425
        return -E1000_ERR_CONFIG;
4426
    }
4427
    return E1000_SUCCESS;
4428
}
4429
 
4430
 
4431
/******************************************************************************
4432
 * Sets up eeprom variables in the hw struct.  Must be called after mac_type
4433
 * is configured.  Additionally, if this is ICH8, the flash controller GbE
4434
 * registers must be mapped, or this will crash.
4435
 *
4436
 * hw - Struct containing variables accessed by shared code
4437
 *****************************************************************************/
4438
int32_t
4439
e1000_init_eeprom_params(struct e1000_hw *hw)
4440
{
4441
    struct e1000_eeprom_info *eeprom = &hw->eeprom;
4442
    uint32_t eecd = E1000_READ_REG(hw, EECD);
4443
    int32_t ret_val = E1000_SUCCESS;
4444
    uint16_t eeprom_size;
4445
 
4446
    DEBUGFUNC("e1000_init_eeprom_params");
4447
 
4448
    switch (hw->mac_type) {
4449
    case e1000_82542_rev2_0:
4450
    case e1000_82542_rev2_1:
4451
    case e1000_82543:
4452
    case e1000_82544:
4453
        eeprom->type = e1000_eeprom_microwire;
4454
        eeprom->word_size = 64;
4455
        eeprom->opcode_bits = 3;
4456
        eeprom->address_bits = 6;
4457
        eeprom->delay_usec = 50;
4458
        eeprom->use_eerd = FALSE;
4459
        eeprom->use_eewr = FALSE;
4460
        break;
4461
    case e1000_82540:
4462
    case e1000_82545:
4463
    case e1000_82545_rev_3:
4464
    case e1000_82546:
4465
    case e1000_82546_rev_3:
4466
        eeprom->type = e1000_eeprom_microwire;
4467
        eeprom->opcode_bits = 3;
4468
        eeprom->delay_usec = 50;
4469
        if (eecd & E1000_EECD_SIZE) {
4470
            eeprom->word_size = 256;
4471
            eeprom->address_bits = 8;
4472
        } else {
4473
            eeprom->word_size = 64;
4474
            eeprom->address_bits = 6;
4475
        }
4476
        eeprom->use_eerd = FALSE;
4477
        eeprom->use_eewr = FALSE;
4478
        break;
4479
    case e1000_82541:
4480
    case e1000_82541_rev_2:
4481
    case e1000_82547:
4482
    case e1000_82547_rev_2:
4483
        if (eecd & E1000_EECD_TYPE) {
4484
            eeprom->type = e1000_eeprom_spi;
4485
            eeprom->opcode_bits = 8;
4486
            eeprom->delay_usec = 1;
4487
            if (eecd & E1000_EECD_ADDR_BITS) {
4488
                eeprom->page_size = 32;
4489
                eeprom->address_bits = 16;
4490
            } else {
4491
                eeprom->page_size = 8;
4492
                eeprom->address_bits = 8;
4493
            }
4494
        } else {
4495
            eeprom->type = e1000_eeprom_microwire;
4496
            eeprom->opcode_bits = 3;
4497
            eeprom->delay_usec = 50;
4498
            if (eecd & E1000_EECD_ADDR_BITS) {
4499
                eeprom->word_size = 256;
4500
                eeprom->address_bits = 8;
4501
            } else {
4502
                eeprom->word_size = 64;
4503
                eeprom->address_bits = 6;
4504
            }
4505
        }
4506
        eeprom->use_eerd = FALSE;
4507
        eeprom->use_eewr = FALSE;
4508
        break;
4509
    case e1000_82571:
4510
    case e1000_82572:
4511
        eeprom->type = e1000_eeprom_spi;
4512
        eeprom->opcode_bits = 8;
4513
        eeprom->delay_usec = 1;
4514
        if (eecd & E1000_EECD_ADDR_BITS) {
4515
            eeprom->page_size = 32;
4516
            eeprom->address_bits = 16;
4517
        } else {
4518
            eeprom->page_size = 8;
4519
            eeprom->address_bits = 8;
4520
        }
4521
        eeprom->use_eerd = FALSE;
4522
        eeprom->use_eewr = FALSE;
4523
        break;
4524
    case e1000_82573:
4525
        eeprom->type = e1000_eeprom_spi;
4526
        eeprom->opcode_bits = 8;
4527
        eeprom->delay_usec = 1;
4528
        if (eecd & E1000_EECD_ADDR_BITS) {
4529
            eeprom->page_size = 32;
4530
            eeprom->address_bits = 16;
4531
        } else {
4532
            eeprom->page_size = 8;
4533
            eeprom->address_bits = 8;
4534
        }
4535
        eeprom->use_eerd = TRUE;
4536
        eeprom->use_eewr = TRUE;
4537
        if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
4538
            eeprom->type = e1000_eeprom_flash;
4539
            eeprom->word_size = 2048;
4540
 
4541
            /* Ensure that the Autonomous FLASH update bit is cleared due to
4542
             * Flash update issue on parts which use a FLASH for NVM. */
4543
            eecd &= ~E1000_EECD_AUPDEN;
4544
            E1000_WRITE_REG(hw, EECD, eecd);
4545
        }
4546
        break;
4547
    case e1000_80003es2lan:
4548
        eeprom->type = e1000_eeprom_spi;
4549
        eeprom->opcode_bits = 8;
4550
        eeprom->delay_usec = 1;
4551
        if (eecd & E1000_EECD_ADDR_BITS) {
4552
            eeprom->page_size = 32;
4553
            eeprom->address_bits = 16;
4554
        } else {
4555
            eeprom->page_size = 8;
4556
            eeprom->address_bits = 8;
4557
        }
4558
        eeprom->use_eerd = TRUE;
4559
        eeprom->use_eewr = FALSE;
4560
        break;
4561
    case e1000_ich8lan:
4562
        {
4563
        int32_t  i = 0;
4564
        uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_GFPREG);
4565
 
4566
        eeprom->type = e1000_eeprom_ich8;
4567
        eeprom->use_eerd = FALSE;
4568
        eeprom->use_eewr = FALSE;
4569
        eeprom->word_size = E1000_SHADOW_RAM_WORDS;
4570
 
4571
        /* Zero the shadow RAM structure. But don't load it from NVM
4572
         * so as to save time for driver init */
4573
        if (hw->eeprom_shadow_ram != NULL) {
4574
            for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4575
                hw->eeprom_shadow_ram[i].modified = FALSE;
4576
                hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
4577
            }
4578
        }
4579
 
4580
        hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
4581
                              ICH_FLASH_SECTOR_SIZE;
4582
 
4583
        hw->flash_bank_size = ((flash_size >> 16) & ICH_GFPREG_BASE_MASK) + 1;
4584
        hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
4585
 
4586
        hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
4587
 
4588
        hw->flash_bank_size /= 2 * sizeof(uint16_t);
4589
 
4590
        break;
4591
        }
4592
    default:
4593
        break;
4594
    }
4595
 
4596
    if (eeprom->type == e1000_eeprom_spi) {
4597
        /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
4598
         * 32KB (incremented by powers of 2).
4599
         */
4600
        if (hw->mac_type <= e1000_82547_rev_2) {
4601
            /* Set to default value for initial eeprom read. */
4602
            eeprom->word_size = 64;
4603
            ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
4604
            if (ret_val)
4605
                return ret_val;
4606
            eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
4607
            /* 256B eeprom size was not supported in earlier hardware, so we
4608
             * bump eeprom_size up one to ensure that "1" (which maps to 256B)
4609
             * is never the result used in the shifting logic below. */
4610
            if (eeprom_size)
4611
                eeprom_size++;
4612
        } else {
4613
            eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >>
4614
                          E1000_EECD_SIZE_EX_SHIFT);
4615
        }
4616
 
4617
        eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
4618
    }
4619
    return ret_val;
4620
}
4621
 
4622
/******************************************************************************
4623
 * Raises the EEPROM's clock input.
4624
 *
4625
 * hw - Struct containing variables accessed by shared code
4626
 * eecd - EECD's current value
4627
 *****************************************************************************/
4628
static void
4629
e1000_raise_ee_clk(struct e1000_hw *hw,
4630
                   uint32_t *eecd)
4631
{
4632
    /* Raise the clock input to the EEPROM (by setting the SK bit), and then
4633
     * wait <delay> microseconds.
4634
     */
4635
    *eecd = *eecd | E1000_EECD_SK;
4636
    E1000_WRITE_REG(hw, EECD, *eecd);
4637
    E1000_WRITE_FLUSH(hw);
4638
    udelay(hw->eeprom.delay_usec);
4639
}
4640
 
4641
/******************************************************************************
4642
 * Lowers the EEPROM's clock input.
4643
 *
4644
 * hw - Struct containing variables accessed by shared code
4645
 * eecd - EECD's current value
4646
 *****************************************************************************/
4647
static void
4648
e1000_lower_ee_clk(struct e1000_hw *hw,
4649
                   uint32_t *eecd)
4650
{
4651
    /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
4652
     * wait 50 microseconds.
4653
     */
4654
    *eecd = *eecd & ~E1000_EECD_SK;
4655
    E1000_WRITE_REG(hw, EECD, *eecd);
4656
    E1000_WRITE_FLUSH(hw);
4657
    udelay(hw->eeprom.delay_usec);
4658
}
4659
 
4660
/******************************************************************************
4661
 * Shift data bits out to the EEPROM.
4662
 *
4663
 * hw - Struct containing variables accessed by shared code
4664
 * data - data to send to the EEPROM
4665
 * count - number of bits to shift out
4666
 *****************************************************************************/
4667
static void
4668
e1000_shift_out_ee_bits(struct e1000_hw *hw,
4669
                        uint16_t data,
4670
                        uint16_t count)
4671
{
4672
    struct e1000_eeprom_info *eeprom = &hw->eeprom;
4673
    uint32_t eecd;
4674
    uint32_t mask;
4675
 
4676
    /* We need to shift "count" bits out to the EEPROM. So, value in the
4677
     * "data" parameter will be shifted out to the EEPROM one bit at a time.
4678
     * In order to do this, "data" must be broken down into bits.
4679
     */
4680
    mask = 0x01 << (count - 1);
4681
    eecd = E1000_READ_REG(hw, EECD);
4682
    if (eeprom->type == e1000_eeprom_microwire) {
4683
        eecd &= ~E1000_EECD_DO;
4684
    } else if (eeprom->type == e1000_eeprom_spi) {
4685
        eecd |= E1000_EECD_DO;
4686
    }
4687
    do {
4688
        /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
4689
         * and then raising and then lowering the clock (the SK bit controls
4690
         * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
4691
         * by setting "DI" to "0" and then raising and then lowering the clock.
4692
         */
4693
        eecd &= ~E1000_EECD_DI;
4694
 
4695
        if (data & mask)
4696
            eecd |= E1000_EECD_DI;
4697
 
4698
        E1000_WRITE_REG(hw, EECD, eecd);
4699
        E1000_WRITE_FLUSH(hw);
4700
 
4701
        udelay(eeprom->delay_usec);
4702
 
4703
        e1000_raise_ee_clk(hw, &eecd);
4704
        e1000_lower_ee_clk(hw, &eecd);
4705
 
4706
        mask = mask >> 1;
4707
 
4708
    } while (mask);
4709
 
4710
    /* We leave the "DI" bit set to "0" when we leave this routine. */
4711
    eecd &= ~E1000_EECD_DI;
4712
    E1000_WRITE_REG(hw, EECD, eecd);
4713
}
4714
 
4715
/******************************************************************************
4716
 * Shift data bits in from the EEPROM
4717
 *
4718
 * hw - Struct containing variables accessed by shared code
4719
 *****************************************************************************/
4720
static uint16_t
4721
e1000_shift_in_ee_bits(struct e1000_hw *hw,
4722
                       uint16_t count)
4723
{
4724
    uint32_t eecd;
4725
    uint32_t i;
4726
    uint16_t data;
4727
 
4728
    /* In order to read a register from the EEPROM, we need to shift 'count'
4729
     * bits in from the EEPROM. Bits are "shifted in" by raising the clock
4730
     * input to the EEPROM (setting the SK bit), and then reading the value of
4731
     * the "DO" bit.  During this "shifting in" process the "DI" bit should
4732
     * always be clear.
4733
     */
4734
 
4735
    eecd = E1000_READ_REG(hw, EECD);
4736
 
4737
    eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
4738
    data = 0;
4739
 
4740
    for (i = 0; i < count; i++) {
4741
        data = data << 1;
4742
        e1000_raise_ee_clk(hw, &eecd);
4743
 
4744
        eecd = E1000_READ_REG(hw, EECD);
4745
 
4746
        eecd &= ~(E1000_EECD_DI);
4747
        if (eecd & E1000_EECD_DO)
4748
            data |= 1;
4749
 
4750
        e1000_lower_ee_clk(hw, &eecd);
4751
    }
4752
 
4753
    return data;
4754
}
4755
 
4756
/******************************************************************************
4757
 * Prepares EEPROM for access
4758
 *
4759
 * hw - Struct containing variables accessed by shared code
4760
 *
4761
 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
4762
 * function should be called before issuing a command to the EEPROM.
4763
 *****************************************************************************/
4764
static int32_t
4765
e1000_acquire_eeprom(struct e1000_hw *hw)
4766
{
4767
    struct e1000_eeprom_info *eeprom = &hw->eeprom;
4768
    uint32_t eecd, i=0;
4769
 
4770
    DEBUGFUNC("e1000_acquire_eeprom");
4771
 
4772
    if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
4773
        return -E1000_ERR_SWFW_SYNC;
4774
    eecd = E1000_READ_REG(hw, EECD);
4775
 
4776
    if (hw->mac_type != e1000_82573) {
4777
        /* Request EEPROM Access */
4778
        if (hw->mac_type > e1000_82544) {
4779
            eecd |= E1000_EECD_REQ;
4780
            E1000_WRITE_REG(hw, EECD, eecd);
4781
            eecd = E1000_READ_REG(hw, EECD);
4782
            while ((!(eecd & E1000_EECD_GNT)) &&
4783
                  (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
4784
                i++;
4785
                udelay(5);
4786
                eecd = E1000_READ_REG(hw, EECD);
4787
            }
4788
            if (!(eecd & E1000_EECD_GNT)) {
4789
                eecd &= ~E1000_EECD_REQ;
4790
                E1000_WRITE_REG(hw, EECD, eecd);
4791
                DEBUGOUT("Could not acquire EEPROM grant\n");
4792
                e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
4793
                return -E1000_ERR_EEPROM;
4794
            }
4795
        }
4796
    }
4797
 
4798
    /* Setup EEPROM for Read/Write */
4799
 
4800
    if (eeprom->type == e1000_eeprom_microwire) {
4801
        /* Clear SK and DI */
4802
        eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
4803
        E1000_WRITE_REG(hw, EECD, eecd);
4804
 
4805
        /* Set CS */
4806
        eecd |= E1000_EECD_CS;
4807
        E1000_WRITE_REG(hw, EECD, eecd);
4808
    } else if (eeprom->type == e1000_eeprom_spi) {
4809
        /* Clear SK and CS */
4810
        eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
4811
        E1000_WRITE_REG(hw, EECD, eecd);
4812
        udelay(1);
4813
    }
4814
 
4815
    return E1000_SUCCESS;
4816
}
4817
 
4818
/******************************************************************************
4819
 * Returns EEPROM to a "standby" state
4820
 *
4821
 * hw - Struct containing variables accessed by shared code
4822
 *****************************************************************************/
4823
static void
4824
e1000_standby_eeprom(struct e1000_hw *hw)
4825
{
4826
    struct e1000_eeprom_info *eeprom = &hw->eeprom;
4827
    uint32_t eecd;
4828
 
4829
    eecd = E1000_READ_REG(hw, EECD);
4830
 
4831
    if (eeprom->type == e1000_eeprom_microwire) {
4832
        eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
4833
        E1000_WRITE_REG(hw, EECD, eecd);
4834
        E1000_WRITE_FLUSH(hw);
4835
        udelay(eeprom->delay_usec);
4836
 
4837
        /* Clock high */
4838
        eecd |= E1000_EECD_SK;
4839
        E1000_WRITE_REG(hw, EECD, eecd);
4840
        E1000_WRITE_FLUSH(hw);
4841
        udelay(eeprom->delay_usec);
4842
 
4843
        /* Select EEPROM */
4844
        eecd |= E1000_EECD_CS;
4845
        E1000_WRITE_REG(hw, EECD, eecd);
4846
        E1000_WRITE_FLUSH(hw);
4847
        udelay(eeprom->delay_usec);
4848
 
4849
        /* Clock low */
4850
        eecd &= ~E1000_EECD_SK;
4851
        E1000_WRITE_REG(hw, EECD, eecd);
4852
        E1000_WRITE_FLUSH(hw);
4853
        udelay(eeprom->delay_usec);
4854
    } else if (eeprom->type == e1000_eeprom_spi) {
4855
        /* Toggle CS to flush commands */
4856
        eecd |= E1000_EECD_CS;
4857
        E1000_WRITE_REG(hw, EECD, eecd);
4858
        E1000_WRITE_FLUSH(hw);
4859
        udelay(eeprom->delay_usec);
4860
        eecd &= ~E1000_EECD_CS;
4861
        E1000_WRITE_REG(hw, EECD, eecd);
4862
        E1000_WRITE_FLUSH(hw);
4863
        udelay(eeprom->delay_usec);
4864
    }
4865
}
4866
 
4867
/******************************************************************************
4868
 * Terminates a command by inverting the EEPROM's chip select pin
4869
 *
4870
 * hw - Struct containing variables accessed by shared code
4871
 *****************************************************************************/
4872
static void
4873
e1000_release_eeprom(struct e1000_hw *hw)
4874
{
4875
    uint32_t eecd;
4876
 
4877
    DEBUGFUNC("e1000_release_eeprom");
4878
 
4879
    eecd = E1000_READ_REG(hw, EECD);
4880
 
4881
    if (hw->eeprom.type == e1000_eeprom_spi) {
4882
        eecd |= E1000_EECD_CS;  /* Pull CS high */
4883
        eecd &= ~E1000_EECD_SK; /* Lower SCK */
4884
 
4885
        E1000_WRITE_REG(hw, EECD, eecd);
4886
 
4887
        udelay(hw->eeprom.delay_usec);
4888
    } else if (hw->eeprom.type == e1000_eeprom_microwire) {
4889
        /* cleanup eeprom */
4890
 
4891
        /* CS on Microwire is active-high */
4892
        eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
4893
 
4894
        E1000_WRITE_REG(hw, EECD, eecd);
4895
 
4896
        /* Rising edge of clock */
4897
        eecd |= E1000_EECD_SK;
4898
        E1000_WRITE_REG(hw, EECD, eecd);
4899
        E1000_WRITE_FLUSH(hw);
4900
        udelay(hw->eeprom.delay_usec);
4901
 
4902
        /* Falling edge of clock */
4903
        eecd &= ~E1000_EECD_SK;
4904
        E1000_WRITE_REG(hw, EECD, eecd);
4905
        E1000_WRITE_FLUSH(hw);
4906
        udelay(hw->eeprom.delay_usec);
4907
    }
4908
 
4909
    /* Stop requesting EEPROM access */
4910
    if (hw->mac_type > e1000_82544) {
4911
        eecd &= ~E1000_EECD_REQ;
4912
        E1000_WRITE_REG(hw, EECD, eecd);
4913
    }
4914
 
4915
    e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
4916
}
4917
 
4918
/******************************************************************************
4919
 * Reads a 16 bit word from the EEPROM.
4920
 *
4921
 * hw - Struct containing variables accessed by shared code
4922
 *****************************************************************************/
4923
static int32_t
4924
e1000_spi_eeprom_ready(struct e1000_hw *hw)
4925
{
4926
    uint16_t retry_count = 0;
4927
    uint8_t spi_stat_reg;
4928
 
4929
    DEBUGFUNC("e1000_spi_eeprom_ready");
4930
 
4931
    /* Read "Status Register" repeatedly until the LSB is cleared.  The
4932
     * EEPROM will signal that the command has been completed by clearing
4933
     * bit 0 of the internal status register.  If it's not cleared within
4934
     * 5 milliseconds, then error out.
4935
     */
4936
    retry_count = 0;
4937
    do {
4938
        e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
4939
                                hw->eeprom.opcode_bits);
4940
        spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
4941
        if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
4942
            break;
4943
 
4944
        udelay(5);
4945
        retry_count += 5;
4946
 
4947
        e1000_standby_eeprom(hw);
4948
    } while (retry_count < EEPROM_MAX_RETRY_SPI);
4949
 
4950
    /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
4951
     * only 0-5mSec on 5V devices)
4952
     */
4953
    if (retry_count >= EEPROM_MAX_RETRY_SPI) {
4954
        DEBUGOUT("SPI EEPROM Status error\n");
4955
        return -E1000_ERR_EEPROM;
4956
    }
4957
 
4958
    return E1000_SUCCESS;
4959
}
4960
 
4961
/******************************************************************************
4962
 * Reads a 16 bit word from the EEPROM.
4963
 *
4964
 * hw - Struct containing variables accessed by shared code
4965
 * offset - offset of  word in the EEPROM to read
4966
 * data - word read from the EEPROM
4967
 * words - number of words to read
4968
 *****************************************************************************/
4969
int32_t
4970
e1000_read_eeprom(struct e1000_hw *hw,
4971
                  uint16_t offset,
4972
                  uint16_t words,
4973
                  uint16_t *data)
4974
{
4975
    struct e1000_eeprom_info *eeprom = &hw->eeprom;
4976
    uint32_t i = 0;
4977
 
4978
    DEBUGFUNC("e1000_read_eeprom");
4979
 
4980
    /* If eeprom is not yet detected, do so now */
4981
    if (eeprom->word_size == 0)
4982
        e1000_init_eeprom_params(hw);
4983
 
4984
    /* A check for invalid values:  offset too large, too many words, and not
4985
     * enough words.
4986
     */
4987
    if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
4988
       (words == 0)) {
4989
        DEBUGOUT2("\"words\" parameter out of bounds. Words = %d, size = %d\n", offset, eeprom->word_size);
4990
        return -E1000_ERR_EEPROM;
4991
    }
4992
 
4993
    /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
4994
     * directly. In this case, we need to acquire the EEPROM so that
4995
     * FW or other port software does not interrupt.
4996
     */
4997
    if (e1000_is_onboard_nvm_eeprom(hw) == TRUE &&
4998
        hw->eeprom.use_eerd == FALSE) {
4999
        /* Prepare the EEPROM for bit-bang reading */
5000
        if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
5001
            return -E1000_ERR_EEPROM;
5002
    }
5003
 
5004
    /* Eerd register EEPROM access requires no eeprom aquire/release */
5005
    if (eeprom->use_eerd == TRUE)
5006
        return e1000_read_eeprom_eerd(hw, offset, words, data);
5007
 
5008
    /* ICH EEPROM access is done via the ICH flash controller */
5009
    if (eeprom->type == e1000_eeprom_ich8)
5010
        return e1000_read_eeprom_ich8(hw, offset, words, data);
5011
 
5012
    /* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
5013
     * acquired the EEPROM at this point, so any returns should relase it */
5014
    if (eeprom->type == e1000_eeprom_spi) {
5015
        uint16_t word_in;
5016
        uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
5017
 
5018
        if (e1000_spi_eeprom_ready(hw)) {
5019
            e1000_release_eeprom(hw);
5020
            return -E1000_ERR_EEPROM;
5021
        }
5022
 
5023
        e1000_standby_eeprom(hw);
5024
 
5025
        /* Some SPI eeproms use the 8th address bit embedded in the opcode */
5026
        if ((eeprom->address_bits == 8) && (offset >= 128))
5027
            read_opcode |= EEPROM_A8_OPCODE_SPI;
5028
 
5029
        /* Send the READ command (opcode + addr)  */
5030
        e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
5031
        e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits);
5032
 
5033
        /* Read the data.  The address of the eeprom internally increments with
5034
         * each byte (spi) being read, saving on the overhead of eeprom setup
5035
         * and tear-down.  The address counter will roll over if reading beyond
5036
         * the size of the eeprom, thus allowing the entire memory to be read
5037
         * starting from any offset. */
5038
        for (i = 0; i < words; i++) {
5039
            word_in = e1000_shift_in_ee_bits(hw, 16);
5040
            data[i] = (word_in >> 8) | (word_in << 8);
5041
        }
5042
    } else if (eeprom->type == e1000_eeprom_microwire) {
5043
        for (i = 0; i < words; i++) {
5044
            /* Send the READ command (opcode + addr)  */
5045
            e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
5046
                                    eeprom->opcode_bits);
5047
            e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
5048
                                    eeprom->address_bits);
5049
 
5050
            /* Read the data.  For microwire, each word requires the overhead
5051
             * of eeprom setup and tear-down. */
5052
            data[i] = e1000_shift_in_ee_bits(hw, 16);
5053
            e1000_standby_eeprom(hw);
5054
        }
5055
    }
5056
 
5057
    /* End this read operation */
5058
    e1000_release_eeprom(hw);
5059
 
5060
    return E1000_SUCCESS;
5061
}
5062
 
5063
/******************************************************************************
5064
 * Reads a 16 bit word from the EEPROM using the EERD register.
5065
 *
5066
 * hw - Struct containing variables accessed by shared code
5067
 * offset - offset of  word in the EEPROM to read
5068
 * data - word read from the EEPROM
5069
 * words - number of words to read
5070
 *****************************************************************************/
5071
static int32_t
5072
e1000_read_eeprom_eerd(struct e1000_hw *hw,
5073
                  uint16_t offset,
5074
                  uint16_t words,
5075
                  uint16_t *data)
5076
{
5077
    uint32_t i, eerd = 0;
5078
    int32_t error = 0;
5079
 
5080
    for (i = 0; i < words; i++) {
5081
        eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
5082
                         E1000_EEPROM_RW_REG_START;
5083
 
5084
        E1000_WRITE_REG(hw, EERD, eerd);
5085
        error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
5086
 
5087
        if (error) {
5088
            break;
5089
        }
5090
        data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA);
5091
 
5092
    }
5093
 
5094
    return error;
5095
}
5096
 
5097
/******************************************************************************
5098
 * Writes a 16 bit word from the EEPROM using the EEWR register.
5099
 *
5100
 * hw - Struct containing variables accessed by shared code
5101
 * offset - offset of  word in the EEPROM to read
5102
 * data - word read from the EEPROM
5103
 * words - number of words to read
5104
 *****************************************************************************/
5105
static int32_t
5106
e1000_write_eeprom_eewr(struct e1000_hw *hw,
5107
                   uint16_t offset,
5108
                   uint16_t words,
5109
                   uint16_t *data)
5110
{
5111
    uint32_t    register_value = 0;
5112
    uint32_t    i              = 0;
5113
    int32_t     error          = 0;
5114
 
5115
    if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
5116
        return -E1000_ERR_SWFW_SYNC;
5117
 
5118
    for (i = 0; i < words; i++) {
5119
        register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
5120
                         ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
5121
                         E1000_EEPROM_RW_REG_START;
5122
 
5123
        error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
5124
        if (error) {
5125
            break;
5126
        }
5127
 
5128
        E1000_WRITE_REG(hw, EEWR, register_value);
5129
 
5130
        error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
5131
 
5132
        if (error) {
5133
            break;
5134
        }
5135
    }
5136
 
5137
    e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
5138
    return error;
5139
}
5140
 
5141
/******************************************************************************
5142
 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
5143
 *
5144
 * hw - Struct containing variables accessed by shared code
5145
 *****************************************************************************/
5146
static int32_t
5147
e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
5148
{
5149
    uint32_t attempts = 100000;
5150
    uint32_t i, reg = 0;
5151
    int32_t done = E1000_ERR_EEPROM;
5152
 
5153
    for (i = 0; i < attempts; i++) {
5154
        if (eerd == E1000_EEPROM_POLL_READ)
5155
            reg = E1000_READ_REG(hw, EERD);
5156
        else
5157
            reg = E1000_READ_REG(hw, EEWR);
5158
 
5159
        if (reg & E1000_EEPROM_RW_REG_DONE) {
5160
            done = E1000_SUCCESS;
5161
            break;
5162
        }
5163
        udelay(5);
5164
    }
5165
 
5166
    return done;
5167
}
5168
 
5169
/***************************************************************************
5170
* Description:     Determines if the onboard NVM is FLASH or EEPROM.
5171
*
5172
* hw - Struct containing variables accessed by shared code
5173
****************************************************************************/
5174
static boolean_t
5175
e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
5176
{
5177
    uint32_t eecd = 0;
5178
 
5179
    DEBUGFUNC("e1000_is_onboard_nvm_eeprom");
5180
 
5181
    if (hw->mac_type == e1000_ich8lan)
5182
        return FALSE;
5183
 
5184
    if (hw->mac_type == e1000_82573) {
5185
        eecd = E1000_READ_REG(hw, EECD);
5186
 
5187
        /* Isolate bits 15 & 16 */
5188
        eecd = ((eecd >> 15) & 0x03);
5189
 
5190
        /* If both bits are set, device is Flash type */
5191
        if (eecd == 0x03) {
5192
            return FALSE;
5193
        }
5194
    }
5195
    return TRUE;
5196
}
5197
 
5198
/******************************************************************************
5199
 * Verifies that the EEPROM has a valid checksum
5200
 *
5201
 * hw - Struct containing variables accessed by shared code
5202
 *
5203
 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
5204
 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
5205
 * valid.
5206
 *****************************************************************************/
5207
int32_t
5208
e1000_validate_eeprom_checksum(struct e1000_hw *hw)
5209
{
5210
    uint16_t checksum = 0;
5211
    uint16_t i, eeprom_data;
5212
 
5213
    DEBUGFUNC("e1000_validate_eeprom_checksum");
5214
 
5215
    if ((hw->mac_type == e1000_82573) &&
5216
        (e1000_is_onboard_nvm_eeprom(hw) == FALSE)) {
5217
        /* Check bit 4 of word 10h.  If it is 0, firmware is done updating
5218
         * 10h-12h.  Checksum may need to be fixed. */
5219
        e1000_read_eeprom(hw, 0x10, 1, &eeprom_data);
5220
        if ((eeprom_data & 0x10) == 0) {
5221
            /* Read 0x23 and check bit 15.  This bit is a 1 when the checksum
5222
             * has already been fixed.  If the checksum is still wrong and this
5223
             * bit is a 1, we need to return bad checksum.  Otherwise, we need
5224
             * to set this bit to a 1 and update the checksum. */
5225
            e1000_read_eeprom(hw, 0x23, 1, &eeprom_data);
5226
            if ((eeprom_data & 0x8000) == 0) {
5227
                eeprom_data |= 0x8000;
5228
                e1000_write_eeprom(hw, 0x23, 1, &eeprom_data);
5229
                e1000_update_eeprom_checksum(hw);
5230
            }
5231
        }
5232
    }
5233
 
5234
    if (hw->mac_type == e1000_ich8lan) {
5235
        /* Drivers must allocate the shadow ram structure for the
5236
         * EEPROM checksum to be updated.  Otherwise, this bit as well
5237
         * as the checksum must both be set correctly for this
5238
         * validation to pass.
5239
         */
5240
        e1000_read_eeprom(hw, 0x19, 1, &eeprom_data);
5241
        if ((eeprom_data & 0x40) == 0) {
5242
            eeprom_data |= 0x40;
5243
            e1000_write_eeprom(hw, 0x19, 1, &eeprom_data);
5244
            e1000_update_eeprom_checksum(hw);
5245
        }
5246
    }
5247
 
5248
    for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
5249
        if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
5250
            DEBUGOUT("EEPROM Read Error\n");
5251
            return -E1000_ERR_EEPROM;
5252
        }
5253
        checksum += eeprom_data;
5254
    }
5255
 
5256
    if (checksum == (uint16_t) EEPROM_SUM)
5257
        return E1000_SUCCESS;
5258
    else {
5259
        DEBUGOUT("EEPROM Checksum Invalid\n");
5260
        return -E1000_ERR_EEPROM;
5261
    }
5262
}
5263
 
5264
/******************************************************************************
5265
 * Calculates the EEPROM checksum and writes it to the EEPROM
5266
 *
5267
 * hw - Struct containing variables accessed by shared code
5268
 *
5269
 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
5270
 * Writes the difference to word offset 63 of the EEPROM.
5271
 *****************************************************************************/
5272
int32_t
5273
e1000_update_eeprom_checksum(struct e1000_hw *hw)
5274
{
5275
    uint32_t ctrl_ext;
5276
    uint16_t checksum = 0;
5277
    uint16_t i, eeprom_data;
5278
 
5279
    DEBUGFUNC("e1000_update_eeprom_checksum");
5280
 
5281
    for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
5282
        if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
5283
            DEBUGOUT("EEPROM Read Error\n");
5284
            return -E1000_ERR_EEPROM;
5285
        }
5286
        checksum += eeprom_data;
5287
    }
5288
    checksum = (uint16_t) EEPROM_SUM - checksum;
5289
    if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
5290
        DEBUGOUT("EEPROM Write Error\n");
5291
        return -E1000_ERR_EEPROM;
5292
    } else if (hw->eeprom.type == e1000_eeprom_flash) {
5293
        e1000_commit_shadow_ram(hw);
5294
    } else if (hw->eeprom.type == e1000_eeprom_ich8) {
5295
        e1000_commit_shadow_ram(hw);
5296
        /* Reload the EEPROM, or else modifications will not appear
5297
         * until after next adapter reset. */
5298
        ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
5299
        ctrl_ext |= E1000_CTRL_EXT_EE_RST;
5300
        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
5301
        msleep(10);
5302
    }
5303
    return E1000_SUCCESS;
5304
}
5305
 
5306
/******************************************************************************
5307
 * Parent function for writing words to the different EEPROM types.
5308
 *
5309
 * hw - Struct containing variables accessed by shared code
5310
 * offset - offset within the EEPROM to be written to
5311
 * words - number of words to write
5312
 * data - 16 bit word to be written to the EEPROM
5313
 *
5314
 * If e1000_update_eeprom_checksum is not called after this function, the
5315
 * EEPROM will most likely contain an invalid checksum.
5316
 *****************************************************************************/
5317
int32_t
5318
e1000_write_eeprom(struct e1000_hw *hw,
5319
                   uint16_t offset,
5320
                   uint16_t words,
5321
                   uint16_t *data)
5322
{
5323
    struct e1000_eeprom_info *eeprom = &hw->eeprom;
5324
    int32_t status = 0;
5325
 
5326
    DEBUGFUNC("e1000_write_eeprom");
5327
 
5328
    /* If eeprom is not yet detected, do so now */
5329
    if (eeprom->word_size == 0)
5330
        e1000_init_eeprom_params(hw);
5331
 
5332
    /* A check for invalid values:  offset too large, too many words, and not
5333
     * enough words.
5334
     */
5335
    if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
5336
       (words == 0)) {
5337
        DEBUGOUT("\"words\" parameter out of bounds\n");
5338
        return -E1000_ERR_EEPROM;
5339
    }
5340
 
5341
    /* 82573 writes only through eewr */
5342
    if (eeprom->use_eewr == TRUE)
5343
        return e1000_write_eeprom_eewr(hw, offset, words, data);
5344
 
5345
    if (eeprom->type == e1000_eeprom_ich8)
5346
        return e1000_write_eeprom_ich8(hw, offset, words, data);
5347
 
5348
    /* Prepare the EEPROM for writing  */
5349
    if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
5350
        return -E1000_ERR_EEPROM;
5351
 
5352
    if (eeprom->type == e1000_eeprom_microwire) {
5353
        status = e1000_write_eeprom_microwire(hw, offset, words, data);
5354
    } else {
5355
        status = e1000_write_eeprom_spi(hw, offset, words, data);
5356
        msleep(10);
5357
    }
5358
 
5359
    /* Done with writing */
5360
    e1000_release_eeprom(hw);
5361
 
5362
    return status;
5363
}
5364
 
5365
/******************************************************************************
5366
 * Writes a 16 bit word to a given offset in an SPI EEPROM.
5367
 *
5368
 * hw - Struct containing variables accessed by shared code
5369
 * offset - offset within the EEPROM to be written to
5370
 * words - number of words to write
5371
 * data - pointer to array of 8 bit words to be written to the EEPROM
5372
 *
5373
 *****************************************************************************/
5374
static int32_t
5375
e1000_write_eeprom_spi(struct e1000_hw *hw,
5376
                       uint16_t offset,
5377
                       uint16_t words,
5378
                       uint16_t *data)
5379
{
5380
    struct e1000_eeprom_info *eeprom = &hw->eeprom;
5381
    uint16_t widx = 0;
5382
 
5383
    DEBUGFUNC("e1000_write_eeprom_spi");
5384
 
5385
    while (widx < words) {
5386
        uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI;
5387
 
5388
        if (e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
5389
 
5390
        e1000_standby_eeprom(hw);
5391
 
5392
        /*  Send the WRITE ENABLE command (8 bit opcode )  */
5393
        e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
5394
                                    eeprom->opcode_bits);
5395
 
5396
        e1000_standby_eeprom(hw);
5397
 
5398
        /* Some SPI eeproms use the 8th address bit embedded in the opcode */
5399
        if ((eeprom->address_bits == 8) && (offset >= 128))
5400
            write_opcode |= EEPROM_A8_OPCODE_SPI;
5401
 
5402
        /* Send the Write command (8-bit opcode + addr) */
5403
        e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
5404
 
5405
        e1000_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2),
5406
                                eeprom->address_bits);
5407
 
5408
        /* Send the data */
5409
 
5410
        /* Loop to allow for up to whole page write (32 bytes) of eeprom */
5411
        while (widx < words) {
5412
            uint16_t word_out = data[widx];
5413
            word_out = (word_out >> 8) | (word_out << 8);
5414
            e1000_shift_out_ee_bits(hw, word_out, 16);
5415
            widx++;
5416
 
5417
            /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
5418
             * operation, while the smaller eeproms are capable of an 8-byte
5419
             * PAGE WRITE operation.  Break the inner loop to pass new address
5420
             */
5421
            if ((((offset + widx)*2) % eeprom->page_size) == 0) {
5422
                e1000_standby_eeprom(hw);
5423
                break;
5424
            }
5425
        }
5426
    }
5427
 
5428
    return E1000_SUCCESS;
5429
}
5430
 
5431
/******************************************************************************
5432
 * Writes a 16 bit word to a given offset in a Microwire EEPROM.
5433
 *
5434
 * hw - Struct containing variables accessed by shared code
5435
 * offset - offset within the EEPROM to be written to
5436
 * words - number of words to write
5437
 * data - pointer to array of 16 bit words to be written to the EEPROM
5438
 *
5439
 *****************************************************************************/
5440
static int32_t
5441
e1000_write_eeprom_microwire(struct e1000_hw *hw,
5442
                             uint16_t offset,
5443
                             uint16_t words,
5444
                             uint16_t *data)
5445
{
5446
    struct e1000_eeprom_info *eeprom = &hw->eeprom;
5447
    uint32_t eecd;
5448
    uint16_t words_written = 0;
5449
    uint16_t i = 0;
5450
 
5451
    DEBUGFUNC("e1000_write_eeprom_microwire");
5452
 
5453
    /* Send the write enable command to the EEPROM (3-bit opcode plus
5454
     * 6/8-bit dummy address beginning with 11).  It's less work to include
5455
     * the 11 of the dummy address as part of the opcode than it is to shift
5456
     * it over the correct number of bits for the address.  This puts the
5457
     * EEPROM into write/erase mode.
5458
     */
5459
    e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
5460
                            (uint16_t)(eeprom->opcode_bits + 2));
5461
 
5462
    e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
5463
 
5464
    /* Prepare the EEPROM */
5465
    e1000_standby_eeprom(hw);
5466
 
5467
    while (words_written < words) {
5468
        /* Send the Write command (3-bit opcode + addr) */
5469
        e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
5470
                                eeprom->opcode_bits);
5471
 
5472
        e1000_shift_out_ee_bits(hw, (uint16_t)(offset + words_written),
5473
                                eeprom->address_bits);
5474
 
5475
        /* Send the data */
5476
        e1000_shift_out_ee_bits(hw, data[words_written], 16);
5477
 
5478
        /* Toggle the CS line.  This in effect tells the EEPROM to execute
5479
         * the previous command.
5480
         */
5481
        e1000_standby_eeprom(hw);
5482
 
5483
        /* Read DO repeatedly until it is high (equal to '1').  The EEPROM will
5484
         * signal that the command has been completed by raising the DO signal.
5485
         * If DO does not go high in 10 milliseconds, then error out.
5486
         */
5487
        for (i = 0; i < 200; i++) {
5488
            eecd = E1000_READ_REG(hw, EECD);
5489
            if (eecd & E1000_EECD_DO) break;
5490
            udelay(50);
5491
        }
5492
        if (i == 200) {
5493
            DEBUGOUT("EEPROM Write did not complete\n");
5494
            return -E1000_ERR_EEPROM;
5495
        }
5496
 
5497
        /* Recover from write */
5498
        e1000_standby_eeprom(hw);
5499
 
5500
        words_written++;
5501
    }
5502
 
5503
    /* Send the write disable command to the EEPROM (3-bit opcode plus
5504
     * 6/8-bit dummy address beginning with 10).  It's less work to include
5505
     * the 10 of the dummy address as part of the opcode than it is to shift
5506
     * it over the correct number of bits for the address.  This takes the
5507
     * EEPROM out of write/erase mode.
5508
     */
5509
    e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
5510
                            (uint16_t)(eeprom->opcode_bits + 2));
5511
 
5512
    e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
5513
 
5514
    return E1000_SUCCESS;
5515
}
5516
 
5517
/******************************************************************************
5518
 * Flushes the cached eeprom to NVM. This is done by saving the modified values
5519
 * in the eeprom cache and the non modified values in the currently active bank
5520
 * to the new bank.
5521
 *
5522
 * hw - Struct containing variables accessed by shared code
5523
 * offset - offset of  word in the EEPROM to read
5524
 * data - word read from the EEPROM
5525
 * words - number of words to read
5526
 *****************************************************************************/
5527
static int32_t
5528
e1000_commit_shadow_ram(struct e1000_hw *hw)
5529
{
5530
    uint32_t attempts = 100000;
5531
    uint32_t eecd = 0;
5532
    uint32_t flop = 0;
5533
    uint32_t i = 0;
5534
    int32_t error = E1000_SUCCESS;
5535
    uint32_t old_bank_offset = 0;
5536
    uint32_t new_bank_offset = 0;
5537
    uint8_t low_byte = 0;
5538
    uint8_t high_byte = 0;
5539
    boolean_t sector_write_failed = FALSE;
5540
 
5541
    if (hw->mac_type == e1000_82573) {
5542
        /* The flop register will be used to determine if flash type is STM */
5543
        flop = E1000_READ_REG(hw, FLOP);
5544
        for (i=0; i < attempts; i++) {
5545
            eecd = E1000_READ_REG(hw, EECD);
5546
            if ((eecd & E1000_EECD_FLUPD) == 0) {
5547
                break;
5548
            }
5549
            udelay(5);
5550
        }
5551
 
5552
        if (i == attempts) {
5553
            return -E1000_ERR_EEPROM;
5554
        }
5555
 
5556
        /* If STM opcode located in bits 15:8 of flop, reset firmware */
5557
        if ((flop & 0xFF00) == E1000_STM_OPCODE) {
5558
            E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET);
5559
        }
5560
 
5561
        /* Perform the flash update */
5562
        E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD);
5563
 
5564
        for (i=0; i < attempts; i++) {
5565
            eecd = E1000_READ_REG(hw, EECD);
5566
            if ((eecd & E1000_EECD_FLUPD) == 0) {
5567
                break;
5568
            }
5569
            udelay(5);
5570
        }
5571
 
5572
        if (i == attempts) {
5573
            return -E1000_ERR_EEPROM;
5574
        }
5575
    }
5576
 
5577
    if (hw->mac_type == e1000_ich8lan && hw->eeprom_shadow_ram != NULL) {
5578
        /* We're writing to the opposite bank so if we're on bank 1,
5579
         * write to bank 0 etc.  We also need to erase the segment that
5580
         * is going to be written */
5581
        if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) {
5582
            new_bank_offset = hw->flash_bank_size * 2;
5583
            old_bank_offset = 0;
5584
            e1000_erase_ich8_4k_segment(hw, 1);
5585
        } else {
5586
            old_bank_offset = hw->flash_bank_size * 2;
5587
            new_bank_offset = 0;
5588
            e1000_erase_ich8_4k_segment(hw, 0);
5589
        }
5590
 
5591
        sector_write_failed = FALSE;
5592
        /* Loop for every byte in the shadow RAM,
5593
         * which is in units of words. */
5594
        for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
5595
            /* Determine whether to write the value stored
5596
             * in the other NVM bank or a modified value stored
5597
             * in the shadow RAM */
5598
            if (hw->eeprom_shadow_ram[i].modified == TRUE) {
5599
                low_byte = (uint8_t)hw->eeprom_shadow_ram[i].eeprom_word;
5600
                udelay(100);
5601
                error = e1000_verify_write_ich8_byte(hw,
5602
                            (i << 1) + new_bank_offset, low_byte);
5603
 
5604
                if (error != E1000_SUCCESS)
5605
                    sector_write_failed = TRUE;
5606
                else {
5607
                    high_byte =
5608
                        (uint8_t)(hw->eeprom_shadow_ram[i].eeprom_word >> 8);
5609
                    udelay(100);
5610
                }
5611
            } else {
5612
                e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
5613
                                     &low_byte);
5614
                udelay(100);
5615
                error = e1000_verify_write_ich8_byte(hw,
5616
                            (i << 1) + new_bank_offset, low_byte);
5617
 
5618
                if (error != E1000_SUCCESS)
5619
                    sector_write_failed = TRUE;
5620
                else {
5621
                    e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
5622
                                         &high_byte);
5623
                    udelay(100);
5624
                }
5625
            }
5626
 
5627
            /* If the write of the low byte was successful, go ahread and
5628
             * write the high byte while checking to make sure that if it
5629
             * is the signature byte, then it is handled properly */
5630
            if (sector_write_failed == FALSE) {
5631
                /* If the word is 0x13, then make sure the signature bits
5632
                 * (15:14) are 11b until the commit has completed.
5633
                 * This will allow us to write 10b which indicates the
5634
                 * signature is valid.  We want to do this after the write
5635
                 * has completed so that we don't mark the segment valid
5636
                 * while the write is still in progress */
5637
                if (i == E1000_ICH_NVM_SIG_WORD)
5638
                    high_byte = E1000_ICH_NVM_SIG_MASK | high_byte;
5639
 
5640
                error = e1000_verify_write_ich8_byte(hw,
5641
                            (i << 1) + new_bank_offset + 1, high_byte);
5642
                if (error != E1000_SUCCESS)
5643
                    sector_write_failed = TRUE;
5644
 
5645
            } else {
5646
                /* If the write failed then break from the loop and
5647
                 * return an error */
5648
                break;
5649
            }
5650
        }
5651
 
5652
        /* Don't bother writing the segment valid bits if sector
5653
         * programming failed. */
5654
        if (sector_write_failed == FALSE) {
5655
            /* Finally validate the new segment by setting bit 15:14
5656
             * to 10b in word 0x13 , this can be done without an
5657
             * erase as well since these bits are 11 to start with
5658
             * and we need to change bit 14 to 0b */
5659
            e1000_read_ich8_byte(hw,
5660
                                 E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
5661
                                 &high_byte);
5662
            high_byte &= 0xBF;
5663
            error = e1000_verify_write_ich8_byte(hw,
5664
                        E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset, high_byte);
5665
            /* And invalidate the previously valid segment by setting
5666
             * its signature word (0x13) high_byte to 0b. This can be
5667
             * done without an erase because flash erase sets all bits
5668
             * to 1's. We can write 1's to 0's without an erase */
5669
            if (error == E1000_SUCCESS) {
5670
                error = e1000_verify_write_ich8_byte(hw,
5671
                            E1000_ICH_NVM_SIG_WORD * 2 + 1 + old_bank_offset, 0);
5672
            }
5673
 
5674
            /* Clear the now not used entry in the cache */
5675
            for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
5676
                hw->eeprom_shadow_ram[i].modified = FALSE;
5677
                hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
5678
            }
5679
        }
5680
    }
5681
 
5682
    return error;
5683
}
5684
 
5685
/******************************************************************************
5686
 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
5687
 * second function of dual function devices
5688
 *
5689
 * hw - Struct containing variables accessed by shared code
5690
 *****************************************************************************/
5691
int32_t
5692
e1000_read_mac_addr(struct e1000_hw * hw)
5693
{
5694
    uint16_t offset;
5695
    uint16_t eeprom_data, i;
5696
 
5697
    DEBUGFUNC("e1000_read_mac_addr");
5698
 
5699
    for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
5700
        offset = i >> 1;
5701
        if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
5702
            DEBUGOUT("EEPROM Read Error\n");
5703
            return -E1000_ERR_EEPROM;
5704
        }
5705
        hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF);
5706
        hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8);
5707
    }
5708
 
5709
    switch (hw->mac_type) {
5710
    default:
5711
        break;
5712
    case e1000_82546:
5713
    case e1000_82546_rev_3:
5714
    case e1000_82571:
5715
    case e1000_80003es2lan:
5716
        if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
5717
            hw->perm_mac_addr[5] ^= 0x01;
5718
        break;
5719
    }
5720
 
5721
    for (i = 0; i < NODE_ADDRESS_SIZE; i++)
5722
        hw->mac_addr[i] = hw->perm_mac_addr[i];
5723
    return E1000_SUCCESS;
5724
}
5725
 
5726
/******************************************************************************
5727
 * Initializes receive address filters.
5728
 *
5729
 * hw - Struct containing variables accessed by shared code
5730
 *
5731
 * Places the MAC address in receive address register 0 and clears the rest
5732
 * of the receive addresss registers. Clears the multicast table. Assumes
5733
 * the receiver is in reset when the routine is called.
5734
 *****************************************************************************/
5735
static void
5736
e1000_init_rx_addrs(struct e1000_hw *hw)
5737
{
5738
    uint32_t i;
5739
    uint32_t rar_num;
5740
 
5741
    DEBUGFUNC("e1000_init_rx_addrs");
5742
 
5743
    /* Setup the receive address. */
5744
    DEBUGOUT("Programming MAC Address into RAR[0]\n");
5745
 
5746
    e1000_rar_set(hw, hw->mac_addr, 0);
5747
 
5748
    rar_num = E1000_RAR_ENTRIES;
5749
 
5750
    /* Reserve a spot for the Locally Administered Address to work around
5751
     * an 82571 issue in which a reset on one port will reload the MAC on
5752
     * the other port. */
5753
    if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE))
5754
        rar_num -= 1;
5755
    if (hw->mac_type == e1000_ich8lan)
5756
        rar_num = E1000_RAR_ENTRIES_ICH8LAN;
5757
 
5758
    /* Zero out the other 15 receive addresses. */
5759
    DEBUGOUT("Clearing RAR[1-15]\n");
5760
    for (i = 1; i < rar_num; i++) {
5761
        E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
5762
        E1000_WRITE_FLUSH(hw);
5763
        E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
5764
        E1000_WRITE_FLUSH(hw);
5765
    }
5766
}
5767
 
5768
/******************************************************************************
5769
 * Hashes an address to determine its location in the multicast table
5770
 *
5771
 * hw - Struct containing variables accessed by shared code
5772
 * mc_addr - the multicast address to hash
5773
 *****************************************************************************/
5774
uint32_t
5775
e1000_hash_mc_addr(struct e1000_hw *hw,
5776
                   uint8_t *mc_addr)
5777
{
5778
    uint32_t hash_value = 0;
5779
 
5780
    /* The portion of the address that is used for the hash table is
5781
     * determined by the mc_filter_type setting.
5782
     */
5783
    switch (hw->mc_filter_type) {
5784
    /* [0] [1] [2] [3] [4] [5]
5785
     * 01  AA  00  12  34  56
5786
     * LSB                 MSB
5787
     */
5788
    case 0:
5789
        if (hw->mac_type == e1000_ich8lan) {
5790
            /* [47:38] i.e. 0x158 for above example address */
5791
            hash_value = ((mc_addr[4] >> 6) | (((uint16_t) mc_addr[5]) << 2));
5792
        } else {
5793
            /* [47:36] i.e. 0x563 for above example address */
5794
            hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
5795
        }
5796
        break;
5797
    case 1:
5798
        if (hw->mac_type == e1000_ich8lan) {
5799
            /* [46:37] i.e. 0x2B1 for above example address */
5800
            hash_value = ((mc_addr[4] >> 5) | (((uint16_t) mc_addr[5]) << 3));
5801
        } else {
5802
            /* [46:35] i.e. 0xAC6 for above example address */
5803
            hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
5804
        }
5805
        break;
5806
    case 2:
5807
        if (hw->mac_type == e1000_ich8lan) {
5808
            /*[45:36] i.e. 0x163 for above example address */
5809
            hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
5810
        } else {
5811
            /* [45:34] i.e. 0x5D8 for above example address */
5812
            hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
5813
        }
5814
        break;
5815
    case 3:
5816
        if (hw->mac_type == e1000_ich8lan) {
5817
            /* [43:34] i.e. 0x18D for above example address */
5818
            hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
5819
        } else {
5820
            /* [43:32] i.e. 0x634 for above example address */
5821
            hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
5822
        }
5823
        break;
5824
    }
5825
 
5826
    hash_value &= 0xFFF;
5827
    if (hw->mac_type == e1000_ich8lan)
5828
        hash_value &= 0x3FF;
5829
 
5830
    return hash_value;
5831
}
5832
 
5833
/******************************************************************************
5834
 * Sets the bit in the multicast table corresponding to the hash value.
5835
 *
5836
 * hw - Struct containing variables accessed by shared code
5837
 * hash_value - Multicast address hash value
5838
 *****************************************************************************/
5839
void
5840
e1000_mta_set(struct e1000_hw *hw,
5841
              uint32_t hash_value)
5842
{
5843
    uint32_t hash_bit, hash_reg;
5844
    uint32_t mta;
5845
    uint32_t temp;
5846
 
5847
    /* The MTA is a register array of 128 32-bit registers.
5848
     * It is treated like an array of 4096 bits.  We want to set
5849
     * bit BitArray[hash_value]. So we figure out what register
5850
     * the bit is in, read it, OR in the new bit, then write
5851
     * back the new value.  The register is determined by the
5852
     * upper 7 bits of the hash value and the bit within that
5853
     * register are determined by the lower 5 bits of the value.
5854
     */
5855
    hash_reg = (hash_value >> 5) & 0x7F;
5856
    if (hw->mac_type == e1000_ich8lan)
5857
        hash_reg &= 0x1F;
5858
 
5859
    hash_bit = hash_value & 0x1F;
5860
 
5861
    mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
5862
 
5863
    mta |= (1 << hash_bit);
5864
 
5865
    /* If we are on an 82544 and we are trying to write an odd offset
5866
     * in the MTA, save off the previous entry before writing and
5867
     * restore the old value after writing.
5868
     */
5869
    if ((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) {
5870
        temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
5871
        E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
5872
        E1000_WRITE_FLUSH(hw);
5873
        E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
5874
        E1000_WRITE_FLUSH(hw);
5875
    } else {
5876
        E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
5877
        E1000_WRITE_FLUSH(hw);
5878
    }
5879
}
5880
 
5881
/******************************************************************************
5882
 * Puts an ethernet address into a receive address register.
5883
 *
5884
 * hw - Struct containing variables accessed by shared code
5885
 * addr - Address to put into receive address register
5886
 * index - Receive address register to write
5887
 *****************************************************************************/
5888
void
5889
e1000_rar_set(struct e1000_hw *hw,
5890
              uint8_t *addr,
5891
              uint32_t index)
5892
{
5893
    uint32_t rar_low, rar_high;
5894
 
5895
    /* HW expects these in little endian so we reverse the byte order
5896
     * from network order (big endian) to little endian
5897
     */
5898
    rar_low = ((uint32_t) addr[0] |
5899
               ((uint32_t) addr[1] << 8) |
5900
               ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24));
5901
    rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8));
5902
 
5903
    /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
5904
     * unit hang.
5905
     *
5906
     * Description:
5907
     * If there are any Rx frames queued up or otherwise present in the HW
5908
     * before RSS is enabled, and then we enable RSS, the HW Rx unit will
5909
     * hang.  To work around this issue, we have to disable receives and
5910
     * flush out all Rx frames before we enable RSS. To do so, we modify we
5911
     * redirect all Rx traffic to manageability and then reset the HW.
5912
     * This flushes away Rx frames, and (since the redirections to
5913
     * manageability persists across resets) keeps new ones from coming in
5914
     * while we work.  Then, we clear the Address Valid AV bit for all MAC
5915
     * addresses and undo the re-direction to manageability.
5916
     * Now, frames are coming in again, but the MAC won't accept them, so
5917
     * far so good.  We now proceed to initialize RSS (if necessary) and
5918
     * configure the Rx unit.  Last, we re-enable the AV bits and continue
5919
     * on our merry way.
5920
     */
5921
    switch (hw->mac_type) {
5922
    case e1000_82571:
5923
    case e1000_82572:
5924
    case e1000_80003es2lan:
5925
        if (hw->leave_av_bit_off == TRUE)
5926
            break;
5927
    default:
5928
        /* Indicate to hardware the Address is Valid. */
5929
        rar_high |= E1000_RAH_AV;
5930
        break;
5931
    }
5932
 
5933
    E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
5934
    E1000_WRITE_FLUSH(hw);
5935
    E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
5936
    E1000_WRITE_FLUSH(hw);
5937
}
5938
 
5939
/******************************************************************************
5940
 * Writes a value to the specified offset in the VLAN filter table.
5941
 *
5942
 * hw - Struct containing variables accessed by shared code
5943
 * offset - Offset in VLAN filer table to write
5944
 * value - Value to write into VLAN filter table
5945
 *****************************************************************************/
5946
void
5947
e1000_write_vfta(struct e1000_hw *hw,
5948
                 uint32_t offset,
5949
                 uint32_t value)
5950
{
5951
    uint32_t temp;
5952
 
5953
    if (hw->mac_type == e1000_ich8lan)
5954
        return;
5955
 
5956
    if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
5957
        temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
5958
        E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
5959
        E1000_WRITE_FLUSH(hw);
5960
        E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
5961
        E1000_WRITE_FLUSH(hw);
5962
    } else {
5963
        E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
5964
        E1000_WRITE_FLUSH(hw);
5965
    }
5966
}
5967
 
5968
/******************************************************************************
5969
 * Clears the VLAN filer table
5970
 *
5971
 * hw - Struct containing variables accessed by shared code
5972
 *****************************************************************************/
5973
static void
5974
e1000_clear_vfta(struct e1000_hw *hw)
5975
{
5976
    uint32_t offset;
5977
    uint32_t vfta_value = 0;
5978
    uint32_t vfta_offset = 0;
5979
    uint32_t vfta_bit_in_reg = 0;
5980
 
5981
    if (hw->mac_type == e1000_ich8lan)
5982
        return;
5983
 
5984
    if (hw->mac_type == e1000_82573) {
5985
        if (hw->mng_cookie.vlan_id != 0) {
5986
            /* The VFTA is a 4096b bit-field, each identifying a single VLAN
5987
             * ID.  The following operations determine which 32b entry
5988
             * (i.e. offset) into the array we want to set the VLAN ID
5989
             * (i.e. bit) of the manageability unit. */
5990
            vfta_offset = (hw->mng_cookie.vlan_id >>
5991
                           E1000_VFTA_ENTRY_SHIFT) &
5992
                          E1000_VFTA_ENTRY_MASK;
5993
            vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
5994
                                    E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
5995
        }
5996
    }
5997
    for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
5998
        /* If the offset we want to clear is the same offset of the
5999
         * manageability VLAN ID, then clear all bits except that of the
6000
         * manageability unit */
6001
        vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
6002
        E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
6003
        E1000_WRITE_FLUSH(hw);
6004
    }
6005
}
6006
 
6007
static int32_t
6008
e1000_id_led_init(struct e1000_hw * hw)
6009
{
6010
    uint32_t ledctl;
6011
    const uint32_t ledctl_mask = 0x000000FF;
6012
    const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON;
6013
    const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
6014
    uint16_t eeprom_data, i, temp;
6015
    const uint16_t led_mask = 0x0F;
6016
 
6017
    DEBUGFUNC("e1000_id_led_init");
6018
 
6019
    if (hw->mac_type < e1000_82540) {
6020
        /* Nothing to do */
6021
        return E1000_SUCCESS;
6022
    }
6023
 
6024
    ledctl = E1000_READ_REG(hw, LEDCTL);
6025
    hw->ledctl_default = ledctl;
6026
    hw->ledctl_mode1 = hw->ledctl_default;
6027
    hw->ledctl_mode2 = hw->ledctl_default;
6028
 
6029
    if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
6030
        DEBUGOUT("EEPROM Read Error\n");
6031
        return -E1000_ERR_EEPROM;
6032
    }
6033
 
6034
    if ((hw->mac_type == e1000_82573) &&
6035
        (eeprom_data == ID_LED_RESERVED_82573))
6036
        eeprom_data = ID_LED_DEFAULT_82573;
6037
    else if ((eeprom_data == ID_LED_RESERVED_0000) ||
6038
            (eeprom_data == ID_LED_RESERVED_FFFF)) {
6039
        if (hw->mac_type == e1000_ich8lan)
6040
            eeprom_data = ID_LED_DEFAULT_ICH8LAN;
6041
        else
6042
            eeprom_data = ID_LED_DEFAULT;
6043
    }
6044
 
6045
    for (i = 0; i < 4; i++) {
6046
        temp = (eeprom_data >> (i << 2)) & led_mask;
6047
        switch (temp) {
6048
        case ID_LED_ON1_DEF2:
6049
        case ID_LED_ON1_ON2:
6050
        case ID_LED_ON1_OFF2:
6051
            hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
6052
            hw->ledctl_mode1 |= ledctl_on << (i << 3);
6053
            break;
6054
        case ID_LED_OFF1_DEF2:
6055
        case ID_LED_OFF1_ON2:
6056
        case ID_LED_OFF1_OFF2:
6057
            hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
6058
            hw->ledctl_mode1 |= ledctl_off << (i << 3);
6059
            break;
6060
        default:
6061
            /* Do nothing */
6062
            break;
6063
        }
6064
        switch (temp) {
6065
        case ID_LED_DEF1_ON2:
6066
        case ID_LED_ON1_ON2:
6067
        case ID_LED_OFF1_ON2:
6068
            hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
6069
            hw->ledctl_mode2 |= ledctl_on << (i << 3);
6070
            break;
6071
        case ID_LED_DEF1_OFF2:
6072
        case ID_LED_ON1_OFF2:
6073
        case ID_LED_OFF1_OFF2:
6074
            hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
6075
            hw->ledctl_mode2 |= ledctl_off << (i << 3);
6076
            break;
6077
        default:
6078
            /* Do nothing */
6079
            break;
6080
        }
6081
    }
6082
    return E1000_SUCCESS;
6083
}
6084
 
6085
/******************************************************************************
6086
 * Prepares SW controlable LED for use and saves the current state of the LED.
6087
 *
6088
 * hw - Struct containing variables accessed by shared code
6089
 *****************************************************************************/
6090
int32_t
6091
e1000_setup_led(struct e1000_hw *hw)
6092
{
6093
    uint32_t ledctl;
6094
    int32_t ret_val = E1000_SUCCESS;
6095
 
6096
    DEBUGFUNC("e1000_setup_led");
6097
 
6098
    switch (hw->mac_type) {
6099
    case e1000_82542_rev2_0:
6100
    case e1000_82542_rev2_1:
6101
    case e1000_82543:
6102
    case e1000_82544:
6103
        /* No setup necessary */
6104
        break;
6105
    case e1000_82541:
6106
    case e1000_82547:
6107
    case e1000_82541_rev_2:
6108
    case e1000_82547_rev_2:
6109
        /* Turn off PHY Smart Power Down (if enabled) */
6110
        ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
6111
                                     &hw->phy_spd_default);
6112
        if (ret_val)
6113
            return ret_val;
6114
        ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
6115
                                      (uint16_t)(hw->phy_spd_default &
6116
                                      ~IGP01E1000_GMII_SPD));
6117
        if (ret_val)
6118
            return ret_val;
6119
        /* Fall Through */
6120
    default:
6121
        if (hw->media_type == e1000_media_type_fiber) {
6122
            ledctl = E1000_READ_REG(hw, LEDCTL);
6123
            /* Save current LEDCTL settings */
6124
            hw->ledctl_default = ledctl;
6125
            /* Turn off LED0 */
6126
            ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
6127
                        E1000_LEDCTL_LED0_BLINK |
6128
                        E1000_LEDCTL_LED0_MODE_MASK);
6129
            ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
6130
                       E1000_LEDCTL_LED0_MODE_SHIFT);
6131
            E1000_WRITE_REG(hw, LEDCTL, ledctl);
6132
        } else if (hw->media_type == e1000_media_type_copper)
6133
            E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
6134
        break;
6135
    }
6136
 
6137
    return E1000_SUCCESS;
6138
}
6139
 
6140
 
6141
/******************************************************************************
6142
 * Used on 82571 and later Si that has LED blink bits.
6143
 * Callers must use their own timer and should have already called
6144
 * e1000_id_led_init()
6145
 * Call e1000_cleanup led() to stop blinking
6146
 *
6147
 * hw - Struct containing variables accessed by shared code
6148
 *****************************************************************************/
6149
int32_t
6150
e1000_blink_led_start(struct e1000_hw *hw)
6151
{
6152
    int16_t  i;
6153
    uint32_t ledctl_blink = 0;
6154
 
6155
    DEBUGFUNC("e1000_id_led_blink_on");
6156
 
6157
    if (hw->mac_type < e1000_82571) {
6158
        /* Nothing to do */
6159
        return E1000_SUCCESS;
6160
    }
6161
    if (hw->media_type == e1000_media_type_fiber) {
6162
        /* always blink LED0 for PCI-E fiber */
6163
        ledctl_blink = E1000_LEDCTL_LED0_BLINK |
6164
                     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
6165
    } else {
6166
        /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */
6167
        ledctl_blink = hw->ledctl_mode2;
6168
        for (i=0; i < 4; i++)
6169
            if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) ==
6170
                E1000_LEDCTL_MODE_LED_ON)
6171
                ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8));
6172
    }
6173
 
6174
    E1000_WRITE_REG(hw, LEDCTL, ledctl_blink);
6175
 
6176
    return E1000_SUCCESS;
6177
}
6178
 
6179
/******************************************************************************
6180
 * Restores the saved state of the SW controlable LED.
6181
 *
6182
 * hw - Struct containing variables accessed by shared code
6183
 *****************************************************************************/
6184
int32_t
6185
e1000_cleanup_led(struct e1000_hw *hw)
6186
{
6187
    int32_t ret_val = E1000_SUCCESS;
6188
 
6189
    DEBUGFUNC("e1000_cleanup_led");
6190
 
6191
    switch (hw->mac_type) {
6192
    case e1000_82542_rev2_0:
6193
    case e1000_82542_rev2_1:
6194
    case e1000_82543:
6195
    case e1000_82544:
6196
        /* No cleanup necessary */
6197
        break;
6198
    case e1000_82541:
6199
    case e1000_82547:
6200
    case e1000_82541_rev_2:
6201
    case e1000_82547_rev_2:
6202
        /* Turn on PHY Smart Power Down (if previously enabled) */
6203
        ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
6204
                                      hw->phy_spd_default);
6205
        if (ret_val)
6206
            return ret_val;
6207
        /* Fall Through */
6208
    default:
6209
        if (hw->phy_type == e1000_phy_ife) {
6210
            e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
6211
            break;
6212
        }
6213
        /* Restore LEDCTL settings */
6214
        E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default);
6215
        break;
6216
    }
6217
 
6218
    return E1000_SUCCESS;
6219
}
6220
 
6221
/******************************************************************************
6222
 * Turns on the software controllable LED
6223
 *
6224
 * hw - Struct containing variables accessed by shared code
6225
 *****************************************************************************/
6226
int32_t
6227
e1000_led_on(struct e1000_hw *hw)
6228
{
6229
    uint32_t ctrl = E1000_READ_REG(hw, CTRL);
6230
 
6231
    DEBUGFUNC("e1000_led_on");
6232
 
6233
    switch (hw->mac_type) {
6234
    case e1000_82542_rev2_0:
6235
    case e1000_82542_rev2_1:
6236
    case e1000_82543:
6237
        /* Set SW Defineable Pin 0 to turn on the LED */
6238
        ctrl |= E1000_CTRL_SWDPIN0;
6239
        ctrl |= E1000_CTRL_SWDPIO0;
6240
        break;
6241
    case e1000_82544:
6242
        if (hw->media_type == e1000_media_type_fiber) {
6243
            /* Set SW Defineable Pin 0 to turn on the LED */
6244
            ctrl |= E1000_CTRL_SWDPIN0;
6245
            ctrl |= E1000_CTRL_SWDPIO0;
6246
        } else {
6247
            /* Clear SW Defineable Pin 0 to turn on the LED */
6248
            ctrl &= ~E1000_CTRL_SWDPIN0;
6249
            ctrl |= E1000_CTRL_SWDPIO0;
6250
        }
6251
        break;
6252
    default:
6253
        if (hw->media_type == e1000_media_type_fiber) {
6254
            /* Clear SW Defineable Pin 0 to turn on the LED */
6255
            ctrl &= ~E1000_CTRL_SWDPIN0;
6256
            ctrl |= E1000_CTRL_SWDPIO0;
6257
        } else if (hw->phy_type == e1000_phy_ife) {
6258
            e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
6259
                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
6260
        } else if (hw->media_type == e1000_media_type_copper) {
6261
            E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2);
6262
            return E1000_SUCCESS;
6263
        }
6264
        break;
6265
    }
6266
 
6267
    E1000_WRITE_REG(hw, CTRL, ctrl);
6268
 
6269
    return E1000_SUCCESS;
6270
}
6271
 
6272
/******************************************************************************
6273
 * Turns off the software controllable LED
6274
 *
6275
 * hw - Struct containing variables accessed by shared code
6276
 *****************************************************************************/
6277
int32_t
6278
e1000_led_off(struct e1000_hw *hw)
6279
{
6280
    uint32_t ctrl = E1000_READ_REG(hw, CTRL);
6281
 
6282
    DEBUGFUNC("e1000_led_off");
6283
 
6284
    switch (hw->mac_type) {
6285
    case e1000_82542_rev2_0:
6286
    case e1000_82542_rev2_1:
6287
    case e1000_82543:
6288
        /* Clear SW Defineable Pin 0 to turn off the LED */
6289
        ctrl &= ~E1000_CTRL_SWDPIN0;
6290
        ctrl |= E1000_CTRL_SWDPIO0;
6291
        break;
6292
    case e1000_82544:
6293
        if (hw->media_type == e1000_media_type_fiber) {
6294
            /* Clear SW Defineable Pin 0 to turn off the LED */
6295
            ctrl &= ~E1000_CTRL_SWDPIN0;
6296
            ctrl |= E1000_CTRL_SWDPIO0;
6297
        } else {
6298
            /* Set SW Defineable Pin 0 to turn off the LED */
6299
            ctrl |= E1000_CTRL_SWDPIN0;
6300
            ctrl |= E1000_CTRL_SWDPIO0;
6301
        }
6302
        break;
6303
    default:
6304
        if (hw->media_type == e1000_media_type_fiber) {
6305
            /* Set SW Defineable Pin 0 to turn off the LED */
6306
            ctrl |= E1000_CTRL_SWDPIN0;
6307
            ctrl |= E1000_CTRL_SWDPIO0;
6308
        } else if (hw->phy_type == e1000_phy_ife) {
6309
            e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
6310
                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
6311
        } else if (hw->media_type == e1000_media_type_copper) {
6312
            E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
6313
            return E1000_SUCCESS;
6314
        }
6315
        break;
6316
    }
6317
 
6318
    E1000_WRITE_REG(hw, CTRL, ctrl);
6319
 
6320
    return E1000_SUCCESS;
6321
}
6322
 
6323
/******************************************************************************
6324
 * Clears all hardware statistics counters.
6325
 *
6326
 * hw - Struct containing variables accessed by shared code
6327
 *****************************************************************************/
6328
static void
6329
e1000_clear_hw_cntrs(struct e1000_hw *hw)
6330
{
6331
    volatile uint32_t temp;
6332
 
6333
    temp = E1000_READ_REG(hw, CRCERRS);
6334
    temp = E1000_READ_REG(hw, SYMERRS);
6335
    temp = E1000_READ_REG(hw, MPC);
6336
    temp = E1000_READ_REG(hw, SCC);
6337
    temp = E1000_READ_REG(hw, ECOL);
6338
    temp = E1000_READ_REG(hw, MCC);
6339
    temp = E1000_READ_REG(hw, LATECOL);
6340
    temp = E1000_READ_REG(hw, COLC);
6341
    temp = E1000_READ_REG(hw, DC);
6342
    temp = E1000_READ_REG(hw, SEC);
6343
    temp = E1000_READ_REG(hw, RLEC);
6344
    temp = E1000_READ_REG(hw, XONRXC);
6345
    temp = E1000_READ_REG(hw, XONTXC);
6346
    temp = E1000_READ_REG(hw, XOFFRXC);
6347
    temp = E1000_READ_REG(hw, XOFFTXC);
6348
    temp = E1000_READ_REG(hw, FCRUC);
6349
 
6350
    if (hw->mac_type != e1000_ich8lan) {
6351
    temp = E1000_READ_REG(hw, PRC64);
6352
    temp = E1000_READ_REG(hw, PRC127);
6353
    temp = E1000_READ_REG(hw, PRC255);
6354
    temp = E1000_READ_REG(hw, PRC511);
6355
    temp = E1000_READ_REG(hw, PRC1023);
6356
    temp = E1000_READ_REG(hw, PRC1522);
6357
    }
6358
 
6359
    temp = E1000_READ_REG(hw, GPRC);
6360
    temp = E1000_READ_REG(hw, BPRC);
6361
    temp = E1000_READ_REG(hw, MPRC);
6362
    temp = E1000_READ_REG(hw, GPTC);
6363
    temp = E1000_READ_REG(hw, GORCL);
6364
    temp = E1000_READ_REG(hw, GORCH);
6365
    temp = E1000_READ_REG(hw, GOTCL);
6366
    temp = E1000_READ_REG(hw, GOTCH);
6367
    temp = E1000_READ_REG(hw, RNBC);
6368
    temp = E1000_READ_REG(hw, RUC);
6369
    temp = E1000_READ_REG(hw, RFC);
6370
    temp = E1000_READ_REG(hw, ROC);
6371
    temp = E1000_READ_REG(hw, RJC);
6372
    temp = E1000_READ_REG(hw, TORL);
6373
    temp = E1000_READ_REG(hw, TORH);
6374
    temp = E1000_READ_REG(hw, TOTL);
6375
    temp = E1000_READ_REG(hw, TOTH);
6376
    temp = E1000_READ_REG(hw, TPR);
6377
    temp = E1000_READ_REG(hw, TPT);
6378
 
6379
    if (hw->mac_type != e1000_ich8lan) {
6380
    temp = E1000_READ_REG(hw, PTC64);
6381
    temp = E1000_READ_REG(hw, PTC127);
6382
    temp = E1000_READ_REG(hw, PTC255);
6383
    temp = E1000_READ_REG(hw, PTC511);
6384
    temp = E1000_READ_REG(hw, PTC1023);
6385
    temp = E1000_READ_REG(hw, PTC1522);
6386
    }
6387
 
6388
    temp = E1000_READ_REG(hw, MPTC);
6389
    temp = E1000_READ_REG(hw, BPTC);
6390
 
6391
    if (hw->mac_type < e1000_82543) return;
6392
 
6393
    temp = E1000_READ_REG(hw, ALGNERRC);
6394
    temp = E1000_READ_REG(hw, RXERRC);
6395
    temp = E1000_READ_REG(hw, TNCRS);
6396
    temp = E1000_READ_REG(hw, CEXTERR);
6397
    temp = E1000_READ_REG(hw, TSCTC);
6398
    temp = E1000_READ_REG(hw, TSCTFC);
6399
 
6400
    if (hw->mac_type <= e1000_82544) return;
6401
 
6402
    temp = E1000_READ_REG(hw, MGTPRC);
6403
    temp = E1000_READ_REG(hw, MGTPDC);
6404
    temp = E1000_READ_REG(hw, MGTPTC);
6405
 
6406
    if (hw->mac_type <= e1000_82547_rev_2) return;
6407
 
6408
    temp = E1000_READ_REG(hw, IAC);
6409
    temp = E1000_READ_REG(hw, ICRXOC);
6410
 
6411
    if (hw->mac_type == e1000_ich8lan) return;
6412
 
6413
    temp = E1000_READ_REG(hw, ICRXPTC);
6414
    temp = E1000_READ_REG(hw, ICRXATC);
6415
    temp = E1000_READ_REG(hw, ICTXPTC);
6416
    temp = E1000_READ_REG(hw, ICTXATC);
6417
    temp = E1000_READ_REG(hw, ICTXQEC);
6418
    temp = E1000_READ_REG(hw, ICTXQMTC);
6419
    temp = E1000_READ_REG(hw, ICRXDMTC);
6420
}
6421
 
6422
/******************************************************************************
6423
 * Resets Adaptive IFS to its default state.
6424
 *
6425
 * hw - Struct containing variables accessed by shared code
6426
 *
6427
 * Call this after e1000_init_hw. You may override the IFS defaults by setting
6428
 * hw->ifs_params_forced to TRUE. However, you must initialize hw->
6429
 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
6430
 * before calling this function.
6431
 *****************************************************************************/
6432
void
6433
e1000_reset_adaptive(struct e1000_hw *hw)
6434
{
6435
    DEBUGFUNC("e1000_reset_adaptive");
6436
 
6437
    if (hw->adaptive_ifs) {
6438
        if (!hw->ifs_params_forced) {
6439
            hw->current_ifs_val = 0;
6440
            hw->ifs_min_val = IFS_MIN;
6441
            hw->ifs_max_val = IFS_MAX;
6442
            hw->ifs_step_size = IFS_STEP;
6443
            hw->ifs_ratio = IFS_RATIO;
6444
        }
6445
        hw->in_ifs_mode = FALSE;
6446
        E1000_WRITE_REG(hw, AIT, 0);
6447
    } else {
6448
        DEBUGOUT("Not in Adaptive IFS mode!\n");
6449
    }
6450
}
6451
 
6452
/******************************************************************************
6453
 * Called during the callback/watchdog routine to update IFS value based on
6454
 * the ratio of transmits to collisions.
6455
 *
6456
 * hw - Struct containing variables accessed by shared code
6457
 * tx_packets - Number of transmits since last callback
6458
 * total_collisions - Number of collisions since last callback
6459
 *****************************************************************************/
6460
void
6461
e1000_update_adaptive(struct e1000_hw *hw)
6462
{
6463
    DEBUGFUNC("e1000_update_adaptive");
6464
 
6465
    if (hw->adaptive_ifs) {
6466
        if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
6467
            if (hw->tx_packet_delta > MIN_NUM_XMITS) {
6468
                hw->in_ifs_mode = TRUE;
6469
                if (hw->current_ifs_val < hw->ifs_max_val) {
6470
                    if (hw->current_ifs_val == 0)
6471
                        hw->current_ifs_val = hw->ifs_min_val;
6472
                    else
6473
                        hw->current_ifs_val += hw->ifs_step_size;
6474
                    E1000_WRITE_REG(hw, AIT, hw->current_ifs_val);
6475
                }
6476
            }
6477
        } else {
6478
            if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
6479
                hw->current_ifs_val = 0;
6480
                hw->in_ifs_mode = FALSE;
6481
                E1000_WRITE_REG(hw, AIT, 0);
6482
            }
6483
        }
6484
    } else {
6485
        DEBUGOUT("Not in Adaptive IFS mode!\n");
6486
    }
6487
}
6488
 
6489
/******************************************************************************
6490
 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
6491
 *
6492
 * hw - Struct containing variables accessed by shared code
6493
 * frame_len - The length of the frame in question
6494
 * mac_addr - The Ethernet destination address of the frame in question
6495
 *****************************************************************************/
6496
void
6497
e1000_tbi_adjust_stats(struct e1000_hw *hw,
6498
                       struct e1000_hw_stats *stats,
6499
                       uint32_t frame_len,
6500
                       uint8_t *mac_addr)
6501
{
6502
    uint64_t carry_bit;
6503
 
6504
    /* First adjust the frame length. */
6505
    frame_len--;
6506
    /* We need to adjust the statistics counters, since the hardware
6507
     * counters overcount this packet as a CRC error and undercount
6508
     * the packet as a good packet
6509
     */
6510
    /* This packet should not be counted as a CRC error.    */
6511
    stats->crcerrs--;
6512
    /* This packet does count as a Good Packet Received.    */
6513
    stats->gprc++;
6514
 
6515
    /* Adjust the Good Octets received counters             */
6516
    carry_bit = 0x80000000 & stats->gorcl;
6517
    stats->gorcl += frame_len;
6518
    /* If the high bit of Gorcl (the low 32 bits of the Good Octets
6519
     * Received Count) was one before the addition,
6520
     * AND it is zero after, then we lost the carry out,
6521
     * need to add one to Gorch (Good Octets Received Count High).
6522
     * This could be simplified if all environments supported
6523
     * 64-bit integers.
6524
     */
6525
    if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
6526
        stats->gorch++;
6527
    /* Is this a broadcast or multicast?  Check broadcast first,
6528
     * since the test for a multicast frame will test positive on
6529
     * a broadcast frame.
6530
     */
6531
    if ((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
6532
        /* Broadcast packet */
6533
        stats->bprc++;
6534
    else if (*mac_addr & 0x01)
6535
        /* Multicast packet */
6536
        stats->mprc++;
6537
 
6538
    if (frame_len == hw->max_frame_size) {
6539
        /* In this case, the hardware has overcounted the number of
6540
         * oversize frames.
6541
         */
6542
        if (stats->roc > 0)
6543
            stats->roc--;
6544
    }
6545
 
6546
    /* Adjust the bin counters when the extra byte put the frame in the
6547
     * wrong bin. Remember that the frame_len was adjusted above.
6548
     */
6549
    if (frame_len == 64) {
6550
        stats->prc64++;
6551
        stats->prc127--;
6552
    } else if (frame_len == 127) {
6553
        stats->prc127++;
6554
        stats->prc255--;
6555
    } else if (frame_len == 255) {
6556
        stats->prc255++;
6557
        stats->prc511--;
6558
    } else if (frame_len == 511) {
6559
        stats->prc511++;
6560
        stats->prc1023--;
6561
    } else if (frame_len == 1023) {
6562
        stats->prc1023++;
6563
        stats->prc1522--;
6564
    } else if (frame_len == 1522) {
6565
        stats->prc1522++;
6566
    }
6567
}
6568
 
6569
/******************************************************************************
6570
 * Gets the current PCI bus type, speed, and width of the hardware
6571
 *
6572
 * hw - Struct containing variables accessed by shared code
6573
 *****************************************************************************/
6574
void
6575
e1000_get_bus_info(struct e1000_hw *hw)
6576
{
6577
    int32_t ret_val;
6578
    uint16_t pci_ex_link_status;
6579
    uint32_t status;
6580
 
6581
    switch (hw->mac_type) {
6582
    case e1000_82542_rev2_0:
6583
    case e1000_82542_rev2_1:
6584
        hw->bus_type = e1000_bus_type_pci;
6585
        hw->bus_speed = e1000_bus_speed_unknown;
6586
        hw->bus_width = e1000_bus_width_unknown;
6587
        break;
6588
    case e1000_82571:
6589
    case e1000_82572:
6590
    case e1000_82573:
6591
    case e1000_80003es2lan:
6592
        hw->bus_type = e1000_bus_type_pci_express;
6593
        hw->bus_speed = e1000_bus_speed_2500;
6594
        ret_val = e1000_read_pcie_cap_reg(hw,
6595
                                      PCI_EX_LINK_STATUS,
6596
                                      &pci_ex_link_status);
6597
        if (ret_val)
6598
            hw->bus_width = e1000_bus_width_unknown;
6599
        else
6600
            hw->bus_width = (pci_ex_link_status & PCI_EX_LINK_WIDTH_MASK) >>
6601
                          PCI_EX_LINK_WIDTH_SHIFT;
6602
        break;
6603
    case e1000_ich8lan:
6604
        hw->bus_type = e1000_bus_type_pci_express;
6605
        hw->bus_speed = e1000_bus_speed_2500;
6606
        hw->bus_width = e1000_bus_width_pciex_1;
6607
        break;
6608
    default:
6609
        status = E1000_READ_REG(hw, STATUS);
6610
        hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
6611
                       e1000_bus_type_pcix : e1000_bus_type_pci;
6612
 
6613
        if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
6614
            hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
6615
                            e1000_bus_speed_66 : e1000_bus_speed_120;
6616
        } else if (hw->bus_type == e1000_bus_type_pci) {
6617
            hw->bus_speed = (status & E1000_STATUS_PCI66) ?
6618
                            e1000_bus_speed_66 : e1000_bus_speed_33;
6619
        } else {
6620
            switch (status & E1000_STATUS_PCIX_SPEED) {
6621
            case E1000_STATUS_PCIX_SPEED_66:
6622
                hw->bus_speed = e1000_bus_speed_66;
6623
                break;
6624
            case E1000_STATUS_PCIX_SPEED_100:
6625
                hw->bus_speed = e1000_bus_speed_100;
6626
                break;
6627
            case E1000_STATUS_PCIX_SPEED_133:
6628
                hw->bus_speed = e1000_bus_speed_133;
6629
                break;
6630
            default:
6631
                hw->bus_speed = e1000_bus_speed_reserved;
6632
                break;
6633
            }
6634
        }
6635
        hw->bus_width = (status & E1000_STATUS_BUS64) ?
6636
                        e1000_bus_width_64 : e1000_bus_width_32;
6637
        break;
6638
    }
6639
}
6640
 
6641
/******************************************************************************
6642
 * Writes a value to one of the devices registers using port I/O (as opposed to
6643
 * memory mapped I/O). Only 82544 and newer devices support port I/O.
6644
 *
6645
 * hw - Struct containing variables accessed by shared code
6646
 * offset - offset to write to
6647
 * value - value to write
6648
 *****************************************************************************/
6649
static void
6650
e1000_write_reg_io(struct e1000_hw *hw,
6651
                   uint32_t offset,
6652
                   uint32_t value)
6653
{
6654
    unsigned long io_addr = hw->io_base;
6655
    unsigned long io_data = hw->io_base + 4;
6656
 
6657
    e1000_io_write(hw, io_addr, offset);
6658
    e1000_io_write(hw, io_data, value);
6659
}
6660
 
6661
/******************************************************************************
6662
 * Estimates the cable length.
6663
 *
6664
 * hw - Struct containing variables accessed by shared code
6665
 * min_length - The estimated minimum length
6666
 * max_length - The estimated maximum length
6667
 *
6668
 * returns: - E1000_ERR_XXX
6669
 *            E1000_SUCCESS
6670
 *
6671
 * This function always returns a ranged length (minimum & maximum).
6672
 * So for M88 phy's, this function interprets the one value returned from the
6673
 * register to the minimum and maximum range.
6674
 * For IGP phy's, the function calculates the range by the AGC registers.
6675
 *****************************************************************************/
6676
static int32_t
6677
e1000_get_cable_length(struct e1000_hw *hw,
6678
                       uint16_t *min_length,
6679
                       uint16_t *max_length)
6680
{
6681
    int32_t ret_val;
6682
    uint16_t agc_value = 0;
6683
    uint16_t i, phy_data;
6684
    uint16_t cable_length;
6685
 
6686
    DEBUGFUNC("e1000_get_cable_length");
6687
 
6688
    *min_length = *max_length = 0;
6689
 
6690
    /* Use old method for Phy older than IGP */
6691
    if (hw->phy_type == e1000_phy_m88) {
6692
 
6693
        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
6694
                                     &phy_data);
6695
        if (ret_val)
6696
            return ret_val;
6697
        cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
6698
                       M88E1000_PSSR_CABLE_LENGTH_SHIFT;
6699
 
6700
        /* Convert the enum value to ranged values */
6701
        switch (cable_length) {
6702
        case e1000_cable_length_50:
6703
            *min_length = 0;
6704
            *max_length = e1000_igp_cable_length_50;
6705
            break;
6706
        case e1000_cable_length_50_80:
6707
            *min_length = e1000_igp_cable_length_50;
6708
            *max_length = e1000_igp_cable_length_80;
6709
            break;
6710
        case e1000_cable_length_80_110:
6711
            *min_length = e1000_igp_cable_length_80;
6712
            *max_length = e1000_igp_cable_length_110;
6713
            break;
6714
        case e1000_cable_length_110_140:
6715
            *min_length = e1000_igp_cable_length_110;
6716
            *max_length = e1000_igp_cable_length_140;
6717
            break;
6718
        case e1000_cable_length_140:
6719
            *min_length = e1000_igp_cable_length_140;
6720
            *max_length = e1000_igp_cable_length_170;
6721
            break;
6722
        default:
6723
            return -E1000_ERR_PHY;
6724
            break;
6725
        }
6726
    } else if (hw->phy_type == e1000_phy_gg82563) {
6727
        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
6728
                                     &phy_data);
6729
        if (ret_val)
6730
            return ret_val;
6731
        cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH;
6732
 
6733
        switch (cable_length) {
6734
        case e1000_gg_cable_length_60:
6735
            *min_length = 0;
6736
            *max_length = e1000_igp_cable_length_60;
6737
            break;
6738
        case e1000_gg_cable_length_60_115:
6739
            *min_length = e1000_igp_cable_length_60;
6740
            *max_length = e1000_igp_cable_length_115;
6741
            break;
6742
        case e1000_gg_cable_length_115_150:
6743
            *min_length = e1000_igp_cable_length_115;
6744
            *max_length = e1000_igp_cable_length_150;
6745
            break;
6746
        case e1000_gg_cable_length_150:
6747
            *min_length = e1000_igp_cable_length_150;
6748
            *max_length = e1000_igp_cable_length_180;
6749
            break;
6750
        default:
6751
            return -E1000_ERR_PHY;
6752
            break;
6753
        }
6754
    } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
6755
        uint16_t cur_agc_value;
6756
        uint16_t min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
6757
        uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
6758
                                                         {IGP01E1000_PHY_AGC_A,
6759
                                                          IGP01E1000_PHY_AGC_B,
6760
                                                          IGP01E1000_PHY_AGC_C,
6761
                                                          IGP01E1000_PHY_AGC_D};
6762
        /* Read the AGC registers for all channels */
6763
        for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
6764
 
6765
            ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
6766
            if (ret_val)
6767
                return ret_val;
6768
 
6769
            cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
6770
 
6771
            /* Value bound check. */
6772
            if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
6773
                (cur_agc_value == 0))
6774
                return -E1000_ERR_PHY;
6775
 
6776
            agc_value += cur_agc_value;
6777
 
6778
            /* Update minimal AGC value. */
6779
            if (min_agc_value > cur_agc_value)
6780
                min_agc_value = cur_agc_value;
6781
        }
6782
 
6783
        /* Remove the minimal AGC result for length < 50m */
6784
        if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
6785
            agc_value -= min_agc_value;
6786
 
6787
            /* Get the average length of the remaining 3 channels */
6788
            agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
6789
        } else {
6790
            /* Get the average length of all the 4 channels. */
6791
            agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
6792
        }
6793
 
6794
        /* Set the range of the calculated length. */
6795
        *min_length = ((e1000_igp_cable_length_table[agc_value] -
6796
                       IGP01E1000_AGC_RANGE) > 0) ?
6797
                       (e1000_igp_cable_length_table[agc_value] -
6798
                       IGP01E1000_AGC_RANGE) : 0;
6799
        *max_length = e1000_igp_cable_length_table[agc_value] +
6800
                      IGP01E1000_AGC_RANGE;
6801
    } else if (hw->phy_type == e1000_phy_igp_2 ||
6802
               hw->phy_type == e1000_phy_igp_3) {
6803
        uint16_t cur_agc_index, max_agc_index = 0;
6804
        uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1;
6805
        uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
6806
                                                         {IGP02E1000_PHY_AGC_A,
6807
                                                          IGP02E1000_PHY_AGC_B,
6808
                                                          IGP02E1000_PHY_AGC_C,
6809
                                                          IGP02E1000_PHY_AGC_D};
6810
        /* Read the AGC registers for all channels */
6811
        for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
6812
            ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
6813
            if (ret_val)
6814
                return ret_val;
6815
 
6816
            /* Getting bits 15:9, which represent the combination of course and
6817
             * fine gain values.  The result is a number that can be put into
6818
             * the lookup table to obtain the approximate cable length. */
6819
            cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
6820
                            IGP02E1000_AGC_LENGTH_MASK;
6821
 
6822
            /* Array index bound check. */
6823
            if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) ||
6824
                (cur_agc_index == 0))
6825
                return -E1000_ERR_PHY;
6826
 
6827
            /* Remove min & max AGC values from calculation. */
6828
            if (e1000_igp_2_cable_length_table[min_agc_index] >
6829
                e1000_igp_2_cable_length_table[cur_agc_index])
6830
                min_agc_index = cur_agc_index;
6831
            if (e1000_igp_2_cable_length_table[max_agc_index] <
6832
                e1000_igp_2_cable_length_table[cur_agc_index])
6833
                max_agc_index = cur_agc_index;
6834
 
6835
            agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
6836
        }
6837
 
6838
        agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
6839
                      e1000_igp_2_cable_length_table[max_agc_index]);
6840
        agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
6841
 
6842
        /* Calculate cable length with the error range of +/- 10 meters. */
6843
        *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
6844
                       (agc_value - IGP02E1000_AGC_RANGE) : 0;
6845
        *max_length = agc_value + IGP02E1000_AGC_RANGE;
6846
    }
6847
 
6848
    return E1000_SUCCESS;
6849
}
6850
 
6851
/******************************************************************************
6852
 * Check the cable polarity
6853
 *
6854
 * hw - Struct containing variables accessed by shared code
6855
 * polarity - output parameter : 0 - Polarity is not reversed
6856
 *                               1 - Polarity is reversed.
6857
 *
6858
 * returns: - E1000_ERR_XXX
6859
 *            E1000_SUCCESS
6860
 *
6861
 * For phy's older then IGP, this function simply reads the polarity bit in the
6862
 * Phy Status register.  For IGP phy's, this bit is valid only if link speed is
6863
 * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will
6864
 * return 0.  If the link speed is 1000 Mbps the polarity status is in the
6865
 * IGP01E1000_PHY_PCS_INIT_REG.
6866
 *****************************************************************************/
6867
static int32_t
6868
e1000_check_polarity(struct e1000_hw *hw,
6869
                     e1000_rev_polarity *polarity)
6870
{
6871
    int32_t ret_val;
6872
    uint16_t phy_data;
6873
 
6874
    DEBUGFUNC("e1000_check_polarity");
6875
 
6876
    if ((hw->phy_type == e1000_phy_m88) ||
6877
        (hw->phy_type == e1000_phy_gg82563)) {
6878
        /* return the Polarity bit in the Status register. */
6879
        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
6880
                                     &phy_data);
6881
        if (ret_val)
6882
            return ret_val;
6883
        *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
6884
                     M88E1000_PSSR_REV_POLARITY_SHIFT) ?
6885
                     e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
6886
 
6887
    } else if (hw->phy_type == e1000_phy_igp ||
6888
              hw->phy_type == e1000_phy_igp_3 ||
6889
              hw->phy_type == e1000_phy_igp_2) {
6890
        /* Read the Status register to check the speed */
6891
        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
6892
                                     &phy_data);
6893
        if (ret_val)
6894
            return ret_val;
6895
 
6896
        /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
6897
         * find the polarity status */
6898
        if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
6899
           IGP01E1000_PSSR_SPEED_1000MBPS) {
6900
 
6901
            /* Read the GIG initialization PCS register (0x00B4) */
6902
            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
6903
                                         &phy_data);
6904
            if (ret_val)
6905
                return ret_val;
6906
 
6907
            /* Check the polarity bits */
6908
            *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
6909
                         e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
6910
        } else {
6911
            /* For 10 Mbps, read the polarity bit in the status register. (for
6912
             * 100 Mbps this bit is always 0) */
6913
            *polarity = (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
6914
                         e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
6915
        }
6916
    } else if (hw->phy_type == e1000_phy_ife) {
6917
        ret_val = e1000_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL,
6918
                                     &phy_data);
6919
        if (ret_val)
6920
            return ret_val;
6921
        *polarity = ((phy_data & IFE_PESC_POLARITY_REVERSED) >>
6922
                     IFE_PESC_POLARITY_REVERSED_SHIFT) ?
6923
                     e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
6924
    }
6925
    return E1000_SUCCESS;
6926
}
6927
 
6928
/******************************************************************************
6929
 * Check if Downshift occured
6930
 *
6931
 * hw - Struct containing variables accessed by shared code
6932
 * downshift - output parameter : 0 - No Downshift ocured.
6933
 *                                1 - Downshift ocured.
6934
 *
6935
 * returns: - E1000_ERR_XXX
6936
 *            E1000_SUCCESS
6937
 *
6938
 * For phy's older then IGP, this function reads the Downshift bit in the Phy
6939
 * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
6940
 * Link Health register.  In IGP this bit is latched high, so the driver must
6941
 * read it immediately after link is established.
6942
 *****************************************************************************/
6943
static int32_t
6944
e1000_check_downshift(struct e1000_hw *hw)
6945
{
6946
    int32_t ret_val;
6947
    uint16_t phy_data;
6948
 
6949
    DEBUGFUNC("e1000_check_downshift");
6950
 
6951
    if (hw->phy_type == e1000_phy_igp ||
6952
        hw->phy_type == e1000_phy_igp_3 ||
6953
        hw->phy_type == e1000_phy_igp_2) {
6954
        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
6955
                                     &phy_data);
6956
        if (ret_val)
6957
            return ret_val;
6958
 
6959
        hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
6960
    } else if ((hw->phy_type == e1000_phy_m88) ||
6961
               (hw->phy_type == e1000_phy_gg82563)) {
6962
        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
6963
                                     &phy_data);
6964
        if (ret_val)
6965
            return ret_val;
6966
 
6967
        hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
6968
                               M88E1000_PSSR_DOWNSHIFT_SHIFT;
6969
    } else if (hw->phy_type == e1000_phy_ife) {
6970
        /* e1000_phy_ife supports 10/100 speed only */
6971
        hw->speed_downgraded = FALSE;
6972
    }
6973
 
6974
    return E1000_SUCCESS;
6975
}
6976
 
6977
/*****************************************************************************
6978
 *
6979
 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
6980
 * gigabit link is achieved to improve link quality.
6981
 *
6982
 * hw: Struct containing variables accessed by shared code
6983
 *
6984
 * returns: - E1000_ERR_PHY if fail to read/write the PHY
6985
 *            E1000_SUCCESS at any other case.
6986
 *
6987
 ****************************************************************************/
6988
 
6989
static int32_t
6990
e1000_config_dsp_after_link_change(struct e1000_hw *hw,
6991
                                   boolean_t link_up)
6992
{
6993
    int32_t ret_val;
6994
    uint16_t phy_data, phy_saved_data, speed, duplex, i;
6995
    uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
6996
                                        {IGP01E1000_PHY_AGC_PARAM_A,
6997
                                        IGP01E1000_PHY_AGC_PARAM_B,
6998
                                        IGP01E1000_PHY_AGC_PARAM_C,
6999
                                        IGP01E1000_PHY_AGC_PARAM_D};
7000
    uint16_t min_length, max_length;
7001
 
7002
    DEBUGFUNC("e1000_config_dsp_after_link_change");
7003
 
7004
    if (hw->phy_type != e1000_phy_igp)
7005
        return E1000_SUCCESS;
7006
 
7007
    if (link_up) {
7008
        ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
7009
        if (ret_val) {
7010
            DEBUGOUT("Error getting link speed and duplex\n");
7011
            return ret_val;
7012
        }
7013
 
7014
        if (speed == SPEED_1000) {
7015
 
7016
            ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
7017
            if (ret_val)
7018
                return ret_val;
7019
 
7020
            if ((hw->dsp_config_state == e1000_dsp_config_enabled) &&
7021
                min_length >= e1000_igp_cable_length_50) {
7022
 
7023
                for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
7024
                    ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
7025
                                                 &phy_data);
7026
                    if (ret_val)
7027
                        return ret_val;
7028
 
7029
                    phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
7030
 
7031
                    ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
7032
                                                  phy_data);
7033
                    if (ret_val)
7034
                        return ret_val;
7035
                }
7036
                hw->dsp_config_state = e1000_dsp_config_activated;
7037
            }
7038
 
7039
            if ((hw->ffe_config_state == e1000_ffe_config_enabled) &&
7040
               (min_length < e1000_igp_cable_length_50)) {
7041
 
7042
                uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
7043
                uint32_t idle_errs = 0;
7044
 
7045
                /* clear previous idle error counts */
7046
                ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
7047
                                             &phy_data);
7048
                if (ret_val)
7049
                    return ret_val;
7050
 
7051
                for (i = 0; i < ffe_idle_err_timeout; i++) {
7052
                    udelay(1000);
7053
                    ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
7054
                                                 &phy_data);
7055
                    if (ret_val)
7056
                        return ret_val;
7057
 
7058
                    idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
7059
                    if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
7060
                        hw->ffe_config_state = e1000_ffe_config_active;
7061
 
7062
                        ret_val = e1000_write_phy_reg(hw,
7063
                                    IGP01E1000_PHY_DSP_FFE,
7064
                                    IGP01E1000_PHY_DSP_FFE_CM_CP);
7065
                        if (ret_val)
7066
                            return ret_val;
7067
                        break;
7068
                    }
7069
 
7070
                    if (idle_errs)
7071
                        ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100;
7072
                }
7073
            }
7074
        }
7075
    } else {
7076
        if (hw->dsp_config_state == e1000_dsp_config_activated) {
7077
            /* Save off the current value of register 0x2F5B to be restored at
7078
             * the end of the routines. */
7079
            ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
7080
 
7081
            if (ret_val)
7082
                return ret_val;
7083
 
7084
            /* Disable the PHY transmitter */
7085
            ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
7086
 
7087
            if (ret_val)
7088
                return ret_val;
7089
 
7090
            mdelay(20);
7091
 
7092
            ret_val = e1000_write_phy_reg(hw, 0x0000,
7093
                                          IGP01E1000_IEEE_FORCE_GIGA);
7094
            if (ret_val)
7095
                return ret_val;
7096
            for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
7097
                ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data);
7098
                if (ret_val)
7099
                    return ret_val;
7100
 
7101
                phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
7102
                phy_data |=  IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
7103
 
7104
                ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data);
7105
                if (ret_val)
7106
                    return ret_val;
7107
            }
7108
 
7109
            ret_val = e1000_write_phy_reg(hw, 0x0000,
7110
                                          IGP01E1000_IEEE_RESTART_AUTONEG);
7111
            if (ret_val)
7112
                return ret_val;
7113
 
7114
            mdelay(20);
7115
 
7116
            /* Now enable the transmitter */
7117
            ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
7118
 
7119
            if (ret_val)
7120
                return ret_val;
7121
 
7122
            hw->dsp_config_state = e1000_dsp_config_enabled;
7123
        }
7124
 
7125
        if (hw->ffe_config_state == e1000_ffe_config_active) {
7126
            /* Save off the current value of register 0x2F5B to be restored at
7127
             * the end of the routines. */
7128
            ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
7129
 
7130
            if (ret_val)
7131
                return ret_val;
7132
 
7133
            /* Disable the PHY transmitter */
7134
            ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
7135
 
7136
            if (ret_val)
7137
                return ret_val;
7138
 
7139
            mdelay(20);
7140
 
7141
            ret_val = e1000_write_phy_reg(hw, 0x0000,
7142
                                          IGP01E1000_IEEE_FORCE_GIGA);
7143
            if (ret_val)
7144
                return ret_val;
7145
            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
7146
                                          IGP01E1000_PHY_DSP_FFE_DEFAULT);
7147
            if (ret_val)
7148
                return ret_val;
7149
 
7150
            ret_val = e1000_write_phy_reg(hw, 0x0000,
7151
                                          IGP01E1000_IEEE_RESTART_AUTONEG);
7152
            if (ret_val)
7153
                return ret_val;
7154
 
7155
            mdelay(20);
7156
 
7157
            /* Now enable the transmitter */
7158
            ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
7159
 
7160
            if (ret_val)
7161
                return ret_val;
7162
 
7163
            hw->ffe_config_state = e1000_ffe_config_enabled;
7164
        }
7165
    }
7166
    return E1000_SUCCESS;
7167
}
7168
 
7169
/*****************************************************************************
7170
 * Set PHY to class A mode
7171
 * Assumes the following operations will follow to enable the new class mode.
7172
 *  1. Do a PHY soft reset
7173
 *  2. Restart auto-negotiation or force link.
7174
 *
7175
 * hw - Struct containing variables accessed by shared code
7176
 ****************************************************************************/
7177
static int32_t
7178
e1000_set_phy_mode(struct e1000_hw *hw)
7179
{
7180
    int32_t ret_val;
7181
    uint16_t eeprom_data;
7182
 
7183
    DEBUGFUNC("e1000_set_phy_mode");
7184
 
7185
    if ((hw->mac_type == e1000_82545_rev_3) &&
7186
        (hw->media_type == e1000_media_type_copper)) {
7187
        ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data);
7188
        if (ret_val) {
7189
            return ret_val;
7190
        }
7191
 
7192
        if ((eeprom_data != EEPROM_RESERVED_WORD) &&
7193
            (eeprom_data & EEPROM_PHY_CLASS_A)) {
7194
            ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B);
7195
            if (ret_val)
7196
                return ret_val;
7197
            ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104);
7198
            if (ret_val)
7199
                return ret_val;
7200
 
7201
            hw->phy_reset_disable = FALSE;
7202
        }
7203
    }
7204
 
7205
    return E1000_SUCCESS;
7206
}
7207
 
7208
/*****************************************************************************
7209
 *
7210
 * This function sets the lplu state according to the active flag.  When
7211
 * activating lplu this function also disables smart speed and vise versa.
7212
 * lplu will not be activated unless the device autonegotiation advertisment
7213
 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
7214
 * hw: Struct containing variables accessed by shared code
7215
 * active - true to enable lplu false to disable lplu.
7216
 *
7217
 * returns: - E1000_ERR_PHY if fail to read/write the PHY
7218
 *            E1000_SUCCESS at any other case.
7219
 *
7220
 ****************************************************************************/
7221
 
7222
static int32_t
7223
e1000_set_d3_lplu_state(struct e1000_hw *hw,
7224
                        boolean_t active)
7225
{
7226
    uint32_t phy_ctrl = 0;
7227
    int32_t ret_val;
7228
    uint16_t phy_data;
7229
    DEBUGFUNC("e1000_set_d3_lplu_state");
7230
 
7231
    if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
7232
        && hw->phy_type != e1000_phy_igp_3)
7233
        return E1000_SUCCESS;
7234
 
7235
    /* During driver activity LPLU should not be used or it will attain link
7236
     * from the lowest speeds starting from 10Mbps. The capability is used for
7237
     * Dx transitions and states */
7238
    if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) {
7239
        ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
7240
        if (ret_val)
7241
            return ret_val;
7242
    } else if (hw->mac_type == e1000_ich8lan) {
7243
        /* MAC writes into PHY register based on the state transition
7244
         * and start auto-negotiation. SW driver can overwrite the settings
7245
         * in CSR PHY power control E1000_PHY_CTRL register. */
7246
        phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
7247
    } else {
7248
        ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
7249
        if (ret_val)
7250
            return ret_val;
7251
    }
7252
 
7253
    if (!active) {
7254
        if (hw->mac_type == e1000_82541_rev_2 ||
7255
            hw->mac_type == e1000_82547_rev_2) {
7256
            phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
7257
            ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
7258
            if (ret_val)
7259
                return ret_val;
7260
        } else {
7261
            if (hw->mac_type == e1000_ich8lan) {
7262
                phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
7263
                E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
7264
            } else {
7265
                phy_data &= ~IGP02E1000_PM_D3_LPLU;
7266
                ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
7267
                                              phy_data);
7268
                if (ret_val)
7269
                    return ret_val;
7270
            }
7271
        }
7272
 
7273
        /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
7274
         * Dx states where the power conservation is most important.  During
7275
         * driver activity we should enable SmartSpeed, so performance is
7276
         * maintained. */
7277
        if (hw->smart_speed == e1000_smart_speed_on) {
7278
            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7279
                                         &phy_data);
7280
            if (ret_val)
7281
                return ret_val;
7282
 
7283
            phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
7284
            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7285
                                          phy_data);
7286
            if (ret_val)
7287
                return ret_val;
7288
        } else if (hw->smart_speed == e1000_smart_speed_off) {
7289
            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7290
                                         &phy_data);
7291
            if (ret_val)
7292
                return ret_val;
7293
 
7294
            phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7295
            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7296
                                          phy_data);
7297
            if (ret_val)
7298
                return ret_val;
7299
        }
7300
 
7301
    } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
7302
               (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
7303
               (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
7304
 
7305
        if (hw->mac_type == e1000_82541_rev_2 ||
7306
            hw->mac_type == e1000_82547_rev_2) {
7307
            phy_data |= IGP01E1000_GMII_FLEX_SPD;
7308
            ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
7309
            if (ret_val)
7310
                return ret_val;
7311
        } else {
7312
            if (hw->mac_type == e1000_ich8lan) {
7313
                phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
7314
                E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
7315
            } else {
7316
                phy_data |= IGP02E1000_PM_D3_LPLU;
7317
                ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
7318
                                              phy_data);
7319
                if (ret_val)
7320
                    return ret_val;
7321
            }
7322
        }
7323
 
7324
        /* When LPLU is enabled we should disable SmartSpeed */
7325
        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
7326
        if (ret_val)
7327
            return ret_val;
7328
 
7329
        phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7330
        ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
7331
        if (ret_val)
7332
            return ret_val;
7333
 
7334
    }
7335
    return E1000_SUCCESS;
7336
}
7337
 
7338
/*****************************************************************************
7339
 *
7340
 * This function sets the lplu d0 state according to the active flag.  When
7341
 * activating lplu this function also disables smart speed and vise versa.
7342
 * lplu will not be activated unless the device autonegotiation advertisment
7343
 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
7344
 * hw: Struct containing variables accessed by shared code
7345
 * active - true to enable lplu false to disable lplu.
7346
 *
7347
 * returns: - E1000_ERR_PHY if fail to read/write the PHY
7348
 *            E1000_SUCCESS at any other case.
7349
 *
7350
 ****************************************************************************/
7351
 
7352
static int32_t
7353
e1000_set_d0_lplu_state(struct e1000_hw *hw,
7354
                        boolean_t active)
7355
{
7356
    uint32_t phy_ctrl = 0;
7357
    int32_t ret_val;
7358
    uint16_t phy_data;
7359
    DEBUGFUNC("e1000_set_d0_lplu_state");
7360
 
7361
    if (hw->mac_type <= e1000_82547_rev_2)
7362
        return E1000_SUCCESS;
7363
 
7364
    if (hw->mac_type == e1000_ich8lan) {
7365
        phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
7366
    } else {
7367
        ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
7368
        if (ret_val)
7369
            return ret_val;
7370
    }
7371
 
7372
    if (!active) {
7373
        if (hw->mac_type == e1000_ich8lan) {
7374
            phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
7375
            E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
7376
        } else {
7377
            phy_data &= ~IGP02E1000_PM_D0_LPLU;
7378
            ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
7379
            if (ret_val)
7380
                return ret_val;
7381
        }
7382
 
7383
        /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
7384
         * Dx states where the power conservation is most important.  During
7385
         * driver activity we should enable SmartSpeed, so performance is
7386
         * maintained. */
7387
        if (hw->smart_speed == e1000_smart_speed_on) {
7388
            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7389
                                         &phy_data);
7390
            if (ret_val)
7391
                return ret_val;
7392
 
7393
            phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
7394
            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7395
                                          phy_data);
7396
            if (ret_val)
7397
                return ret_val;
7398
        } else if (hw->smart_speed == e1000_smart_speed_off) {
7399
            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7400
                                         &phy_data);
7401
            if (ret_val)
7402
                return ret_val;
7403
 
7404
            phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7405
            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7406
                                          phy_data);
7407
            if (ret_val)
7408
                return ret_val;
7409
        }
7410
 
7411
 
7412
    } else {
7413
 
7414
        if (hw->mac_type == e1000_ich8lan) {
7415
            phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
7416
            E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
7417
        } else {
7418
            phy_data |= IGP02E1000_PM_D0_LPLU;
7419
            ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
7420
            if (ret_val)
7421
                return ret_val;
7422
        }
7423
 
7424
        /* When LPLU is enabled we should disable SmartSpeed */
7425
        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
7426
        if (ret_val)
7427
            return ret_val;
7428
 
7429
        phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7430
        ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
7431
        if (ret_val)
7432
            return ret_val;
7433
 
7434
    }
7435
    return E1000_SUCCESS;
7436
}
7437
 
7438
/******************************************************************************
7439
 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
7440
 *
7441
 * hw - Struct containing variables accessed by shared code
7442
 *****************************************************************************/
7443
static int32_t
7444
e1000_set_vco_speed(struct e1000_hw *hw)
7445
{
7446
    int32_t  ret_val;
7447
    uint16_t default_page = 0;
7448
    uint16_t phy_data;
7449
 
7450
    DEBUGFUNC("e1000_set_vco_speed");
7451
 
7452
    switch (hw->mac_type) {
7453
    case e1000_82545_rev_3:
7454
    case e1000_82546_rev_3:
7455
       break;
7456
    default:
7457
        return E1000_SUCCESS;
7458
    }
7459
 
7460
    /* Set PHY register 30, page 5, bit 8 to 0 */
7461
 
7462
    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
7463
    if (ret_val)
7464
        return ret_val;
7465
 
7466
    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
7467
    if (ret_val)
7468
        return ret_val;
7469
 
7470
    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
7471
    if (ret_val)
7472
        return ret_val;
7473
 
7474
    phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
7475
    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
7476
    if (ret_val)
7477
        return ret_val;
7478
 
7479
    /* Set PHY register 30, page 4, bit 11 to 1 */
7480
 
7481
    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
7482
    if (ret_val)
7483
        return ret_val;
7484
 
7485
    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
7486
    if (ret_val)
7487
        return ret_val;
7488
 
7489
    phy_data |= M88E1000_PHY_VCO_REG_BIT11;
7490
    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
7491
    if (ret_val)
7492
        return ret_val;
7493
 
7494
    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
7495
    if (ret_val)
7496
        return ret_val;
7497
 
7498
    return E1000_SUCCESS;
7499
}
7500
 
7501
 
7502
/*****************************************************************************
7503
 * This function reads the cookie from ARC ram.
7504
 *
7505
 * returns: - E1000_SUCCESS .
7506
 ****************************************************************************/
7507
static int32_t
7508
e1000_host_if_read_cookie(struct e1000_hw * hw, uint8_t *buffer)
7509
{
7510
    uint8_t i;
7511
    uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET;
7512
    uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH;
7513
 
7514
    length = (length >> 2);
7515
    offset = (offset >> 2);
7516
 
7517
    for (i = 0; i < length; i++) {
7518
        *((uint32_t *) buffer + i) =
7519
            E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i);
7520
    }
7521
    return E1000_SUCCESS;
7522
}
7523
 
7524
 
7525
/*****************************************************************************
7526
 * This function checks whether the HOST IF is enabled for command operaton
7527
 * and also checks whether the previous command is completed.
7528
 * It busy waits in case of previous command is not completed.
7529
 *
7530
 * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
7531
 *            timeout
7532
 *          - E1000_SUCCESS for success.
7533
 ****************************************************************************/
7534
static int32_t
7535
e1000_mng_enable_host_if(struct e1000_hw * hw)
7536
{
7537
    uint32_t hicr;
7538
    uint8_t i;
7539
 
7540
    /* Check that the host interface is enabled. */
7541
    hicr = E1000_READ_REG(hw, HICR);
7542
    if ((hicr & E1000_HICR_EN) == 0) {
7543
        DEBUGOUT("E1000_HOST_EN bit disabled.\n");
7544
        return -E1000_ERR_HOST_INTERFACE_COMMAND;
7545
    }
7546
    /* check the previous command is completed */
7547
    for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
7548
        hicr = E1000_READ_REG(hw, HICR);
7549
        if (!(hicr & E1000_HICR_C))
7550
            break;
7551
        mdelay(1);
7552
    }
7553
 
7554
    if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
7555
        DEBUGOUT("Previous command timeout failed .\n");
7556
        return -E1000_ERR_HOST_INTERFACE_COMMAND;
7557
    }
7558
    return E1000_SUCCESS;
7559
}
7560
 
7561
/*****************************************************************************
7562
 * This function writes the buffer content at the offset given on the host if.
7563
 * It also does alignment considerations to do the writes in most efficient way.
7564
 * Also fills up the sum of the buffer in *buffer parameter.
7565
 *
7566
 * returns  - E1000_SUCCESS for success.
7567
 ****************************************************************************/
7568
static int32_t
7569
e1000_mng_host_if_write(struct e1000_hw * hw, uint8_t *buffer,
7570
                        uint16_t length, uint16_t offset, uint8_t *sum)
7571
{
7572
    uint8_t *tmp;
7573
    uint8_t *bufptr = buffer;
7574
    uint32_t data = 0;
7575
    uint16_t remaining, i, j, prev_bytes;
7576
 
7577
    /* sum = only sum of the data and it is not checksum */
7578
 
7579
    if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
7580
        return -E1000_ERR_PARAM;
7581
    }
7582
 
7583
    tmp = (uint8_t *)&data;
7584
    prev_bytes = offset & 0x3;
7585
    offset &= 0xFFFC;
7586
    offset >>= 2;
7587
 
7588
    if (prev_bytes) {
7589
        data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset);
7590
        for (j = prev_bytes; j < sizeof(uint32_t); j++) {
7591
            *(tmp + j) = *bufptr++;
7592
            *sum += *(tmp + j);
7593
        }
7594
        E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data);
7595
        length -= j - prev_bytes;
7596
        offset++;
7597
    }
7598
 
7599
    remaining = length & 0x3;
7600
    length -= remaining;
7601
 
7602
    /* Calculate length in DWORDs */
7603
    length >>= 2;
7604
 
7605
    /* The device driver writes the relevant command block into the
7606
     * ram area. */
7607
    for (i = 0; i < length; i++) {
7608
        for (j = 0; j < sizeof(uint32_t); j++) {
7609
            *(tmp + j) = *bufptr++;
7610
            *sum += *(tmp + j);
7611
        }
7612
 
7613
        E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
7614
    }
7615
    if (remaining) {
7616
        for (j = 0; j < sizeof(uint32_t); j++) {
7617
            if (j < remaining)
7618
                *(tmp + j) = *bufptr++;
7619
            else
7620
                *(tmp + j) = 0;
7621
 
7622
            *sum += *(tmp + j);
7623
        }
7624
        E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
7625
    }
7626
 
7627
    return E1000_SUCCESS;
7628
}
7629
 
7630
 
7631
/*****************************************************************************
7632
 * This function writes the command header after does the checksum calculation.
7633
 *
7634
 * returns  - E1000_SUCCESS for success.
7635
 ****************************************************************************/
7636
static int32_t
7637
e1000_mng_write_cmd_header(struct e1000_hw * hw,
7638
                           struct e1000_host_mng_command_header * hdr)
7639
{
7640
    uint16_t i;
7641
    uint8_t sum;
7642
    uint8_t *buffer;
7643
 
7644
    /* Write the whole command header structure which includes sum of
7645
     * the buffer */
7646
 
7647
    uint16_t length = sizeof(struct e1000_host_mng_command_header);
7648
 
7649
    sum = hdr->checksum;
7650
    hdr->checksum = 0;
7651
 
7652
    buffer = (uint8_t *) hdr;
7653
    i = length;
7654
    while (i--)
7655
        sum += buffer[i];
7656
 
7657
    hdr->checksum = 0 - sum;
7658
 
7659
    length >>= 2;
7660
    /* The device driver writes the relevant command block into the ram area. */
7661
    for (i = 0; i < length; i++) {
7662
        E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i));
7663
        E1000_WRITE_FLUSH(hw);
7664
    }
7665
 
7666
    return E1000_SUCCESS;
7667
}
7668
 
7669
 
7670
/*****************************************************************************
7671
 * This function indicates to ARC that a new command is pending which completes
7672
 * one write operation by the driver.
7673
 *
7674
 * returns  - E1000_SUCCESS for success.
7675
 ****************************************************************************/
7676
static int32_t
7677
e1000_mng_write_commit(struct e1000_hw * hw)
7678
{
7679
    uint32_t hicr;
7680
 
7681
    hicr = E1000_READ_REG(hw, HICR);
7682
    /* Setting this bit tells the ARC that a new command is pending. */
7683
    E1000_WRITE_REG(hw, HICR, hicr | E1000_HICR_C);
7684
 
7685
    return E1000_SUCCESS;
7686
}
7687
 
7688
 
7689
/*****************************************************************************
7690
 * This function checks the mode of the firmware.
7691
 *
7692
 * returns  - TRUE when the mode is IAMT or FALSE.
7693
 ****************************************************************************/
7694
boolean_t
7695
e1000_check_mng_mode(struct e1000_hw *hw)
7696
{
7697
    uint32_t fwsm;
7698
 
7699
    fwsm = E1000_READ_REG(hw, FWSM);
7700
 
7701
    if (hw->mac_type == e1000_ich8lan) {
7702
        if ((fwsm & E1000_FWSM_MODE_MASK) ==
7703
            (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
7704
            return TRUE;
7705
    } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
7706
               (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
7707
        return TRUE;
7708
 
7709
    return FALSE;
7710
}
7711
 
7712
 
7713
/*****************************************************************************
7714
 * This function writes the dhcp info .
7715
 ****************************************************************************/
7716
int32_t
7717
e1000_mng_write_dhcp_info(struct e1000_hw * hw, uint8_t *buffer,
7718
                          uint16_t length)
7719
{
7720
    int32_t ret_val;
7721
    struct e1000_host_mng_command_header hdr;
7722
 
7723
    hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
7724
    hdr.command_length = length;
7725
    hdr.reserved1 = 0;
7726
    hdr.reserved2 = 0;
7727
    hdr.checksum = 0;
7728
 
7729
    ret_val = e1000_mng_enable_host_if(hw);
7730
    if (ret_val == E1000_SUCCESS) {
7731
        ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr),
7732
                                          &(hdr.checksum));
7733
        if (ret_val == E1000_SUCCESS) {
7734
            ret_val = e1000_mng_write_cmd_header(hw, &hdr);
7735
            if (ret_val == E1000_SUCCESS)
7736
                ret_val = e1000_mng_write_commit(hw);
7737
        }
7738
    }
7739
    return ret_val;
7740
}
7741
 
7742
 
7743
/*****************************************************************************
7744
 * This function calculates the checksum.
7745
 *
7746
 * returns  - checksum of buffer contents.
7747
 ****************************************************************************/
7748
static uint8_t
7749
e1000_calculate_mng_checksum(char *buffer, uint32_t length)
7750
{
7751
    uint8_t sum = 0;
7752
    uint32_t i;
7753
 
7754
    if (!buffer)
7755
        return 0;
7756
 
7757
    for (i=0; i < length; i++)
7758
        sum += buffer[i];
7759
 
7760
    return (uint8_t) (0 - sum);
7761
}
7762
 
7763
/*****************************************************************************
7764
 * This function checks whether tx pkt filtering needs to be enabled or not.
7765
 *
7766
 * returns  - TRUE for packet filtering or FALSE.
7767
 ****************************************************************************/
7768
boolean_t
7769
e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
7770
{
7771
    /* called in init as well as watchdog timer functions */
7772
 
7773
    int32_t ret_val, checksum;
7774
    boolean_t tx_filter = FALSE;
7775
    struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie);
7776
    uint8_t *buffer = (uint8_t *) &(hw->mng_cookie);
7777
 
7778
    if (e1000_check_mng_mode(hw)) {
7779
        ret_val = e1000_mng_enable_host_if(hw);
7780
        if (ret_val == E1000_SUCCESS) {
7781
            ret_val = e1000_host_if_read_cookie(hw, buffer);
7782
            if (ret_val == E1000_SUCCESS) {
7783
                checksum = hdr->checksum;
7784
                hdr->checksum = 0;
7785
                if ((hdr->signature == E1000_IAMT_SIGNATURE) &&
7786
                    checksum == e1000_calculate_mng_checksum((char *)buffer,
7787
                                               E1000_MNG_DHCP_COOKIE_LENGTH)) {
7788
                    if (hdr->status &
7789
                        E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT)
7790
                        tx_filter = TRUE;
7791
                } else
7792
                    tx_filter = TRUE;
7793
            } else
7794
                tx_filter = TRUE;
7795
        }
7796
    }
7797
 
7798
    hw->tx_pkt_filtering = tx_filter;
7799
    return tx_filter;
7800
}
7801
 
7802
/******************************************************************************
7803
 * Verifies the hardware needs to allow ARPs to be processed by the host
7804
 *
7805
 * hw - Struct containing variables accessed by shared code
7806
 *
7807
 * returns: - TRUE/FALSE
7808
 *
7809
 *****************************************************************************/
7810
uint32_t
7811
e1000_enable_mng_pass_thru(struct e1000_hw *hw)
7812
{
7813
    uint32_t manc;
7814
    uint32_t fwsm, factps;
7815
 
7816
    if (hw->asf_firmware_present) {
7817
        manc = E1000_READ_REG(hw, MANC);
7818
 
7819
        if (!(manc & E1000_MANC_RCV_TCO_EN) ||
7820
            !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
7821
            return FALSE;
7822
        if (e1000_arc_subsystem_valid(hw) == TRUE) {
7823
            fwsm = E1000_READ_REG(hw, FWSM);
7824
            factps = E1000_READ_REG(hw, FACTPS);
7825
 
7826
            if ((((fwsm & E1000_FWSM_MODE_MASK) >> E1000_FWSM_MODE_SHIFT) ==
7827
                   e1000_mng_mode_pt) && !(factps & E1000_FACTPS_MNGCG))
7828
                return TRUE;
7829
        } else
7830
            if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
7831
                return TRUE;
7832
    }
7833
    return FALSE;
7834
}
7835
 
7836
static int32_t
7837
e1000_polarity_reversal_workaround(struct e1000_hw *hw)
7838
{
7839
    int32_t ret_val;
7840
    uint16_t mii_status_reg;
7841
    uint16_t i;
7842
 
7843
    /* Polarity reversal workaround for forced 10F/10H links. */
7844
 
7845
    /* Disable the transmitter on the PHY */
7846
 
7847
    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
7848
    if (ret_val)
7849
        return ret_val;
7850
    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
7851
    if (ret_val)
7852
        return ret_val;
7853
 
7854
    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
7855
    if (ret_val)
7856
        return ret_val;
7857
 
7858
    /* This loop will early-out if the NO link condition has been met. */
7859
    for (i = PHY_FORCE_TIME; i > 0; i--) {
7860
        /* Read the MII Status Register and wait for Link Status bit
7861
         * to be clear.
7862
         */
7863
 
7864
        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
7865
        if (ret_val)
7866
            return ret_val;
7867
 
7868
        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
7869
        if (ret_val)
7870
            return ret_val;
7871
 
7872
        if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
7873
        mdelay(100);
7874
    }
7875
 
7876
    /* Recommended delay time after link has been lost */
7877
    mdelay(1000);
7878
 
7879
    /* Now we will re-enable th transmitter on the PHY */
7880
 
7881
    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
7882
    if (ret_val)
7883
        return ret_val;
7884
    mdelay(50);
7885
    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
7886
    if (ret_val)
7887
        return ret_val;
7888
    mdelay(50);
7889
    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
7890
    if (ret_val)
7891
        return ret_val;
7892
    mdelay(50);
7893
    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
7894
    if (ret_val)
7895
        return ret_val;
7896
 
7897
    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
7898
    if (ret_val)
7899
        return ret_val;
7900
 
7901
    /* This loop will early-out if the link condition has been met. */
7902
    for (i = PHY_FORCE_TIME; i > 0; i--) {
7903
        /* Read the MII Status Register and wait for Link Status bit
7904
         * to be set.
7905
         */
7906
 
7907
        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
7908
        if (ret_val)
7909
            return ret_val;
7910
 
7911
        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
7912
        if (ret_val)
7913
            return ret_val;
7914
 
7915
        if (mii_status_reg & MII_SR_LINK_STATUS) break;
7916
        mdelay(100);
7917
    }
7918
    return E1000_SUCCESS;
7919
}
7920
 
7921
/***************************************************************************
7922
 *
7923
 * Disables PCI-Express master access.
7924
 *
7925
 * hw: Struct containing variables accessed by shared code
7926
 *
7927
 * returns: - none.
7928
 *
7929
 ***************************************************************************/
7930
static void
7931
e1000_set_pci_express_master_disable(struct e1000_hw *hw)
7932
{
7933
    uint32_t ctrl;
7934
 
7935
    DEBUGFUNC("e1000_set_pci_express_master_disable");
7936
 
7937
    if (hw->bus_type != e1000_bus_type_pci_express)
7938
        return;
7939
 
7940
    ctrl = E1000_READ_REG(hw, CTRL);
7941
    ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
7942
    E1000_WRITE_REG(hw, CTRL, ctrl);
7943
}
7944
 
7945
/*******************************************************************************
7946
 *
7947
 * Disables PCI-Express master access and verifies there are no pending requests
7948
 *
7949
 * hw: Struct containing variables accessed by shared code
7950
 *
7951
 * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't
7952
 *            caused the master requests to be disabled.
7953
 *            E1000_SUCCESS master requests disabled.
7954
 *
7955
 ******************************************************************************/
7956
int32_t
7957
e1000_disable_pciex_master(struct e1000_hw *hw)
7958
{
7959
    int32_t timeout = MASTER_DISABLE_TIMEOUT;   /* 80ms */
7960
 
7961
    DEBUGFUNC("e1000_disable_pciex_master");
7962
 
7963
    if (hw->bus_type != e1000_bus_type_pci_express)
7964
        return E1000_SUCCESS;
7965
 
7966
    e1000_set_pci_express_master_disable(hw);
7967
 
7968
    while (timeout) {
7969
        if (!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
7970
            break;
7971
        else
7972
            udelay(100);
7973
        timeout--;
7974
    }
7975
 
7976
    if (!timeout) {
7977
        DEBUGOUT("Master requests are pending.\n");
7978
        return -E1000_ERR_MASTER_REQUESTS_PENDING;
7979
    }
7980
 
7981
    return E1000_SUCCESS;
7982
}
7983
 
7984
/*******************************************************************************
7985
 *
7986
 * Check for EEPROM Auto Read bit done.
7987
 *
7988
 * hw: Struct containing variables accessed by shared code
7989
 *
7990
 * returns: - E1000_ERR_RESET if fail to reset MAC
7991
 *            E1000_SUCCESS at any other case.
7992
 *
7993
 ******************************************************************************/
7994
static int32_t
7995
e1000_get_auto_rd_done(struct e1000_hw *hw)
7996
{
7997
    int32_t timeout = AUTO_READ_DONE_TIMEOUT;
7998
 
7999
    DEBUGFUNC("e1000_get_auto_rd_done");
8000
 
8001
    switch (hw->mac_type) {
8002
    default:
8003
        msleep(5);
8004
        break;
8005
    case e1000_82571:
8006
    case e1000_82572:
8007
    case e1000_82573:
8008
    case e1000_80003es2lan:
8009
    case e1000_ich8lan:
8010
        while (timeout) {
8011
            if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD)
8012
                break;
8013
            else msleep(1);
8014
            timeout--;
8015
        }
8016
 
8017
        if (!timeout) {
8018
            DEBUGOUT("Auto read by HW from EEPROM has not completed.\n");
8019
            return -E1000_ERR_RESET;
8020
        }
8021
        break;
8022
    }
8023
 
8024
    /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high.
8025
     * Need to wait for PHY configuration completion before accessing NVM
8026
     * and PHY. */
8027
    if (hw->mac_type == e1000_82573)
8028
        msleep(25);
8029
 
8030
    return E1000_SUCCESS;
8031
}
8032
 
8033
/***************************************************************************
8034
 * Checks if the PHY configuration is done
8035
 *
8036
 * hw: Struct containing variables accessed by shared code
8037
 *
8038
 * returns: - E1000_ERR_RESET if fail to reset MAC
8039
 *            E1000_SUCCESS at any other case.
8040
 *
8041
 ***************************************************************************/
8042
static int32_t
8043
e1000_get_phy_cfg_done(struct e1000_hw *hw)
8044
{
8045
    int32_t timeout = PHY_CFG_TIMEOUT;
8046
    uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
8047
 
8048
    DEBUGFUNC("e1000_get_phy_cfg_done");
8049
 
8050
    switch (hw->mac_type) {
8051
    default:
8052
        mdelay(10);
8053
        break;
8054
    case e1000_80003es2lan:
8055
        /* Separate *_CFG_DONE_* bit for each port */
8056
        if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
8057
            cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
8058
        /* Fall Through */
8059
    case e1000_82571:
8060
    case e1000_82572:
8061
        while (timeout) {
8062
            if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
8063
                break;
8064
            else
8065
                msleep(1);
8066
            timeout--;
8067
        }
8068
        if (!timeout) {
8069
            DEBUGOUT("MNG configuration cycle has not completed.\n");
8070
            return -E1000_ERR_RESET;
8071
        }
8072
        break;
8073
    }
8074
 
8075
    return E1000_SUCCESS;
8076
}
8077
 
8078
/***************************************************************************
8079
 *
8080
 * Using the combination of SMBI and SWESMBI semaphore bits when resetting
8081
 * adapter or Eeprom access.
8082
 *
8083
 * hw: Struct containing variables accessed by shared code
8084
 *
8085
 * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
8086
 *            E1000_SUCCESS at any other case.
8087
 *
8088
 ***************************************************************************/
8089
static int32_t
8090
e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
8091
{
8092
    int32_t timeout;
8093
    uint32_t swsm;
8094
 
8095
    DEBUGFUNC("e1000_get_hw_eeprom_semaphore");
8096
 
8097
    if (!hw->eeprom_semaphore_present)
8098
        return E1000_SUCCESS;
8099
 
8100
    if (hw->mac_type == e1000_80003es2lan) {
8101
        /* Get the SW semaphore. */
8102
        if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
8103
            return -E1000_ERR_EEPROM;
8104
    }
8105
 
8106
    /* Get the FW semaphore. */
8107
    timeout = hw->eeprom.word_size + 1;
8108
    while (timeout) {
8109
        swsm = E1000_READ_REG(hw, SWSM);
8110
        swsm |= E1000_SWSM_SWESMBI;
8111
        E1000_WRITE_REG(hw, SWSM, swsm);
8112
        /* if we managed to set the bit we got the semaphore. */
8113
        swsm = E1000_READ_REG(hw, SWSM);
8114
        if (swsm & E1000_SWSM_SWESMBI)
8115
            break;
8116
 
8117
        udelay(50);
8118
        timeout--;
8119
    }
8120
 
8121
    if (!timeout) {
8122
        /* Release semaphores */
8123
        e1000_put_hw_eeprom_semaphore(hw);
8124
        DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n");
8125
        return -E1000_ERR_EEPROM;
8126
    }
8127
 
8128
    return E1000_SUCCESS;
8129
}
8130
 
8131
/***************************************************************************
8132
 * This function clears HW semaphore bits.
8133
 *
8134
 * hw: Struct containing variables accessed by shared code
8135
 *
8136
 * returns: - None.
8137
 *
8138
 ***************************************************************************/
8139
static void
8140
e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
8141
{
8142
    uint32_t swsm;
8143
 
8144
    DEBUGFUNC("e1000_put_hw_eeprom_semaphore");
8145
 
8146
    if (!hw->eeprom_semaphore_present)
8147
        return;
8148
 
8149
    swsm = E1000_READ_REG(hw, SWSM);
8150
    if (hw->mac_type == e1000_80003es2lan) {
8151
        /* Release both semaphores. */
8152
        swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
8153
    } else
8154
        swsm &= ~(E1000_SWSM_SWESMBI);
8155
    E1000_WRITE_REG(hw, SWSM, swsm);
8156
}
8157
 
8158
/***************************************************************************
8159
 *
8160
 * Obtaining software semaphore bit (SMBI) before resetting PHY.
8161
 *
8162
 * hw: Struct containing variables accessed by shared code
8163
 *
8164
 * returns: - E1000_ERR_RESET if fail to obtain semaphore.
8165
 *            E1000_SUCCESS at any other case.
8166
 *
8167
 ***************************************************************************/
8168
static int32_t
8169
e1000_get_software_semaphore(struct e1000_hw *hw)
8170
{
8171
    int32_t timeout = hw->eeprom.word_size + 1;
8172
    uint32_t swsm;
8173
 
8174
    DEBUGFUNC("e1000_get_software_semaphore");
8175
 
8176
    if (hw->mac_type != e1000_80003es2lan) {
8177
        return E1000_SUCCESS;
8178
    }
8179
 
8180
    while (timeout) {
8181
        swsm = E1000_READ_REG(hw, SWSM);
8182
        /* If SMBI bit cleared, it is now set and we hold the semaphore */
8183
        if (!(swsm & E1000_SWSM_SMBI))
8184
            break;
8185
        mdelay(1);
8186
        timeout--;
8187
    }
8188
 
8189
    if (!timeout) {
8190
        DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
8191
        return -E1000_ERR_RESET;
8192
    }
8193
 
8194
    return E1000_SUCCESS;
8195
}
8196
 
8197
/***************************************************************************
8198
 *
8199
 * Release semaphore bit (SMBI).
8200
 *
8201
 * hw: Struct containing variables accessed by shared code
8202
 *
8203
 ***************************************************************************/
8204
static void
8205
e1000_release_software_semaphore(struct e1000_hw *hw)
8206
{
8207
    uint32_t swsm;
8208
 
8209
    DEBUGFUNC("e1000_release_software_semaphore");
8210
 
8211
    if (hw->mac_type != e1000_80003es2lan) {
8212
        return;
8213
    }
8214
 
8215
    swsm = E1000_READ_REG(hw, SWSM);
8216
    /* Release the SW semaphores.*/
8217
    swsm &= ~E1000_SWSM_SMBI;
8218
    E1000_WRITE_REG(hw, SWSM, swsm);
8219
}
8220
 
8221
/******************************************************************************
8222
 * Checks if PHY reset is blocked due to SOL/IDER session, for example.
8223
 * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
8224
 * the caller to figure out how to deal with it.
8225
 *
8226
 * hw - Struct containing variables accessed by shared code
8227
 *
8228
 * returns: - E1000_BLK_PHY_RESET
8229
 *            E1000_SUCCESS
8230
 *
8231
 *****************************************************************************/
8232
int32_t
8233
e1000_check_phy_reset_block(struct e1000_hw *hw)
8234
{
8235
    uint32_t manc = 0;
8236
    uint32_t fwsm = 0;
8237
 
8238
    if (hw->mac_type == e1000_ich8lan) {
8239
        fwsm = E1000_READ_REG(hw, FWSM);
8240
        return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
8241
                                            : E1000_BLK_PHY_RESET;
8242
    }
8243
 
8244
    if (hw->mac_type > e1000_82547_rev_2)
8245
        manc = E1000_READ_REG(hw, MANC);
8246
    return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
8247
        E1000_BLK_PHY_RESET : E1000_SUCCESS;
8248
}
8249
 
8250
static uint8_t
8251
e1000_arc_subsystem_valid(struct e1000_hw *hw)
8252
{
8253
    uint32_t fwsm;
8254
 
8255
    /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC
8256
     * may not be provided a DMA clock when no manageability features are
8257
     * enabled.  We do not want to perform any reads/writes to these registers
8258
     * if this is the case.  We read FWSM to determine the manageability mode.
8259
     */
8260
    switch (hw->mac_type) {
8261
    case e1000_82571:
8262
    case e1000_82572:
8263
    case e1000_82573:
8264
    case e1000_80003es2lan:
8265
        fwsm = E1000_READ_REG(hw, FWSM);
8266
        if ((fwsm & E1000_FWSM_MODE_MASK) != 0)
8267
            return TRUE;
8268
        break;
8269
    case e1000_ich8lan:
8270
        return TRUE;
8271
    default:
8272
        break;
8273
    }
8274
    return FALSE;
8275
}
8276
 
8277
 
8278
/******************************************************************************
8279
 * Configure PCI-Ex no-snoop
8280
 *
8281
 * hw - Struct containing variables accessed by shared code.
8282
 * no_snoop - Bitmap of no-snoop events.
8283
 *
8284
 * returns: E1000_SUCCESS
8285
 *
8286
 *****************************************************************************/
8287
static int32_t
8288
e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop)
8289
{
8290
    uint32_t gcr_reg = 0;
8291
 
8292
    DEBUGFUNC("e1000_set_pci_ex_no_snoop");
8293
 
8294
    if (hw->bus_type == e1000_bus_type_unknown)
8295
        e1000_get_bus_info(hw);
8296
 
8297
    if (hw->bus_type != e1000_bus_type_pci_express)
8298
        return E1000_SUCCESS;
8299
 
8300
    if (no_snoop) {
8301
        gcr_reg = E1000_READ_REG(hw, GCR);
8302
        gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL);
8303
        gcr_reg |= no_snoop;
8304
        E1000_WRITE_REG(hw, GCR, gcr_reg);
8305
    }
8306
    if (hw->mac_type == e1000_ich8lan) {
8307
        uint32_t ctrl_ext;
8308
 
8309
        E1000_WRITE_REG(hw, GCR, PCI_EX_82566_SNOOP_ALL);
8310
 
8311
        ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
8312
        ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
8313
        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
8314
    }
8315
 
8316
    return E1000_SUCCESS;
8317
}
8318
 
8319
/***************************************************************************
8320
 *
8321
 * Get software semaphore FLAG bit (SWFLAG).
8322
 * SWFLAG is used to synchronize the access to all shared resource between
8323
 * SW, FW and HW.
8324
 *
8325
 * hw: Struct containing variables accessed by shared code
8326
 *
8327
 ***************************************************************************/
8328
static int32_t
8329
e1000_get_software_flag(struct e1000_hw *hw)
8330
{
8331
    int32_t timeout = PHY_CFG_TIMEOUT;
8332
    uint32_t extcnf_ctrl;
8333
 
8334
    DEBUGFUNC("e1000_get_software_flag");
8335
 
8336
    if (hw->mac_type == e1000_ich8lan) {
8337
        while (timeout) {
8338
            extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
8339
            extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
8340
            E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
8341
 
8342
            extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
8343
            if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
8344
                break;
8345
            mdelay(1);
8346
            timeout--;
8347
        }
8348
 
8349
        if (!timeout) {
8350
            DEBUGOUT("FW or HW locks the resource too long.\n");
8351
            return -E1000_ERR_CONFIG;
8352
        }
8353
    }
8354
 
8355
    return E1000_SUCCESS;
8356
}
8357
 
8358
/***************************************************************************
8359
 *
8360
 * Release software semaphore FLAG bit (SWFLAG).
8361
 * SWFLAG is used to synchronize the access to all shared resource between
8362
 * SW, FW and HW.
8363
 *
8364
 * hw: Struct containing variables accessed by shared code
8365
 *
8366
 ***************************************************************************/
8367
static void
8368
e1000_release_software_flag(struct e1000_hw *hw)
8369
{
8370
    uint32_t extcnf_ctrl;
8371
 
8372
    DEBUGFUNC("e1000_release_software_flag");
8373
 
8374
    if (hw->mac_type == e1000_ich8lan) {
8375
        extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL);
8376
        extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
8377
        E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
8378
    }
8379
 
8380
    return;
8381
}
8382
 
8383
/******************************************************************************
8384
 * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
8385
 * register.
8386
 *
8387
 * hw - Struct containing variables accessed by shared code
8388
 * offset - offset of word in the EEPROM to read
8389
 * data - word read from the EEPROM
8390
 * words - number of words to read
8391
 *****************************************************************************/
8392
static int32_t
8393
e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words,
8394
                       uint16_t *data)
8395
{
8396
    int32_t  error = E1000_SUCCESS;
8397
    uint32_t flash_bank = 0;
8398
    uint32_t act_offset = 0;
8399
    uint32_t bank_offset = 0;
8400
    uint16_t word = 0;
8401
    uint16_t i = 0;
8402
 
8403
    /* We need to know which is the valid flash bank.  In the event
8404
     * that we didn't allocate eeprom_shadow_ram, we may not be
8405
     * managing flash_bank.  So it cannot be trusted and needs
8406
     * to be updated with each read.
8407
     */
8408
    /* Value of bit 22 corresponds to the flash bank we're on. */
8409
    flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0;
8410
 
8411
    /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
8412
    bank_offset = flash_bank * (hw->flash_bank_size * 2);
8413
 
8414
    error = e1000_get_software_flag(hw);
8415
    if (error != E1000_SUCCESS)
8416
        return error;
8417
 
8418
    for (i = 0; i < words; i++) {
8419
        if (hw->eeprom_shadow_ram != NULL &&
8420
            hw->eeprom_shadow_ram[offset+i].modified == TRUE) {
8421
            data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word;
8422
        } else {
8423
            /* The NVM part needs a byte offset, hence * 2 */
8424
            act_offset = bank_offset + ((offset + i) * 2);
8425
            error = e1000_read_ich8_word(hw, act_offset, &word);
8426
            if (error != E1000_SUCCESS)
8427
                break;
8428
            data[i] = word;
8429
        }
8430
    }
8431
 
8432
    e1000_release_software_flag(hw);
8433
 
8434
    return error;
8435
}
8436
 
8437
/******************************************************************************
8438
 * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access
8439
 * register.  Actually, writes are written to the shadow ram cache in the hw
8440
 * structure hw->e1000_shadow_ram.  e1000_commit_shadow_ram flushes this to
8441
 * the NVM, which occurs when the NVM checksum is updated.
8442
 *
8443
 * hw - Struct containing variables accessed by shared code
8444
 * offset - offset of word in the EEPROM to write
8445
 * words - number of words to write
8446
 * data - words to write to the EEPROM
8447
 *****************************************************************************/
8448
static int32_t
8449
e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words,
8450
                        uint16_t *data)
8451
{
8452
    uint32_t i = 0;
8453
    int32_t error = E1000_SUCCESS;
8454
 
8455
    error = e1000_get_software_flag(hw);
8456
    if (error != E1000_SUCCESS)
8457
        return error;
8458
 
8459
    /* A driver can write to the NVM only if it has eeprom_shadow_ram
8460
     * allocated.  Subsequent reads to the modified words are read from
8461
     * this cached structure as well.  Writes will only go into this
8462
     * cached structure unless it's followed by a call to
8463
     * e1000_update_eeprom_checksum() where it will commit the changes
8464
     * and clear the "modified" field.
8465
     */
8466
    if (hw->eeprom_shadow_ram != NULL) {
8467
        for (i = 0; i < words; i++) {
8468
            if ((offset + i) < E1000_SHADOW_RAM_WORDS) {
8469
                hw->eeprom_shadow_ram[offset+i].modified = TRUE;
8470
                hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i];
8471
            } else {
8472
                error = -E1000_ERR_EEPROM;
8473
                break;
8474
            }
8475
        }
8476
    } else {
8477
        /* Drivers have the option to not allocate eeprom_shadow_ram as long
8478
         * as they don't perform any NVM writes.  An attempt in doing so
8479
         * will result in this error.
8480
         */
8481
        error = -E1000_ERR_EEPROM;
8482
    }
8483
 
8484
    e1000_release_software_flag(hw);
8485
 
8486
    return error;
8487
}
8488
 
8489
/******************************************************************************
8490
 * This function does initial flash setup so that a new read/write/erase cycle
8491
 * can be started.
8492
 *
8493
 * hw - The pointer to the hw structure
8494
 ****************************************************************************/
8495
static int32_t
8496
e1000_ich8_cycle_init(struct e1000_hw *hw)
8497
{
8498
    union ich8_hws_flash_status hsfsts;
8499
    int32_t error = E1000_ERR_EEPROM;
8500
    int32_t i     = 0;
8501
 
8502
    DEBUGFUNC("e1000_ich8_cycle_init");
8503
 
8504
    hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
8505
 
8506
    /* May be check the Flash Des Valid bit in Hw status */
8507
    if (hsfsts.hsf_status.fldesvalid == 0) {
8508
        DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.");
8509
        return error;
8510
    }
8511
 
8512
    /* Clear FCERR in Hw status by writing 1 */
8513
    /* Clear DAEL in Hw status by writing a 1 */
8514
    hsfsts.hsf_status.flcerr = 1;
8515
    hsfsts.hsf_status.dael = 1;
8516
 
8517
    E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
8518
 
8519
    /* Either we should have a hardware SPI cycle in progress bit to check
8520
     * against, in order to start a new cycle or FDONE bit should be changed
8521
     * in the hardware so that it is 1 after harware reset, which can then be
8522
     * used as an indication whether a cycle is in progress or has been
8523
     * completed .. we should also have some software semaphore mechanism to
8524
     * guard FDONE or the cycle in progress bit so that two threads access to
8525
     * those bits can be sequentiallized or a way so that 2 threads dont
8526
     * start the cycle at the same time */
8527
 
8528
    if (hsfsts.hsf_status.flcinprog == 0) {
8529
        /* There is no cycle running at present, so we can start a cycle */
8530
        /* Begin by setting Flash Cycle Done. */
8531
        hsfsts.hsf_status.flcdone = 1;
8532
        E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
8533
        error = E1000_SUCCESS;
8534
    } else {
8535
        /* otherwise poll for sometime so the current cycle has a chance
8536
         * to end before giving up. */
8537
        for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) {
8538
            hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
8539
            if (hsfsts.hsf_status.flcinprog == 0) {
8540
                error = E1000_SUCCESS;
8541
                break;
8542
            }
8543
            udelay(1);
8544
        }
8545
        if (error == E1000_SUCCESS) {
8546
            /* Successful in waiting for previous cycle to timeout,
8547
             * now set the Flash Cycle Done. */
8548
            hsfsts.hsf_status.flcdone = 1;
8549
            E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
8550
        } else {
8551
            DEBUGOUT("Flash controller busy, cannot get access");
8552
        }
8553
    }
8554
    return error;
8555
}
8556
 
8557
/******************************************************************************
8558
 * This function starts a flash cycle and waits for its completion
8559
 *
8560
 * hw - The pointer to the hw structure
8561
 ****************************************************************************/
8562
static int32_t
8563
e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout)
8564
{
8565
    union ich8_hws_flash_ctrl hsflctl;
8566
    union ich8_hws_flash_status hsfsts;
8567
    int32_t error = E1000_ERR_EEPROM;
8568
    uint32_t i = 0;
8569
 
8570
    /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
8571
    hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
8572
    hsflctl.hsf_ctrl.flcgo = 1;
8573
    E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
8574
 
8575
    /* wait till FDONE bit is set to 1 */
8576
    do {
8577
        hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
8578
        if (hsfsts.hsf_status.flcdone == 1)
8579
            break;
8580
        udelay(1);
8581
        i++;
8582
    } while (i < timeout);
8583
    if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) {
8584
        error = E1000_SUCCESS;
8585
    }
8586
    return error;
8587
}
8588
 
8589
/******************************************************************************
8590
 * Reads a byte or word from the NVM using the ICH8 flash access registers.
8591
 *
8592
 * hw - The pointer to the hw structure
8593
 * index - The index of the byte or word to read.
8594
 * size - Size of data to read, 1=byte 2=word
8595
 * data - Pointer to the word to store the value read.
8596
 *****************************************************************************/
8597
static int32_t
8598
e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index,
8599
                     uint32_t size, uint16_t* data)
8600
{
8601
    union ich8_hws_flash_status hsfsts;
8602
    union ich8_hws_flash_ctrl hsflctl;
8603
    uint32_t flash_linear_address;
8604
    uint32_t flash_data = 0;
8605
    int32_t error = -E1000_ERR_EEPROM;
8606
    int32_t count = 0;
8607
 
8608
    DEBUGFUNC("e1000_read_ich8_data");
8609
 
8610
    if (size < 1  || size > 2 || data == NULL ||
8611
        index > ICH_FLASH_LINEAR_ADDR_MASK)
8612
        return error;
8613
 
8614
    flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
8615
                           hw->flash_base_addr;
8616
 
8617
    do {
8618
        udelay(1);
8619
        /* Steps */
8620
        error = e1000_ich8_cycle_init(hw);
8621
        if (error != E1000_SUCCESS)
8622
            break;
8623
 
8624
        hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
8625
        /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
8626
        hsflctl.hsf_ctrl.fldbcount = size - 1;
8627
        hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
8628
        E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
8629
 
8630
        /* Write the last 24 bits of index into Flash Linear address field in
8631
         * Flash Address */
8632
        /* TODO: TBD maybe check the index against the size of flash */
8633
 
8634
        E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
8635
 
8636
        error = e1000_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT);
8637
 
8638
        /* Check if FCERR is set to 1, if set to 1, clear it and try the whole
8639
         * sequence a few more times, else read in (shift in) the Flash Data0,
8640
         * the order is least significant byte first msb to lsb */
8641
        if (error == E1000_SUCCESS) {
8642
            flash_data = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0);
8643
            if (size == 1) {
8644
                *data = (uint8_t)(flash_data & 0x000000FF);
8645
            } else if (size == 2) {
8646
                *data = (uint16_t)(flash_data & 0x0000FFFF);
8647
            }
8648
            break;
8649
        } else {
8650
            /* If we've gotten here, then things are probably completely hosed,
8651
             * but if the error condition is detected, it won't hurt to give
8652
             * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
8653
             */
8654
            hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
8655
            if (hsfsts.hsf_status.flcerr == 1) {
8656
                /* Repeat for some time before giving up. */
8657
                continue;
8658
            } else if (hsfsts.hsf_status.flcdone == 0) {
8659
                DEBUGOUT("Timeout error - flash cycle did not complete.");
8660
                break;
8661
            }
8662
        }
8663
    } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
8664
 
8665
    return error;
8666
}
8667
 
8668
/******************************************************************************
8669
 * Writes One /two bytes to the NVM using the ICH8 flash access registers.
8670
 *
8671
 * hw - The pointer to the hw structure
8672
 * index - The index of the byte/word to read.
8673
 * size - Size of data to read, 1=byte 2=word
8674
 * data - The byte(s) to write to the NVM.
8675
 *****************************************************************************/
8676
static int32_t
8677
e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size,
8678
                      uint16_t data)
8679
{
8680
    union ich8_hws_flash_status hsfsts;
8681
    union ich8_hws_flash_ctrl hsflctl;
8682
    uint32_t flash_linear_address;
8683
    uint32_t flash_data = 0;
8684
    int32_t error = -E1000_ERR_EEPROM;
8685
    int32_t count = 0;
8686
 
8687
    DEBUGFUNC("e1000_write_ich8_data");
8688
 
8689
    if (size < 1  || size > 2 || data > size * 0xff ||
8690
        index > ICH_FLASH_LINEAR_ADDR_MASK)
8691
        return error;
8692
 
8693
    flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
8694
                           hw->flash_base_addr;
8695
 
8696
    do {
8697
        udelay(1);
8698
        /* Steps */
8699
        error = e1000_ich8_cycle_init(hw);
8700
        if (error != E1000_SUCCESS)
8701
            break;
8702
 
8703
        hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
8704
        /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
8705
        hsflctl.hsf_ctrl.fldbcount = size -1;
8706
        hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
8707
        E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
8708
 
8709
        /* Write the last 24 bits of index into Flash Linear address field in
8710
         * Flash Address */
8711
        E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
8712
 
8713
        if (size == 1)
8714
            flash_data = (uint32_t)data & 0x00FF;
8715
        else
8716
            flash_data = (uint32_t)data;
8717
 
8718
        E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
8719
 
8720
        /* check if FCERR is set to 1 , if set to 1, clear it and try the whole
8721
         * sequence a few more times else done */
8722
        error = e1000_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT);
8723
        if (error == E1000_SUCCESS) {
8724
            break;
8725
        } else {
8726
            /* If we're here, then things are most likely completely hosed,
8727
             * but if the error condition is detected, it won't hurt to give
8728
             * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
8729
             */
8730
            hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
8731
            if (hsfsts.hsf_status.flcerr == 1) {
8732
                /* Repeat for some time before giving up. */
8733
                continue;
8734
            } else if (hsfsts.hsf_status.flcdone == 0) {
8735
                DEBUGOUT("Timeout error - flash cycle did not complete.");
8736
                break;
8737
            }
8738
        }
8739
    } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
8740
 
8741
    return error;
8742
}
8743
 
8744
/******************************************************************************
8745
 * Reads a single byte from the NVM using the ICH8 flash access registers.
8746
 *
8747
 * hw - pointer to e1000_hw structure
8748
 * index - The index of the byte to read.
8749
 * data - Pointer to a byte to store the value read.
8750
 *****************************************************************************/
8751
static int32_t
8752
e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t* data)
8753
{
8754
    int32_t status = E1000_SUCCESS;
8755
    uint16_t word = 0;
8756
 
8757
    status = e1000_read_ich8_data(hw, index, 1, &word);
8758
    if (status == E1000_SUCCESS) {
8759
        *data = (uint8_t)word;
8760
    }
8761
 
8762
    return status;
8763
}
8764
 
8765
/******************************************************************************
8766
 * Writes a single byte to the NVM using the ICH8 flash access registers.
8767
 * Performs verification by reading back the value and then going through
8768
 * a retry algorithm before giving up.
8769
 *
8770
 * hw - pointer to e1000_hw structure
8771
 * index - The index of the byte to write.
8772
 * byte - The byte to write to the NVM.
8773
 *****************************************************************************/
8774
static int32_t
8775
e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte)
8776
{
8777
    int32_t error = E1000_SUCCESS;
8778
    int32_t program_retries = 0;
8779
 
8780
    DEBUGOUT2("Byte := %2.2X Offset := %d\n", byte, index);
8781
 
8782
    error = e1000_write_ich8_byte(hw, index, byte);
8783
 
8784
    if (error != E1000_SUCCESS) {
8785
        for (program_retries = 0; program_retries < 100; program_retries++) {
8786
            DEBUGOUT2("Retrying \t Byte := %2.2X Offset := %d\n", byte, index);
8787
            error = e1000_write_ich8_byte(hw, index, byte);
8788
            udelay(100);
8789
            if (error == E1000_SUCCESS)
8790
                break;
8791
        }
8792
    }
8793
 
8794
    if (program_retries == 100)
8795
        error = E1000_ERR_EEPROM;
8796
 
8797
    return error;
8798
}
8799
 
8800
/******************************************************************************
8801
 * Writes a single byte to the NVM using the ICH8 flash access registers.
8802
 *
8803
 * hw - pointer to e1000_hw structure
8804
 * index - The index of the byte to read.
8805
 * data - The byte to write to the NVM.
8806
 *****************************************************************************/
8807
static int32_t
8808
e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t data)
8809
{
8810
    int32_t status = E1000_SUCCESS;
8811
    uint16_t word = (uint16_t)data;
8812
 
8813
    status = e1000_write_ich8_data(hw, index, 1, word);
8814
 
8815
    return status;
8816
}
8817
 
8818
/******************************************************************************
8819
 * Reads a word from the NVM using the ICH8 flash access registers.
8820
 *
8821
 * hw - pointer to e1000_hw structure
8822
 * index - The starting byte index of the word to read.
8823
 * data - Pointer to a word to store the value read.
8824
 *****************************************************************************/
8825
static int32_t
8826
e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data)
8827
{
8828
    int32_t status = E1000_SUCCESS;
8829
    status = e1000_read_ich8_data(hw, index, 2, data);
8830
    return status;
8831
}
8832
 
8833
/******************************************************************************
8834
 * Erases the bank specified. Each bank may be a 4, 8 or 64k block. Banks are 0
8835
 * based.
8836
 *
8837
 * hw - pointer to e1000_hw structure
8838
 * bank - 0 for first bank, 1 for second bank
8839
 *
8840
 * Note that this function may actually erase as much as 8 or 64 KBytes.  The
8841
 * amount of NVM used in each bank is a *minimum* of 4 KBytes, but in fact the
8842
 * bank size may be 4, 8 or 64 KBytes
8843
 *****************************************************************************/
8844
static int32_t
8845
e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t bank)
8846
{
8847
    union ich8_hws_flash_status hsfsts;
8848
    union ich8_hws_flash_ctrl hsflctl;
8849
    uint32_t flash_linear_address;
8850
    int32_t  count = 0;
8851
    int32_t  error = E1000_ERR_EEPROM;
8852
    int32_t  iteration;
8853
    int32_t  sub_sector_size = 0;
8854
    int32_t  bank_size;
8855
    int32_t  j = 0;
8856
    int32_t  error_flag = 0;
8857
 
8858
    hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
8859
 
8860
    /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */
8861
    /* 00: The Hw sector is 256 bytes, hence we need to erase 16
8862
     *     consecutive sectors.  The start index for the nth Hw sector can be
8863
     *     calculated as bank * 4096 + n * 256
8864
     * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
8865
     *     The start index for the nth Hw sector can be calculated
8866
     *     as bank * 4096
8867
     * 10: The HW sector is 8K bytes
8868
     * 11: The Hw sector size is 64K bytes */
8869
    if (hsfsts.hsf_status.berasesz == 0x0) {
8870
        /* Hw sector size 256 */
8871
        sub_sector_size = ICH_FLASH_SEG_SIZE_256;
8872
        bank_size = ICH_FLASH_SECTOR_SIZE;
8873
        iteration = ICH_FLASH_SECTOR_SIZE / ICH_FLASH_SEG_SIZE_256;
8874
    } else if (hsfsts.hsf_status.berasesz == 0x1) {
8875
        bank_size = ICH_FLASH_SEG_SIZE_4K;
8876
        iteration = 1;
8877
    } else if (hsfsts.hsf_status.berasesz == 0x3) {
8878
        bank_size = ICH_FLASH_SEG_SIZE_64K;
8879
        iteration = 1;
8880
    } else {
8881
        return error;
8882
    }
8883
 
8884
    for (j = 0; j < iteration ; j++) {
8885
        do {
8886
            count++;
8887
            /* Steps */
8888
            error = e1000_ich8_cycle_init(hw);
8889
            if (error != E1000_SUCCESS) {
8890
                error_flag = 1;
8891
                break;
8892
            }
8893
 
8894
            /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash
8895
             * Control */
8896
            hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
8897
            hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
8898
            E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
8899
 
8900
            /* Write the last 24 bits of an index within the block into Flash
8901
             * Linear address field in Flash Address.  This probably needs to
8902
             * be calculated here based off the on-chip erase sector size and
8903
             * the software bank size (4, 8 or 64 KBytes) */
8904
            flash_linear_address = bank * bank_size + j * sub_sector_size;
8905
            flash_linear_address += hw->flash_base_addr;
8906
            flash_linear_address &= ICH_FLASH_LINEAR_ADDR_MASK;
8907
 
8908
            E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
8909
 
8910
            error = e1000_ich8_flash_cycle(hw, ICH_FLASH_ERASE_TIMEOUT);
8911
            /* Check if FCERR is set to 1.  If 1, clear it and try the whole
8912
             * sequence a few more times else Done */
8913
            if (error == E1000_SUCCESS) {
8914
                break;
8915
            } else {
8916
                hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
8917
                if (hsfsts.hsf_status.flcerr == 1) {
8918
                    /* repeat for some time before giving up */
8919
                    continue;
8920
                } else if (hsfsts.hsf_status.flcdone == 0) {
8921
                    error_flag = 1;
8922
                    break;
8923
                }
8924
            }
8925
        } while ((count < ICH_FLASH_CYCLE_REPEAT_COUNT) && !error_flag);
8926
        if (error_flag == 1)
8927
            break;
8928
    }
8929
    if (error_flag != 1)
8930
        error = E1000_SUCCESS;
8931
    return error;
8932
}
8933
 
8934
static int32_t
8935
e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw,
8936
                                      uint32_t cnf_base_addr, uint32_t cnf_size)
8937
{
8938
    uint32_t ret_val = E1000_SUCCESS;
8939
    uint16_t word_addr, reg_data, reg_addr;
8940
    uint16_t i;
8941
 
8942
    /* cnf_base_addr is in DWORD */
8943
    word_addr = (uint16_t)(cnf_base_addr << 1);
8944
 
8945
    /* cnf_size is returned in size of dwords */
8946
    for (i = 0; i < cnf_size; i++) {
8947
        ret_val = e1000_read_eeprom(hw, (word_addr + i*2), 1, &reg_data);
8948
        if (ret_val)
8949
            return ret_val;
8950
 
8951
        ret_val = e1000_read_eeprom(hw, (word_addr + i*2 + 1), 1, &reg_addr);
8952
        if (ret_val)
8953
            return ret_val;
8954
 
8955
        ret_val = e1000_get_software_flag(hw);
8956
        if (ret_val != E1000_SUCCESS)
8957
            return ret_val;
8958
 
8959
        ret_val = e1000_write_phy_reg_ex(hw, (uint32_t)reg_addr, reg_data);
8960
 
8961
        e1000_release_software_flag(hw);
8962
    }
8963
 
8964
    return ret_val;
8965
}
8966
 
8967
 
8968
/******************************************************************************
8969
 * This function initializes the PHY from the NVM on ICH8 platforms. This
8970
 * is needed due to an issue where the NVM configuration is not properly
8971
 * autoloaded after power transitions. Therefore, after each PHY reset, we
8972
 * will load the configuration data out of the NVM manually.
8973
 *
8974
 * hw: Struct containing variables accessed by shared code
8975
 *****************************************************************************/
8976
static int32_t
8977
e1000_init_lcd_from_nvm(struct e1000_hw *hw)
8978
{
8979
    uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop;
8980
 
8981
    if (hw->phy_type != e1000_phy_igp_3)
8982
          return E1000_SUCCESS;
8983
 
8984
    /* Check if SW needs configure the PHY */
8985
    reg_data = E1000_READ_REG(hw, FEXTNVM);
8986
    if (!(reg_data & FEXTNVM_SW_CONFIG))
8987
        return E1000_SUCCESS;
8988
 
8989
    /* Wait for basic configuration completes before proceeding*/
8990
    loop = 0;
8991
    do {
8992
        reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE;
8993
        udelay(100);
8994
        loop++;
8995
    } while ((!reg_data) && (loop < 50));
8996
 
8997
    /* Clear the Init Done bit for the next init event */
8998
    reg_data = E1000_READ_REG(hw, STATUS);
8999
    reg_data &= ~E1000_STATUS_LAN_INIT_DONE;
9000
    E1000_WRITE_REG(hw, STATUS, reg_data);
9001
 
9002
    /* Make sure HW does not configure LCD from PHY extended configuration
9003
       before SW configuration */
9004
    reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
9005
    if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) {
9006
        reg_data = E1000_READ_REG(hw, EXTCNF_SIZE);
9007
        cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH;
9008
        cnf_size >>= 16;
9009
        if (cnf_size) {
9010
            reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
9011
            cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER;
9012
            /* cnf_base_addr is in DWORD */
9013
            cnf_base_addr >>= 16;
9014
 
9015
            /* Configure LCD from extended configuration region. */
9016
            ret_val = e1000_init_lcd_from_nvm_config_region(hw, cnf_base_addr,
9017
                                                            cnf_size);
9018
            if (ret_val)
9019
                return ret_val;
9020
        }
9021
    }
9022
 
9023
    return E1000_SUCCESS;
9024
}
9025
 

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.