OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [drivers/] [net/] [e1000/] [e1000_main.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*******************************************************************************
2
 
3
  Intel PRO/1000 Linux driver
4
  Copyright(c) 1999 - 2006 Intel Corporation.
5
 
6
  This program is free software; you can redistribute it and/or modify it
7
  under the terms and conditions of the GNU General Public License,
8
  version 2, as published by the Free Software Foundation.
9
 
10
  This program is distributed in the hope it will be useful, but WITHOUT
11
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13
  more details.
14
 
15
  You should have received a copy of the GNU General Public License along with
16
  this program; if not, write to the Free Software Foundation, Inc.,
17
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
 
19
  The full GNU General Public License is included in this distribution in
20
  the file called "COPYING".
21
 
22
  Contact Information:
23
  Linux NICS <linux.nics@intel.com>
24
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
 
27
*******************************************************************************/
28
 
29
#include "e1000.h"
30
#include <net/ip6_checksum.h>
31
 
32
char e1000_driver_name[] = "e1000";
33
static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34
#ifndef CONFIG_E1000_NAPI
35
#define DRIVERNAPI
36
#else
37
#define DRIVERNAPI "-NAPI"
38
#endif
39
#define DRV_VERSION "7.3.20-k2"DRIVERNAPI
40
const char e1000_driver_version[] = DRV_VERSION;
41
static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
 
43
/* e1000_pci_tbl - PCI Device ID Table
44
 *
45
 * Last entry must be all 0s
46
 *
47
 * Macro expands to...
48
 *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49
 */
50
static struct pci_device_id e1000_pci_tbl[] = {
51
        INTEL_E1000_ETHERNET_DEVICE(0x1000),
52
        INTEL_E1000_ETHERNET_DEVICE(0x1001),
53
        INTEL_E1000_ETHERNET_DEVICE(0x1004),
54
        INTEL_E1000_ETHERNET_DEVICE(0x1008),
55
        INTEL_E1000_ETHERNET_DEVICE(0x1009),
56
        INTEL_E1000_ETHERNET_DEVICE(0x100C),
57
        INTEL_E1000_ETHERNET_DEVICE(0x100D),
58
        INTEL_E1000_ETHERNET_DEVICE(0x100E),
59
        INTEL_E1000_ETHERNET_DEVICE(0x100F),
60
        INTEL_E1000_ETHERNET_DEVICE(0x1010),
61
        INTEL_E1000_ETHERNET_DEVICE(0x1011),
62
        INTEL_E1000_ETHERNET_DEVICE(0x1012),
63
        INTEL_E1000_ETHERNET_DEVICE(0x1013),
64
        INTEL_E1000_ETHERNET_DEVICE(0x1014),
65
        INTEL_E1000_ETHERNET_DEVICE(0x1015),
66
        INTEL_E1000_ETHERNET_DEVICE(0x1016),
67
        INTEL_E1000_ETHERNET_DEVICE(0x1017),
68
        INTEL_E1000_ETHERNET_DEVICE(0x1018),
69
        INTEL_E1000_ETHERNET_DEVICE(0x1019),
70
        INTEL_E1000_ETHERNET_DEVICE(0x101A),
71
        INTEL_E1000_ETHERNET_DEVICE(0x101D),
72
        INTEL_E1000_ETHERNET_DEVICE(0x101E),
73
        INTEL_E1000_ETHERNET_DEVICE(0x1026),
74
        INTEL_E1000_ETHERNET_DEVICE(0x1027),
75
        INTEL_E1000_ETHERNET_DEVICE(0x1028),
76
        INTEL_E1000_ETHERNET_DEVICE(0x1049),
77
        INTEL_E1000_ETHERNET_DEVICE(0x104A),
78
        INTEL_E1000_ETHERNET_DEVICE(0x104B),
79
        INTEL_E1000_ETHERNET_DEVICE(0x104C),
80
        INTEL_E1000_ETHERNET_DEVICE(0x104D),
81
        INTEL_E1000_ETHERNET_DEVICE(0x105E),
82
        INTEL_E1000_ETHERNET_DEVICE(0x105F),
83
        INTEL_E1000_ETHERNET_DEVICE(0x1060),
84
        INTEL_E1000_ETHERNET_DEVICE(0x1075),
85
        INTEL_E1000_ETHERNET_DEVICE(0x1076),
86
        INTEL_E1000_ETHERNET_DEVICE(0x1077),
87
        INTEL_E1000_ETHERNET_DEVICE(0x1078),
88
        INTEL_E1000_ETHERNET_DEVICE(0x1079),
89
        INTEL_E1000_ETHERNET_DEVICE(0x107A),
90
        INTEL_E1000_ETHERNET_DEVICE(0x107B),
91
        INTEL_E1000_ETHERNET_DEVICE(0x107C),
92
        INTEL_E1000_ETHERNET_DEVICE(0x107D),
93
        INTEL_E1000_ETHERNET_DEVICE(0x107E),
94
        INTEL_E1000_ETHERNET_DEVICE(0x107F),
95
        INTEL_E1000_ETHERNET_DEVICE(0x108A),
96
        INTEL_E1000_ETHERNET_DEVICE(0x108B),
97
        INTEL_E1000_ETHERNET_DEVICE(0x108C),
98
        INTEL_E1000_ETHERNET_DEVICE(0x1096),
99
        INTEL_E1000_ETHERNET_DEVICE(0x1098),
100
        INTEL_E1000_ETHERNET_DEVICE(0x1099),
101
        INTEL_E1000_ETHERNET_DEVICE(0x109A),
102
        INTEL_E1000_ETHERNET_DEVICE(0x10A4),
103
        INTEL_E1000_ETHERNET_DEVICE(0x10A5),
104
        INTEL_E1000_ETHERNET_DEVICE(0x10B5),
105
        INTEL_E1000_ETHERNET_DEVICE(0x10B9),
106
        INTEL_E1000_ETHERNET_DEVICE(0x10BA),
107
        INTEL_E1000_ETHERNET_DEVICE(0x10BB),
108
        INTEL_E1000_ETHERNET_DEVICE(0x10BC),
109
        INTEL_E1000_ETHERNET_DEVICE(0x10C4),
110
        INTEL_E1000_ETHERNET_DEVICE(0x10C5),
111
        INTEL_E1000_ETHERNET_DEVICE(0x10D5),
112
        INTEL_E1000_ETHERNET_DEVICE(0x10D9),
113
        INTEL_E1000_ETHERNET_DEVICE(0x10DA),
114
        /* required last entry */
115
        {0,}
116
};
117
 
118
MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
119
 
120
int e1000_up(struct e1000_adapter *adapter);
121
void e1000_down(struct e1000_adapter *adapter);
122
void e1000_reinit_locked(struct e1000_adapter *adapter);
123
void e1000_reset(struct e1000_adapter *adapter);
124
int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
125
int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
126
int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
127
void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
128
void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
129
static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
130
                             struct e1000_tx_ring *txdr);
131
static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
132
                             struct e1000_rx_ring *rxdr);
133
static void e1000_free_tx_resources(struct e1000_adapter *adapter,
134
                             struct e1000_tx_ring *tx_ring);
135
static void e1000_free_rx_resources(struct e1000_adapter *adapter,
136
                             struct e1000_rx_ring *rx_ring);
137
void e1000_update_stats(struct e1000_adapter *adapter);
138
 
139
static int e1000_init_module(void);
140
static void e1000_exit_module(void);
141
static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
142
static void __devexit e1000_remove(struct pci_dev *pdev);
143
static int e1000_alloc_queues(struct e1000_adapter *adapter);
144
static int e1000_sw_init(struct e1000_adapter *adapter);
145
static int e1000_open(struct net_device *netdev);
146
static int e1000_close(struct net_device *netdev);
147
static void e1000_configure_tx(struct e1000_adapter *adapter);
148
static void e1000_configure_rx(struct e1000_adapter *adapter);
149
static void e1000_setup_rctl(struct e1000_adapter *adapter);
150
static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
151
static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
152
static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
153
                                struct e1000_tx_ring *tx_ring);
154
static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
155
                                struct e1000_rx_ring *rx_ring);
156
static void e1000_set_multi(struct net_device *netdev);
157
static void e1000_update_phy_info(unsigned long data);
158
static void e1000_watchdog(unsigned long data);
159
static void e1000_82547_tx_fifo_stall(unsigned long data);
160
static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
161
static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
162
static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
163
static int e1000_set_mac(struct net_device *netdev, void *p);
164
static irqreturn_t e1000_intr(int irq, void *data);
165
static irqreturn_t e1000_intr_msi(int irq, void *data);
166
static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
167
                                    struct e1000_tx_ring *tx_ring);
168
#ifdef CONFIG_E1000_NAPI
169
static int e1000_clean(struct napi_struct *napi, int budget);
170
static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
171
                                    struct e1000_rx_ring *rx_ring,
172
                                    int *work_done, int work_to_do);
173
static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
174
                                       struct e1000_rx_ring *rx_ring,
175
                                       int *work_done, int work_to_do);
176
#else
177
static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
178
                                    struct e1000_rx_ring *rx_ring);
179
static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
180
                                       struct e1000_rx_ring *rx_ring);
181
#endif
182
static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
183
                                   struct e1000_rx_ring *rx_ring,
184
                                   int cleaned_count);
185
static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
186
                                      struct e1000_rx_ring *rx_ring,
187
                                      int cleaned_count);
188
static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
189
static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
190
                           int cmd);
191
static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
192
static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
193
static void e1000_tx_timeout(struct net_device *dev);
194
static void e1000_reset_task(struct work_struct *work);
195
static void e1000_smartspeed(struct e1000_adapter *adapter);
196
static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
197
                                       struct sk_buff *skb);
198
 
199
static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
200
static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
201
static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
202
static void e1000_restore_vlan(struct e1000_adapter *adapter);
203
 
204
static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
205
#ifdef CONFIG_PM
206
static int e1000_resume(struct pci_dev *pdev);
207
#endif
208
static void e1000_shutdown(struct pci_dev *pdev);
209
 
210
#ifdef CONFIG_NET_POLL_CONTROLLER
211
/* for netdump / net console */
212
static void e1000_netpoll (struct net_device *netdev);
213
#endif
214
 
215
#define COPYBREAK_DEFAULT 256
216
static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
217
module_param(copybreak, uint, 0644);
218
MODULE_PARM_DESC(copybreak,
219
        "Maximum size of packet that is copied to a new buffer on receive");
220
 
221
static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
222
                     pci_channel_state_t state);
223
static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
224
static void e1000_io_resume(struct pci_dev *pdev);
225
 
226
static struct pci_error_handlers e1000_err_handler = {
227
        .error_detected = e1000_io_error_detected,
228
        .slot_reset = e1000_io_slot_reset,
229
        .resume = e1000_io_resume,
230
};
231
 
232
static struct pci_driver e1000_driver = {
233
        .name     = e1000_driver_name,
234
        .id_table = e1000_pci_tbl,
235
        .probe    = e1000_probe,
236
        .remove   = __devexit_p(e1000_remove),
237
#ifdef CONFIG_PM
238
        /* Power Managment Hooks */
239
        .suspend  = e1000_suspend,
240
        .resume   = e1000_resume,
241
#endif
242
        .shutdown = e1000_shutdown,
243
        .err_handler = &e1000_err_handler
244
};
245
 
246
MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
247
MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
248
MODULE_LICENSE("GPL");
249
MODULE_VERSION(DRV_VERSION);
250
 
251
static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
252
module_param(debug, int, 0);
253
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
254
 
255
/**
256
 * e1000_init_module - Driver Registration Routine
257
 *
258
 * e1000_init_module is the first routine called when the driver is
259
 * loaded. All it does is register with the PCI subsystem.
260
 **/
261
 
262
static int __init
263
e1000_init_module(void)
264
{
265
        int ret;
266
        printk(KERN_INFO "%s - version %s\n",
267
               e1000_driver_string, e1000_driver_version);
268
 
269
        printk(KERN_INFO "%s\n", e1000_copyright);
270
 
271
        ret = pci_register_driver(&e1000_driver);
272
        if (copybreak != COPYBREAK_DEFAULT) {
273
                if (copybreak == 0)
274
                        printk(KERN_INFO "e1000: copybreak disabled\n");
275
                else
276
                        printk(KERN_INFO "e1000: copybreak enabled for "
277
                               "packets <= %u bytes\n", copybreak);
278
        }
279
        return ret;
280
}
281
 
282
module_init(e1000_init_module);
283
 
284
/**
285
 * e1000_exit_module - Driver Exit Cleanup Routine
286
 *
287
 * e1000_exit_module is called just before the driver is removed
288
 * from memory.
289
 **/
290
 
291
static void __exit
292
e1000_exit_module(void)
293
{
294
        pci_unregister_driver(&e1000_driver);
295
}
296
 
297
module_exit(e1000_exit_module);
298
 
299
static int e1000_request_irq(struct e1000_adapter *adapter)
300
{
301
        struct net_device *netdev = adapter->netdev;
302
        void (*handler) = &e1000_intr;
303
        int irq_flags = IRQF_SHARED;
304
        int err;
305
 
306
        if (adapter->hw.mac_type >= e1000_82571) {
307
                adapter->have_msi = !pci_enable_msi(adapter->pdev);
308
                if (adapter->have_msi) {
309
                        handler = &e1000_intr_msi;
310
                        irq_flags = 0;
311
                }
312
        }
313
 
314
        err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
315
                          netdev);
316
        if (err) {
317
                if (adapter->have_msi)
318
                        pci_disable_msi(adapter->pdev);
319
                DPRINTK(PROBE, ERR,
320
                        "Unable to allocate interrupt Error: %d\n", err);
321
        }
322
 
323
        return err;
324
}
325
 
326
static void e1000_free_irq(struct e1000_adapter *adapter)
327
{
328
        struct net_device *netdev = adapter->netdev;
329
 
330
        free_irq(adapter->pdev->irq, netdev);
331
 
332
        if (adapter->have_msi)
333
                pci_disable_msi(adapter->pdev);
334
}
335
 
336
/**
337
 * e1000_irq_disable - Mask off interrupt generation on the NIC
338
 * @adapter: board private structure
339
 **/
340
 
341
static void
342
e1000_irq_disable(struct e1000_adapter *adapter)
343
{
344
        atomic_inc(&adapter->irq_sem);
345
        E1000_WRITE_REG(&adapter->hw, IMC, ~0);
346
        E1000_WRITE_FLUSH(&adapter->hw);
347
        synchronize_irq(adapter->pdev->irq);
348
}
349
 
350
/**
351
 * e1000_irq_enable - Enable default interrupt generation settings
352
 * @adapter: board private structure
353
 **/
354
 
355
static void
356
e1000_irq_enable(struct e1000_adapter *adapter)
357
{
358
        if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
359
                E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
360
                E1000_WRITE_FLUSH(&adapter->hw);
361
        }
362
}
363
 
364
static void
365
e1000_update_mng_vlan(struct e1000_adapter *adapter)
366
{
367
        struct net_device *netdev = adapter->netdev;
368
        uint16_t vid = adapter->hw.mng_cookie.vlan_id;
369
        uint16_t old_vid = adapter->mng_vlan_id;
370
        if (adapter->vlgrp) {
371
                if (!vlan_group_get_device(adapter->vlgrp, vid)) {
372
                        if (adapter->hw.mng_cookie.status &
373
                                E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
374
                                e1000_vlan_rx_add_vid(netdev, vid);
375
                                adapter->mng_vlan_id = vid;
376
                        } else
377
                                adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
378
 
379
                        if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
380
                                        (vid != old_vid) &&
381
                            !vlan_group_get_device(adapter->vlgrp, old_vid))
382
                                e1000_vlan_rx_kill_vid(netdev, old_vid);
383
                } else
384
                        adapter->mng_vlan_id = vid;
385
        }
386
}
387
 
388
/**
389
 * e1000_release_hw_control - release control of the h/w to f/w
390
 * @adapter: address of board private structure
391
 *
392
 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
393
 * For ASF and Pass Through versions of f/w this means that the
394
 * driver is no longer loaded. For AMT version (only with 82573) i
395
 * of the f/w this means that the network i/f is closed.
396
 *
397
 **/
398
 
399
static void
400
e1000_release_hw_control(struct e1000_adapter *adapter)
401
{
402
        uint32_t ctrl_ext;
403
        uint32_t swsm;
404
 
405
        /* Let firmware taken over control of h/w */
406
        switch (adapter->hw.mac_type) {
407
        case e1000_82573:
408
                swsm = E1000_READ_REG(&adapter->hw, SWSM);
409
                E1000_WRITE_REG(&adapter->hw, SWSM,
410
                                swsm & ~E1000_SWSM_DRV_LOAD);
411
                break;
412
        case e1000_82571:
413
        case e1000_82572:
414
        case e1000_80003es2lan:
415
        case e1000_ich8lan:
416
                ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
417
                E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
418
                                ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
419
                break;
420
        default:
421
                break;
422
        }
423
}
424
 
425
/**
426
 * e1000_get_hw_control - get control of the h/w from f/w
427
 * @adapter: address of board private structure
428
 *
429
 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
430
 * For ASF and Pass Through versions of f/w this means that
431
 * the driver is loaded. For AMT version (only with 82573)
432
 * of the f/w this means that the network i/f is open.
433
 *
434
 **/
435
 
436
static void
437
e1000_get_hw_control(struct e1000_adapter *adapter)
438
{
439
        uint32_t ctrl_ext;
440
        uint32_t swsm;
441
 
442
        /* Let firmware know the driver has taken over */
443
        switch (adapter->hw.mac_type) {
444
        case e1000_82573:
445
                swsm = E1000_READ_REG(&adapter->hw, SWSM);
446
                E1000_WRITE_REG(&adapter->hw, SWSM,
447
                                swsm | E1000_SWSM_DRV_LOAD);
448
                break;
449
        case e1000_82571:
450
        case e1000_82572:
451
        case e1000_80003es2lan:
452
        case e1000_ich8lan:
453
                ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
454
                E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
455
                                ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
456
                break;
457
        default:
458
                break;
459
        }
460
}
461
 
462
static void
463
e1000_init_manageability(struct e1000_adapter *adapter)
464
{
465
        if (adapter->en_mng_pt) {
466
                uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
467
 
468
                /* disable hardware interception of ARP */
469
                manc &= ~(E1000_MANC_ARP_EN);
470
 
471
                /* enable receiving management packets to the host */
472
                /* this will probably generate destination unreachable messages
473
                 * from the host OS, but the packets will be handled on SMBUS */
474
                if (adapter->hw.has_manc2h) {
475
                        uint32_t manc2h = E1000_READ_REG(&adapter->hw, MANC2H);
476
 
477
                        manc |= E1000_MANC_EN_MNG2HOST;
478
#define E1000_MNG2HOST_PORT_623 (1 << 5)
479
#define E1000_MNG2HOST_PORT_664 (1 << 6)
480
                        manc2h |= E1000_MNG2HOST_PORT_623;
481
                        manc2h |= E1000_MNG2HOST_PORT_664;
482
                        E1000_WRITE_REG(&adapter->hw, MANC2H, manc2h);
483
                }
484
 
485
                E1000_WRITE_REG(&adapter->hw, MANC, manc);
486
        }
487
}
488
 
489
static void
490
e1000_release_manageability(struct e1000_adapter *adapter)
491
{
492
        if (adapter->en_mng_pt) {
493
                uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
494
 
495
                /* re-enable hardware interception of ARP */
496
                manc |= E1000_MANC_ARP_EN;
497
 
498
                if (adapter->hw.has_manc2h)
499
                        manc &= ~E1000_MANC_EN_MNG2HOST;
500
 
501
                /* don't explicitly have to mess with MANC2H since
502
                 * MANC has an enable disable that gates MANC2H */
503
 
504
                E1000_WRITE_REG(&adapter->hw, MANC, manc);
505
        }
506
}
507
 
508
/**
509
 * e1000_configure - configure the hardware for RX and TX
510
 * @adapter = private board structure
511
 **/
512
static void e1000_configure(struct e1000_adapter *adapter)
513
{
514
        struct net_device *netdev = adapter->netdev;
515
        int i;
516
 
517
        e1000_set_multi(netdev);
518
 
519
        e1000_restore_vlan(adapter);
520
        e1000_init_manageability(adapter);
521
 
522
        e1000_configure_tx(adapter);
523
        e1000_setup_rctl(adapter);
524
        e1000_configure_rx(adapter);
525
        /* call E1000_DESC_UNUSED which always leaves
526
         * at least 1 descriptor unused to make sure
527
         * next_to_use != next_to_clean */
528
        for (i = 0; i < adapter->num_rx_queues; i++) {
529
                struct e1000_rx_ring *ring = &adapter->rx_ring[i];
530
                adapter->alloc_rx_buf(adapter, ring,
531
                                      E1000_DESC_UNUSED(ring));
532
        }
533
 
534
        adapter->tx_queue_len = netdev->tx_queue_len;
535
}
536
 
537
int e1000_up(struct e1000_adapter *adapter)
538
{
539
        /* hardware has been reset, we need to reload some things */
540
        e1000_configure(adapter);
541
 
542
        clear_bit(__E1000_DOWN, &adapter->flags);
543
 
544
#ifdef CONFIG_E1000_NAPI
545
        napi_enable(&adapter->napi);
546
#endif
547
        e1000_irq_enable(adapter);
548
 
549
        /* fire a link change interrupt to start the watchdog */
550
        E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
551
        return 0;
552
}
553
 
554
/**
555
 * e1000_power_up_phy - restore link in case the phy was powered down
556
 * @adapter: address of board private structure
557
 *
558
 * The phy may be powered down to save power and turn off link when the
559
 * driver is unloaded and wake on lan is not enabled (among others)
560
 * *** this routine MUST be followed by a call to e1000_reset ***
561
 *
562
 **/
563
 
564
void e1000_power_up_phy(struct e1000_adapter *adapter)
565
{
566
        uint16_t mii_reg = 0;
567
 
568
        /* Just clear the power down bit to wake the phy back up */
569
        if (adapter->hw.media_type == e1000_media_type_copper) {
570
                /* according to the manual, the phy will retain its
571
                 * settings across a power-down/up cycle */
572
                e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
573
                mii_reg &= ~MII_CR_POWER_DOWN;
574
                e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
575
        }
576
}
577
 
578
static void e1000_power_down_phy(struct e1000_adapter *adapter)
579
{
580
        /* Power down the PHY so no link is implied when interface is down *
581
         * The PHY cannot be powered down if any of the following is TRUE *
582
         * (a) WoL is enabled
583
         * (b) AMT is active
584
         * (c) SoL/IDER session is active */
585
        if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
586
           adapter->hw.media_type == e1000_media_type_copper) {
587
                uint16_t mii_reg = 0;
588
 
589
                switch (adapter->hw.mac_type) {
590
                case e1000_82540:
591
                case e1000_82545:
592
                case e1000_82545_rev_3:
593
                case e1000_82546:
594
                case e1000_82546_rev_3:
595
                case e1000_82541:
596
                case e1000_82541_rev_2:
597
                case e1000_82547:
598
                case e1000_82547_rev_2:
599
                        if (E1000_READ_REG(&adapter->hw, MANC) &
600
                            E1000_MANC_SMBUS_EN)
601
                                goto out;
602
                        break;
603
                case e1000_82571:
604
                case e1000_82572:
605
                case e1000_82573:
606
                case e1000_80003es2lan:
607
                case e1000_ich8lan:
608
                        if (e1000_check_mng_mode(&adapter->hw) ||
609
                            e1000_check_phy_reset_block(&adapter->hw))
610
                                goto out;
611
                        break;
612
                default:
613
                        goto out;
614
                }
615
                e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
616
                mii_reg |= MII_CR_POWER_DOWN;
617
                e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
618
                mdelay(1);
619
        }
620
out:
621
        return;
622
}
623
 
624
void
625
e1000_down(struct e1000_adapter *adapter)
626
{
627
        struct net_device *netdev = adapter->netdev;
628
 
629
        /* signal that we're down so the interrupt handler does not
630
         * reschedule our watchdog timer */
631
        set_bit(__E1000_DOWN, &adapter->flags);
632
 
633
#ifdef CONFIG_E1000_NAPI
634
        napi_disable(&adapter->napi);
635
        atomic_set(&adapter->irq_sem, 0);
636
#endif
637
        e1000_irq_disable(adapter);
638
 
639
        del_timer_sync(&adapter->tx_fifo_stall_timer);
640
        del_timer_sync(&adapter->watchdog_timer);
641
        del_timer_sync(&adapter->phy_info_timer);
642
 
643
        netdev->tx_queue_len = adapter->tx_queue_len;
644
        adapter->link_speed = 0;
645
        adapter->link_duplex = 0;
646
        netif_carrier_off(netdev);
647
        netif_stop_queue(netdev);
648
 
649
        e1000_reset(adapter);
650
        e1000_clean_all_tx_rings(adapter);
651
        e1000_clean_all_rx_rings(adapter);
652
}
653
 
654
void
655
e1000_reinit_locked(struct e1000_adapter *adapter)
656
{
657
        WARN_ON(in_interrupt());
658
        while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
659
                msleep(1);
660
        e1000_down(adapter);
661
        e1000_up(adapter);
662
        clear_bit(__E1000_RESETTING, &adapter->flags);
663
}
664
 
665
void
666
e1000_reset(struct e1000_adapter *adapter)
667
{
668
        uint32_t pba = 0, tx_space, min_tx_space, min_rx_space;
669
        uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
670
        boolean_t legacy_pba_adjust = FALSE;
671
 
672
        /* Repartition Pba for greater than 9k mtu
673
         * To take effect CTRL.RST is required.
674
         */
675
 
676
        switch (adapter->hw.mac_type) {
677
        case e1000_82542_rev2_0:
678
        case e1000_82542_rev2_1:
679
        case e1000_82543:
680
        case e1000_82544:
681
        case e1000_82540:
682
        case e1000_82541:
683
        case e1000_82541_rev_2:
684
                legacy_pba_adjust = TRUE;
685
                pba = E1000_PBA_48K;
686
                break;
687
        case e1000_82545:
688
        case e1000_82545_rev_3:
689
        case e1000_82546:
690
        case e1000_82546_rev_3:
691
                pba = E1000_PBA_48K;
692
                break;
693
        case e1000_82547:
694
        case e1000_82547_rev_2:
695
                legacy_pba_adjust = TRUE;
696
                pba = E1000_PBA_30K;
697
                break;
698
        case e1000_82571:
699
        case e1000_82572:
700
        case e1000_80003es2lan:
701
                pba = E1000_PBA_38K;
702
                break;
703
        case e1000_82573:
704
                pba = E1000_PBA_20K;
705
                break;
706
        case e1000_ich8lan:
707
                pba = E1000_PBA_8K;
708
        case e1000_undefined:
709
        case e1000_num_macs:
710
                break;
711
        }
712
 
713
        if (legacy_pba_adjust == TRUE) {
714
                if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
715
                        pba -= 8; /* allocate more FIFO for Tx */
716
 
717
                if (adapter->hw.mac_type == e1000_82547) {
718
                        adapter->tx_fifo_head = 0;
719
                        adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
720
                        adapter->tx_fifo_size =
721
                                (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
722
                        atomic_set(&adapter->tx_fifo_stall, 0);
723
                }
724
        } else if (adapter->hw.max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
725
                /* adjust PBA for jumbo frames */
726
                E1000_WRITE_REG(&adapter->hw, PBA, pba);
727
 
728
                /* To maintain wire speed transmits, the Tx FIFO should be
729
                 * large enough to accomodate two full transmit packets,
730
                 * rounded up to the next 1KB and expressed in KB.  Likewise,
731
                 * the Rx FIFO should be large enough to accomodate at least
732
                 * one full receive packet and is similarly rounded up and
733
                 * expressed in KB. */
734
                pba = E1000_READ_REG(&adapter->hw, PBA);
735
                /* upper 16 bits has Tx packet buffer allocation size in KB */
736
                tx_space = pba >> 16;
737
                /* lower 16 bits has Rx packet buffer allocation size in KB */
738
                pba &= 0xffff;
739
                /* don't include ethernet FCS because hardware appends/strips */
740
                min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
741
                               VLAN_TAG_SIZE;
742
                min_tx_space = min_rx_space;
743
                min_tx_space *= 2;
744
                min_tx_space = ALIGN(min_tx_space, 1024);
745
                min_tx_space >>= 10;
746
                min_rx_space = ALIGN(min_rx_space, 1024);
747
                min_rx_space >>= 10;
748
 
749
                /* If current Tx allocation is less than the min Tx FIFO size,
750
                 * and the min Tx FIFO size is less than the current Rx FIFO
751
                 * allocation, take space away from current Rx allocation */
752
                if (tx_space < min_tx_space &&
753
                    ((min_tx_space - tx_space) < pba)) {
754
                        pba = pba - (min_tx_space - tx_space);
755
 
756
                        /* PCI/PCIx hardware has PBA alignment constraints */
757
                        switch (adapter->hw.mac_type) {
758
                        case e1000_82545 ... e1000_82546_rev_3:
759
                                pba &= ~(E1000_PBA_8K - 1);
760
                                break;
761
                        default:
762
                                break;
763
                        }
764
 
765
                        /* if short on rx space, rx wins and must trump tx
766
                         * adjustment or use Early Receive if available */
767
                        if (pba < min_rx_space) {
768
                                switch (adapter->hw.mac_type) {
769
                                case e1000_82573:
770
                                        /* ERT enabled in e1000_configure_rx */
771
                                        break;
772
                                default:
773
                                        pba = min_rx_space;
774
                                        break;
775
                                }
776
                        }
777
                }
778
        }
779
 
780
        E1000_WRITE_REG(&adapter->hw, PBA, pba);
781
 
782
        /* flow control settings */
783
        /* Set the FC high water mark to 90% of the FIFO size.
784
         * Required to clear last 3 LSB */
785
        fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
786
        /* We can't use 90% on small FIFOs because the remainder
787
         * would be less than 1 full frame.  In this case, we size
788
         * it to allow at least a full frame above the high water
789
         *  mark. */
790
        if (pba < E1000_PBA_16K)
791
                fc_high_water_mark = (pba * 1024) - 1600;
792
 
793
        adapter->hw.fc_high_water = fc_high_water_mark;
794
        adapter->hw.fc_low_water = fc_high_water_mark - 8;
795
        if (adapter->hw.mac_type == e1000_80003es2lan)
796
                adapter->hw.fc_pause_time = 0xFFFF;
797
        else
798
                adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
799
        adapter->hw.fc_send_xon = 1;
800
        adapter->hw.fc = adapter->hw.original_fc;
801
 
802
        /* Allow time for pending master requests to run */
803
        e1000_reset_hw(&adapter->hw);
804
        if (adapter->hw.mac_type >= e1000_82544)
805
                E1000_WRITE_REG(&adapter->hw, WUC, 0);
806
 
807
        if (e1000_init_hw(&adapter->hw))
808
                DPRINTK(PROBE, ERR, "Hardware Error\n");
809
        e1000_update_mng_vlan(adapter);
810
 
811
        /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
812
        if (adapter->hw.mac_type >= e1000_82544 &&
813
            adapter->hw.mac_type <= e1000_82547_rev_2 &&
814
            adapter->hw.autoneg == 1 &&
815
            adapter->hw.autoneg_advertised == ADVERTISE_1000_FULL) {
816
                uint32_t ctrl = E1000_READ_REG(&adapter->hw, CTRL);
817
                /* clear phy power management bit if we are in gig only mode,
818
                 * which if enabled will attempt negotiation to 100Mb, which
819
                 * can cause a loss of link at power off or driver unload */
820
                ctrl &= ~E1000_CTRL_SWDPIN3;
821
                E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
822
        }
823
 
824
        /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
825
        E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
826
 
827
        e1000_reset_adaptive(&adapter->hw);
828
        e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
829
 
830
        if (!adapter->smart_power_down &&
831
            (adapter->hw.mac_type == e1000_82571 ||
832
             adapter->hw.mac_type == e1000_82572)) {
833
                uint16_t phy_data = 0;
834
                /* speed up time to link by disabling smart power down, ignore
835
                 * the return value of this function because there is nothing
836
                 * different we would do if it failed */
837
                e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
838
                                   &phy_data);
839
                phy_data &= ~IGP02E1000_PM_SPD;
840
                e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
841
                                    phy_data);
842
        }
843
 
844
        e1000_release_manageability(adapter);
845
}
846
 
847
/**
848
 * e1000_probe - Device Initialization Routine
849
 * @pdev: PCI device information struct
850
 * @ent: entry in e1000_pci_tbl
851
 *
852
 * Returns 0 on success, negative on failure
853
 *
854
 * e1000_probe initializes an adapter identified by a pci_dev structure.
855
 * The OS initialization, configuring of the adapter private structure,
856
 * and a hardware reset occur.
857
 **/
858
 
859
static int __devinit
860
e1000_probe(struct pci_dev *pdev,
861
            const struct pci_device_id *ent)
862
{
863
        struct net_device *netdev;
864
        struct e1000_adapter *adapter;
865
        unsigned long mmio_start, mmio_len;
866
        unsigned long flash_start, flash_len;
867
 
868
        static int cards_found = 0;
869
        static int global_quad_port_a = 0; /* global ksp3 port a indication */
870
        int i, err, pci_using_dac;
871
        uint16_t eeprom_data = 0;
872
        uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
873
        DECLARE_MAC_BUF(mac);
874
 
875
        if ((err = pci_enable_device(pdev)))
876
                return err;
877
 
878
        if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
879
            !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
880
                pci_using_dac = 1;
881
        } else {
882
                if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
883
                    (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
884
                        E1000_ERR("No usable DMA configuration, aborting\n");
885
                        goto err_dma;
886
                }
887
                pci_using_dac = 0;
888
        }
889
 
890
        if ((err = pci_request_regions(pdev, e1000_driver_name)))
891
                goto err_pci_reg;
892
 
893
        pci_set_master(pdev);
894
 
895
        err = -ENOMEM;
896
        netdev = alloc_etherdev(sizeof(struct e1000_adapter));
897
        if (!netdev)
898
                goto err_alloc_etherdev;
899
 
900
        SET_NETDEV_DEV(netdev, &pdev->dev);
901
 
902
        pci_set_drvdata(pdev, netdev);
903
        adapter = netdev_priv(netdev);
904
        adapter->netdev = netdev;
905
        adapter->pdev = pdev;
906
        adapter->hw.back = adapter;
907
        adapter->msg_enable = (1 << debug) - 1;
908
 
909
        mmio_start = pci_resource_start(pdev, BAR_0);
910
        mmio_len = pci_resource_len(pdev, BAR_0);
911
 
912
        err = -EIO;
913
        adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
914
        if (!adapter->hw.hw_addr)
915
                goto err_ioremap;
916
 
917
        for (i = BAR_1; i <= BAR_5; i++) {
918
                if (pci_resource_len(pdev, i) == 0)
919
                        continue;
920
                if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
921
                        adapter->hw.io_base = pci_resource_start(pdev, i);
922
                        break;
923
                }
924
        }
925
 
926
        netdev->open = &e1000_open;
927
        netdev->stop = &e1000_close;
928
        netdev->hard_start_xmit = &e1000_xmit_frame;
929
        netdev->get_stats = &e1000_get_stats;
930
        netdev->set_multicast_list = &e1000_set_multi;
931
        netdev->set_mac_address = &e1000_set_mac;
932
        netdev->change_mtu = &e1000_change_mtu;
933
        netdev->do_ioctl = &e1000_ioctl;
934
        e1000_set_ethtool_ops(netdev);
935
        netdev->tx_timeout = &e1000_tx_timeout;
936
        netdev->watchdog_timeo = 5 * HZ;
937
#ifdef CONFIG_E1000_NAPI
938
        netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
939
#endif
940
        netdev->vlan_rx_register = e1000_vlan_rx_register;
941
        netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
942
        netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
943
#ifdef CONFIG_NET_POLL_CONTROLLER
944
        netdev->poll_controller = e1000_netpoll;
945
#endif
946
        strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
947
 
948
        netdev->mem_start = mmio_start;
949
        netdev->mem_end = mmio_start + mmio_len;
950
        netdev->base_addr = adapter->hw.io_base;
951
 
952
        adapter->bd_number = cards_found;
953
 
954
        /* setup the private structure */
955
 
956
        if ((err = e1000_sw_init(adapter)))
957
                goto err_sw_init;
958
 
959
        err = -EIO;
960
        /* Flash BAR mapping must happen after e1000_sw_init
961
         * because it depends on mac_type */
962
        if ((adapter->hw.mac_type == e1000_ich8lan) &&
963
           (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
964
                flash_start = pci_resource_start(pdev, 1);
965
                flash_len = pci_resource_len(pdev, 1);
966
                adapter->hw.flash_address = ioremap(flash_start, flash_len);
967
                if (!adapter->hw.flash_address)
968
                        goto err_flashmap;
969
        }
970
 
971
        if (e1000_check_phy_reset_block(&adapter->hw))
972
                DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
973
 
974
        if (adapter->hw.mac_type >= e1000_82543) {
975
                netdev->features = NETIF_F_SG |
976
                                   NETIF_F_HW_CSUM |
977
                                   NETIF_F_HW_VLAN_TX |
978
                                   NETIF_F_HW_VLAN_RX |
979
                                   NETIF_F_HW_VLAN_FILTER;
980
                if (adapter->hw.mac_type == e1000_ich8lan)
981
                        netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
982
        }
983
 
984
        if ((adapter->hw.mac_type >= e1000_82544) &&
985
           (adapter->hw.mac_type != e1000_82547))
986
                netdev->features |= NETIF_F_TSO;
987
 
988
        if (adapter->hw.mac_type > e1000_82547_rev_2)
989
                netdev->features |= NETIF_F_TSO6;
990
        if (pci_using_dac)
991
                netdev->features |= NETIF_F_HIGHDMA;
992
 
993
        netdev->features |= NETIF_F_LLTX;
994
 
995
        adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
996
 
997
        /* initialize eeprom parameters */
998
 
999
        if (e1000_init_eeprom_params(&adapter->hw)) {
1000
                E1000_ERR("EEPROM initialization failed\n");
1001
                goto err_eeprom;
1002
        }
1003
 
1004
        /* before reading the EEPROM, reset the controller to
1005
         * put the device in a known good starting state */
1006
 
1007
        e1000_reset_hw(&adapter->hw);
1008
 
1009
        /* make sure the EEPROM is good */
1010
 
1011
        if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
1012
                DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1013
                goto err_eeprom;
1014
        }
1015
 
1016
        /* copy the MAC address out of the EEPROM */
1017
 
1018
        if (e1000_read_mac_addr(&adapter->hw))
1019
                DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1020
        memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
1021
        memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
1022
 
1023
        if (!is_valid_ether_addr(netdev->perm_addr)) {
1024
                DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1025
                goto err_eeprom;
1026
        }
1027
 
1028
        e1000_get_bus_info(&adapter->hw);
1029
 
1030
        init_timer(&adapter->tx_fifo_stall_timer);
1031
        adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1032
        adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
1033
 
1034
        init_timer(&adapter->watchdog_timer);
1035
        adapter->watchdog_timer.function = &e1000_watchdog;
1036
        adapter->watchdog_timer.data = (unsigned long) adapter;
1037
 
1038
        init_timer(&adapter->phy_info_timer);
1039
        adapter->phy_info_timer.function = &e1000_update_phy_info;
1040
        adapter->phy_info_timer.data = (unsigned long) adapter;
1041
 
1042
        INIT_WORK(&adapter->reset_task, e1000_reset_task);
1043
 
1044
        e1000_check_options(adapter);
1045
 
1046
        /* Initial Wake on LAN setting
1047
         * If APM wake is enabled in the EEPROM,
1048
         * enable the ACPI Magic Packet filter
1049
         */
1050
 
1051
        switch (adapter->hw.mac_type) {
1052
        case e1000_82542_rev2_0:
1053
        case e1000_82542_rev2_1:
1054
        case e1000_82543:
1055
                break;
1056
        case e1000_82544:
1057
                e1000_read_eeprom(&adapter->hw,
1058
                        EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1059
                eeprom_apme_mask = E1000_EEPROM_82544_APM;
1060
                break;
1061
        case e1000_ich8lan:
1062
                e1000_read_eeprom(&adapter->hw,
1063
                        EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1064
                eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1065
                break;
1066
        case e1000_82546:
1067
        case e1000_82546_rev_3:
1068
        case e1000_82571:
1069
        case e1000_80003es2lan:
1070
                if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
1071
                        e1000_read_eeprom(&adapter->hw,
1072
                                EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1073
                        break;
1074
                }
1075
                /* Fall Through */
1076
        default:
1077
                e1000_read_eeprom(&adapter->hw,
1078
                        EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1079
                break;
1080
        }
1081
        if (eeprom_data & eeprom_apme_mask)
1082
                adapter->eeprom_wol |= E1000_WUFC_MAG;
1083
 
1084
        /* now that we have the eeprom settings, apply the special cases
1085
         * where the eeprom may be wrong or the board simply won't support
1086
         * wake on lan on a particular port */
1087
        switch (pdev->device) {
1088
        case E1000_DEV_ID_82546GB_PCIE:
1089
                adapter->eeprom_wol = 0;
1090
                break;
1091
        case E1000_DEV_ID_82546EB_FIBER:
1092
        case E1000_DEV_ID_82546GB_FIBER:
1093
        case E1000_DEV_ID_82571EB_FIBER:
1094
                /* Wake events only supported on port A for dual fiber
1095
                 * regardless of eeprom setting */
1096
                if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
1097
                        adapter->eeprom_wol = 0;
1098
                break;
1099
        case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1100
        case E1000_DEV_ID_82571EB_QUAD_COPPER:
1101
        case E1000_DEV_ID_82571EB_QUAD_FIBER:
1102
        case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1103
        case E1000_DEV_ID_82571PT_QUAD_COPPER:
1104
                /* if quad port adapter, disable WoL on all but port A */
1105
                if (global_quad_port_a != 0)
1106
                        adapter->eeprom_wol = 0;
1107
                else
1108
                        adapter->quad_port_a = 1;
1109
                /* Reset for multiple quad port adapters */
1110
                if (++global_quad_port_a == 4)
1111
                        global_quad_port_a = 0;
1112
                break;
1113
        }
1114
 
1115
        /* initialize the wol settings based on the eeprom settings */
1116
        adapter->wol = adapter->eeprom_wol;
1117
 
1118
        /* print bus type/speed/width info */
1119
        {
1120
        struct e1000_hw *hw = &adapter->hw;
1121
        DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1122
                ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1123
                 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1124
                ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1125
                 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1126
                 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1127
                 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1128
                 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1129
                ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1130
                 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1131
                 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1132
                 "32-bit"));
1133
        }
1134
 
1135
        printk("%s\n", print_mac(mac, netdev->dev_addr));
1136
 
1137
        /* reset the hardware with the new settings */
1138
        e1000_reset(adapter);
1139
 
1140
        /* If the controller is 82573 and f/w is AMT, do not set
1141
         * DRV_LOAD until the interface is up.  For all other cases,
1142
         * let the f/w know that the h/w is now under the control
1143
         * of the driver. */
1144
        if (adapter->hw.mac_type != e1000_82573 ||
1145
            !e1000_check_mng_mode(&adapter->hw))
1146
                e1000_get_hw_control(adapter);
1147
 
1148
        /* tell the stack to leave us alone until e1000_open() is called */
1149
        netif_carrier_off(netdev);
1150
        netif_stop_queue(netdev);
1151
 
1152
        strcpy(netdev->name, "eth%d");
1153
        if ((err = register_netdev(netdev)))
1154
                goto err_register;
1155
 
1156
        DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1157
 
1158
        cards_found++;
1159
        return 0;
1160
 
1161
err_register:
1162
        e1000_release_hw_control(adapter);
1163
err_eeprom:
1164
        if (!e1000_check_phy_reset_block(&adapter->hw))
1165
                e1000_phy_hw_reset(&adapter->hw);
1166
 
1167
        if (adapter->hw.flash_address)
1168
                iounmap(adapter->hw.flash_address);
1169
err_flashmap:
1170
#ifdef CONFIG_E1000_NAPI
1171
        for (i = 0; i < adapter->num_rx_queues; i++)
1172
                dev_put(&adapter->polling_netdev[i]);
1173
#endif
1174
 
1175
        kfree(adapter->tx_ring);
1176
        kfree(adapter->rx_ring);
1177
#ifdef CONFIG_E1000_NAPI
1178
        kfree(adapter->polling_netdev);
1179
#endif
1180
err_sw_init:
1181
        iounmap(adapter->hw.hw_addr);
1182
err_ioremap:
1183
        free_netdev(netdev);
1184
err_alloc_etherdev:
1185
        pci_release_regions(pdev);
1186
err_pci_reg:
1187
err_dma:
1188
        pci_disable_device(pdev);
1189
        return err;
1190
}
1191
 
1192
/**
1193
 * e1000_remove - Device Removal Routine
1194
 * @pdev: PCI device information struct
1195
 *
1196
 * e1000_remove is called by the PCI subsystem to alert the driver
1197
 * that it should release a PCI device.  The could be caused by a
1198
 * Hot-Plug event, or because the driver is going to be removed from
1199
 * memory.
1200
 **/
1201
 
1202
static void __devexit
1203
e1000_remove(struct pci_dev *pdev)
1204
{
1205
        struct net_device *netdev = pci_get_drvdata(pdev);
1206
        struct e1000_adapter *adapter = netdev_priv(netdev);
1207
#ifdef CONFIG_E1000_NAPI
1208
        int i;
1209
#endif
1210
 
1211
        cancel_work_sync(&adapter->reset_task);
1212
 
1213
        e1000_release_manageability(adapter);
1214
 
1215
        /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1216
         * would have already happened in close and is redundant. */
1217
        e1000_release_hw_control(adapter);
1218
 
1219
#ifdef CONFIG_E1000_NAPI
1220
        for (i = 0; i < adapter->num_rx_queues; i++)
1221
                dev_put(&adapter->polling_netdev[i]);
1222
#endif
1223
 
1224
        unregister_netdev(netdev);
1225
 
1226
        if (!e1000_check_phy_reset_block(&adapter->hw))
1227
                e1000_phy_hw_reset(&adapter->hw);
1228
 
1229
        kfree(adapter->tx_ring);
1230
        kfree(adapter->rx_ring);
1231
#ifdef CONFIG_E1000_NAPI
1232
        kfree(adapter->polling_netdev);
1233
#endif
1234
 
1235
        iounmap(adapter->hw.hw_addr);
1236
        if (adapter->hw.flash_address)
1237
                iounmap(adapter->hw.flash_address);
1238
        pci_release_regions(pdev);
1239
 
1240
        free_netdev(netdev);
1241
 
1242
        pci_disable_device(pdev);
1243
}
1244
 
1245
/**
1246
 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1247
 * @adapter: board private structure to initialize
1248
 *
1249
 * e1000_sw_init initializes the Adapter private data structure.
1250
 * Fields are initialized based on PCI device information and
1251
 * OS network device settings (MTU size).
1252
 **/
1253
 
1254
static int __devinit
1255
e1000_sw_init(struct e1000_adapter *adapter)
1256
{
1257
        struct e1000_hw *hw = &adapter->hw;
1258
        struct net_device *netdev = adapter->netdev;
1259
        struct pci_dev *pdev = adapter->pdev;
1260
#ifdef CONFIG_E1000_NAPI
1261
        int i;
1262
#endif
1263
 
1264
        /* PCI config space info */
1265
 
1266
        hw->vendor_id = pdev->vendor;
1267
        hw->device_id = pdev->device;
1268
        hw->subsystem_vendor_id = pdev->subsystem_vendor;
1269
        hw->subsystem_id = pdev->subsystem_device;
1270
        hw->revision_id = pdev->revision;
1271
 
1272
        pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1273
 
1274
        adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1275
        adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1276
        hw->max_frame_size = netdev->mtu +
1277
                             ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1278
        hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1279
 
1280
        /* identify the MAC */
1281
 
1282
        if (e1000_set_mac_type(hw)) {
1283
                DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1284
                return -EIO;
1285
        }
1286
 
1287
        switch (hw->mac_type) {
1288
        default:
1289
                break;
1290
        case e1000_82541:
1291
        case e1000_82547:
1292
        case e1000_82541_rev_2:
1293
        case e1000_82547_rev_2:
1294
                hw->phy_init_script = 1;
1295
                break;
1296
        }
1297
 
1298
        e1000_set_media_type(hw);
1299
 
1300
        hw->wait_autoneg_complete = FALSE;
1301
        hw->tbi_compatibility_en = TRUE;
1302
        hw->adaptive_ifs = TRUE;
1303
 
1304
        /* Copper options */
1305
 
1306
        if (hw->media_type == e1000_media_type_copper) {
1307
                hw->mdix = AUTO_ALL_MODES;
1308
                hw->disable_polarity_correction = FALSE;
1309
                hw->master_slave = E1000_MASTER_SLAVE;
1310
        }
1311
 
1312
        adapter->num_tx_queues = 1;
1313
        adapter->num_rx_queues = 1;
1314
 
1315
        if (e1000_alloc_queues(adapter)) {
1316
                DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1317
                return -ENOMEM;
1318
        }
1319
 
1320
#ifdef CONFIG_E1000_NAPI
1321
        for (i = 0; i < adapter->num_rx_queues; i++) {
1322
                adapter->polling_netdev[i].priv = adapter;
1323
                dev_hold(&adapter->polling_netdev[i]);
1324
                set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1325
        }
1326
        spin_lock_init(&adapter->tx_queue_lock);
1327
#endif
1328
 
1329
        /* Explicitly disable IRQ since the NIC can be in any state. */
1330
        atomic_set(&adapter->irq_sem, 0);
1331
        e1000_irq_disable(adapter);
1332
 
1333
        spin_lock_init(&adapter->stats_lock);
1334
 
1335
        set_bit(__E1000_DOWN, &adapter->flags);
1336
 
1337
        return 0;
1338
}
1339
 
1340
/**
1341
 * e1000_alloc_queues - Allocate memory for all rings
1342
 * @adapter: board private structure to initialize
1343
 *
1344
 * We allocate one ring per queue at run-time since we don't know the
1345
 * number of queues at compile-time.  The polling_netdev array is
1346
 * intended for Multiqueue, but should work fine with a single queue.
1347
 **/
1348
 
1349
static int __devinit
1350
e1000_alloc_queues(struct e1000_adapter *adapter)
1351
{
1352
        adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1353
                                   sizeof(struct e1000_tx_ring), GFP_KERNEL);
1354
        if (!adapter->tx_ring)
1355
                return -ENOMEM;
1356
 
1357
        adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1358
                                   sizeof(struct e1000_rx_ring), GFP_KERNEL);
1359
        if (!adapter->rx_ring) {
1360
                kfree(adapter->tx_ring);
1361
                return -ENOMEM;
1362
        }
1363
 
1364
#ifdef CONFIG_E1000_NAPI
1365
        adapter->polling_netdev = kcalloc(adapter->num_rx_queues,
1366
                                          sizeof(struct net_device),
1367
                                          GFP_KERNEL);
1368
        if (!adapter->polling_netdev) {
1369
                kfree(adapter->tx_ring);
1370
                kfree(adapter->rx_ring);
1371
                return -ENOMEM;
1372
        }
1373
#endif
1374
 
1375
        return E1000_SUCCESS;
1376
}
1377
 
1378
/**
1379
 * e1000_open - Called when a network interface is made active
1380
 * @netdev: network interface device structure
1381
 *
1382
 * Returns 0 on success, negative value on failure
1383
 *
1384
 * The open entry point is called when a network interface is made
1385
 * active by the system (IFF_UP).  At this point all resources needed
1386
 * for transmit and receive operations are allocated, the interrupt
1387
 * handler is registered with the OS, the watchdog timer is started,
1388
 * and the stack is notified that the interface is ready.
1389
 **/
1390
 
1391
static int
1392
e1000_open(struct net_device *netdev)
1393
{
1394
        struct e1000_adapter *adapter = netdev_priv(netdev);
1395
        int err;
1396
 
1397
        /* disallow open during test */
1398
        if (test_bit(__E1000_TESTING, &adapter->flags))
1399
                return -EBUSY;
1400
 
1401
        /* allocate transmit descriptors */
1402
        err = e1000_setup_all_tx_resources(adapter);
1403
        if (err)
1404
                goto err_setup_tx;
1405
 
1406
        /* allocate receive descriptors */
1407
        err = e1000_setup_all_rx_resources(adapter);
1408
        if (err)
1409
                goto err_setup_rx;
1410
 
1411
        e1000_power_up_phy(adapter);
1412
 
1413
        adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1414
        if ((adapter->hw.mng_cookie.status &
1415
                          E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1416
                e1000_update_mng_vlan(adapter);
1417
        }
1418
 
1419
        /* If AMT is enabled, let the firmware know that the network
1420
         * interface is now open */
1421
        if (adapter->hw.mac_type == e1000_82573 &&
1422
            e1000_check_mng_mode(&adapter->hw))
1423
                e1000_get_hw_control(adapter);
1424
 
1425
        /* before we allocate an interrupt, we must be ready to handle it.
1426
         * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1427
         * as soon as we call pci_request_irq, so we have to setup our
1428
         * clean_rx handler before we do so.  */
1429
        e1000_configure(adapter);
1430
 
1431
        err = e1000_request_irq(adapter);
1432
        if (err)
1433
                goto err_req_irq;
1434
 
1435
        /* From here on the code is the same as e1000_up() */
1436
        clear_bit(__E1000_DOWN, &adapter->flags);
1437
 
1438
#ifdef CONFIG_E1000_NAPI
1439
        napi_enable(&adapter->napi);
1440
#endif
1441
 
1442
        e1000_irq_enable(adapter);
1443
 
1444
        /* fire a link status change interrupt to start the watchdog */
1445
        E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
1446
 
1447
        return E1000_SUCCESS;
1448
 
1449
err_req_irq:
1450
        e1000_release_hw_control(adapter);
1451
        e1000_power_down_phy(adapter);
1452
        e1000_free_all_rx_resources(adapter);
1453
err_setup_rx:
1454
        e1000_free_all_tx_resources(adapter);
1455
err_setup_tx:
1456
        e1000_reset(adapter);
1457
 
1458
        return err;
1459
}
1460
 
1461
/**
1462
 * e1000_close - Disables a network interface
1463
 * @netdev: network interface device structure
1464
 *
1465
 * Returns 0, this is not allowed to fail
1466
 *
1467
 * The close entry point is called when an interface is de-activated
1468
 * by the OS.  The hardware is still under the drivers control, but
1469
 * needs to be disabled.  A global MAC reset is issued to stop the
1470
 * hardware, and all transmit and receive resources are freed.
1471
 **/
1472
 
1473
static int
1474
e1000_close(struct net_device *netdev)
1475
{
1476
        struct e1000_adapter *adapter = netdev_priv(netdev);
1477
 
1478
        WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1479
        e1000_down(adapter);
1480
        e1000_power_down_phy(adapter);
1481
        e1000_free_irq(adapter);
1482
 
1483
        e1000_free_all_tx_resources(adapter);
1484
        e1000_free_all_rx_resources(adapter);
1485
 
1486
        /* kill manageability vlan ID if supported, but not if a vlan with
1487
         * the same ID is registered on the host OS (let 8021q kill it) */
1488
        if ((adapter->hw.mng_cookie.status &
1489
                          E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1490
             !(adapter->vlgrp &&
1491
               vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1492
                e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1493
        }
1494
 
1495
        /* If AMT is enabled, let the firmware know that the network
1496
         * interface is now closed */
1497
        if (adapter->hw.mac_type == e1000_82573 &&
1498
            e1000_check_mng_mode(&adapter->hw))
1499
                e1000_release_hw_control(adapter);
1500
 
1501
        return 0;
1502
}
1503
 
1504
/**
1505
 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1506
 * @adapter: address of board private structure
1507
 * @start: address of beginning of memory
1508
 * @len: length of memory
1509
 **/
1510
static boolean_t
1511
e1000_check_64k_bound(struct e1000_adapter *adapter,
1512
                      void *start, unsigned long len)
1513
{
1514
        unsigned long begin = (unsigned long) start;
1515
        unsigned long end = begin + len;
1516
 
1517
        /* First rev 82545 and 82546 need to not allow any memory
1518
         * write location to cross 64k boundary due to errata 23 */
1519
        if (adapter->hw.mac_type == e1000_82545 ||
1520
            adapter->hw.mac_type == e1000_82546) {
1521
                return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1522
        }
1523
 
1524
        return TRUE;
1525
}
1526
 
1527
/**
1528
 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1529
 * @adapter: board private structure
1530
 * @txdr:    tx descriptor ring (for a specific queue) to setup
1531
 *
1532
 * Return 0 on success, negative on failure
1533
 **/
1534
 
1535
static int
1536
e1000_setup_tx_resources(struct e1000_adapter *adapter,
1537
                         struct e1000_tx_ring *txdr)
1538
{
1539
        struct pci_dev *pdev = adapter->pdev;
1540
        int size;
1541
 
1542
        size = sizeof(struct e1000_buffer) * txdr->count;
1543
        txdr->buffer_info = vmalloc(size);
1544
        if (!txdr->buffer_info) {
1545
                DPRINTK(PROBE, ERR,
1546
                "Unable to allocate memory for the transmit descriptor ring\n");
1547
                return -ENOMEM;
1548
        }
1549
        memset(txdr->buffer_info, 0, size);
1550
 
1551
        /* round up to nearest 4K */
1552
 
1553
        txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1554
        txdr->size = ALIGN(txdr->size, 4096);
1555
 
1556
        txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1557
        if (!txdr->desc) {
1558
setup_tx_desc_die:
1559
                vfree(txdr->buffer_info);
1560
                DPRINTK(PROBE, ERR,
1561
                "Unable to allocate memory for the transmit descriptor ring\n");
1562
                return -ENOMEM;
1563
        }
1564
 
1565
        /* Fix for errata 23, can't cross 64kB boundary */
1566
        if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1567
                void *olddesc = txdr->desc;
1568
                dma_addr_t olddma = txdr->dma;
1569
                DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1570
                                     "at %p\n", txdr->size, txdr->desc);
1571
                /* Try again, without freeing the previous */
1572
                txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1573
                /* Failed allocation, critical failure */
1574
                if (!txdr->desc) {
1575
                        pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1576
                        goto setup_tx_desc_die;
1577
                }
1578
 
1579
                if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1580
                        /* give up */
1581
                        pci_free_consistent(pdev, txdr->size, txdr->desc,
1582
                                            txdr->dma);
1583
                        pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1584
                        DPRINTK(PROBE, ERR,
1585
                                "Unable to allocate aligned memory "
1586
                                "for the transmit descriptor ring\n");
1587
                        vfree(txdr->buffer_info);
1588
                        return -ENOMEM;
1589
                } else {
1590
                        /* Free old allocation, new allocation was successful */
1591
                        pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1592
                }
1593
        }
1594
        memset(txdr->desc, 0, txdr->size);
1595
 
1596
        txdr->next_to_use = 0;
1597
        txdr->next_to_clean = 0;
1598
        spin_lock_init(&txdr->tx_lock);
1599
 
1600
        return 0;
1601
}
1602
 
1603
/**
1604
 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1605
 *                                (Descriptors) for all queues
1606
 * @adapter: board private structure
1607
 *
1608
 * Return 0 on success, negative on failure
1609
 **/
1610
 
1611
int
1612
e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1613
{
1614
        int i, err = 0;
1615
 
1616
        for (i = 0; i < adapter->num_tx_queues; i++) {
1617
                err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1618
                if (err) {
1619
                        DPRINTK(PROBE, ERR,
1620
                                "Allocation for Tx Queue %u failed\n", i);
1621
                        for (i-- ; i >= 0; i--)
1622
                                e1000_free_tx_resources(adapter,
1623
                                                        &adapter->tx_ring[i]);
1624
                        break;
1625
                }
1626
        }
1627
 
1628
        return err;
1629
}
1630
 
1631
/**
1632
 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1633
 * @adapter: board private structure
1634
 *
1635
 * Configure the Tx unit of the MAC after a reset.
1636
 **/
1637
 
1638
static void
1639
e1000_configure_tx(struct e1000_adapter *adapter)
1640
{
1641
        uint64_t tdba;
1642
        struct e1000_hw *hw = &adapter->hw;
1643
        uint32_t tdlen, tctl, tipg, tarc;
1644
        uint32_t ipgr1, ipgr2;
1645
 
1646
        /* Setup the HW Tx Head and Tail descriptor pointers */
1647
 
1648
        switch (adapter->num_tx_queues) {
1649
        case 1:
1650
        default:
1651
                tdba = adapter->tx_ring[0].dma;
1652
                tdlen = adapter->tx_ring[0].count *
1653
                        sizeof(struct e1000_tx_desc);
1654
                E1000_WRITE_REG(hw, TDLEN, tdlen);
1655
                E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1656
                E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1657
                E1000_WRITE_REG(hw, TDT, 0);
1658
                E1000_WRITE_REG(hw, TDH, 0);
1659
                adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1660
                adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1661
                break;
1662
        }
1663
 
1664
        /* Set the default values for the Tx Inter Packet Gap timer */
1665
        if (adapter->hw.mac_type <= e1000_82547_rev_2 &&
1666
            (hw->media_type == e1000_media_type_fiber ||
1667
             hw->media_type == e1000_media_type_internal_serdes))
1668
                tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1669
        else
1670
                tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1671
 
1672
        switch (hw->mac_type) {
1673
        case e1000_82542_rev2_0:
1674
        case e1000_82542_rev2_1:
1675
                tipg = DEFAULT_82542_TIPG_IPGT;
1676
                ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1677
                ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1678
                break;
1679
        case e1000_80003es2lan:
1680
                ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1681
                ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1682
                break;
1683
        default:
1684
                ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1685
                ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1686
                break;
1687
        }
1688
        tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1689
        tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1690
        E1000_WRITE_REG(hw, TIPG, tipg);
1691
 
1692
        /* Set the Tx Interrupt Delay register */
1693
 
1694
        E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1695
        if (hw->mac_type >= e1000_82540)
1696
                E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1697
 
1698
        /* Program the Transmit Control Register */
1699
 
1700
        tctl = E1000_READ_REG(hw, TCTL);
1701
        tctl &= ~E1000_TCTL_CT;
1702
        tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1703
                (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1704
 
1705
        if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1706
                tarc = E1000_READ_REG(hw, TARC0);
1707
                /* set the speed mode bit, we'll clear it if we're not at
1708
                 * gigabit link later */
1709
                tarc |= (1 << 21);
1710
                E1000_WRITE_REG(hw, TARC0, tarc);
1711
        } else if (hw->mac_type == e1000_80003es2lan) {
1712
                tarc = E1000_READ_REG(hw, TARC0);
1713
                tarc |= 1;
1714
                E1000_WRITE_REG(hw, TARC0, tarc);
1715
                tarc = E1000_READ_REG(hw, TARC1);
1716
                tarc |= 1;
1717
                E1000_WRITE_REG(hw, TARC1, tarc);
1718
        }
1719
 
1720
        e1000_config_collision_dist(hw);
1721
 
1722
        /* Setup Transmit Descriptor Settings for eop descriptor */
1723
        adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1724
 
1725
        /* only set IDE if we are delaying interrupts using the timers */
1726
        if (adapter->tx_int_delay)
1727
                adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1728
 
1729
        if (hw->mac_type < e1000_82543)
1730
                adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1731
        else
1732
                adapter->txd_cmd |= E1000_TXD_CMD_RS;
1733
 
1734
        /* Cache if we're 82544 running in PCI-X because we'll
1735
         * need this to apply a workaround later in the send path. */
1736
        if (hw->mac_type == e1000_82544 &&
1737
            hw->bus_type == e1000_bus_type_pcix)
1738
                adapter->pcix_82544 = 1;
1739
 
1740
        E1000_WRITE_REG(hw, TCTL, tctl);
1741
 
1742
}
1743
 
1744
/**
1745
 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1746
 * @adapter: board private structure
1747
 * @rxdr:    rx descriptor ring (for a specific queue) to setup
1748
 *
1749
 * Returns 0 on success, negative on failure
1750
 **/
1751
 
1752
static int
1753
e1000_setup_rx_resources(struct e1000_adapter *adapter,
1754
                         struct e1000_rx_ring *rxdr)
1755
{
1756
        struct pci_dev *pdev = adapter->pdev;
1757
        int size, desc_len;
1758
 
1759
        size = sizeof(struct e1000_buffer) * rxdr->count;
1760
        rxdr->buffer_info = vmalloc(size);
1761
        if (!rxdr->buffer_info) {
1762
                DPRINTK(PROBE, ERR,
1763
                "Unable to allocate memory for the receive descriptor ring\n");
1764
                return -ENOMEM;
1765
        }
1766
        memset(rxdr->buffer_info, 0, size);
1767
 
1768
        rxdr->ps_page = kcalloc(rxdr->count, sizeof(struct e1000_ps_page),
1769
                                GFP_KERNEL);
1770
        if (!rxdr->ps_page) {
1771
                vfree(rxdr->buffer_info);
1772
                DPRINTK(PROBE, ERR,
1773
                "Unable to allocate memory for the receive descriptor ring\n");
1774
                return -ENOMEM;
1775
        }
1776
 
1777
        rxdr->ps_page_dma = kcalloc(rxdr->count,
1778
                                    sizeof(struct e1000_ps_page_dma),
1779
                                    GFP_KERNEL);
1780
        if (!rxdr->ps_page_dma) {
1781
                vfree(rxdr->buffer_info);
1782
                kfree(rxdr->ps_page);
1783
                DPRINTK(PROBE, ERR,
1784
                "Unable to allocate memory for the receive descriptor ring\n");
1785
                return -ENOMEM;
1786
        }
1787
 
1788
        if (adapter->hw.mac_type <= e1000_82547_rev_2)
1789
                desc_len = sizeof(struct e1000_rx_desc);
1790
        else
1791
                desc_len = sizeof(union e1000_rx_desc_packet_split);
1792
 
1793
        /* Round up to nearest 4K */
1794
 
1795
        rxdr->size = rxdr->count * desc_len;
1796
        rxdr->size = ALIGN(rxdr->size, 4096);
1797
 
1798
        rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1799
 
1800
        if (!rxdr->desc) {
1801
                DPRINTK(PROBE, ERR,
1802
                "Unable to allocate memory for the receive descriptor ring\n");
1803
setup_rx_desc_die:
1804
                vfree(rxdr->buffer_info);
1805
                kfree(rxdr->ps_page);
1806
                kfree(rxdr->ps_page_dma);
1807
                return -ENOMEM;
1808
        }
1809
 
1810
        /* Fix for errata 23, can't cross 64kB boundary */
1811
        if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1812
                void *olddesc = rxdr->desc;
1813
                dma_addr_t olddma = rxdr->dma;
1814
                DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1815
                                     "at %p\n", rxdr->size, rxdr->desc);
1816
                /* Try again, without freeing the previous */
1817
                rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1818
                /* Failed allocation, critical failure */
1819
                if (!rxdr->desc) {
1820
                        pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1821
                        DPRINTK(PROBE, ERR,
1822
                                "Unable to allocate memory "
1823
                                "for the receive descriptor ring\n");
1824
                        goto setup_rx_desc_die;
1825
                }
1826
 
1827
                if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1828
                        /* give up */
1829
                        pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1830
                                            rxdr->dma);
1831
                        pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1832
                        DPRINTK(PROBE, ERR,
1833
                                "Unable to allocate aligned memory "
1834
                                "for the receive descriptor ring\n");
1835
                        goto setup_rx_desc_die;
1836
                } else {
1837
                        /* Free old allocation, new allocation was successful */
1838
                        pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1839
                }
1840
        }
1841
        memset(rxdr->desc, 0, rxdr->size);
1842
 
1843
        rxdr->next_to_clean = 0;
1844
        rxdr->next_to_use = 0;
1845
 
1846
        return 0;
1847
}
1848
 
1849
/**
1850
 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1851
 *                                (Descriptors) for all queues
1852
 * @adapter: board private structure
1853
 *
1854
 * Return 0 on success, negative on failure
1855
 **/
1856
 
1857
int
1858
e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1859
{
1860
        int i, err = 0;
1861
 
1862
        for (i = 0; i < adapter->num_rx_queues; i++) {
1863
                err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1864
                if (err) {
1865
                        DPRINTK(PROBE, ERR,
1866
                                "Allocation for Rx Queue %u failed\n", i);
1867
                        for (i-- ; i >= 0; i--)
1868
                                e1000_free_rx_resources(adapter,
1869
                                                        &adapter->rx_ring[i]);
1870
                        break;
1871
                }
1872
        }
1873
 
1874
        return err;
1875
}
1876
 
1877
/**
1878
 * e1000_setup_rctl - configure the receive control registers
1879
 * @adapter: Board private structure
1880
 **/
1881
#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1882
                        (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1883
static void
1884
e1000_setup_rctl(struct e1000_adapter *adapter)
1885
{
1886
        uint32_t rctl, rfctl;
1887
        uint32_t psrctl = 0;
1888
#ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1889
        uint32_t pages = 0;
1890
#endif
1891
 
1892
        rctl = E1000_READ_REG(&adapter->hw, RCTL);
1893
 
1894
        rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1895
 
1896
        rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1897
                E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1898
                (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1899
 
1900
        if (adapter->hw.tbi_compatibility_on == 1)
1901
                rctl |= E1000_RCTL_SBP;
1902
        else
1903
                rctl &= ~E1000_RCTL_SBP;
1904
 
1905
        if (adapter->netdev->mtu <= ETH_DATA_LEN)
1906
                rctl &= ~E1000_RCTL_LPE;
1907
        else
1908
                rctl |= E1000_RCTL_LPE;
1909
 
1910
        /* Setup buffer sizes */
1911
        rctl &= ~E1000_RCTL_SZ_4096;
1912
        rctl |= E1000_RCTL_BSEX;
1913
        switch (adapter->rx_buffer_len) {
1914
                case E1000_RXBUFFER_256:
1915
                        rctl |= E1000_RCTL_SZ_256;
1916
                        rctl &= ~E1000_RCTL_BSEX;
1917
                        break;
1918
                case E1000_RXBUFFER_512:
1919
                        rctl |= E1000_RCTL_SZ_512;
1920
                        rctl &= ~E1000_RCTL_BSEX;
1921
                        break;
1922
                case E1000_RXBUFFER_1024:
1923
                        rctl |= E1000_RCTL_SZ_1024;
1924
                        rctl &= ~E1000_RCTL_BSEX;
1925
                        break;
1926
                case E1000_RXBUFFER_2048:
1927
                default:
1928
                        rctl |= E1000_RCTL_SZ_2048;
1929
                        rctl &= ~E1000_RCTL_BSEX;
1930
                        break;
1931
                case E1000_RXBUFFER_4096:
1932
                        rctl |= E1000_RCTL_SZ_4096;
1933
                        break;
1934
                case E1000_RXBUFFER_8192:
1935
                        rctl |= E1000_RCTL_SZ_8192;
1936
                        break;
1937
                case E1000_RXBUFFER_16384:
1938
                        rctl |= E1000_RCTL_SZ_16384;
1939
                        break;
1940
        }
1941
 
1942
#ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1943
        /* 82571 and greater support packet-split where the protocol
1944
         * header is placed in skb->data and the packet data is
1945
         * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1946
         * In the case of a non-split, skb->data is linearly filled,
1947
         * followed by the page buffers.  Therefore, skb->data is
1948
         * sized to hold the largest protocol header.
1949
         */
1950
        /* allocations using alloc_page take too long for regular MTU
1951
         * so only enable packet split for jumbo frames */
1952
        pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1953
        if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) &&
1954
            PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
1955
                adapter->rx_ps_pages = pages;
1956
        else
1957
                adapter->rx_ps_pages = 0;
1958
#endif
1959
        if (adapter->rx_ps_pages) {
1960
                /* Configure extra packet-split registers */
1961
                rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1962
                rfctl |= E1000_RFCTL_EXTEN;
1963
                /* disable packet split support for IPv6 extension headers,
1964
                 * because some malformed IPv6 headers can hang the RX */
1965
                rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1966
                          E1000_RFCTL_NEW_IPV6_EXT_DIS);
1967
 
1968
                E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1969
 
1970
                rctl |= E1000_RCTL_DTYP_PS;
1971
 
1972
                psrctl |= adapter->rx_ps_bsize0 >>
1973
                        E1000_PSRCTL_BSIZE0_SHIFT;
1974
 
1975
                switch (adapter->rx_ps_pages) {
1976
                case 3:
1977
                        psrctl |= PAGE_SIZE <<
1978
                                E1000_PSRCTL_BSIZE3_SHIFT;
1979
                case 2:
1980
                        psrctl |= PAGE_SIZE <<
1981
                                E1000_PSRCTL_BSIZE2_SHIFT;
1982
                case 1:
1983
                        psrctl |= PAGE_SIZE >>
1984
                                E1000_PSRCTL_BSIZE1_SHIFT;
1985
                        break;
1986
                }
1987
 
1988
                E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1989
        }
1990
 
1991
        E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1992
}
1993
 
1994
/**
1995
 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1996
 * @adapter: board private structure
1997
 *
1998
 * Configure the Rx unit of the MAC after a reset.
1999
 **/
2000
 
2001
static void
2002
e1000_configure_rx(struct e1000_adapter *adapter)
2003
{
2004
        uint64_t rdba;
2005
        struct e1000_hw *hw = &adapter->hw;
2006
        uint32_t rdlen, rctl, rxcsum, ctrl_ext;
2007
 
2008
        if (adapter->rx_ps_pages) {
2009
                /* this is a 32 byte descriptor */
2010
                rdlen = adapter->rx_ring[0].count *
2011
                        sizeof(union e1000_rx_desc_packet_split);
2012
                adapter->clean_rx = e1000_clean_rx_irq_ps;
2013
                adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2014
        } else {
2015
                rdlen = adapter->rx_ring[0].count *
2016
                        sizeof(struct e1000_rx_desc);
2017
                adapter->clean_rx = e1000_clean_rx_irq;
2018
                adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2019
        }
2020
 
2021
        /* disable receives while setting up the descriptors */
2022
        rctl = E1000_READ_REG(hw, RCTL);
2023
        E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
2024
 
2025
        /* set the Receive Delay Timer Register */
2026
        E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
2027
 
2028
        if (hw->mac_type >= e1000_82540) {
2029
                E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
2030
                if (adapter->itr_setting != 0)
2031
                        E1000_WRITE_REG(hw, ITR,
2032
                                1000000000 / (adapter->itr * 256));
2033
        }
2034
 
2035
        if (hw->mac_type >= e1000_82571) {
2036
                ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2037
                /* Reset delay timers after every interrupt */
2038
                ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2039
#ifdef CONFIG_E1000_NAPI
2040
                /* Auto-Mask interrupts upon ICR access */
2041
                ctrl_ext |= E1000_CTRL_EXT_IAME;
2042
                E1000_WRITE_REG(hw, IAM, 0xffffffff);
2043
#endif
2044
                E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2045
                E1000_WRITE_FLUSH(hw);
2046
        }
2047
 
2048
        /* Setup the HW Rx Head and Tail Descriptor Pointers and
2049
         * the Base and Length of the Rx Descriptor Ring */
2050
        switch (adapter->num_rx_queues) {
2051
        case 1:
2052
        default:
2053
                rdba = adapter->rx_ring[0].dma;
2054
                E1000_WRITE_REG(hw, RDLEN, rdlen);
2055
                E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
2056
                E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
2057
                E1000_WRITE_REG(hw, RDT, 0);
2058
                E1000_WRITE_REG(hw, RDH, 0);
2059
                adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
2060
                adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
2061
                break;
2062
        }
2063
 
2064
        /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2065
        if (hw->mac_type >= e1000_82543) {
2066
                rxcsum = E1000_READ_REG(hw, RXCSUM);
2067
                if (adapter->rx_csum == TRUE) {
2068
                        rxcsum |= E1000_RXCSUM_TUOFL;
2069
 
2070
                        /* Enable 82571 IPv4 payload checksum for UDP fragments
2071
                         * Must be used in conjunction with packet-split. */
2072
                        if ((hw->mac_type >= e1000_82571) &&
2073
                            (adapter->rx_ps_pages)) {
2074
                                rxcsum |= E1000_RXCSUM_IPPCSE;
2075
                        }
2076
                } else {
2077
                        rxcsum &= ~E1000_RXCSUM_TUOFL;
2078
                        /* don't need to clear IPPCSE as it defaults to 0 */
2079
                }
2080
                E1000_WRITE_REG(hw, RXCSUM, rxcsum);
2081
        }
2082
 
2083
        /* enable early receives on 82573, only takes effect if using > 2048
2084
         * byte total frame size.  for example only for jumbo frames */
2085
#define E1000_ERT_2048 0x100
2086
        if (hw->mac_type == e1000_82573)
2087
                E1000_WRITE_REG(hw, ERT, E1000_ERT_2048);
2088
 
2089
        /* Enable Receives */
2090
        E1000_WRITE_REG(hw, RCTL, rctl);
2091
}
2092
 
2093
/**
2094
 * e1000_free_tx_resources - Free Tx Resources per Queue
2095
 * @adapter: board private structure
2096
 * @tx_ring: Tx descriptor ring for a specific queue
2097
 *
2098
 * Free all transmit software resources
2099
 **/
2100
 
2101
static void
2102
e1000_free_tx_resources(struct e1000_adapter *adapter,
2103
                        struct e1000_tx_ring *tx_ring)
2104
{
2105
        struct pci_dev *pdev = adapter->pdev;
2106
 
2107
        e1000_clean_tx_ring(adapter, tx_ring);
2108
 
2109
        vfree(tx_ring->buffer_info);
2110
        tx_ring->buffer_info = NULL;
2111
 
2112
        pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2113
 
2114
        tx_ring->desc = NULL;
2115
}
2116
 
2117
/**
2118
 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2119
 * @adapter: board private structure
2120
 *
2121
 * Free all transmit software resources
2122
 **/
2123
 
2124
void
2125
e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2126
{
2127
        int i;
2128
 
2129
        for (i = 0; i < adapter->num_tx_queues; i++)
2130
                e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2131
}
2132
 
2133
static void
2134
e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2135
                        struct e1000_buffer *buffer_info)
2136
{
2137
        if (buffer_info->dma) {
2138
                pci_unmap_page(adapter->pdev,
2139
                                buffer_info->dma,
2140
                                buffer_info->length,
2141
                                PCI_DMA_TODEVICE);
2142
                buffer_info->dma = 0;
2143
        }
2144
        if (buffer_info->skb) {
2145
                dev_kfree_skb_any(buffer_info->skb);
2146
                buffer_info->skb = NULL;
2147
        }
2148
        /* buffer_info must be completely set up in the transmit path */
2149
}
2150
 
2151
/**
2152
 * e1000_clean_tx_ring - Free Tx Buffers
2153
 * @adapter: board private structure
2154
 * @tx_ring: ring to be cleaned
2155
 **/
2156
 
2157
static void
2158
e1000_clean_tx_ring(struct e1000_adapter *adapter,
2159
                    struct e1000_tx_ring *tx_ring)
2160
{
2161
        struct e1000_buffer *buffer_info;
2162
        unsigned long size;
2163
        unsigned int i;
2164
 
2165
        /* Free all the Tx ring sk_buffs */
2166
 
2167
        for (i = 0; i < tx_ring->count; i++) {
2168
                buffer_info = &tx_ring->buffer_info[i];
2169
                e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2170
        }
2171
 
2172
        size = sizeof(struct e1000_buffer) * tx_ring->count;
2173
        memset(tx_ring->buffer_info, 0, size);
2174
 
2175
        /* Zero out the descriptor ring */
2176
 
2177
        memset(tx_ring->desc, 0, tx_ring->size);
2178
 
2179
        tx_ring->next_to_use = 0;
2180
        tx_ring->next_to_clean = 0;
2181
        tx_ring->last_tx_tso = 0;
2182
 
2183
        writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2184
        writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2185
}
2186
 
2187
/**
2188
 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2189
 * @adapter: board private structure
2190
 **/
2191
 
2192
static void
2193
e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2194
{
2195
        int i;
2196
 
2197
        for (i = 0; i < adapter->num_tx_queues; i++)
2198
                e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2199
}
2200
 
2201
/**
2202
 * e1000_free_rx_resources - Free Rx Resources
2203
 * @adapter: board private structure
2204
 * @rx_ring: ring to clean the resources from
2205
 *
2206
 * Free all receive software resources
2207
 **/
2208
 
2209
static void
2210
e1000_free_rx_resources(struct e1000_adapter *adapter,
2211
                        struct e1000_rx_ring *rx_ring)
2212
{
2213
        struct pci_dev *pdev = adapter->pdev;
2214
 
2215
        e1000_clean_rx_ring(adapter, rx_ring);
2216
 
2217
        vfree(rx_ring->buffer_info);
2218
        rx_ring->buffer_info = NULL;
2219
        kfree(rx_ring->ps_page);
2220
        rx_ring->ps_page = NULL;
2221
        kfree(rx_ring->ps_page_dma);
2222
        rx_ring->ps_page_dma = NULL;
2223
 
2224
        pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2225
 
2226
        rx_ring->desc = NULL;
2227
}
2228
 
2229
/**
2230
 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2231
 * @adapter: board private structure
2232
 *
2233
 * Free all receive software resources
2234
 **/
2235
 
2236
void
2237
e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2238
{
2239
        int i;
2240
 
2241
        for (i = 0; i < adapter->num_rx_queues; i++)
2242
                e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2243
}
2244
 
2245
/**
2246
 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2247
 * @adapter: board private structure
2248
 * @rx_ring: ring to free buffers from
2249
 **/
2250
 
2251
static void
2252
e1000_clean_rx_ring(struct e1000_adapter *adapter,
2253
                    struct e1000_rx_ring *rx_ring)
2254
{
2255
        struct e1000_buffer *buffer_info;
2256
        struct e1000_ps_page *ps_page;
2257
        struct e1000_ps_page_dma *ps_page_dma;
2258
        struct pci_dev *pdev = adapter->pdev;
2259
        unsigned long size;
2260
        unsigned int i, j;
2261
 
2262
        /* Free all the Rx ring sk_buffs */
2263
        for (i = 0; i < rx_ring->count; i++) {
2264
                buffer_info = &rx_ring->buffer_info[i];
2265
                if (buffer_info->skb) {
2266
                        pci_unmap_single(pdev,
2267
                                         buffer_info->dma,
2268
                                         buffer_info->length,
2269
                                         PCI_DMA_FROMDEVICE);
2270
 
2271
                        dev_kfree_skb(buffer_info->skb);
2272
                        buffer_info->skb = NULL;
2273
                }
2274
                ps_page = &rx_ring->ps_page[i];
2275
                ps_page_dma = &rx_ring->ps_page_dma[i];
2276
                for (j = 0; j < adapter->rx_ps_pages; j++) {
2277
                        if (!ps_page->ps_page[j]) break;
2278
                        pci_unmap_page(pdev,
2279
                                       ps_page_dma->ps_page_dma[j],
2280
                                       PAGE_SIZE, PCI_DMA_FROMDEVICE);
2281
                        ps_page_dma->ps_page_dma[j] = 0;
2282
                        put_page(ps_page->ps_page[j]);
2283
                        ps_page->ps_page[j] = NULL;
2284
                }
2285
        }
2286
 
2287
        size = sizeof(struct e1000_buffer) * rx_ring->count;
2288
        memset(rx_ring->buffer_info, 0, size);
2289
        size = sizeof(struct e1000_ps_page) * rx_ring->count;
2290
        memset(rx_ring->ps_page, 0, size);
2291
        size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2292
        memset(rx_ring->ps_page_dma, 0, size);
2293
 
2294
        /* Zero out the descriptor ring */
2295
 
2296
        memset(rx_ring->desc, 0, rx_ring->size);
2297
 
2298
        rx_ring->next_to_clean = 0;
2299
        rx_ring->next_to_use = 0;
2300
 
2301
        writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2302
        writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2303
}
2304
 
2305
/**
2306
 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2307
 * @adapter: board private structure
2308
 **/
2309
 
2310
static void
2311
e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2312
{
2313
        int i;
2314
 
2315
        for (i = 0; i < adapter->num_rx_queues; i++)
2316
                e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2317
}
2318
 
2319
/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2320
 * and memory write and invalidate disabled for certain operations
2321
 */
2322
static void
2323
e1000_enter_82542_rst(struct e1000_adapter *adapter)
2324
{
2325
        struct net_device *netdev = adapter->netdev;
2326
        uint32_t rctl;
2327
 
2328
        e1000_pci_clear_mwi(&adapter->hw);
2329
 
2330
        rctl = E1000_READ_REG(&adapter->hw, RCTL);
2331
        rctl |= E1000_RCTL_RST;
2332
        E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2333
        E1000_WRITE_FLUSH(&adapter->hw);
2334
        mdelay(5);
2335
 
2336
        if (netif_running(netdev))
2337
                e1000_clean_all_rx_rings(adapter);
2338
}
2339
 
2340
static void
2341
e1000_leave_82542_rst(struct e1000_adapter *adapter)
2342
{
2343
        struct net_device *netdev = adapter->netdev;
2344
        uint32_t rctl;
2345
 
2346
        rctl = E1000_READ_REG(&adapter->hw, RCTL);
2347
        rctl &= ~E1000_RCTL_RST;
2348
        E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2349
        E1000_WRITE_FLUSH(&adapter->hw);
2350
        mdelay(5);
2351
 
2352
        if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2353
                e1000_pci_set_mwi(&adapter->hw);
2354
 
2355
        if (netif_running(netdev)) {
2356
                /* No need to loop, because 82542 supports only 1 queue */
2357
                struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2358
                e1000_configure_rx(adapter);
2359
                adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2360
        }
2361
}
2362
 
2363
/**
2364
 * e1000_set_mac - Change the Ethernet Address of the NIC
2365
 * @netdev: network interface device structure
2366
 * @p: pointer to an address structure
2367
 *
2368
 * Returns 0 on success, negative on failure
2369
 **/
2370
 
2371
static int
2372
e1000_set_mac(struct net_device *netdev, void *p)
2373
{
2374
        struct e1000_adapter *adapter = netdev_priv(netdev);
2375
        struct sockaddr *addr = p;
2376
 
2377
        if (!is_valid_ether_addr(addr->sa_data))
2378
                return -EADDRNOTAVAIL;
2379
 
2380
        /* 82542 2.0 needs to be in reset to write receive address registers */
2381
 
2382
        if (adapter->hw.mac_type == e1000_82542_rev2_0)
2383
                e1000_enter_82542_rst(adapter);
2384
 
2385
        memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2386
        memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2387
 
2388
        e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2389
 
2390
        /* With 82571 controllers, LAA may be overwritten (with the default)
2391
         * due to controller reset from the other port. */
2392
        if (adapter->hw.mac_type == e1000_82571) {
2393
                /* activate the work around */
2394
                adapter->hw.laa_is_present = 1;
2395
 
2396
                /* Hold a copy of the LAA in RAR[14] This is done so that
2397
                 * between the time RAR[0] gets clobbered  and the time it
2398
                 * gets fixed (in e1000_watchdog), the actual LAA is in one
2399
                 * of the RARs and no incoming packets directed to this port
2400
                 * are dropped. Eventaully the LAA will be in RAR[0] and
2401
                 * RAR[14] */
2402
                e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2403
                                        E1000_RAR_ENTRIES - 1);
2404
        }
2405
 
2406
        if (adapter->hw.mac_type == e1000_82542_rev2_0)
2407
                e1000_leave_82542_rst(adapter);
2408
 
2409
        return 0;
2410
}
2411
 
2412
/**
2413
 * e1000_set_multi - Multicast and Promiscuous mode set
2414
 * @netdev: network interface device structure
2415
 *
2416
 * The set_multi entry point is called whenever the multicast address
2417
 * list or the network interface flags are updated.  This routine is
2418
 * responsible for configuring the hardware for proper multicast,
2419
 * promiscuous mode, and all-multi behavior.
2420
 **/
2421
 
2422
static void
2423
e1000_set_multi(struct net_device *netdev)
2424
{
2425
        struct e1000_adapter *adapter = netdev_priv(netdev);
2426
        struct e1000_hw *hw = &adapter->hw;
2427
        struct dev_mc_list *mc_ptr;
2428
        uint32_t rctl;
2429
        uint32_t hash_value;
2430
        int i, rar_entries = E1000_RAR_ENTRIES;
2431
        int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2432
                                E1000_NUM_MTA_REGISTERS_ICH8LAN :
2433
                                E1000_NUM_MTA_REGISTERS;
2434
 
2435
        if (adapter->hw.mac_type == e1000_ich8lan)
2436
                rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2437
 
2438
        /* reserve RAR[14] for LAA over-write work-around */
2439
        if (adapter->hw.mac_type == e1000_82571)
2440
                rar_entries--;
2441
 
2442
        /* Check for Promiscuous and All Multicast modes */
2443
 
2444
        rctl = E1000_READ_REG(hw, RCTL);
2445
 
2446
        if (netdev->flags & IFF_PROMISC) {
2447
                rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2448
        } else if (netdev->flags & IFF_ALLMULTI) {
2449
                rctl |= E1000_RCTL_MPE;
2450
                rctl &= ~E1000_RCTL_UPE;
2451
        } else {
2452
                rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2453
        }
2454
 
2455
        E1000_WRITE_REG(hw, RCTL, rctl);
2456
 
2457
        /* 82542 2.0 needs to be in reset to write receive address registers */
2458
 
2459
        if (hw->mac_type == e1000_82542_rev2_0)
2460
                e1000_enter_82542_rst(adapter);
2461
 
2462
        /* load the first 14 multicast address into the exact filters 1-14
2463
         * RAR 0 is used for the station MAC adddress
2464
         * if there are not 14 addresses, go ahead and clear the filters
2465
         * -- with 82571 controllers only 0-13 entries are filled here
2466
         */
2467
        mc_ptr = netdev->mc_list;
2468
 
2469
        for (i = 1; i < rar_entries; i++) {
2470
                if (mc_ptr) {
2471
                        e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2472
                        mc_ptr = mc_ptr->next;
2473
                } else {
2474
                        E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2475
                        E1000_WRITE_FLUSH(hw);
2476
                        E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2477
                        E1000_WRITE_FLUSH(hw);
2478
                }
2479
        }
2480
 
2481
        /* clear the old settings from the multicast hash table */
2482
 
2483
        for (i = 0; i < mta_reg_count; i++) {
2484
                E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2485
                E1000_WRITE_FLUSH(hw);
2486
        }
2487
 
2488
        /* load any remaining addresses into the hash table */
2489
 
2490
        for (; mc_ptr; mc_ptr = mc_ptr->next) {
2491
                hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2492
                e1000_mta_set(hw, hash_value);
2493
        }
2494
 
2495
        if (hw->mac_type == e1000_82542_rev2_0)
2496
                e1000_leave_82542_rst(adapter);
2497
}
2498
 
2499
/* Need to wait a few seconds after link up to get diagnostic information from
2500
 * the phy */
2501
 
2502
static void
2503
e1000_update_phy_info(unsigned long data)
2504
{
2505
        struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2506
        e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2507
}
2508
 
2509
/**
2510
 * e1000_82547_tx_fifo_stall - Timer Call-back
2511
 * @data: pointer to adapter cast into an unsigned long
2512
 **/
2513
 
2514
static void
2515
e1000_82547_tx_fifo_stall(unsigned long data)
2516
{
2517
        struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2518
        struct net_device *netdev = adapter->netdev;
2519
        uint32_t tctl;
2520
 
2521
        if (atomic_read(&adapter->tx_fifo_stall)) {
2522
                if ((E1000_READ_REG(&adapter->hw, TDT) ==
2523
                    E1000_READ_REG(&adapter->hw, TDH)) &&
2524
                   (E1000_READ_REG(&adapter->hw, TDFT) ==
2525
                    E1000_READ_REG(&adapter->hw, TDFH)) &&
2526
                   (E1000_READ_REG(&adapter->hw, TDFTS) ==
2527
                    E1000_READ_REG(&adapter->hw, TDFHS))) {
2528
                        tctl = E1000_READ_REG(&adapter->hw, TCTL);
2529
                        E1000_WRITE_REG(&adapter->hw, TCTL,
2530
                                        tctl & ~E1000_TCTL_EN);
2531
                        E1000_WRITE_REG(&adapter->hw, TDFT,
2532
                                        adapter->tx_head_addr);
2533
                        E1000_WRITE_REG(&adapter->hw, TDFH,
2534
                                        adapter->tx_head_addr);
2535
                        E1000_WRITE_REG(&adapter->hw, TDFTS,
2536
                                        adapter->tx_head_addr);
2537
                        E1000_WRITE_REG(&adapter->hw, TDFHS,
2538
                                        adapter->tx_head_addr);
2539
                        E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2540
                        E1000_WRITE_FLUSH(&adapter->hw);
2541
 
2542
                        adapter->tx_fifo_head = 0;
2543
                        atomic_set(&adapter->tx_fifo_stall, 0);
2544
                        netif_wake_queue(netdev);
2545
                } else {
2546
                        mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2547
                }
2548
        }
2549
}
2550
 
2551
/**
2552
 * e1000_watchdog - Timer Call-back
2553
 * @data: pointer to adapter cast into an unsigned long
2554
 **/
2555
static void
2556
e1000_watchdog(unsigned long data)
2557
{
2558
        struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2559
        struct net_device *netdev = adapter->netdev;
2560
        struct e1000_tx_ring *txdr = adapter->tx_ring;
2561
        uint32_t link, tctl;
2562
        int32_t ret_val;
2563
 
2564
        ret_val = e1000_check_for_link(&adapter->hw);
2565
        if ((ret_val == E1000_ERR_PHY) &&
2566
            (adapter->hw.phy_type == e1000_phy_igp_3) &&
2567
            (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2568
                /* See e1000_kumeran_lock_loss_workaround() */
2569
                DPRINTK(LINK, INFO,
2570
                        "Gigabit has been disabled, downgrading speed\n");
2571
        }
2572
 
2573
        if (adapter->hw.mac_type == e1000_82573) {
2574
                e1000_enable_tx_pkt_filtering(&adapter->hw);
2575
                if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2576
                        e1000_update_mng_vlan(adapter);
2577
        }
2578
 
2579
        if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2580
           !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2581
                link = !adapter->hw.serdes_link_down;
2582
        else
2583
                link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2584
 
2585
        if (link) {
2586
                if (!netif_carrier_ok(netdev)) {
2587
                        uint32_t ctrl;
2588
                        boolean_t txb2b = 1;
2589
                        e1000_get_speed_and_duplex(&adapter->hw,
2590
                                                   &adapter->link_speed,
2591
                                                   &adapter->link_duplex);
2592
 
2593
                        ctrl = E1000_READ_REG(&adapter->hw, CTRL);
2594
                        DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, "
2595
                                "Flow Control: %s\n",
2596
                                adapter->link_speed,
2597
                                adapter->link_duplex == FULL_DUPLEX ?
2598
                                "Full Duplex" : "Half Duplex",
2599
                                ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2600
                                E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2601
                                E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2602
                                E1000_CTRL_TFCE) ? "TX" : "None" )));
2603
 
2604
                        /* tweak tx_queue_len according to speed/duplex
2605
                         * and adjust the timeout factor */
2606
                        netdev->tx_queue_len = adapter->tx_queue_len;
2607
                        adapter->tx_timeout_factor = 1;
2608
                        switch (adapter->link_speed) {
2609
                        case SPEED_10:
2610
                                txb2b = 0;
2611
                                netdev->tx_queue_len = 10;
2612
                                adapter->tx_timeout_factor = 8;
2613
                                break;
2614
                        case SPEED_100:
2615
                                txb2b = 0;
2616
                                netdev->tx_queue_len = 100;
2617
                                /* maybe add some timeout factor ? */
2618
                                break;
2619
                        }
2620
 
2621
                        if ((adapter->hw.mac_type == e1000_82571 ||
2622
                             adapter->hw.mac_type == e1000_82572) &&
2623
                            txb2b == 0) {
2624
                                uint32_t tarc0;
2625
                                tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2626
                                tarc0 &= ~(1 << 21);
2627
                                E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2628
                        }
2629
 
2630
                        /* disable TSO for pcie and 10/100 speeds, to avoid
2631
                         * some hardware issues */
2632
                        if (!adapter->tso_force &&
2633
                            adapter->hw.bus_type == e1000_bus_type_pci_express){
2634
                                switch (adapter->link_speed) {
2635
                                case SPEED_10:
2636
                                case SPEED_100:
2637
                                        DPRINTK(PROBE,INFO,
2638
                                        "10/100 speed: disabling TSO\n");
2639
                                        netdev->features &= ~NETIF_F_TSO;
2640
                                        netdev->features &= ~NETIF_F_TSO6;
2641
                                        break;
2642
                                case SPEED_1000:
2643
                                        netdev->features |= NETIF_F_TSO;
2644
                                        netdev->features |= NETIF_F_TSO6;
2645
                                        break;
2646
                                default:
2647
                                        /* oops */
2648
                                        break;
2649
                                }
2650
                        }
2651
 
2652
                        /* enable transmits in the hardware, need to do this
2653
                         * after setting TARC0 */
2654
                        tctl = E1000_READ_REG(&adapter->hw, TCTL);
2655
                        tctl |= E1000_TCTL_EN;
2656
                        E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2657
 
2658
                        netif_carrier_on(netdev);
2659
                        netif_wake_queue(netdev);
2660
                        mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2661
                        adapter->smartspeed = 0;
2662
                } else {
2663
                        /* make sure the receive unit is started */
2664
                        if (adapter->hw.rx_needs_kicking) {
2665
                                struct e1000_hw *hw = &adapter->hw;
2666
                                uint32_t rctl = E1000_READ_REG(hw, RCTL);
2667
                                E1000_WRITE_REG(hw, RCTL, rctl | E1000_RCTL_EN);
2668
                        }
2669
                }
2670
        } else {
2671
                if (netif_carrier_ok(netdev)) {
2672
                        adapter->link_speed = 0;
2673
                        adapter->link_duplex = 0;
2674
                        DPRINTK(LINK, INFO, "NIC Link is Down\n");
2675
                        netif_carrier_off(netdev);
2676
                        netif_stop_queue(netdev);
2677
                        mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2678
 
2679
                        /* 80003ES2LAN workaround--
2680
                         * For packet buffer work-around on link down event;
2681
                         * disable receives in the ISR and
2682
                         * reset device here in the watchdog
2683
                         */
2684
                        if (adapter->hw.mac_type == e1000_80003es2lan)
2685
                                /* reset device */
2686
                                schedule_work(&adapter->reset_task);
2687
                }
2688
 
2689
                e1000_smartspeed(adapter);
2690
        }
2691
 
2692
        e1000_update_stats(adapter);
2693
 
2694
        adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2695
        adapter->tpt_old = adapter->stats.tpt;
2696
        adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2697
        adapter->colc_old = adapter->stats.colc;
2698
 
2699
        adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2700
        adapter->gorcl_old = adapter->stats.gorcl;
2701
        adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2702
        adapter->gotcl_old = adapter->stats.gotcl;
2703
 
2704
        e1000_update_adaptive(&adapter->hw);
2705
 
2706
        if (!netif_carrier_ok(netdev)) {
2707
                if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2708
                        /* We've lost link, so the controller stops DMA,
2709
                         * but we've got queued Tx work that's never going
2710
                         * to get done, so reset controller to flush Tx.
2711
                         * (Do the reset outside of interrupt context). */
2712
                        adapter->tx_timeout_count++;
2713
                        schedule_work(&adapter->reset_task);
2714
                }
2715
        }
2716
 
2717
        /* Cause software interrupt to ensure rx ring is cleaned */
2718
        E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2719
 
2720
        /* Force detection of hung controller every watchdog period */
2721
        adapter->detect_tx_hung = TRUE;
2722
 
2723
        /* With 82571 controllers, LAA may be overwritten due to controller
2724
         * reset from the other port. Set the appropriate LAA in RAR[0] */
2725
        if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2726
                e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2727
 
2728
        /* Reset the timer */
2729
        mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
2730
}
2731
 
2732
enum latency_range {
2733
        lowest_latency = 0,
2734
        low_latency = 1,
2735
        bulk_latency = 2,
2736
        latency_invalid = 255
2737
};
2738
 
2739
/**
2740
 * e1000_update_itr - update the dynamic ITR value based on statistics
2741
 *      Stores a new ITR value based on packets and byte
2742
 *      counts during the last interrupt.  The advantage of per interrupt
2743
 *      computation is faster updates and more accurate ITR for the current
2744
 *      traffic pattern.  Constants in this function were computed
2745
 *      based on theoretical maximum wire speed and thresholds were set based
2746
 *      on testing data as well as attempting to minimize response time
2747
 *      while increasing bulk throughput.
2748
 *      this functionality is controlled by the InterruptThrottleRate module
2749
 *      parameter (see e1000_param.c)
2750
 * @adapter: pointer to adapter
2751
 * @itr_setting: current adapter->itr
2752
 * @packets: the number of packets during this measurement interval
2753
 * @bytes: the number of bytes during this measurement interval
2754
 **/
2755
static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2756
                                   uint16_t itr_setting,
2757
                                   int packets,
2758
                                   int bytes)
2759
{
2760
        unsigned int retval = itr_setting;
2761
        struct e1000_hw *hw = &adapter->hw;
2762
 
2763
        if (unlikely(hw->mac_type < e1000_82540))
2764
                goto update_itr_done;
2765
 
2766
        if (packets == 0)
2767
                goto update_itr_done;
2768
 
2769
        switch (itr_setting) {
2770
        case lowest_latency:
2771
                /* jumbo frames get bulk treatment*/
2772
                if (bytes/packets > 8000)
2773
                        retval = bulk_latency;
2774
                else if ((packets < 5) && (bytes > 512))
2775
                        retval = low_latency;
2776
                break;
2777
        case low_latency:  /* 50 usec aka 20000 ints/s */
2778
                if (bytes > 10000) {
2779
                        /* jumbo frames need bulk latency setting */
2780
                        if (bytes/packets > 8000)
2781
                                retval = bulk_latency;
2782
                        else if ((packets < 10) || ((bytes/packets) > 1200))
2783
                                retval = bulk_latency;
2784
                        else if ((packets > 35))
2785
                                retval = lowest_latency;
2786
                } else if (bytes/packets > 2000)
2787
                        retval = bulk_latency;
2788
                else if (packets <= 2 && bytes < 512)
2789
                        retval = lowest_latency;
2790
                break;
2791
        case bulk_latency: /* 250 usec aka 4000 ints/s */
2792
                if (bytes > 25000) {
2793
                        if (packets > 35)
2794
                                retval = low_latency;
2795
                } else if (bytes < 6000) {
2796
                        retval = low_latency;
2797
                }
2798
                break;
2799
        }
2800
 
2801
update_itr_done:
2802
        return retval;
2803
}
2804
 
2805
static void e1000_set_itr(struct e1000_adapter *adapter)
2806
{
2807
        struct e1000_hw *hw = &adapter->hw;
2808
        uint16_t current_itr;
2809
        uint32_t new_itr = adapter->itr;
2810
 
2811
        if (unlikely(hw->mac_type < e1000_82540))
2812
                return;
2813
 
2814
        /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2815
        if (unlikely(adapter->link_speed != SPEED_1000)) {
2816
                current_itr = 0;
2817
                new_itr = 4000;
2818
                goto set_itr_now;
2819
        }
2820
 
2821
        adapter->tx_itr = e1000_update_itr(adapter,
2822
                                    adapter->tx_itr,
2823
                                    adapter->total_tx_packets,
2824
                                    adapter->total_tx_bytes);
2825
        /* conservative mode (itr 3) eliminates the lowest_latency setting */
2826
        if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2827
                adapter->tx_itr = low_latency;
2828
 
2829
        adapter->rx_itr = e1000_update_itr(adapter,
2830
                                    adapter->rx_itr,
2831
                                    adapter->total_rx_packets,
2832
                                    adapter->total_rx_bytes);
2833
        /* conservative mode (itr 3) eliminates the lowest_latency setting */
2834
        if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2835
                adapter->rx_itr = low_latency;
2836
 
2837
        current_itr = max(adapter->rx_itr, adapter->tx_itr);
2838
 
2839
        switch (current_itr) {
2840
        /* counts and packets in update_itr are dependent on these numbers */
2841
        case lowest_latency:
2842
                new_itr = 70000;
2843
                break;
2844
        case low_latency:
2845
                new_itr = 20000; /* aka hwitr = ~200 */
2846
                break;
2847
        case bulk_latency:
2848
                new_itr = 4000;
2849
                break;
2850
        default:
2851
                break;
2852
        }
2853
 
2854
set_itr_now:
2855
        if (new_itr != adapter->itr) {
2856
                /* this attempts to bias the interrupt rate towards Bulk
2857
                 * by adding intermediate steps when interrupt rate is
2858
                 * increasing */
2859
                new_itr = new_itr > adapter->itr ?
2860
                             min(adapter->itr + (new_itr >> 2), new_itr) :
2861
                             new_itr;
2862
                adapter->itr = new_itr;
2863
                E1000_WRITE_REG(hw, ITR, 1000000000 / (new_itr * 256));
2864
        }
2865
 
2866
        return;
2867
}
2868
 
2869
#define E1000_TX_FLAGS_CSUM             0x00000001
2870
#define E1000_TX_FLAGS_VLAN             0x00000002
2871
#define E1000_TX_FLAGS_TSO              0x00000004
2872
#define E1000_TX_FLAGS_IPV4             0x00000008
2873
#define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2874
#define E1000_TX_FLAGS_VLAN_SHIFT       16
2875
 
2876
static int
2877
e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2878
          struct sk_buff *skb)
2879
{
2880
        struct e1000_context_desc *context_desc;
2881
        struct e1000_buffer *buffer_info;
2882
        unsigned int i;
2883
        uint32_t cmd_length = 0;
2884
        uint16_t ipcse = 0, tucse, mss;
2885
        uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2886
        int err;
2887
 
2888
        if (skb_is_gso(skb)) {
2889
                if (skb_header_cloned(skb)) {
2890
                        err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2891
                        if (err)
2892
                                return err;
2893
                }
2894
 
2895
                hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2896
                mss = skb_shinfo(skb)->gso_size;
2897
                if (skb->protocol == htons(ETH_P_IP)) {
2898
                        struct iphdr *iph = ip_hdr(skb);
2899
                        iph->tot_len = 0;
2900
                        iph->check = 0;
2901
                        tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2902
                                                                 iph->daddr, 0,
2903
                                                                 IPPROTO_TCP,
2904
                                                                 0);
2905
                        cmd_length = E1000_TXD_CMD_IP;
2906
                        ipcse = skb_transport_offset(skb) - 1;
2907
                } else if (skb->protocol == htons(ETH_P_IPV6)) {
2908
                        ipv6_hdr(skb)->payload_len = 0;
2909
                        tcp_hdr(skb)->check =
2910
                                ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2911
                                                 &ipv6_hdr(skb)->daddr,
2912
                                                 0, IPPROTO_TCP, 0);
2913
                        ipcse = 0;
2914
                }
2915
                ipcss = skb_network_offset(skb);
2916
                ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2917
                tucss = skb_transport_offset(skb);
2918
                tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2919
                tucse = 0;
2920
 
2921
                cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2922
                               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2923
 
2924
                i = tx_ring->next_to_use;
2925
                context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2926
                buffer_info = &tx_ring->buffer_info[i];
2927
 
2928
                context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2929
                context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2930
                context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2931
                context_desc->upper_setup.tcp_fields.tucss = tucss;
2932
                context_desc->upper_setup.tcp_fields.tucso = tucso;
2933
                context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2934
                context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2935
                context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2936
                context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2937
 
2938
                buffer_info->time_stamp = jiffies;
2939
                buffer_info->next_to_watch = i;
2940
 
2941
                if (++i == tx_ring->count) i = 0;
2942
                tx_ring->next_to_use = i;
2943
 
2944
                return TRUE;
2945
        }
2946
        return FALSE;
2947
}
2948
 
2949
static boolean_t
2950
e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2951
              struct sk_buff *skb)
2952
{
2953
        struct e1000_context_desc *context_desc;
2954
        struct e1000_buffer *buffer_info;
2955
        unsigned int i;
2956
        uint8_t css;
2957
 
2958
        if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2959
                css = skb_transport_offset(skb);
2960
 
2961
                i = tx_ring->next_to_use;
2962
                buffer_info = &tx_ring->buffer_info[i];
2963
                context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2964
 
2965
                context_desc->lower_setup.ip_config = 0;
2966
                context_desc->upper_setup.tcp_fields.tucss = css;
2967
                context_desc->upper_setup.tcp_fields.tucso =
2968
                        css + skb->csum_offset;
2969
                context_desc->upper_setup.tcp_fields.tucse = 0;
2970
                context_desc->tcp_seg_setup.data = 0;
2971
                context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2972
 
2973
                buffer_info->time_stamp = jiffies;
2974
                buffer_info->next_to_watch = i;
2975
 
2976
                if (unlikely(++i == tx_ring->count)) i = 0;
2977
                tx_ring->next_to_use = i;
2978
 
2979
                return TRUE;
2980
        }
2981
 
2982
        return FALSE;
2983
}
2984
 
2985
#define E1000_MAX_TXD_PWR       12
2986
#define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2987
 
2988
static int
2989
e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2990
             struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2991
             unsigned int nr_frags, unsigned int mss)
2992
{
2993
        struct e1000_buffer *buffer_info;
2994
        unsigned int len = skb->len;
2995
        unsigned int offset = 0, size, count = 0, i;
2996
        unsigned int f;
2997
        len -= skb->data_len;
2998
 
2999
        i = tx_ring->next_to_use;
3000
 
3001
        while (len) {
3002
                buffer_info = &tx_ring->buffer_info[i];
3003
                size = min(len, max_per_txd);
3004
                /* Workaround for Controller erratum --
3005
                 * descriptor for non-tso packet in a linear SKB that follows a
3006
                 * tso gets written back prematurely before the data is fully
3007
                 * DMA'd to the controller */
3008
                if (!skb->data_len && tx_ring->last_tx_tso &&
3009
                    !skb_is_gso(skb)) {
3010
                        tx_ring->last_tx_tso = 0;
3011
                        size -= 4;
3012
                }
3013
 
3014
                /* Workaround for premature desc write-backs
3015
                 * in TSO mode.  Append 4-byte sentinel desc */
3016
                if (unlikely(mss && !nr_frags && size == len && size > 8))
3017
                        size -= 4;
3018
                /* work-around for errata 10 and it applies
3019
                 * to all controllers in PCI-X mode
3020
                 * The fix is to make sure that the first descriptor of a
3021
                 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
3022
                 */
3023
                if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3024
                                (size > 2015) && count == 0))
3025
                        size = 2015;
3026
 
3027
                /* Workaround for potential 82544 hang in PCI-X.  Avoid
3028
                 * terminating buffers within evenly-aligned dwords. */
3029
                if (unlikely(adapter->pcix_82544 &&
3030
                   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
3031
                   size > 4))
3032
                        size -= 4;
3033
 
3034
                buffer_info->length = size;
3035
                buffer_info->dma =
3036
                        pci_map_single(adapter->pdev,
3037
                                skb->data + offset,
3038
                                size,
3039
                                PCI_DMA_TODEVICE);
3040
                buffer_info->time_stamp = jiffies;
3041
                buffer_info->next_to_watch = i;
3042
 
3043
                len -= size;
3044
                offset += size;
3045
                count++;
3046
                if (unlikely(++i == tx_ring->count)) i = 0;
3047
        }
3048
 
3049
        for (f = 0; f < nr_frags; f++) {
3050
                struct skb_frag_struct *frag;
3051
 
3052
                frag = &skb_shinfo(skb)->frags[f];
3053
                len = frag->size;
3054
                offset = frag->page_offset;
3055
 
3056
                while (len) {
3057
                        buffer_info = &tx_ring->buffer_info[i];
3058
                        size = min(len, max_per_txd);
3059
                        /* Workaround for premature desc write-backs
3060
                         * in TSO mode.  Append 4-byte sentinel desc */
3061
                        if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
3062
                                size -= 4;
3063
                        /* Workaround for potential 82544 hang in PCI-X.
3064
                         * Avoid terminating buffers within evenly-aligned
3065
                         * dwords. */
3066
                        if (unlikely(adapter->pcix_82544 &&
3067
                           !((unsigned long)(frag->page+offset+size-1) & 4) &&
3068
                           size > 4))
3069
                                size -= 4;
3070
 
3071
                        buffer_info->length = size;
3072
                        buffer_info->dma =
3073
                                pci_map_page(adapter->pdev,
3074
                                        frag->page,
3075
                                        offset,
3076
                                        size,
3077
                                        PCI_DMA_TODEVICE);
3078
                        buffer_info->time_stamp = jiffies;
3079
                        buffer_info->next_to_watch = i;
3080
 
3081
                        len -= size;
3082
                        offset += size;
3083
                        count++;
3084
                        if (unlikely(++i == tx_ring->count)) i = 0;
3085
                }
3086
        }
3087
 
3088
        i = (i == 0) ? tx_ring->count - 1 : i - 1;
3089
        tx_ring->buffer_info[i].skb = skb;
3090
        tx_ring->buffer_info[first].next_to_watch = i;
3091
 
3092
        return count;
3093
}
3094
 
3095
static void
3096
e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
3097
               int tx_flags, int count)
3098
{
3099
        struct e1000_tx_desc *tx_desc = NULL;
3100
        struct e1000_buffer *buffer_info;
3101
        uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3102
        unsigned int i;
3103
 
3104
        if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3105
                txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3106
                             E1000_TXD_CMD_TSE;
3107
                txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3108
 
3109
                if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3110
                        txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3111
        }
3112
 
3113
        if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3114
                txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3115
                txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3116
        }
3117
 
3118
        if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3119
                txd_lower |= E1000_TXD_CMD_VLE;
3120
                txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3121
        }
3122
 
3123
        i = tx_ring->next_to_use;
3124
 
3125
        while (count--) {
3126
                buffer_info = &tx_ring->buffer_info[i];
3127
                tx_desc = E1000_TX_DESC(*tx_ring, i);
3128
                tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3129
                tx_desc->lower.data =
3130
                        cpu_to_le32(txd_lower | buffer_info->length);
3131
                tx_desc->upper.data = cpu_to_le32(txd_upper);
3132
                if (unlikely(++i == tx_ring->count)) i = 0;
3133
        }
3134
 
3135
        tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3136
 
3137
        /* Force memory writes to complete before letting h/w
3138
         * know there are new descriptors to fetch.  (Only
3139
         * applicable for weak-ordered memory model archs,
3140
         * such as IA-64). */
3141
        wmb();
3142
 
3143
        tx_ring->next_to_use = i;
3144
        writel(i, adapter->hw.hw_addr + tx_ring->tdt);
3145
        /* we need this if more than one processor can write to our tail
3146
         * at a time, it syncronizes IO on IA64/Altix systems */
3147
        mmiowb();
3148
}
3149
 
3150
/**
3151
 * 82547 workaround to avoid controller hang in half-duplex environment.
3152
 * The workaround is to avoid queuing a large packet that would span
3153
 * the internal Tx FIFO ring boundary by notifying the stack to resend
3154
 * the packet at a later time.  This gives the Tx FIFO an opportunity to
3155
 * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3156
 * to the beginning of the Tx FIFO.
3157
 **/
3158
 
3159
#define E1000_FIFO_HDR                  0x10
3160
#define E1000_82547_PAD_LEN             0x3E0
3161
 
3162
static int
3163
e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
3164
{
3165
        uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3166
        uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
3167
 
3168
        skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3169
 
3170
        if (adapter->link_duplex != HALF_DUPLEX)
3171
                goto no_fifo_stall_required;
3172
 
3173
        if (atomic_read(&adapter->tx_fifo_stall))
3174
                return 1;
3175
 
3176
        if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3177
                atomic_set(&adapter->tx_fifo_stall, 1);
3178
                return 1;
3179
        }
3180
 
3181
no_fifo_stall_required:
3182
        adapter->tx_fifo_head += skb_fifo_len;
3183
        if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3184
                adapter->tx_fifo_head -= adapter->tx_fifo_size;
3185
        return 0;
3186
}
3187
 
3188
#define MINIMUM_DHCP_PACKET_SIZE 282
3189
static int
3190
e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
3191
{
3192
        struct e1000_hw *hw =  &adapter->hw;
3193
        uint16_t length, offset;
3194
        if (vlan_tx_tag_present(skb)) {
3195
                if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
3196
                        ( adapter->hw.mng_cookie.status &
3197
                          E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3198
                        return 0;
3199
        }
3200
        if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3201
                struct ethhdr *eth = (struct ethhdr *) skb->data;
3202
                if ((htons(ETH_P_IP) == eth->h_proto)) {
3203
                        const struct iphdr *ip =
3204
                                (struct iphdr *)((uint8_t *)skb->data+14);
3205
                        if (IPPROTO_UDP == ip->protocol) {
3206
                                struct udphdr *udp =
3207
                                        (struct udphdr *)((uint8_t *)ip +
3208
                                                (ip->ihl << 2));
3209
                                if (ntohs(udp->dest) == 67) {
3210
                                        offset = (uint8_t *)udp + 8 - skb->data;
3211
                                        length = skb->len - offset;
3212
 
3213
                                        return e1000_mng_write_dhcp_info(hw,
3214
                                                        (uint8_t *)udp + 8,
3215
                                                        length);
3216
                                }
3217
                        }
3218
                }
3219
        }
3220
        return 0;
3221
}
3222
 
3223
static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3224
{
3225
        struct e1000_adapter *adapter = netdev_priv(netdev);
3226
        struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3227
 
3228
        netif_stop_queue(netdev);
3229
        /* Herbert's original patch had:
3230
         *  smp_mb__after_netif_stop_queue();
3231
         * but since that doesn't exist yet, just open code it. */
3232
        smp_mb();
3233
 
3234
        /* We need to check again in a case another CPU has just
3235
         * made room available. */
3236
        if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3237
                return -EBUSY;
3238
 
3239
        /* A reprieve! */
3240
        netif_start_queue(netdev);
3241
        ++adapter->restart_queue;
3242
        return 0;
3243
}
3244
 
3245
static int e1000_maybe_stop_tx(struct net_device *netdev,
3246
                               struct e1000_tx_ring *tx_ring, int size)
3247
{
3248
        if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3249
                return 0;
3250
        return __e1000_maybe_stop_tx(netdev, size);
3251
}
3252
 
3253
#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3254
static int
3255
e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3256
{
3257
        struct e1000_adapter *adapter = netdev_priv(netdev);
3258
        struct e1000_tx_ring *tx_ring;
3259
        unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3260
        unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3261
        unsigned int tx_flags = 0;
3262
        unsigned int len = skb->len - skb->data_len;
3263
        unsigned long flags;
3264
        unsigned int nr_frags;
3265
        unsigned int mss;
3266
        int count = 0;
3267
        int tso;
3268
        unsigned int f;
3269
 
3270
        /* This goes back to the question of how to logically map a tx queue
3271
         * to a flow.  Right now, performance is impacted slightly negatively
3272
         * if using multiple tx queues.  If the stack breaks away from a
3273
         * single qdisc implementation, we can look at this again. */
3274
        tx_ring = adapter->tx_ring;
3275
 
3276
        if (unlikely(skb->len <= 0)) {
3277
                dev_kfree_skb_any(skb);
3278
                return NETDEV_TX_OK;
3279
        }
3280
 
3281
        /* 82571 and newer doesn't need the workaround that limited descriptor
3282
         * length to 4kB */
3283
        if (adapter->hw.mac_type >= e1000_82571)
3284
                max_per_txd = 8192;
3285
 
3286
        mss = skb_shinfo(skb)->gso_size;
3287
        /* The controller does a simple calculation to
3288
         * make sure there is enough room in the FIFO before
3289
         * initiating the DMA for each buffer.  The calc is:
3290
         * 4 = ceil(buffer len/mss).  To make sure we don't
3291
         * overrun the FIFO, adjust the max buffer len if mss
3292
         * drops. */
3293
        if (mss) {
3294
                uint8_t hdr_len;
3295
                max_per_txd = min(mss << 2, max_per_txd);
3296
                max_txd_pwr = fls(max_per_txd) - 1;
3297
 
3298
                /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3299
                * points to just header, pull a few bytes of payload from
3300
                * frags into skb->data */
3301
                hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3302
                if (skb->data_len && hdr_len == len) {
3303
                        switch (adapter->hw.mac_type) {
3304
                                unsigned int pull_size;
3305
                        case e1000_82544:
3306
                                /* Make sure we have room to chop off 4 bytes,
3307
                                 * and that the end alignment will work out to
3308
                                 * this hardware's requirements
3309
                                 * NOTE: this is a TSO only workaround
3310
                                 * if end byte alignment not correct move us
3311
                                 * into the next dword */
3312
                                if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3313
                                        break;
3314
                                /* fall through */
3315
                        case e1000_82571:
3316
                        case e1000_82572:
3317
                        case e1000_82573:
3318
                        case e1000_ich8lan:
3319
                                pull_size = min((unsigned int)4, skb->data_len);
3320
                                if (!__pskb_pull_tail(skb, pull_size)) {
3321
                                        DPRINTK(DRV, ERR,
3322
                                                "__pskb_pull_tail failed.\n");
3323
                                        dev_kfree_skb_any(skb);
3324
                                        return NETDEV_TX_OK;
3325
                                }
3326
                                len = skb->len - skb->data_len;
3327
                                break;
3328
                        default:
3329
                                /* do nothing */
3330
                                break;
3331
                        }
3332
                }
3333
        }
3334
 
3335
        /* reserve a descriptor for the offload context */
3336
        if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3337
                count++;
3338
        count++;
3339
 
3340
        /* Controller Erratum workaround */
3341
        if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3342
                count++;
3343
 
3344
        count += TXD_USE_COUNT(len, max_txd_pwr);
3345
 
3346
        if (adapter->pcix_82544)
3347
                count++;
3348
 
3349
        /* work-around for errata 10 and it applies to all controllers
3350
         * in PCI-X mode, so add one more descriptor to the count
3351
         */
3352
        if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3353
                        (len > 2015)))
3354
                count++;
3355
 
3356
        nr_frags = skb_shinfo(skb)->nr_frags;
3357
        for (f = 0; f < nr_frags; f++)
3358
                count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3359
                                       max_txd_pwr);
3360
        if (adapter->pcix_82544)
3361
                count += nr_frags;
3362
 
3363
 
3364
        if (adapter->hw.tx_pkt_filtering &&
3365
            (adapter->hw.mac_type == e1000_82573))
3366
                e1000_transfer_dhcp_info(adapter, skb);
3367
 
3368
        if (!spin_trylock_irqsave(&tx_ring->tx_lock, flags))
3369
                /* Collision - tell upper layer to requeue */
3370
                return NETDEV_TX_LOCKED;
3371
 
3372
        /* need: count + 2 desc gap to keep tail from touching
3373
         * head, otherwise try next time */
3374
        if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3375
                spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3376
                return NETDEV_TX_BUSY;
3377
        }
3378
 
3379
        if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3380
                if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3381
                        netif_stop_queue(netdev);
3382
                        mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3383
                        spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3384
                        return NETDEV_TX_BUSY;
3385
                }
3386
        }
3387
 
3388
        if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3389
                tx_flags |= E1000_TX_FLAGS_VLAN;
3390
                tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3391
        }
3392
 
3393
        first = tx_ring->next_to_use;
3394
 
3395
        tso = e1000_tso(adapter, tx_ring, skb);
3396
        if (tso < 0) {
3397
                dev_kfree_skb_any(skb);
3398
                spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3399
                return NETDEV_TX_OK;
3400
        }
3401
 
3402
        if (likely(tso)) {
3403
                tx_ring->last_tx_tso = 1;
3404
                tx_flags |= E1000_TX_FLAGS_TSO;
3405
        } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3406
                tx_flags |= E1000_TX_FLAGS_CSUM;
3407
 
3408
        /* Old method was to assume IPv4 packet by default if TSO was enabled.
3409
         * 82571 hardware supports TSO capabilities for IPv6 as well...
3410
         * no longer assume, we must. */
3411
        if (likely(skb->protocol == htons(ETH_P_IP)))
3412
                tx_flags |= E1000_TX_FLAGS_IPV4;
3413
 
3414
        e1000_tx_queue(adapter, tx_ring, tx_flags,
3415
                       e1000_tx_map(adapter, tx_ring, skb, first,
3416
                                    max_per_txd, nr_frags, mss));
3417
 
3418
        netdev->trans_start = jiffies;
3419
 
3420
        /* Make sure there is space in the ring for the next send. */
3421
        e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3422
 
3423
        spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3424
        return NETDEV_TX_OK;
3425
}
3426
 
3427
/**
3428
 * e1000_tx_timeout - Respond to a Tx Hang
3429
 * @netdev: network interface device structure
3430
 **/
3431
 
3432
static void
3433
e1000_tx_timeout(struct net_device *netdev)
3434
{
3435
        struct e1000_adapter *adapter = netdev_priv(netdev);
3436
 
3437
        /* Do the reset outside of interrupt context */
3438
        adapter->tx_timeout_count++;
3439
        schedule_work(&adapter->reset_task);
3440
}
3441
 
3442
static void
3443
e1000_reset_task(struct work_struct *work)
3444
{
3445
        struct e1000_adapter *adapter =
3446
                container_of(work, struct e1000_adapter, reset_task);
3447
 
3448
        e1000_reinit_locked(adapter);
3449
}
3450
 
3451
/**
3452
 * e1000_get_stats - Get System Network Statistics
3453
 * @netdev: network interface device structure
3454
 *
3455
 * Returns the address of the device statistics structure.
3456
 * The statistics are actually updated from the timer callback.
3457
 **/
3458
 
3459
static struct net_device_stats *
3460
e1000_get_stats(struct net_device *netdev)
3461
{
3462
        struct e1000_adapter *adapter = netdev_priv(netdev);
3463
 
3464
        /* only return the current stats */
3465
        return &adapter->net_stats;
3466
}
3467
 
3468
/**
3469
 * e1000_change_mtu - Change the Maximum Transfer Unit
3470
 * @netdev: network interface device structure
3471
 * @new_mtu: new value for maximum frame size
3472
 *
3473
 * Returns 0 on success, negative on failure
3474
 **/
3475
 
3476
static int
3477
e1000_change_mtu(struct net_device *netdev, int new_mtu)
3478
{
3479
        struct e1000_adapter *adapter = netdev_priv(netdev);
3480
        int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3481
        uint16_t eeprom_data = 0;
3482
 
3483
        if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3484
            (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3485
                DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3486
                return -EINVAL;
3487
        }
3488
 
3489
        /* Adapter-specific max frame size limits. */
3490
        switch (adapter->hw.mac_type) {
3491
        case e1000_undefined ... e1000_82542_rev2_1:
3492
        case e1000_ich8lan:
3493
                if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3494
                        DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3495
                        return -EINVAL;
3496
                }
3497
                break;
3498
        case e1000_82573:
3499
                /* Jumbo Frames not supported if:
3500
                 * - this is not an 82573L device
3501
                 * - ASPM is enabled in any way (0x1A bits 3:2) */
3502
                e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3503
                                  &eeprom_data);
3504
                if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3505
                    (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3506
                        if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3507
                                DPRINTK(PROBE, ERR,
3508
                                        "Jumbo Frames not supported.\n");
3509
                                return -EINVAL;
3510
                        }
3511
                        break;
3512
                }
3513
                /* ERT will be enabled later to enable wire speed receives */
3514
 
3515
                /* fall through to get support */
3516
        case e1000_82571:
3517
        case e1000_82572:
3518
        case e1000_80003es2lan:
3519
#define MAX_STD_JUMBO_FRAME_SIZE 9234
3520
                if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3521
                        DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3522
                        return -EINVAL;
3523
                }
3524
                break;
3525
        default:
3526
                /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3527
                break;
3528
        }
3529
 
3530
        /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3531
         * means we reserve 2 more, this pushes us to allocate from the next
3532
         * larger slab size
3533
         * i.e. RXBUFFER_2048 --> size-4096 slab */
3534
 
3535
        if (max_frame <= E1000_RXBUFFER_256)
3536
                adapter->rx_buffer_len = E1000_RXBUFFER_256;
3537
        else if (max_frame <= E1000_RXBUFFER_512)
3538
                adapter->rx_buffer_len = E1000_RXBUFFER_512;
3539
        else if (max_frame <= E1000_RXBUFFER_1024)
3540
                adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3541
        else if (max_frame <= E1000_RXBUFFER_2048)
3542
                adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3543
        else if (max_frame <= E1000_RXBUFFER_4096)
3544
                adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3545
        else if (max_frame <= E1000_RXBUFFER_8192)
3546
                adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3547
        else if (max_frame <= E1000_RXBUFFER_16384)
3548
                adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3549
 
3550
        /* adjust allocation if LPE protects us, and we aren't using SBP */
3551
        if (!adapter->hw.tbi_compatibility_on &&
3552
            ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3553
             (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3554
                adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3555
 
3556
        netdev->mtu = new_mtu;
3557
        adapter->hw.max_frame_size = max_frame;
3558
 
3559
        if (netif_running(netdev))
3560
                e1000_reinit_locked(adapter);
3561
 
3562
        return 0;
3563
}
3564
 
3565
/**
3566
 * e1000_update_stats - Update the board statistics counters
3567
 * @adapter: board private structure
3568
 **/
3569
 
3570
void
3571
e1000_update_stats(struct e1000_adapter *adapter)
3572
{
3573
        struct e1000_hw *hw = &adapter->hw;
3574
        struct pci_dev *pdev = adapter->pdev;
3575
        unsigned long flags;
3576
        uint16_t phy_tmp;
3577
 
3578
#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3579
 
3580
        /*
3581
         * Prevent stats update while adapter is being reset, or if the pci
3582
         * connection is down.
3583
         */
3584
        if (adapter->link_speed == 0)
3585
                return;
3586
        if (pci_channel_offline(pdev))
3587
                return;
3588
 
3589
        spin_lock_irqsave(&adapter->stats_lock, flags);
3590
 
3591
        /* these counters are modified from e1000_tbi_adjust_stats,
3592
         * called from the interrupt context, so they must only
3593
         * be written while holding adapter->stats_lock
3594
         */
3595
 
3596
        adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3597
        adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3598
        adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3599
        adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3600
        adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3601
        adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3602
        adapter->stats.roc += E1000_READ_REG(hw, ROC);
3603
 
3604
        if (adapter->hw.mac_type != e1000_ich8lan) {
3605
                adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3606
                adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3607
                adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3608
                adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3609
                adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3610
                adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3611
        }
3612
 
3613
        adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3614
        adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3615
        adapter->stats.scc += E1000_READ_REG(hw, SCC);
3616
        adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3617
        adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3618
        adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3619
        adapter->stats.dc += E1000_READ_REG(hw, DC);
3620
        adapter->stats.sec += E1000_READ_REG(hw, SEC);
3621
        adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3622
        adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3623
        adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3624
        adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3625
        adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3626
        adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3627
        adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3628
        adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3629
        adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3630
        adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3631
        adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3632
        adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3633
        adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3634
        adapter->stats.torl += E1000_READ_REG(hw, TORL);
3635
        adapter->stats.torh += E1000_READ_REG(hw, TORH);
3636
        adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3637
        adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3638
        adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3639
 
3640
        if (adapter->hw.mac_type != e1000_ich8lan) {
3641
                adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3642
                adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3643
                adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3644
                adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3645
                adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3646
                adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3647
        }
3648
 
3649
        adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3650
        adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3651
 
3652
        /* used for adaptive IFS */
3653
 
3654
        hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3655
        adapter->stats.tpt += hw->tx_packet_delta;
3656
        hw->collision_delta = E1000_READ_REG(hw, COLC);
3657
        adapter->stats.colc += hw->collision_delta;
3658
 
3659
        if (hw->mac_type >= e1000_82543) {
3660
                adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3661
                adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3662
                adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3663
                adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3664
                adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3665
                adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3666
        }
3667
        if (hw->mac_type > e1000_82547_rev_2) {
3668
                adapter->stats.iac += E1000_READ_REG(hw, IAC);
3669
                adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3670
 
3671
                if (adapter->hw.mac_type != e1000_ich8lan) {
3672
                        adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3673
                        adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3674
                        adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3675
                        adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3676
                        adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3677
                        adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3678
                        adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3679
                }
3680
        }
3681
 
3682
        /* Fill out the OS statistics structure */
3683
        adapter->net_stats.rx_packets = adapter->stats.gprc;
3684
        adapter->net_stats.tx_packets = adapter->stats.gptc;
3685
        adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3686
        adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3687
        adapter->net_stats.multicast = adapter->stats.mprc;
3688
        adapter->net_stats.collisions = adapter->stats.colc;
3689
 
3690
        /* Rx Errors */
3691
 
3692
        /* RLEC on some newer hardware can be incorrect so build
3693
        * our own version based on RUC and ROC */
3694
        adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3695
                adapter->stats.crcerrs + adapter->stats.algnerrc +
3696
                adapter->stats.ruc + adapter->stats.roc +
3697
                adapter->stats.cexterr;
3698
        adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3699
        adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3700
        adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3701
        adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3702
        adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3703
 
3704
        /* Tx Errors */
3705
        adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3706
        adapter->net_stats.tx_errors = adapter->stats.txerrc;
3707
        adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3708
        adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3709
        adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3710
        if (adapter->hw.bad_tx_carr_stats_fd &&
3711
            adapter->link_duplex == FULL_DUPLEX) {
3712
                adapter->net_stats.tx_carrier_errors = 0;
3713
                adapter->stats.tncrs = 0;
3714
        }
3715
 
3716
        /* Tx Dropped needs to be maintained elsewhere */
3717
 
3718
        /* Phy Stats */
3719
        if (hw->media_type == e1000_media_type_copper) {
3720
                if ((adapter->link_speed == SPEED_1000) &&
3721
                   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3722
                        phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3723
                        adapter->phy_stats.idle_errors += phy_tmp;
3724
                }
3725
 
3726
                if ((hw->mac_type <= e1000_82546) &&
3727
                   (hw->phy_type == e1000_phy_m88) &&
3728
                   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3729
                        adapter->phy_stats.receive_errors += phy_tmp;
3730
        }
3731
 
3732
        /* Management Stats */
3733
        if (adapter->hw.has_smbus) {
3734
                adapter->stats.mgptc += E1000_READ_REG(hw, MGTPTC);
3735
                adapter->stats.mgprc += E1000_READ_REG(hw, MGTPRC);
3736
                adapter->stats.mgpdc += E1000_READ_REG(hw, MGTPDC);
3737
        }
3738
 
3739
        spin_unlock_irqrestore(&adapter->stats_lock, flags);
3740
}
3741
 
3742
/**
3743
 * e1000_intr_msi - Interrupt Handler
3744
 * @irq: interrupt number
3745
 * @data: pointer to a network interface device structure
3746
 **/
3747
 
3748
static irqreturn_t
3749
e1000_intr_msi(int irq, void *data)
3750
{
3751
        struct net_device *netdev = data;
3752
        struct e1000_adapter *adapter = netdev_priv(netdev);
3753
        struct e1000_hw *hw = &adapter->hw;
3754
#ifndef CONFIG_E1000_NAPI
3755
        int i;
3756
#endif
3757
        uint32_t icr = E1000_READ_REG(hw, ICR);
3758
 
3759
#ifdef CONFIG_E1000_NAPI
3760
        /* read ICR disables interrupts using IAM, so keep up with our
3761
         * enable/disable accounting */
3762
        atomic_inc(&adapter->irq_sem);
3763
#endif
3764
        if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3765
                hw->get_link_status = 1;
3766
                /* 80003ES2LAN workaround-- For packet buffer work-around on
3767
                 * link down event; disable receives here in the ISR and reset
3768
                 * adapter in watchdog */
3769
                if (netif_carrier_ok(netdev) &&
3770
                    (adapter->hw.mac_type == e1000_80003es2lan)) {
3771
                        /* disable receives */
3772
                        uint32_t rctl = E1000_READ_REG(hw, RCTL);
3773
                        E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3774
                }
3775
                /* guard against interrupt when we're going down */
3776
                if (!test_bit(__E1000_DOWN, &adapter->flags))
3777
                        mod_timer(&adapter->watchdog_timer, jiffies + 1);
3778
        }
3779
 
3780
#ifdef CONFIG_E1000_NAPI
3781
        if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3782
                adapter->total_tx_bytes = 0;
3783
                adapter->total_tx_packets = 0;
3784
                adapter->total_rx_bytes = 0;
3785
                adapter->total_rx_packets = 0;
3786
                __netif_rx_schedule(netdev, &adapter->napi);
3787
        } else
3788
                e1000_irq_enable(adapter);
3789
#else
3790
        adapter->total_tx_bytes = 0;
3791
        adapter->total_rx_bytes = 0;
3792
        adapter->total_tx_packets = 0;
3793
        adapter->total_rx_packets = 0;
3794
 
3795
        for (i = 0; i < E1000_MAX_INTR; i++)
3796
                if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3797
                   !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3798
                        break;
3799
 
3800
        if (likely(adapter->itr_setting & 3))
3801
                e1000_set_itr(adapter);
3802
#endif
3803
 
3804
        return IRQ_HANDLED;
3805
}
3806
 
3807
/**
3808
 * e1000_intr - Interrupt Handler
3809
 * @irq: interrupt number
3810
 * @data: pointer to a network interface device structure
3811
 **/
3812
 
3813
static irqreturn_t
3814
e1000_intr(int irq, void *data)
3815
{
3816
        struct net_device *netdev = data;
3817
        struct e1000_adapter *adapter = netdev_priv(netdev);
3818
        struct e1000_hw *hw = &adapter->hw;
3819
        uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3820
#ifndef CONFIG_E1000_NAPI
3821
        int i;
3822
#endif
3823
        if (unlikely(!icr))
3824
                return IRQ_NONE;  /* Not our interrupt */
3825
 
3826
#ifdef CONFIG_E1000_NAPI
3827
        /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3828
         * not set, then the adapter didn't send an interrupt */
3829
        if (unlikely(hw->mac_type >= e1000_82571 &&
3830
                     !(icr & E1000_ICR_INT_ASSERTED)))
3831
                return IRQ_NONE;
3832
 
3833
        /* Interrupt Auto-Mask...upon reading ICR,
3834
         * interrupts are masked.  No need for the
3835
         * IMC write, but it does mean we should
3836
         * account for it ASAP. */
3837
        if (likely(hw->mac_type >= e1000_82571))
3838
                atomic_inc(&adapter->irq_sem);
3839
#endif
3840
 
3841
        if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3842
                hw->get_link_status = 1;
3843
                /* 80003ES2LAN workaround--
3844
                 * For packet buffer work-around on link down event;
3845
                 * disable receives here in the ISR and
3846
                 * reset adapter in watchdog
3847
                 */
3848
                if (netif_carrier_ok(netdev) &&
3849
                    (adapter->hw.mac_type == e1000_80003es2lan)) {
3850
                        /* disable receives */
3851
                        rctl = E1000_READ_REG(hw, RCTL);
3852
                        E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3853
                }
3854
                /* guard against interrupt when we're going down */
3855
                if (!test_bit(__E1000_DOWN, &adapter->flags))
3856
                        mod_timer(&adapter->watchdog_timer, jiffies + 1);
3857
        }
3858
 
3859
#ifdef CONFIG_E1000_NAPI
3860
        if (unlikely(hw->mac_type < e1000_82571)) {
3861
                /* disable interrupts, without the synchronize_irq bit */
3862
                atomic_inc(&adapter->irq_sem);
3863
                E1000_WRITE_REG(hw, IMC, ~0);
3864
                E1000_WRITE_FLUSH(hw);
3865
        }
3866
        if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3867
                adapter->total_tx_bytes = 0;
3868
                adapter->total_tx_packets = 0;
3869
                adapter->total_rx_bytes = 0;
3870
                adapter->total_rx_packets = 0;
3871
                __netif_rx_schedule(netdev, &adapter->napi);
3872
        } else
3873
                /* this really should not happen! if it does it is basically a
3874
                 * bug, but not a hard error, so enable ints and continue */
3875
                e1000_irq_enable(adapter);
3876
#else
3877
        /* Writing IMC and IMS is needed for 82547.
3878
         * Due to Hub Link bus being occupied, an interrupt
3879
         * de-assertion message is not able to be sent.
3880
         * When an interrupt assertion message is generated later,
3881
         * two messages are re-ordered and sent out.
3882
         * That causes APIC to think 82547 is in de-assertion
3883
         * state, while 82547 is in assertion state, resulting
3884
         * in dead lock. Writing IMC forces 82547 into
3885
         * de-assertion state.
3886
         */
3887
        if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3888
                atomic_inc(&adapter->irq_sem);
3889
                E1000_WRITE_REG(hw, IMC, ~0);
3890
        }
3891
 
3892
        adapter->total_tx_bytes = 0;
3893
        adapter->total_rx_bytes = 0;
3894
        adapter->total_tx_packets = 0;
3895
        adapter->total_rx_packets = 0;
3896
 
3897
        for (i = 0; i < E1000_MAX_INTR; i++)
3898
                if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3899
                   !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3900
                        break;
3901
 
3902
        if (likely(adapter->itr_setting & 3))
3903
                e1000_set_itr(adapter);
3904
 
3905
        if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3906
                e1000_irq_enable(adapter);
3907
 
3908
#endif
3909
        return IRQ_HANDLED;
3910
}
3911
 
3912
#ifdef CONFIG_E1000_NAPI
3913
/**
3914
 * e1000_clean - NAPI Rx polling callback
3915
 * @adapter: board private structure
3916
 **/
3917
 
3918
static int
3919
e1000_clean(struct napi_struct *napi, int budget)
3920
{
3921
        struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3922
        struct net_device *poll_dev = adapter->netdev;
3923
        int tx_cleaned = 0, work_done = 0;
3924
 
3925
        /* Must NOT use netdev_priv macro here. */
3926
        adapter = poll_dev->priv;
3927
 
3928
        /* e1000_clean is called per-cpu.  This lock protects
3929
         * tx_ring[0] from being cleaned by multiple cpus
3930
         * simultaneously.  A failure obtaining the lock means
3931
         * tx_ring[0] is currently being cleaned anyway. */
3932
        if (spin_trylock(&adapter->tx_queue_lock)) {
3933
                tx_cleaned = e1000_clean_tx_irq(adapter,
3934
                                                &adapter->tx_ring[0]);
3935
                spin_unlock(&adapter->tx_queue_lock);
3936
        }
3937
 
3938
        adapter->clean_rx(adapter, &adapter->rx_ring[0],
3939
                          &work_done, budget);
3940
 
3941
        if (tx_cleaned)
3942
                work_done = budget;
3943
 
3944
        /* If budget not fully consumed, exit the polling mode */
3945
        if (work_done < budget) {
3946
                if (likely(adapter->itr_setting & 3))
3947
                        e1000_set_itr(adapter);
3948
                netif_rx_complete(poll_dev, napi);
3949
                e1000_irq_enable(adapter);
3950
        }
3951
 
3952
        return work_done;
3953
}
3954
 
3955
#endif
3956
/**
3957
 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3958
 * @adapter: board private structure
3959
 **/
3960
 
3961
static boolean_t
3962
e1000_clean_tx_irq(struct e1000_adapter *adapter,
3963
                   struct e1000_tx_ring *tx_ring)
3964
{
3965
        struct net_device *netdev = adapter->netdev;
3966
        struct e1000_tx_desc *tx_desc, *eop_desc;
3967
        struct e1000_buffer *buffer_info;
3968
        unsigned int i, eop;
3969
#ifdef CONFIG_E1000_NAPI
3970
        unsigned int count = 0;
3971
#endif
3972
        boolean_t cleaned = FALSE;
3973
        unsigned int total_tx_bytes=0, total_tx_packets=0;
3974
 
3975
        i = tx_ring->next_to_clean;
3976
        eop = tx_ring->buffer_info[i].next_to_watch;
3977
        eop_desc = E1000_TX_DESC(*tx_ring, eop);
3978
 
3979
        while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3980
                for (cleaned = FALSE; !cleaned; ) {
3981
                        tx_desc = E1000_TX_DESC(*tx_ring, i);
3982
                        buffer_info = &tx_ring->buffer_info[i];
3983
                        cleaned = (i == eop);
3984
 
3985
                        if (cleaned) {
3986
                                struct sk_buff *skb = buffer_info->skb;
3987
                                unsigned int segs, bytecount;
3988
                                segs = skb_shinfo(skb)->gso_segs ?: 1;
3989
                                /* multiply data chunks by size of headers */
3990
                                bytecount = ((segs - 1) * skb_headlen(skb)) +
3991
                                            skb->len;
3992
                                total_tx_packets += segs;
3993
                                total_tx_bytes += bytecount;
3994
                        }
3995
                        e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3996
                        tx_desc->upper.data = 0;
3997
 
3998
                        if (unlikely(++i == tx_ring->count)) i = 0;
3999
                }
4000
 
4001
                eop = tx_ring->buffer_info[i].next_to_watch;
4002
                eop_desc = E1000_TX_DESC(*tx_ring, eop);
4003
#ifdef CONFIG_E1000_NAPI
4004
#define E1000_TX_WEIGHT 64
4005
                /* weight of a sort for tx, to avoid endless transmit cleanup */
4006
                if (count++ == E1000_TX_WEIGHT) break;
4007
#endif
4008
        }
4009
 
4010
        tx_ring->next_to_clean = i;
4011
 
4012
#define TX_WAKE_THRESHOLD 32
4013
        if (unlikely(cleaned && netif_carrier_ok(netdev) &&
4014
                     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
4015
                /* Make sure that anybody stopping the queue after this
4016
                 * sees the new next_to_clean.
4017
                 */
4018
                smp_mb();
4019
                if (netif_queue_stopped(netdev)) {
4020
                        netif_wake_queue(netdev);
4021
                        ++adapter->restart_queue;
4022
                }
4023
        }
4024
 
4025
        if (adapter->detect_tx_hung) {
4026
                /* Detect a transmit hang in hardware, this serializes the
4027
                 * check with the clearing of time_stamp and movement of i */
4028
                adapter->detect_tx_hung = FALSE;
4029
                if (tx_ring->buffer_info[eop].dma &&
4030
                    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
4031
                               (adapter->tx_timeout_factor * HZ))
4032
                    && !(E1000_READ_REG(&adapter->hw, STATUS) &
4033
                         E1000_STATUS_TXOFF)) {
4034
 
4035
                        /* detected Tx unit hang */
4036
                        DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
4037
                                        "  Tx Queue             <%lu>\n"
4038
                                        "  TDH                  <%x>\n"
4039
                                        "  TDT                  <%x>\n"
4040
                                        "  next_to_use          <%x>\n"
4041
                                        "  next_to_clean        <%x>\n"
4042
                                        "buffer_info[next_to_clean]\n"
4043
                                        "  time_stamp           <%lx>\n"
4044
                                        "  next_to_watch        <%x>\n"
4045
                                        "  jiffies              <%lx>\n"
4046
                                        "  next_to_watch.status <%x>\n",
4047
                                (unsigned long)((tx_ring - adapter->tx_ring) /
4048
                                        sizeof(struct e1000_tx_ring)),
4049
                                readl(adapter->hw.hw_addr + tx_ring->tdh),
4050
                                readl(adapter->hw.hw_addr + tx_ring->tdt),
4051
                                tx_ring->next_to_use,
4052
                                tx_ring->next_to_clean,
4053
                                tx_ring->buffer_info[eop].time_stamp,
4054
                                eop,
4055
                                jiffies,
4056
                                eop_desc->upper.fields.status);
4057
                        netif_stop_queue(netdev);
4058
                }
4059
        }
4060
        adapter->total_tx_bytes += total_tx_bytes;
4061
        adapter->total_tx_packets += total_tx_packets;
4062
        return cleaned;
4063
}
4064
 
4065
/**
4066
 * e1000_rx_checksum - Receive Checksum Offload for 82543
4067
 * @adapter:     board private structure
4068
 * @status_err:  receive descriptor status and error fields
4069
 * @csum:        receive descriptor csum field
4070
 * @sk_buff:     socket buffer with received data
4071
 **/
4072
 
4073
static void
4074
e1000_rx_checksum(struct e1000_adapter *adapter,
4075
                  uint32_t status_err, uint32_t csum,
4076
                  struct sk_buff *skb)
4077
{
4078
        uint16_t status = (uint16_t)status_err;
4079
        uint8_t errors = (uint8_t)(status_err >> 24);
4080
        skb->ip_summed = CHECKSUM_NONE;
4081
 
4082
        /* 82543 or newer only */
4083
        if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
4084
        /* Ignore Checksum bit is set */
4085
        if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
4086
        /* TCP/UDP checksum error bit is set */
4087
        if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
4088
                /* let the stack verify checksum errors */
4089
                adapter->hw_csum_err++;
4090
                return;
4091
        }
4092
        /* TCP/UDP Checksum has not been calculated */
4093
        if (adapter->hw.mac_type <= e1000_82547_rev_2) {
4094
                if (!(status & E1000_RXD_STAT_TCPCS))
4095
                        return;
4096
        } else {
4097
                if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
4098
                        return;
4099
        }
4100
        /* It must be a TCP or UDP packet with a valid checksum */
4101
        if (likely(status & E1000_RXD_STAT_TCPCS)) {
4102
                /* TCP checksum is good */
4103
                skb->ip_summed = CHECKSUM_UNNECESSARY;
4104
        } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
4105
                /* IP fragment with UDP payload */
4106
                /* Hardware complements the payload checksum, so we undo it
4107
                 * and then put the value in host order for further stack use.
4108
                 */
4109
                csum = ntohl(csum ^ 0xFFFF);
4110
                skb->csum = csum;
4111
                skb->ip_summed = CHECKSUM_COMPLETE;
4112
        }
4113
        adapter->hw_csum_good++;
4114
}
4115
 
4116
/**
4117
 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4118
 * @adapter: board private structure
4119
 **/
4120
 
4121
static boolean_t
4122
#ifdef CONFIG_E1000_NAPI
4123
e1000_clean_rx_irq(struct e1000_adapter *adapter,
4124
                   struct e1000_rx_ring *rx_ring,
4125
                   int *work_done, int work_to_do)
4126
#else
4127
e1000_clean_rx_irq(struct e1000_adapter *adapter,
4128
                   struct e1000_rx_ring *rx_ring)
4129
#endif
4130
{
4131
        struct net_device *netdev = adapter->netdev;
4132
        struct pci_dev *pdev = adapter->pdev;
4133
        struct e1000_rx_desc *rx_desc, *next_rxd;
4134
        struct e1000_buffer *buffer_info, *next_buffer;
4135
        unsigned long flags;
4136
        uint32_t length;
4137
        uint8_t last_byte;
4138
        unsigned int i;
4139
        int cleaned_count = 0;
4140
        boolean_t cleaned = FALSE;
4141
        unsigned int total_rx_bytes=0, total_rx_packets=0;
4142
 
4143
        i = rx_ring->next_to_clean;
4144
        rx_desc = E1000_RX_DESC(*rx_ring, i);
4145
        buffer_info = &rx_ring->buffer_info[i];
4146
 
4147
        while (rx_desc->status & E1000_RXD_STAT_DD) {
4148
                struct sk_buff *skb;
4149
                u8 status;
4150
 
4151
#ifdef CONFIG_E1000_NAPI
4152
                if (*work_done >= work_to_do)
4153
                        break;
4154
                (*work_done)++;
4155
#endif
4156
                status = rx_desc->status;
4157
                skb = buffer_info->skb;
4158
                buffer_info->skb = NULL;
4159
 
4160
                prefetch(skb->data - NET_IP_ALIGN);
4161
 
4162
                if (++i == rx_ring->count) i = 0;
4163
                next_rxd = E1000_RX_DESC(*rx_ring, i);
4164
                prefetch(next_rxd);
4165
 
4166
                next_buffer = &rx_ring->buffer_info[i];
4167
 
4168
                cleaned = TRUE;
4169
                cleaned_count++;
4170
                pci_unmap_single(pdev,
4171
                                 buffer_info->dma,
4172
                                 buffer_info->length,
4173
                                 PCI_DMA_FROMDEVICE);
4174
 
4175
                length = le16_to_cpu(rx_desc->length);
4176
 
4177
                if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
4178
                        /* All receives must fit into a single buffer */
4179
                        E1000_DBG("%s: Receive packet consumed multiple"
4180
                                  " buffers\n", netdev->name);
4181
                        /* recycle */
4182
                        buffer_info->skb = skb;
4183
                        goto next_desc;
4184
                }
4185
 
4186
                if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4187
                        last_byte = *(skb->data + length - 1);
4188
                        if (TBI_ACCEPT(&adapter->hw, status,
4189
                                      rx_desc->errors, length, last_byte)) {
4190
                                spin_lock_irqsave(&adapter->stats_lock, flags);
4191
                                e1000_tbi_adjust_stats(&adapter->hw,
4192
                                                       &adapter->stats,
4193
                                                       length, skb->data);
4194
                                spin_unlock_irqrestore(&adapter->stats_lock,
4195
                                                       flags);
4196
                                length--;
4197
                        } else {
4198
                                /* recycle */
4199
                                buffer_info->skb = skb;
4200
                                goto next_desc;
4201
                        }
4202
                }
4203
 
4204
                /* adjust length to remove Ethernet CRC, this must be
4205
                 * done after the TBI_ACCEPT workaround above */
4206
                length -= 4;
4207
 
4208
                /* probably a little skewed due to removing CRC */
4209
                total_rx_bytes += length;
4210
                total_rx_packets++;
4211
 
4212
                /* code added for copybreak, this should improve
4213
                 * performance for small packets with large amounts
4214
                 * of reassembly being done in the stack */
4215
                if (length < copybreak) {
4216
                        struct sk_buff *new_skb =
4217
                            netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4218
                        if (new_skb) {
4219
                                skb_reserve(new_skb, NET_IP_ALIGN);
4220
                                skb_copy_to_linear_data_offset(new_skb,
4221
                                                               -NET_IP_ALIGN,
4222
                                                               (skb->data -
4223
                                                                NET_IP_ALIGN),
4224
                                                               (length +
4225
                                                                NET_IP_ALIGN));
4226
                                /* save the skb in buffer_info as good */
4227
                                buffer_info->skb = skb;
4228
                                skb = new_skb;
4229
                        }
4230
                        /* else just continue with the old one */
4231
                }
4232
                /* end copybreak code */
4233
                skb_put(skb, length);
4234
 
4235
                /* Receive Checksum Offload */
4236
                e1000_rx_checksum(adapter,
4237
                                  (uint32_t)(status) |
4238
                                  ((uint32_t)(rx_desc->errors) << 24),
4239
                                  le16_to_cpu(rx_desc->csum), skb);
4240
 
4241
                skb->protocol = eth_type_trans(skb, netdev);
4242
#ifdef CONFIG_E1000_NAPI
4243
                if (unlikely(adapter->vlgrp &&
4244
                            (status & E1000_RXD_STAT_VP))) {
4245
                        vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4246
                                                 le16_to_cpu(rx_desc->special) &
4247
                                                 E1000_RXD_SPC_VLAN_MASK);
4248
                } else {
4249
                        netif_receive_skb(skb);
4250
                }
4251
#else /* CONFIG_E1000_NAPI */
4252
                if (unlikely(adapter->vlgrp &&
4253
                            (status & E1000_RXD_STAT_VP))) {
4254
                        vlan_hwaccel_rx(skb, adapter->vlgrp,
4255
                                        le16_to_cpu(rx_desc->special) &
4256
                                        E1000_RXD_SPC_VLAN_MASK);
4257
                } else {
4258
                        netif_rx(skb);
4259
                }
4260
#endif /* CONFIG_E1000_NAPI */
4261
                netdev->last_rx = jiffies;
4262
 
4263
next_desc:
4264
                rx_desc->status = 0;
4265
 
4266
                /* return some buffers to hardware, one at a time is too slow */
4267
                if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4268
                        adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4269
                        cleaned_count = 0;
4270
                }
4271
 
4272
                /* use prefetched values */
4273
                rx_desc = next_rxd;
4274
                buffer_info = next_buffer;
4275
        }
4276
        rx_ring->next_to_clean = i;
4277
 
4278
        cleaned_count = E1000_DESC_UNUSED(rx_ring);
4279
        if (cleaned_count)
4280
                adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4281
 
4282
        adapter->total_rx_packets += total_rx_packets;
4283
        adapter->total_rx_bytes += total_rx_bytes;
4284
        return cleaned;
4285
}
4286
 
4287
/**
4288
 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
4289
 * @adapter: board private structure
4290
 **/
4291
 
4292
static boolean_t
4293
#ifdef CONFIG_E1000_NAPI
4294
e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4295
                      struct e1000_rx_ring *rx_ring,
4296
                      int *work_done, int work_to_do)
4297
#else
4298
e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4299
                      struct e1000_rx_ring *rx_ring)
4300
#endif
4301
{
4302
        union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
4303
        struct net_device *netdev = adapter->netdev;
4304
        struct pci_dev *pdev = adapter->pdev;
4305
        struct e1000_buffer *buffer_info, *next_buffer;
4306
        struct e1000_ps_page *ps_page;
4307
        struct e1000_ps_page_dma *ps_page_dma;
4308
        struct sk_buff *skb;
4309
        unsigned int i, j;
4310
        uint32_t length, staterr;
4311
        int cleaned_count = 0;
4312
        boolean_t cleaned = FALSE;
4313
        unsigned int total_rx_bytes=0, total_rx_packets=0;
4314
 
4315
        i = rx_ring->next_to_clean;
4316
        rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4317
        staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4318
        buffer_info = &rx_ring->buffer_info[i];
4319
 
4320
        while (staterr & E1000_RXD_STAT_DD) {
4321
                ps_page = &rx_ring->ps_page[i];
4322
                ps_page_dma = &rx_ring->ps_page_dma[i];
4323
#ifdef CONFIG_E1000_NAPI
4324
                if (unlikely(*work_done >= work_to_do))
4325
                        break;
4326
                (*work_done)++;
4327
#endif
4328
                skb = buffer_info->skb;
4329
 
4330
                /* in the packet split case this is header only */
4331
                prefetch(skb->data - NET_IP_ALIGN);
4332
 
4333
                if (++i == rx_ring->count) i = 0;
4334
                next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
4335
                prefetch(next_rxd);
4336
 
4337
                next_buffer = &rx_ring->buffer_info[i];
4338
 
4339
                cleaned = TRUE;
4340
                cleaned_count++;
4341
                pci_unmap_single(pdev, buffer_info->dma,
4342
                                 buffer_info->length,
4343
                                 PCI_DMA_FROMDEVICE);
4344
 
4345
                if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
4346
                        E1000_DBG("%s: Packet Split buffers didn't pick up"
4347
                                  " the full packet\n", netdev->name);
4348
                        dev_kfree_skb_irq(skb);
4349
                        goto next_desc;
4350
                }
4351
 
4352
                if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
4353
                        dev_kfree_skb_irq(skb);
4354
                        goto next_desc;
4355
                }
4356
 
4357
                length = le16_to_cpu(rx_desc->wb.middle.length0);
4358
 
4359
                if (unlikely(!length)) {
4360
                        E1000_DBG("%s: Last part of the packet spanning"
4361
                                  " multiple descriptors\n", netdev->name);
4362
                        dev_kfree_skb_irq(skb);
4363
                        goto next_desc;
4364
                }
4365
 
4366
                /* Good Receive */
4367
                skb_put(skb, length);
4368
 
4369
                {
4370
                /* this looks ugly, but it seems compiler issues make it
4371
                   more efficient than reusing j */
4372
                int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
4373
 
4374
                /* page alloc/put takes too long and effects small packet
4375
                 * throughput, so unsplit small packets and save the alloc/put*/
4376
                if (l1 && (l1 <= copybreak) && ((length + l1) <= adapter->rx_ps_bsize0)) {
4377
                        u8 *vaddr;
4378
                        /* there is no documentation about how to call
4379
                         * kmap_atomic, so we can't hold the mapping
4380
                         * very long */
4381
                        pci_dma_sync_single_for_cpu(pdev,
4382
                                ps_page_dma->ps_page_dma[0],
4383
                                PAGE_SIZE,
4384
                                PCI_DMA_FROMDEVICE);
4385
                        vaddr = kmap_atomic(ps_page->ps_page[0],
4386
                                            KM_SKB_DATA_SOFTIRQ);
4387
                        memcpy(skb_tail_pointer(skb), vaddr, l1);
4388
                        kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
4389
                        pci_dma_sync_single_for_device(pdev,
4390
                                ps_page_dma->ps_page_dma[0],
4391
                                PAGE_SIZE, PCI_DMA_FROMDEVICE);
4392
                        /* remove the CRC */
4393
                        l1 -= 4;
4394
                        skb_put(skb, l1);
4395
                        goto copydone;
4396
                } /* if */
4397
                }
4398
 
4399
                for (j = 0; j < adapter->rx_ps_pages; j++) {
4400
                        if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
4401
                                break;
4402
                        pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
4403
                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
4404
                        ps_page_dma->ps_page_dma[j] = 0;
4405
                        skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4406
                                           length);
4407
                        ps_page->ps_page[j] = NULL;
4408
                        skb->len += length;
4409
                        skb->data_len += length;
4410
                        skb->truesize += length;
4411
                }
4412
 
4413
                /* strip the ethernet crc, problem is we're using pages now so
4414
                 * this whole operation can get a little cpu intensive */
4415
                pskb_trim(skb, skb->len - 4);
4416
 
4417
copydone:
4418
                total_rx_bytes += skb->len;
4419
                total_rx_packets++;
4420
 
4421
                e1000_rx_checksum(adapter, staterr,
4422
                                  le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4423
                skb->protocol = eth_type_trans(skb, netdev);
4424
 
4425
                if (likely(rx_desc->wb.upper.header_status &
4426
                           cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4427
                        adapter->rx_hdr_split++;
4428
#ifdef CONFIG_E1000_NAPI
4429
                if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4430
                        vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4431
                                le16_to_cpu(rx_desc->wb.middle.vlan) &
4432
                                E1000_RXD_SPC_VLAN_MASK);
4433
                } else {
4434
                        netif_receive_skb(skb);
4435
                }
4436
#else /* CONFIG_E1000_NAPI */
4437
                if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4438
                        vlan_hwaccel_rx(skb, adapter->vlgrp,
4439
                                le16_to_cpu(rx_desc->wb.middle.vlan) &
4440
                                E1000_RXD_SPC_VLAN_MASK);
4441
                } else {
4442
                        netif_rx(skb);
4443
                }
4444
#endif /* CONFIG_E1000_NAPI */
4445
                netdev->last_rx = jiffies;
4446
 
4447
next_desc:
4448
                rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4449
                buffer_info->skb = NULL;
4450
 
4451
                /* return some buffers to hardware, one at a time is too slow */
4452
                if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4453
                        adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4454
                        cleaned_count = 0;
4455
                }
4456
 
4457
                /* use prefetched values */
4458
                rx_desc = next_rxd;
4459
                buffer_info = next_buffer;
4460
 
4461
                staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4462
        }
4463
        rx_ring->next_to_clean = i;
4464
 
4465
        cleaned_count = E1000_DESC_UNUSED(rx_ring);
4466
        if (cleaned_count)
4467
                adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4468
 
4469
        adapter->total_rx_packets += total_rx_packets;
4470
        adapter->total_rx_bytes += total_rx_bytes;
4471
        return cleaned;
4472
}
4473
 
4474
/**
4475
 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4476
 * @adapter: address of board private structure
4477
 **/
4478
 
4479
static void
4480
e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4481
                       struct e1000_rx_ring *rx_ring,
4482
                       int cleaned_count)
4483
{
4484
        struct net_device *netdev = adapter->netdev;
4485
        struct pci_dev *pdev = adapter->pdev;
4486
        struct e1000_rx_desc *rx_desc;
4487
        struct e1000_buffer *buffer_info;
4488
        struct sk_buff *skb;
4489
        unsigned int i;
4490
        unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4491
 
4492
        i = rx_ring->next_to_use;
4493
        buffer_info = &rx_ring->buffer_info[i];
4494
 
4495
        while (cleaned_count--) {
4496
                skb = buffer_info->skb;
4497
                if (skb) {
4498
                        skb_trim(skb, 0);
4499
                        goto map_skb;
4500
                }
4501
 
4502
                skb = netdev_alloc_skb(netdev, bufsz);
4503
                if (unlikely(!skb)) {
4504
                        /* Better luck next round */
4505
                        adapter->alloc_rx_buff_failed++;
4506
                        break;
4507
                }
4508
 
4509
                /* Fix for errata 23, can't cross 64kB boundary */
4510
                if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4511
                        struct sk_buff *oldskb = skb;
4512
                        DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4513
                                             "at %p\n", bufsz, skb->data);
4514
                        /* Try again, without freeing the previous */
4515
                        skb = netdev_alloc_skb(netdev, bufsz);
4516
                        /* Failed allocation, critical failure */
4517
                        if (!skb) {
4518
                                dev_kfree_skb(oldskb);
4519
                                break;
4520
                        }
4521
 
4522
                        if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4523
                                /* give up */
4524
                                dev_kfree_skb(skb);
4525
                                dev_kfree_skb(oldskb);
4526
                                break; /* while !buffer_info->skb */
4527
                        }
4528
 
4529
                        /* Use new allocation */
4530
                        dev_kfree_skb(oldskb);
4531
                }
4532
                /* Make buffer alignment 2 beyond a 16 byte boundary
4533
                 * this will result in a 16 byte aligned IP header after
4534
                 * the 14 byte MAC header is removed
4535
                 */
4536
                skb_reserve(skb, NET_IP_ALIGN);
4537
 
4538
                buffer_info->skb = skb;
4539
                buffer_info->length = adapter->rx_buffer_len;
4540
map_skb:
4541
                buffer_info->dma = pci_map_single(pdev,
4542
                                                  skb->data,
4543
                                                  adapter->rx_buffer_len,
4544
                                                  PCI_DMA_FROMDEVICE);
4545
 
4546
                /* Fix for errata 23, can't cross 64kB boundary */
4547
                if (!e1000_check_64k_bound(adapter,
4548
                                        (void *)(unsigned long)buffer_info->dma,
4549
                                        adapter->rx_buffer_len)) {
4550
                        DPRINTK(RX_ERR, ERR,
4551
                                "dma align check failed: %u bytes at %p\n",
4552
                                adapter->rx_buffer_len,
4553
                                (void *)(unsigned long)buffer_info->dma);
4554
                        dev_kfree_skb(skb);
4555
                        buffer_info->skb = NULL;
4556
 
4557
                        pci_unmap_single(pdev, buffer_info->dma,
4558
                                         adapter->rx_buffer_len,
4559
                                         PCI_DMA_FROMDEVICE);
4560
 
4561
                        break; /* while !buffer_info->skb */
4562
                }
4563
                rx_desc = E1000_RX_DESC(*rx_ring, i);
4564
                rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4565
 
4566
                if (unlikely(++i == rx_ring->count))
4567
                        i = 0;
4568
                buffer_info = &rx_ring->buffer_info[i];
4569
        }
4570
 
4571
        if (likely(rx_ring->next_to_use != i)) {
4572
                rx_ring->next_to_use = i;
4573
                if (unlikely(i-- == 0))
4574
                        i = (rx_ring->count - 1);
4575
 
4576
                /* Force memory writes to complete before letting h/w
4577
                 * know there are new descriptors to fetch.  (Only
4578
                 * applicable for weak-ordered memory model archs,
4579
                 * such as IA-64). */
4580
                wmb();
4581
                writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4582
        }
4583
}
4584
 
4585
/**
4586
 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4587
 * @adapter: address of board private structure
4588
 **/
4589
 
4590
static void
4591
e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4592
                          struct e1000_rx_ring *rx_ring,
4593
                          int cleaned_count)
4594
{
4595
        struct net_device *netdev = adapter->netdev;
4596
        struct pci_dev *pdev = adapter->pdev;
4597
        union e1000_rx_desc_packet_split *rx_desc;
4598
        struct e1000_buffer *buffer_info;
4599
        struct e1000_ps_page *ps_page;
4600
        struct e1000_ps_page_dma *ps_page_dma;
4601
        struct sk_buff *skb;
4602
        unsigned int i, j;
4603
 
4604
        i = rx_ring->next_to_use;
4605
        buffer_info = &rx_ring->buffer_info[i];
4606
        ps_page = &rx_ring->ps_page[i];
4607
        ps_page_dma = &rx_ring->ps_page_dma[i];
4608
 
4609
        while (cleaned_count--) {
4610
                rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4611
 
4612
                for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4613
                        if (j < adapter->rx_ps_pages) {
4614
                                if (likely(!ps_page->ps_page[j])) {
4615
                                        ps_page->ps_page[j] =
4616
                                                alloc_page(GFP_ATOMIC);
4617
                                        if (unlikely(!ps_page->ps_page[j])) {
4618
                                                adapter->alloc_rx_buff_failed++;
4619
                                                goto no_buffers;
4620
                                        }
4621
                                        ps_page_dma->ps_page_dma[j] =
4622
                                                pci_map_page(pdev,
4623
                                                            ps_page->ps_page[j],
4624
                                                            0, PAGE_SIZE,
4625
                                                            PCI_DMA_FROMDEVICE);
4626
                                }
4627
                                /* Refresh the desc even if buffer_addrs didn't
4628
                                 * change because each write-back erases
4629
                                 * this info.
4630
                                 */
4631
                                rx_desc->read.buffer_addr[j+1] =
4632
                                     cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4633
                        } else
4634
                                rx_desc->read.buffer_addr[j+1] = ~0;
4635
                }
4636
 
4637
                skb = netdev_alloc_skb(netdev,
4638
                                       adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4639
 
4640
                if (unlikely(!skb)) {
4641
                        adapter->alloc_rx_buff_failed++;
4642
                        break;
4643
                }
4644
 
4645
                /* Make buffer alignment 2 beyond a 16 byte boundary
4646
                 * this will result in a 16 byte aligned IP header after
4647
                 * the 14 byte MAC header is removed
4648
                 */
4649
                skb_reserve(skb, NET_IP_ALIGN);
4650
 
4651
                buffer_info->skb = skb;
4652
                buffer_info->length = adapter->rx_ps_bsize0;
4653
                buffer_info->dma = pci_map_single(pdev, skb->data,
4654
                                                  adapter->rx_ps_bsize0,
4655
                                                  PCI_DMA_FROMDEVICE);
4656
 
4657
                rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4658
 
4659
                if (unlikely(++i == rx_ring->count)) i = 0;
4660
                buffer_info = &rx_ring->buffer_info[i];
4661
                ps_page = &rx_ring->ps_page[i];
4662
                ps_page_dma = &rx_ring->ps_page_dma[i];
4663
        }
4664
 
4665
no_buffers:
4666
        if (likely(rx_ring->next_to_use != i)) {
4667
                rx_ring->next_to_use = i;
4668
                if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4669
 
4670
                /* Force memory writes to complete before letting h/w
4671
                 * know there are new descriptors to fetch.  (Only
4672
                 * applicable for weak-ordered memory model archs,
4673
                 * such as IA-64). */
4674
                wmb();
4675
                /* Hardware increments by 16 bytes, but packet split
4676
                 * descriptors are 32 bytes...so we increment tail
4677
                 * twice as much.
4678
                 */
4679
                writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4680
        }
4681
}
4682
 
4683
/**
4684
 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4685
 * @adapter:
4686
 **/
4687
 
4688
static void
4689
e1000_smartspeed(struct e1000_adapter *adapter)
4690
{
4691
        uint16_t phy_status;
4692
        uint16_t phy_ctrl;
4693
 
4694
        if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4695
           !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4696
                return;
4697
 
4698
        if (adapter->smartspeed == 0) {
4699
                /* If Master/Slave config fault is asserted twice,
4700
                 * we assume back-to-back */
4701
                e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4702
                if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4703
                e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4704
                if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4705
                e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4706
                if (phy_ctrl & CR_1000T_MS_ENABLE) {
4707
                        phy_ctrl &= ~CR_1000T_MS_ENABLE;
4708
                        e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4709
                                            phy_ctrl);
4710
                        adapter->smartspeed++;
4711
                        if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4712
                           !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4713
                                               &phy_ctrl)) {
4714
                                phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4715
                                             MII_CR_RESTART_AUTO_NEG);
4716
                                e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4717
                                                    phy_ctrl);
4718
                        }
4719
                }
4720
                return;
4721
        } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4722
                /* If still no link, perhaps using 2/3 pair cable */
4723
                e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4724
                phy_ctrl |= CR_1000T_MS_ENABLE;
4725
                e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4726
                if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4727
                   !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4728
                        phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4729
                                     MII_CR_RESTART_AUTO_NEG);
4730
                        e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4731
                }
4732
        }
4733
        /* Restart process after E1000_SMARTSPEED_MAX iterations */
4734
        if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4735
                adapter->smartspeed = 0;
4736
}
4737
 
4738
/**
4739
 * e1000_ioctl -
4740
 * @netdev:
4741
 * @ifreq:
4742
 * @cmd:
4743
 **/
4744
 
4745
static int
4746
e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4747
{
4748
        switch (cmd) {
4749
        case SIOCGMIIPHY:
4750
        case SIOCGMIIREG:
4751
        case SIOCSMIIREG:
4752
                return e1000_mii_ioctl(netdev, ifr, cmd);
4753
        default:
4754
                return -EOPNOTSUPP;
4755
        }
4756
}
4757
 
4758
/**
4759
 * e1000_mii_ioctl -
4760
 * @netdev:
4761
 * @ifreq:
4762
 * @cmd:
4763
 **/
4764
 
4765
static int
4766
e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4767
{
4768
        struct e1000_adapter *adapter = netdev_priv(netdev);
4769
        struct mii_ioctl_data *data = if_mii(ifr);
4770
        int retval;
4771
        uint16_t mii_reg;
4772
        uint16_t spddplx;
4773
        unsigned long flags;
4774
 
4775
        if (adapter->hw.media_type != e1000_media_type_copper)
4776
                return -EOPNOTSUPP;
4777
 
4778
        switch (cmd) {
4779
        case SIOCGMIIPHY:
4780
                data->phy_id = adapter->hw.phy_addr;
4781
                break;
4782
        case SIOCGMIIREG:
4783
                if (!capable(CAP_NET_ADMIN))
4784
                        return -EPERM;
4785
                spin_lock_irqsave(&adapter->stats_lock, flags);
4786
                if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4787
                                   &data->val_out)) {
4788
                        spin_unlock_irqrestore(&adapter->stats_lock, flags);
4789
                        return -EIO;
4790
                }
4791
                spin_unlock_irqrestore(&adapter->stats_lock, flags);
4792
                break;
4793
        case SIOCSMIIREG:
4794
                if (!capable(CAP_NET_ADMIN))
4795
                        return -EPERM;
4796
                if (data->reg_num & ~(0x1F))
4797
                        return -EFAULT;
4798
                mii_reg = data->val_in;
4799
                spin_lock_irqsave(&adapter->stats_lock, flags);
4800
                if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4801
                                        mii_reg)) {
4802
                        spin_unlock_irqrestore(&adapter->stats_lock, flags);
4803
                        return -EIO;
4804
                }
4805
                spin_unlock_irqrestore(&adapter->stats_lock, flags);
4806
                if (adapter->hw.media_type == e1000_media_type_copper) {
4807
                        switch (data->reg_num) {
4808
                        case PHY_CTRL:
4809
                                if (mii_reg & MII_CR_POWER_DOWN)
4810
                                        break;
4811
                                if (mii_reg & MII_CR_AUTO_NEG_EN) {
4812
                                        adapter->hw.autoneg = 1;
4813
                                        adapter->hw.autoneg_advertised = 0x2F;
4814
                                } else {
4815
                                        if (mii_reg & 0x40)
4816
                                                spddplx = SPEED_1000;
4817
                                        else if (mii_reg & 0x2000)
4818
                                                spddplx = SPEED_100;
4819
                                        else
4820
                                                spddplx = SPEED_10;
4821
                                        spddplx += (mii_reg & 0x100)
4822
                                                   ? DUPLEX_FULL :
4823
                                                   DUPLEX_HALF;
4824
                                        retval = e1000_set_spd_dplx(adapter,
4825
                                                                    spddplx);
4826
                                        if (retval)
4827
                                                return retval;
4828
                                }
4829
                                if (netif_running(adapter->netdev))
4830
                                        e1000_reinit_locked(adapter);
4831
                                else
4832
                                        e1000_reset(adapter);
4833
                                break;
4834
                        case M88E1000_PHY_SPEC_CTRL:
4835
                        case M88E1000_EXT_PHY_SPEC_CTRL:
4836
                                if (e1000_phy_reset(&adapter->hw))
4837
                                        return -EIO;
4838
                                break;
4839
                        }
4840
                } else {
4841
                        switch (data->reg_num) {
4842
                        case PHY_CTRL:
4843
                                if (mii_reg & MII_CR_POWER_DOWN)
4844
                                        break;
4845
                                if (netif_running(adapter->netdev))
4846
                                        e1000_reinit_locked(adapter);
4847
                                else
4848
                                        e1000_reset(adapter);
4849
                                break;
4850
                        }
4851
                }
4852
                break;
4853
        default:
4854
                return -EOPNOTSUPP;
4855
        }
4856
        return E1000_SUCCESS;
4857
}
4858
 
4859
void
4860
e1000_pci_set_mwi(struct e1000_hw *hw)
4861
{
4862
        struct e1000_adapter *adapter = hw->back;
4863
        int ret_val = pci_set_mwi(adapter->pdev);
4864
 
4865
        if (ret_val)
4866
                DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4867
}
4868
 
4869
void
4870
e1000_pci_clear_mwi(struct e1000_hw *hw)
4871
{
4872
        struct e1000_adapter *adapter = hw->back;
4873
 
4874
        pci_clear_mwi(adapter->pdev);
4875
}
4876
 
4877
void
4878
e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4879
{
4880
        struct e1000_adapter *adapter = hw->back;
4881
 
4882
        pci_read_config_word(adapter->pdev, reg, value);
4883
}
4884
 
4885
void
4886
e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4887
{
4888
        struct e1000_adapter *adapter = hw->back;
4889
 
4890
        pci_write_config_word(adapter->pdev, reg, *value);
4891
}
4892
 
4893
int
4894
e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4895
{
4896
        struct e1000_adapter *adapter = hw->back;
4897
        return pcix_get_mmrbc(adapter->pdev);
4898
}
4899
 
4900
void
4901
e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4902
{
4903
        struct e1000_adapter *adapter = hw->back;
4904
        pcix_set_mmrbc(adapter->pdev, mmrbc);
4905
}
4906
 
4907
int32_t
4908
e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4909
{
4910
    struct e1000_adapter *adapter = hw->back;
4911
    uint16_t cap_offset;
4912
 
4913
    cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4914
    if (!cap_offset)
4915
        return -E1000_ERR_CONFIG;
4916
 
4917
    pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4918
 
4919
    return E1000_SUCCESS;
4920
}
4921
 
4922
void
4923
e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4924
{
4925
        outl(value, port);
4926
}
4927
 
4928
static void
4929
e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4930
{
4931
        struct e1000_adapter *adapter = netdev_priv(netdev);
4932
        uint32_t ctrl, rctl;
4933
 
4934
        e1000_irq_disable(adapter);
4935
        adapter->vlgrp = grp;
4936
 
4937
        if (grp) {
4938
                /* enable VLAN tag insert/strip */
4939
                ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4940
                ctrl |= E1000_CTRL_VME;
4941
                E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4942
 
4943
                if (adapter->hw.mac_type != e1000_ich8lan) {
4944
                        /* enable VLAN receive filtering */
4945
                        rctl = E1000_READ_REG(&adapter->hw, RCTL);
4946
                        rctl |= E1000_RCTL_VFE;
4947
                        rctl &= ~E1000_RCTL_CFIEN;
4948
                        E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4949
                        e1000_update_mng_vlan(adapter);
4950
                }
4951
        } else {
4952
                /* disable VLAN tag insert/strip */
4953
                ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4954
                ctrl &= ~E1000_CTRL_VME;
4955
                E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4956
 
4957
                if (adapter->hw.mac_type != e1000_ich8lan) {
4958
                        /* disable VLAN filtering */
4959
                        rctl = E1000_READ_REG(&adapter->hw, RCTL);
4960
                        rctl &= ~E1000_RCTL_VFE;
4961
                        E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4962
                        if (adapter->mng_vlan_id !=
4963
                            (uint16_t)E1000_MNG_VLAN_NONE) {
4964
                                e1000_vlan_rx_kill_vid(netdev,
4965
                                                       adapter->mng_vlan_id);
4966
                                adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4967
                        }
4968
                }
4969
        }
4970
 
4971
        e1000_irq_enable(adapter);
4972
}
4973
 
4974
static void
4975
e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4976
{
4977
        struct e1000_adapter *adapter = netdev_priv(netdev);
4978
        uint32_t vfta, index;
4979
 
4980
        if ((adapter->hw.mng_cookie.status &
4981
             E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4982
            (vid == adapter->mng_vlan_id))
4983
                return;
4984
        /* add VID to filter table */
4985
        index = (vid >> 5) & 0x7F;
4986
        vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4987
        vfta |= (1 << (vid & 0x1F));
4988
        e1000_write_vfta(&adapter->hw, index, vfta);
4989
}
4990
 
4991
static void
4992
e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4993
{
4994
        struct e1000_adapter *adapter = netdev_priv(netdev);
4995
        uint32_t vfta, index;
4996
 
4997
        e1000_irq_disable(adapter);
4998
        vlan_group_set_device(adapter->vlgrp, vid, NULL);
4999
        e1000_irq_enable(adapter);
5000
 
5001
        if ((adapter->hw.mng_cookie.status &
5002
             E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
5003
            (vid == adapter->mng_vlan_id)) {
5004
                /* release control to f/w */
5005
                e1000_release_hw_control(adapter);
5006
                return;
5007
        }
5008
 
5009
        /* remove VID from filter table */
5010
        index = (vid >> 5) & 0x7F;
5011
        vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
5012
        vfta &= ~(1 << (vid & 0x1F));
5013
        e1000_write_vfta(&adapter->hw, index, vfta);
5014
}
5015
 
5016
static void
5017
e1000_restore_vlan(struct e1000_adapter *adapter)
5018
{
5019
        e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5020
 
5021
        if (adapter->vlgrp) {
5022
                uint16_t vid;
5023
                for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5024
                        if (!vlan_group_get_device(adapter->vlgrp, vid))
5025
                                continue;
5026
                        e1000_vlan_rx_add_vid(adapter->netdev, vid);
5027
                }
5028
        }
5029
}
5030
 
5031
int
5032
e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
5033
{
5034
        adapter->hw.autoneg = 0;
5035
 
5036
        /* Fiber NICs only allow 1000 gbps Full duplex */
5037
        if ((adapter->hw.media_type == e1000_media_type_fiber) &&
5038
                spddplx != (SPEED_1000 + DUPLEX_FULL)) {
5039
                DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5040
                return -EINVAL;
5041
        }
5042
 
5043
        switch (spddplx) {
5044
        case SPEED_10 + DUPLEX_HALF:
5045
                adapter->hw.forced_speed_duplex = e1000_10_half;
5046
                break;
5047
        case SPEED_10 + DUPLEX_FULL:
5048
                adapter->hw.forced_speed_duplex = e1000_10_full;
5049
                break;
5050
        case SPEED_100 + DUPLEX_HALF:
5051
                adapter->hw.forced_speed_duplex = e1000_100_half;
5052
                break;
5053
        case SPEED_100 + DUPLEX_FULL:
5054
                adapter->hw.forced_speed_duplex = e1000_100_full;
5055
                break;
5056
        case SPEED_1000 + DUPLEX_FULL:
5057
                adapter->hw.autoneg = 1;
5058
                adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
5059
                break;
5060
        case SPEED_1000 + DUPLEX_HALF: /* not supported */
5061
        default:
5062
                DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5063
                return -EINVAL;
5064
        }
5065
        return 0;
5066
}
5067
 
5068
static int
5069
e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5070
{
5071
        struct net_device *netdev = pci_get_drvdata(pdev);
5072
        struct e1000_adapter *adapter = netdev_priv(netdev);
5073
        uint32_t ctrl, ctrl_ext, rctl, status;
5074
        uint32_t wufc = adapter->wol;
5075
#ifdef CONFIG_PM
5076
        int retval = 0;
5077
#endif
5078
 
5079
        netif_device_detach(netdev);
5080
 
5081
        if (netif_running(netdev)) {
5082
                WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5083
                e1000_down(adapter);
5084
        }
5085
 
5086
#ifdef CONFIG_PM
5087
        retval = pci_save_state(pdev);
5088
        if (retval)
5089
                return retval;
5090
#endif
5091
 
5092
        status = E1000_READ_REG(&adapter->hw, STATUS);
5093
        if (status & E1000_STATUS_LU)
5094
                wufc &= ~E1000_WUFC_LNKC;
5095
 
5096
        if (wufc) {
5097
                e1000_setup_rctl(adapter);
5098
                e1000_set_multi(netdev);
5099
 
5100
                /* turn on all-multi mode if wake on multicast is enabled */
5101
                if (wufc & E1000_WUFC_MC) {
5102
                        rctl = E1000_READ_REG(&adapter->hw, RCTL);
5103
                        rctl |= E1000_RCTL_MPE;
5104
                        E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
5105
                }
5106
 
5107
                if (adapter->hw.mac_type >= e1000_82540) {
5108
                        ctrl = E1000_READ_REG(&adapter->hw, CTRL);
5109
                        /* advertise wake from D3Cold */
5110
                        #define E1000_CTRL_ADVD3WUC 0x00100000
5111
                        /* phy power management enable */
5112
                        #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5113
                        ctrl |= E1000_CTRL_ADVD3WUC |
5114
                                E1000_CTRL_EN_PHY_PWR_MGMT;
5115
                        E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
5116
                }
5117
 
5118
                if (adapter->hw.media_type == e1000_media_type_fiber ||
5119
                   adapter->hw.media_type == e1000_media_type_internal_serdes) {
5120
                        /* keep the laser running in D3 */
5121
                        ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
5122
                        ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5123
                        E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
5124
                }
5125
 
5126
                /* Allow time for pending master requests to run */
5127
                e1000_disable_pciex_master(&adapter->hw);
5128
 
5129
                E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
5130
                E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
5131
                pci_enable_wake(pdev, PCI_D3hot, 1);
5132
                pci_enable_wake(pdev, PCI_D3cold, 1);
5133
        } else {
5134
                E1000_WRITE_REG(&adapter->hw, WUC, 0);
5135
                E1000_WRITE_REG(&adapter->hw, WUFC, 0);
5136
                pci_enable_wake(pdev, PCI_D3hot, 0);
5137
                pci_enable_wake(pdev, PCI_D3cold, 0);
5138
        }
5139
 
5140
        e1000_release_manageability(adapter);
5141
 
5142
        /* make sure adapter isn't asleep if manageability is enabled */
5143
        if (adapter->en_mng_pt) {
5144
                pci_enable_wake(pdev, PCI_D3hot, 1);
5145
                pci_enable_wake(pdev, PCI_D3cold, 1);
5146
        }
5147
 
5148
        if (adapter->hw.phy_type == e1000_phy_igp_3)
5149
                e1000_phy_powerdown_workaround(&adapter->hw);
5150
 
5151
        if (netif_running(netdev))
5152
                e1000_free_irq(adapter);
5153
 
5154
        /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5155
         * would have already happened in close and is redundant. */
5156
        e1000_release_hw_control(adapter);
5157
 
5158
        pci_disable_device(pdev);
5159
 
5160
        pci_set_power_state(pdev, pci_choose_state(pdev, state));
5161
 
5162
        return 0;
5163
}
5164
 
5165
#ifdef CONFIG_PM
5166
static int
5167
e1000_resume(struct pci_dev *pdev)
5168
{
5169
        struct net_device *netdev = pci_get_drvdata(pdev);
5170
        struct e1000_adapter *adapter = netdev_priv(netdev);
5171
        uint32_t err;
5172
 
5173
        pci_set_power_state(pdev, PCI_D0);
5174
        pci_restore_state(pdev);
5175
        if ((err = pci_enable_device(pdev))) {
5176
                printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
5177
                return err;
5178
        }
5179
        pci_set_master(pdev);
5180
 
5181
        pci_enable_wake(pdev, PCI_D3hot, 0);
5182
        pci_enable_wake(pdev, PCI_D3cold, 0);
5183
 
5184
        if (netif_running(netdev) && (err = e1000_request_irq(adapter)))
5185
                return err;
5186
 
5187
        e1000_power_up_phy(adapter);
5188
        e1000_reset(adapter);
5189
        E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5190
 
5191
        e1000_init_manageability(adapter);
5192
 
5193
        if (netif_running(netdev))
5194
                e1000_up(adapter);
5195
 
5196
        netif_device_attach(netdev);
5197
 
5198
        /* If the controller is 82573 and f/w is AMT, do not set
5199
         * DRV_LOAD until the interface is up.  For all other cases,
5200
         * let the f/w know that the h/w is now under the control
5201
         * of the driver. */
5202
        if (adapter->hw.mac_type != e1000_82573 ||
5203
            !e1000_check_mng_mode(&adapter->hw))
5204
                e1000_get_hw_control(adapter);
5205
 
5206
        return 0;
5207
}
5208
#endif
5209
 
5210
static void e1000_shutdown(struct pci_dev *pdev)
5211
{
5212
        e1000_suspend(pdev, PMSG_SUSPEND);
5213
}
5214
 
5215
#ifdef CONFIG_NET_POLL_CONTROLLER
5216
/*
5217
 * Polling 'interrupt' - used by things like netconsole to send skbs
5218
 * without having to re-enable interrupts. It's not called while
5219
 * the interrupt routine is executing.
5220
 */
5221
static void
5222
e1000_netpoll(struct net_device *netdev)
5223
{
5224
        struct e1000_adapter *adapter = netdev_priv(netdev);
5225
 
5226
        disable_irq(adapter->pdev->irq);
5227
        e1000_intr(adapter->pdev->irq, netdev);
5228
        e1000_clean_tx_irq(adapter, adapter->tx_ring);
5229
#ifndef CONFIG_E1000_NAPI
5230
        adapter->clean_rx(adapter, adapter->rx_ring);
5231
#endif
5232
        enable_irq(adapter->pdev->irq);
5233
}
5234
#endif
5235
 
5236
/**
5237
 * e1000_io_error_detected - called when PCI error is detected
5238
 * @pdev: Pointer to PCI device
5239
 * @state: The current pci conneection state
5240
 *
5241
 * This function is called after a PCI bus error affecting
5242
 * this device has been detected.
5243
 */
5244
static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
5245
{
5246
        struct net_device *netdev = pci_get_drvdata(pdev);
5247
        struct e1000_adapter *adapter = netdev->priv;
5248
 
5249
        netif_device_detach(netdev);
5250
 
5251
        if (netif_running(netdev))
5252
                e1000_down(adapter);
5253
        pci_disable_device(pdev);
5254
 
5255
        /* Request a slot slot reset. */
5256
        return PCI_ERS_RESULT_NEED_RESET;
5257
}
5258
 
5259
/**
5260
 * e1000_io_slot_reset - called after the pci bus has been reset.
5261
 * @pdev: Pointer to PCI device
5262
 *
5263
 * Restart the card from scratch, as if from a cold-boot. Implementation
5264
 * resembles the first-half of the e1000_resume routine.
5265
 */
5266
static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5267
{
5268
        struct net_device *netdev = pci_get_drvdata(pdev);
5269
        struct e1000_adapter *adapter = netdev->priv;
5270
 
5271
        if (pci_enable_device(pdev)) {
5272
                printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
5273
                return PCI_ERS_RESULT_DISCONNECT;
5274
        }
5275
        pci_set_master(pdev);
5276
 
5277
        pci_enable_wake(pdev, PCI_D3hot, 0);
5278
        pci_enable_wake(pdev, PCI_D3cold, 0);
5279
 
5280
        e1000_reset(adapter);
5281
        E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5282
 
5283
        return PCI_ERS_RESULT_RECOVERED;
5284
}
5285
 
5286
/**
5287
 * e1000_io_resume - called when traffic can start flowing again.
5288
 * @pdev: Pointer to PCI device
5289
 *
5290
 * This callback is called when the error recovery driver tells us that
5291
 * its OK to resume normal operation. Implementation resembles the
5292
 * second-half of the e1000_resume routine.
5293
 */
5294
static void e1000_io_resume(struct pci_dev *pdev)
5295
{
5296
        struct net_device *netdev = pci_get_drvdata(pdev);
5297
        struct e1000_adapter *adapter = netdev->priv;
5298
 
5299
        e1000_init_manageability(adapter);
5300
 
5301
        if (netif_running(netdev)) {
5302
                if (e1000_up(adapter)) {
5303
                        printk("e1000: can't bring device back up after reset\n");
5304
                        return;
5305
                }
5306
        }
5307
 
5308
        netif_device_attach(netdev);
5309
 
5310
        /* If the controller is 82573 and f/w is AMT, do not set
5311
         * DRV_LOAD until the interface is up.  For all other cases,
5312
         * let the f/w know that the h/w is now under the control
5313
         * of the driver. */
5314
        if (adapter->hw.mac_type != e1000_82573 ||
5315
            !e1000_check_mng_mode(&adapter->hw))
5316
                e1000_get_hw_control(adapter);
5317
 
5318
}
5319
 
5320
/* e1000_main.c */

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.