1 |
62 |
marcus.erl |
/*******************************************************************************
|
2 |
|
|
|
3 |
|
|
Intel PRO/1000 Linux driver
|
4 |
|
|
Copyright(c) 1999 - 2007 Intel Corporation.
|
5 |
|
|
|
6 |
|
|
This program is free software; you can redistribute it and/or modify it
|
7 |
|
|
under the terms and conditions of the GNU General Public License,
|
8 |
|
|
version 2, as published by the Free Software Foundation.
|
9 |
|
|
|
10 |
|
|
This program is distributed in the hope it will be useful, but WITHOUT
|
11 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
12 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
13 |
|
|
more details.
|
14 |
|
|
|
15 |
|
|
You should have received a copy of the GNU General Public License along with
|
16 |
|
|
this program; if not, write to the Free Software Foundation, Inc.,
|
17 |
|
|
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
|
18 |
|
|
|
19 |
|
|
The full GNU General Public License is included in this distribution in
|
20 |
|
|
the file called "COPYING".
|
21 |
|
|
|
22 |
|
|
Contact Information:
|
23 |
|
|
Linux NICS <linux.nics@intel.com>
|
24 |
|
|
e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
|
25 |
|
|
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
26 |
|
|
|
27 |
|
|
*******************************************************************************/
|
28 |
|
|
|
29 |
|
|
/*
|
30 |
|
|
* 80003ES2LAN Gigabit Ethernet Controller (Copper)
|
31 |
|
|
* 80003ES2LAN Gigabit Ethernet Controller (Serdes)
|
32 |
|
|
*/
|
33 |
|
|
|
34 |
|
|
#include <linux/netdevice.h>
|
35 |
|
|
#include <linux/ethtool.h>
|
36 |
|
|
#include <linux/delay.h>
|
37 |
|
|
#include <linux/pci.h>
|
38 |
|
|
|
39 |
|
|
#include "e1000.h"
|
40 |
|
|
|
41 |
|
|
#define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL 0x00
|
42 |
|
|
#define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL 0x02
|
43 |
|
|
#define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL 0x10
|
44 |
|
|
|
45 |
|
|
#define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS 0x0008
|
46 |
|
|
#define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS 0x0800
|
47 |
|
|
#define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING 0x0010
|
48 |
|
|
|
49 |
|
|
#define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
|
50 |
|
|
#define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT 0x0000
|
51 |
|
|
|
52 |
|
|
#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
|
53 |
|
|
#define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN 0x00010000
|
54 |
|
|
|
55 |
|
|
#define DEFAULT_TIPG_IPGT_1000_80003ES2LAN 0x8
|
56 |
|
|
#define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN 0x9
|
57 |
|
|
|
58 |
|
|
/* GG82563 PHY Specific Status Register (Page 0, Register 16 */
|
59 |
|
|
#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Disab. */
|
60 |
|
|
#define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060
|
61 |
|
|
#define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI */
|
62 |
|
|
#define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX */
|
63 |
|
|
#define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Auto crossover */
|
64 |
|
|
|
65 |
|
|
/* PHY Specific Control Register 2 (Page 0, Register 26) */
|
66 |
|
|
#define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000
|
67 |
|
|
/* 1=Reverse Auto-Negotiation */
|
68 |
|
|
|
69 |
|
|
/* MAC Specific Control Register (Page 2, Register 21) */
|
70 |
|
|
/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
|
71 |
|
|
#define GG82563_MSCR_TX_CLK_MASK 0x0007
|
72 |
|
|
#define GG82563_MSCR_TX_CLK_10MBPS_2_5 0x0004
|
73 |
|
|
#define GG82563_MSCR_TX_CLK_100MBPS_25 0x0005
|
74 |
|
|
#define GG82563_MSCR_TX_CLK_1000MBPS_25 0x0007
|
75 |
|
|
|
76 |
|
|
#define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */
|
77 |
|
|
|
78 |
|
|
/* DSP Distance Register (Page 5, Register 26) */
|
79 |
|
|
#define GG82563_DSPD_CABLE_LENGTH 0x0007 /* 0 = <50M
|
80 |
|
|
1 = 50-80M
|
81 |
|
|
2 = 80-110M
|
82 |
|
|
3 = 110-140M
|
83 |
|
|
4 = >140M */
|
84 |
|
|
|
85 |
|
|
/* Kumeran Mode Control Register (Page 193, Register 16) */
|
86 |
|
|
#define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800
|
87 |
|
|
|
88 |
|
|
/* Power Management Control Register (Page 193, Register 20) */
|
89 |
|
|
#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001
|
90 |
|
|
/* 1=Enable SERDES Electrical Idle */
|
91 |
|
|
|
92 |
|
|
/* In-Band Control Register (Page 194, Register 18) */
|
93 |
|
|
#define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */
|
94 |
|
|
|
95 |
|
|
/* A table for the GG82563 cable length where the range is defined
|
96 |
|
|
* with a lower bound at "index" and the upper bound at
|
97 |
|
|
* "index + 5".
|
98 |
|
|
*/
|
99 |
|
|
static const u16 e1000_gg82563_cable_length_table[] =
|
100 |
|
|
{ 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
|
101 |
|
|
|
102 |
|
|
static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
|
103 |
|
|
static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
|
104 |
|
|
static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
|
105 |
|
|
static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
|
106 |
|
|
static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
|
107 |
|
|
static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
|
108 |
|
|
static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
|
109 |
|
|
|
110 |
|
|
/**
|
111 |
|
|
* e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
|
112 |
|
|
* @hw: pointer to the HW structure
|
113 |
|
|
*
|
114 |
|
|
* This is a function pointer entry point called by the api module.
|
115 |
|
|
**/
|
116 |
|
|
static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
|
117 |
|
|
{
|
118 |
|
|
struct e1000_phy_info *phy = &hw->phy;
|
119 |
|
|
s32 ret_val;
|
120 |
|
|
|
121 |
|
|
if (hw->media_type != e1000_media_type_copper) {
|
122 |
|
|
phy->type = e1000_phy_none;
|
123 |
|
|
return 0;
|
124 |
|
|
}
|
125 |
|
|
|
126 |
|
|
phy->addr = 1;
|
127 |
|
|
phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
|
128 |
|
|
phy->reset_delay_us = 100;
|
129 |
|
|
phy->type = e1000_phy_gg82563;
|
130 |
|
|
|
131 |
|
|
/* This can only be done after all function pointers are setup. */
|
132 |
|
|
ret_val = e1000e_get_phy_id(hw);
|
133 |
|
|
|
134 |
|
|
/* Verify phy id */
|
135 |
|
|
if (phy->id != GG82563_E_PHY_ID)
|
136 |
|
|
return -E1000_ERR_PHY;
|
137 |
|
|
|
138 |
|
|
return ret_val;
|
139 |
|
|
}
|
140 |
|
|
|
141 |
|
|
/**
|
142 |
|
|
* e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
|
143 |
|
|
* @hw: pointer to the HW structure
|
144 |
|
|
*
|
145 |
|
|
* This is a function pointer entry point called by the api module.
|
146 |
|
|
**/
|
147 |
|
|
static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
|
148 |
|
|
{
|
149 |
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
150 |
|
|
u32 eecd = er32(EECD);
|
151 |
|
|
u16 size;
|
152 |
|
|
|
153 |
|
|
nvm->opcode_bits = 8;
|
154 |
|
|
nvm->delay_usec = 1;
|
155 |
|
|
switch (nvm->override) {
|
156 |
|
|
case e1000_nvm_override_spi_large:
|
157 |
|
|
nvm->page_size = 32;
|
158 |
|
|
nvm->address_bits = 16;
|
159 |
|
|
break;
|
160 |
|
|
case e1000_nvm_override_spi_small:
|
161 |
|
|
nvm->page_size = 8;
|
162 |
|
|
nvm->address_bits = 8;
|
163 |
|
|
break;
|
164 |
|
|
default:
|
165 |
|
|
nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
|
166 |
|
|
nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
|
167 |
|
|
break;
|
168 |
|
|
}
|
169 |
|
|
|
170 |
|
|
nvm->type = e1000_nvm_eeprom_spi;
|
171 |
|
|
|
172 |
|
|
size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
|
173 |
|
|
E1000_EECD_SIZE_EX_SHIFT);
|
174 |
|
|
|
175 |
|
|
/* Added to a constant, "size" becomes the left-shift value
|
176 |
|
|
* for setting word_size.
|
177 |
|
|
*/
|
178 |
|
|
size += NVM_WORD_SIZE_BASE_SHIFT;
|
179 |
|
|
nvm->word_size = 1 << size;
|
180 |
|
|
|
181 |
|
|
return 0;
|
182 |
|
|
}
|
183 |
|
|
|
184 |
|
|
/**
|
185 |
|
|
* e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
|
186 |
|
|
* @hw: pointer to the HW structure
|
187 |
|
|
*
|
188 |
|
|
* This is a function pointer entry point called by the api module.
|
189 |
|
|
**/
|
190 |
|
|
static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
|
191 |
|
|
{
|
192 |
|
|
struct e1000_hw *hw = &adapter->hw;
|
193 |
|
|
struct e1000_mac_info *mac = &hw->mac;
|
194 |
|
|
struct e1000_mac_operations *func = &mac->ops;
|
195 |
|
|
|
196 |
|
|
/* Set media type */
|
197 |
|
|
switch (adapter->pdev->device) {
|
198 |
|
|
case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
|
199 |
|
|
hw->media_type = e1000_media_type_internal_serdes;
|
200 |
|
|
break;
|
201 |
|
|
default:
|
202 |
|
|
hw->media_type = e1000_media_type_copper;
|
203 |
|
|
break;
|
204 |
|
|
}
|
205 |
|
|
|
206 |
|
|
/* Set mta register count */
|
207 |
|
|
mac->mta_reg_count = 128;
|
208 |
|
|
/* Set rar entry count */
|
209 |
|
|
mac->rar_entry_count = E1000_RAR_ENTRIES;
|
210 |
|
|
/* Set if manageability features are enabled. */
|
211 |
|
|
mac->arc_subsystem_valid =
|
212 |
|
|
(er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
|
213 |
|
|
|
214 |
|
|
/* check for link */
|
215 |
|
|
switch (hw->media_type) {
|
216 |
|
|
case e1000_media_type_copper:
|
217 |
|
|
func->setup_physical_interface = e1000_setup_copper_link_80003es2lan;
|
218 |
|
|
func->check_for_link = e1000e_check_for_copper_link;
|
219 |
|
|
break;
|
220 |
|
|
case e1000_media_type_fiber:
|
221 |
|
|
func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
|
222 |
|
|
func->check_for_link = e1000e_check_for_fiber_link;
|
223 |
|
|
break;
|
224 |
|
|
case e1000_media_type_internal_serdes:
|
225 |
|
|
func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
|
226 |
|
|
func->check_for_link = e1000e_check_for_serdes_link;
|
227 |
|
|
break;
|
228 |
|
|
default:
|
229 |
|
|
return -E1000_ERR_CONFIG;
|
230 |
|
|
break;
|
231 |
|
|
}
|
232 |
|
|
|
233 |
|
|
return 0;
|
234 |
|
|
}
|
235 |
|
|
|
236 |
|
|
static s32 e1000_get_invariants_80003es2lan(struct e1000_adapter *adapter)
|
237 |
|
|
{
|
238 |
|
|
struct e1000_hw *hw = &adapter->hw;
|
239 |
|
|
s32 rc;
|
240 |
|
|
|
241 |
|
|
rc = e1000_init_mac_params_80003es2lan(adapter);
|
242 |
|
|
if (rc)
|
243 |
|
|
return rc;
|
244 |
|
|
|
245 |
|
|
rc = e1000_init_nvm_params_80003es2lan(hw);
|
246 |
|
|
if (rc)
|
247 |
|
|
return rc;
|
248 |
|
|
|
249 |
|
|
rc = e1000_init_phy_params_80003es2lan(hw);
|
250 |
|
|
if (rc)
|
251 |
|
|
return rc;
|
252 |
|
|
|
253 |
|
|
return 0;
|
254 |
|
|
}
|
255 |
|
|
|
256 |
|
|
/**
|
257 |
|
|
* e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
|
258 |
|
|
* @hw: pointer to the HW structure
|
259 |
|
|
*
|
260 |
|
|
* A wrapper to acquire access rights to the correct PHY. This is a
|
261 |
|
|
* function pointer entry point called by the api module.
|
262 |
|
|
**/
|
263 |
|
|
static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
|
264 |
|
|
{
|
265 |
|
|
u16 mask;
|
266 |
|
|
|
267 |
|
|
mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
|
268 |
|
|
|
269 |
|
|
return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
|
270 |
|
|
}
|
271 |
|
|
|
272 |
|
|
/**
|
273 |
|
|
* e1000_release_phy_80003es2lan - Release rights to access PHY
|
274 |
|
|
* @hw: pointer to the HW structure
|
275 |
|
|
*
|
276 |
|
|
* A wrapper to release access rights to the correct PHY. This is a
|
277 |
|
|
* function pointer entry point called by the api module.
|
278 |
|
|
**/
|
279 |
|
|
static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
|
280 |
|
|
{
|
281 |
|
|
u16 mask;
|
282 |
|
|
|
283 |
|
|
mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
|
284 |
|
|
e1000_release_swfw_sync_80003es2lan(hw, mask);
|
285 |
|
|
}
|
286 |
|
|
|
287 |
|
|
/**
|
288 |
|
|
* e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
|
289 |
|
|
* @hw: pointer to the HW structure
|
290 |
|
|
*
|
291 |
|
|
* Acquire the semaphore to access the EEPROM. This is a function
|
292 |
|
|
* pointer entry point called by the api module.
|
293 |
|
|
**/
|
294 |
|
|
static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
|
295 |
|
|
{
|
296 |
|
|
s32 ret_val;
|
297 |
|
|
|
298 |
|
|
ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
|
299 |
|
|
if (ret_val)
|
300 |
|
|
return ret_val;
|
301 |
|
|
|
302 |
|
|
ret_val = e1000e_acquire_nvm(hw);
|
303 |
|
|
|
304 |
|
|
if (ret_val)
|
305 |
|
|
e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
|
306 |
|
|
|
307 |
|
|
return ret_val;
|
308 |
|
|
}
|
309 |
|
|
|
310 |
|
|
/**
|
311 |
|
|
* e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
|
312 |
|
|
* @hw: pointer to the HW structure
|
313 |
|
|
*
|
314 |
|
|
* Release the semaphore used to access the EEPROM. This is a
|
315 |
|
|
* function pointer entry point called by the api module.
|
316 |
|
|
**/
|
317 |
|
|
static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
|
318 |
|
|
{
|
319 |
|
|
e1000e_release_nvm(hw);
|
320 |
|
|
e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
|
321 |
|
|
}
|
322 |
|
|
|
323 |
|
|
/**
|
324 |
|
|
* e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
|
325 |
|
|
* @hw: pointer to the HW structure
|
326 |
|
|
* @mask: specifies which semaphore to acquire
|
327 |
|
|
*
|
328 |
|
|
* Acquire the SW/FW semaphore to access the PHY or NVM. The mask
|
329 |
|
|
* will also specify which port we're acquiring the lock for.
|
330 |
|
|
**/
|
331 |
|
|
static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
|
332 |
|
|
{
|
333 |
|
|
u32 swfw_sync;
|
334 |
|
|
u32 swmask = mask;
|
335 |
|
|
u32 fwmask = mask << 16;
|
336 |
|
|
s32 i = 0;
|
337 |
|
|
s32 timeout = 200;
|
338 |
|
|
|
339 |
|
|
while (i < timeout) {
|
340 |
|
|
if (e1000e_get_hw_semaphore(hw))
|
341 |
|
|
return -E1000_ERR_SWFW_SYNC;
|
342 |
|
|
|
343 |
|
|
swfw_sync = er32(SW_FW_SYNC);
|
344 |
|
|
if (!(swfw_sync & (fwmask | swmask)))
|
345 |
|
|
break;
|
346 |
|
|
|
347 |
|
|
/* Firmware currently using resource (fwmask)
|
348 |
|
|
* or other software thread using resource (swmask) */
|
349 |
|
|
e1000e_put_hw_semaphore(hw);
|
350 |
|
|
mdelay(5);
|
351 |
|
|
i++;
|
352 |
|
|
}
|
353 |
|
|
|
354 |
|
|
if (i == timeout) {
|
355 |
|
|
hw_dbg(hw,
|
356 |
|
|
"Driver can't access resource, SW_FW_SYNC timeout.\n");
|
357 |
|
|
return -E1000_ERR_SWFW_SYNC;
|
358 |
|
|
}
|
359 |
|
|
|
360 |
|
|
swfw_sync |= swmask;
|
361 |
|
|
ew32(SW_FW_SYNC, swfw_sync);
|
362 |
|
|
|
363 |
|
|
e1000e_put_hw_semaphore(hw);
|
364 |
|
|
|
365 |
|
|
return 0;
|
366 |
|
|
}
|
367 |
|
|
|
368 |
|
|
/**
|
369 |
|
|
* e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
|
370 |
|
|
* @hw: pointer to the HW structure
|
371 |
|
|
* @mask: specifies which semaphore to acquire
|
372 |
|
|
*
|
373 |
|
|
* Release the SW/FW semaphore used to access the PHY or NVM. The mask
|
374 |
|
|
* will also specify which port we're releasing the lock for.
|
375 |
|
|
**/
|
376 |
|
|
static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
|
377 |
|
|
{
|
378 |
|
|
u32 swfw_sync;
|
379 |
|
|
|
380 |
|
|
while (e1000e_get_hw_semaphore(hw) != 0);
|
381 |
|
|
/* Empty */
|
382 |
|
|
|
383 |
|
|
swfw_sync = er32(SW_FW_SYNC);
|
384 |
|
|
swfw_sync &= ~mask;
|
385 |
|
|
ew32(SW_FW_SYNC, swfw_sync);
|
386 |
|
|
|
387 |
|
|
e1000e_put_hw_semaphore(hw);
|
388 |
|
|
}
|
389 |
|
|
|
390 |
|
|
/**
|
391 |
|
|
* e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
|
392 |
|
|
* @hw: pointer to the HW structure
|
393 |
|
|
* @offset: offset of the register to read
|
394 |
|
|
* @data: pointer to the data returned from the operation
|
395 |
|
|
*
|
396 |
|
|
* Read the GG82563 PHY register. This is a function pointer entry
|
397 |
|
|
* point called by the api module.
|
398 |
|
|
**/
|
399 |
|
|
static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
|
400 |
|
|
u32 offset, u16 *data)
|
401 |
|
|
{
|
402 |
|
|
s32 ret_val;
|
403 |
|
|
u32 page_select;
|
404 |
|
|
u16 temp;
|
405 |
|
|
|
406 |
|
|
/* Select Configuration Page */
|
407 |
|
|
if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG)
|
408 |
|
|
page_select = GG82563_PHY_PAGE_SELECT;
|
409 |
|
|
else
|
410 |
|
|
/* Use Alternative Page Select register to access
|
411 |
|
|
* registers 30 and 31
|
412 |
|
|
*/
|
413 |
|
|
page_select = GG82563_PHY_PAGE_SELECT_ALT;
|
414 |
|
|
|
415 |
|
|
temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
|
416 |
|
|
ret_val = e1000e_write_phy_reg_m88(hw, page_select, temp);
|
417 |
|
|
if (ret_val)
|
418 |
|
|
return ret_val;
|
419 |
|
|
|
420 |
|
|
/* The "ready" bit in the MDIC register may be incorrectly set
|
421 |
|
|
* before the device has completed the "Page Select" MDI
|
422 |
|
|
* transaction. So we wait 200us after each MDI command...
|
423 |
|
|
*/
|
424 |
|
|
udelay(200);
|
425 |
|
|
|
426 |
|
|
/* ...and verify the command was successful. */
|
427 |
|
|
ret_val = e1000e_read_phy_reg_m88(hw, page_select, &temp);
|
428 |
|
|
|
429 |
|
|
if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
|
430 |
|
|
ret_val = -E1000_ERR_PHY;
|
431 |
|
|
return ret_val;
|
432 |
|
|
}
|
433 |
|
|
|
434 |
|
|
udelay(200);
|
435 |
|
|
|
436 |
|
|
ret_val = e1000e_read_phy_reg_m88(hw,
|
437 |
|
|
MAX_PHY_REG_ADDRESS & offset,
|
438 |
|
|
data);
|
439 |
|
|
|
440 |
|
|
udelay(200);
|
441 |
|
|
|
442 |
|
|
return ret_val;
|
443 |
|
|
}
|
444 |
|
|
|
445 |
|
|
/**
|
446 |
|
|
* e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
|
447 |
|
|
* @hw: pointer to the HW structure
|
448 |
|
|
* @offset: offset of the register to read
|
449 |
|
|
* @data: value to write to the register
|
450 |
|
|
*
|
451 |
|
|
* Write to the GG82563 PHY register. This is a function pointer entry
|
452 |
|
|
* point called by the api module.
|
453 |
|
|
**/
|
454 |
|
|
static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
|
455 |
|
|
u32 offset, u16 data)
|
456 |
|
|
{
|
457 |
|
|
s32 ret_val;
|
458 |
|
|
u32 page_select;
|
459 |
|
|
u16 temp;
|
460 |
|
|
|
461 |
|
|
/* Select Configuration Page */
|
462 |
|
|
if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG)
|
463 |
|
|
page_select = GG82563_PHY_PAGE_SELECT;
|
464 |
|
|
else
|
465 |
|
|
/* Use Alternative Page Select register to access
|
466 |
|
|
* registers 30 and 31
|
467 |
|
|
*/
|
468 |
|
|
page_select = GG82563_PHY_PAGE_SELECT_ALT;
|
469 |
|
|
|
470 |
|
|
temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
|
471 |
|
|
ret_val = e1000e_write_phy_reg_m88(hw, page_select, temp);
|
472 |
|
|
if (ret_val)
|
473 |
|
|
return ret_val;
|
474 |
|
|
|
475 |
|
|
|
476 |
|
|
/* The "ready" bit in the MDIC register may be incorrectly set
|
477 |
|
|
* before the device has completed the "Page Select" MDI
|
478 |
|
|
* transaction. So we wait 200us after each MDI command...
|
479 |
|
|
*/
|
480 |
|
|
udelay(200);
|
481 |
|
|
|
482 |
|
|
/* ...and verify the command was successful. */
|
483 |
|
|
ret_val = e1000e_read_phy_reg_m88(hw, page_select, &temp);
|
484 |
|
|
|
485 |
|
|
if (((u16)offset >> GG82563_PAGE_SHIFT) != temp)
|
486 |
|
|
return -E1000_ERR_PHY;
|
487 |
|
|
|
488 |
|
|
udelay(200);
|
489 |
|
|
|
490 |
|
|
ret_val = e1000e_write_phy_reg_m88(hw,
|
491 |
|
|
MAX_PHY_REG_ADDRESS & offset,
|
492 |
|
|
data);
|
493 |
|
|
|
494 |
|
|
udelay(200);
|
495 |
|
|
|
496 |
|
|
return ret_val;
|
497 |
|
|
}
|
498 |
|
|
|
499 |
|
|
/**
|
500 |
|
|
* e1000_write_nvm_80003es2lan - Write to ESB2 NVM
|
501 |
|
|
* @hw: pointer to the HW structure
|
502 |
|
|
* @offset: offset of the register to read
|
503 |
|
|
* @words: number of words to write
|
504 |
|
|
* @data: buffer of data to write to the NVM
|
505 |
|
|
*
|
506 |
|
|
* Write "words" of data to the ESB2 NVM. This is a function
|
507 |
|
|
* pointer entry point called by the api module.
|
508 |
|
|
**/
|
509 |
|
|
static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
|
510 |
|
|
u16 words, u16 *data)
|
511 |
|
|
{
|
512 |
|
|
return e1000e_write_nvm_spi(hw, offset, words, data);
|
513 |
|
|
}
|
514 |
|
|
|
515 |
|
|
/**
|
516 |
|
|
* e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
|
517 |
|
|
* @hw: pointer to the HW structure
|
518 |
|
|
*
|
519 |
|
|
* Wait a specific amount of time for manageability processes to complete.
|
520 |
|
|
* This is a function pointer entry point called by the phy module.
|
521 |
|
|
**/
|
522 |
|
|
static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
|
523 |
|
|
{
|
524 |
|
|
s32 timeout = PHY_CFG_TIMEOUT;
|
525 |
|
|
u32 mask = E1000_NVM_CFG_DONE_PORT_0;
|
526 |
|
|
|
527 |
|
|
if (hw->bus.func == 1)
|
528 |
|
|
mask = E1000_NVM_CFG_DONE_PORT_1;
|
529 |
|
|
|
530 |
|
|
while (timeout) {
|
531 |
|
|
if (er32(EEMNGCTL) & mask)
|
532 |
|
|
break;
|
533 |
|
|
msleep(1);
|
534 |
|
|
timeout--;
|
535 |
|
|
}
|
536 |
|
|
if (!timeout) {
|
537 |
|
|
hw_dbg(hw, "MNG configuration cycle has not completed.\n");
|
538 |
|
|
return -E1000_ERR_RESET;
|
539 |
|
|
}
|
540 |
|
|
|
541 |
|
|
return 0;
|
542 |
|
|
}
|
543 |
|
|
|
544 |
|
|
/**
|
545 |
|
|
* e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
|
546 |
|
|
* @hw: pointer to the HW structure
|
547 |
|
|
*
|
548 |
|
|
* Force the speed and duplex settings onto the PHY. This is a
|
549 |
|
|
* function pointer entry point called by the phy module.
|
550 |
|
|
**/
|
551 |
|
|
static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
|
552 |
|
|
{
|
553 |
|
|
s32 ret_val;
|
554 |
|
|
u16 phy_data;
|
555 |
|
|
bool link;
|
556 |
|
|
|
557 |
|
|
/* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
|
558 |
|
|
* forced whenever speed and duplex are forced.
|
559 |
|
|
*/
|
560 |
|
|
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
|
561 |
|
|
if (ret_val)
|
562 |
|
|
return ret_val;
|
563 |
|
|
|
564 |
|
|
phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
|
565 |
|
|
ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
|
566 |
|
|
if (ret_val)
|
567 |
|
|
return ret_val;
|
568 |
|
|
|
569 |
|
|
hw_dbg(hw, "GG82563 PSCR: %X\n", phy_data);
|
570 |
|
|
|
571 |
|
|
ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
|
572 |
|
|
if (ret_val)
|
573 |
|
|
return ret_val;
|
574 |
|
|
|
575 |
|
|
e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
|
576 |
|
|
|
577 |
|
|
/* Reset the phy to commit changes. */
|
578 |
|
|
phy_data |= MII_CR_RESET;
|
579 |
|
|
|
580 |
|
|
ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
|
581 |
|
|
if (ret_val)
|
582 |
|
|
return ret_val;
|
583 |
|
|
|
584 |
|
|
udelay(1);
|
585 |
|
|
|
586 |
|
|
if (hw->phy.wait_for_link) {
|
587 |
|
|
hw_dbg(hw, "Waiting for forced speed/duplex link "
|
588 |
|
|
"on GG82563 phy.\n");
|
589 |
|
|
|
590 |
|
|
ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
|
591 |
|
|
100000, &link);
|
592 |
|
|
if (ret_val)
|
593 |
|
|
return ret_val;
|
594 |
|
|
|
595 |
|
|
if (!link) {
|
596 |
|
|
/* We didn't get link.
|
597 |
|
|
* Reset the DSP and cross our fingers.
|
598 |
|
|
*/
|
599 |
|
|
ret_val = e1000e_phy_reset_dsp(hw);
|
600 |
|
|
if (ret_val)
|
601 |
|
|
return ret_val;
|
602 |
|
|
}
|
603 |
|
|
|
604 |
|
|
/* Try once more */
|
605 |
|
|
ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
|
606 |
|
|
100000, &link);
|
607 |
|
|
if (ret_val)
|
608 |
|
|
return ret_val;
|
609 |
|
|
}
|
610 |
|
|
|
611 |
|
|
ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
|
612 |
|
|
if (ret_val)
|
613 |
|
|
return ret_val;
|
614 |
|
|
|
615 |
|
|
/* Resetting the phy means we need to verify the TX_CLK corresponds
|
616 |
|
|
* to the link speed. 10Mbps -> 2.5MHz, else 25MHz.
|
617 |
|
|
*/
|
618 |
|
|
phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
|
619 |
|
|
if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
|
620 |
|
|
phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
|
621 |
|
|
else
|
622 |
|
|
phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
|
623 |
|
|
|
624 |
|
|
/* In addition, we must re-enable CRS on Tx for both half and full
|
625 |
|
|
* duplex.
|
626 |
|
|
*/
|
627 |
|
|
phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
|
628 |
|
|
ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
|
629 |
|
|
|
630 |
|
|
return ret_val;
|
631 |
|
|
}
|
632 |
|
|
|
633 |
|
|
/**
|
634 |
|
|
* e1000_get_cable_length_80003es2lan - Set approximate cable length
|
635 |
|
|
* @hw: pointer to the HW structure
|
636 |
|
|
*
|
637 |
|
|
* Find the approximate cable length as measured by the GG82563 PHY.
|
638 |
|
|
* This is a function pointer entry point called by the phy module.
|
639 |
|
|
**/
|
640 |
|
|
static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
|
641 |
|
|
{
|
642 |
|
|
struct e1000_phy_info *phy = &hw->phy;
|
643 |
|
|
s32 ret_val;
|
644 |
|
|
u16 phy_data;
|
645 |
|
|
u16 index;
|
646 |
|
|
|
647 |
|
|
ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
|
648 |
|
|
if (ret_val)
|
649 |
|
|
return ret_val;
|
650 |
|
|
|
651 |
|
|
index = phy_data & GG82563_DSPD_CABLE_LENGTH;
|
652 |
|
|
phy->min_cable_length = e1000_gg82563_cable_length_table[index];
|
653 |
|
|
phy->max_cable_length = e1000_gg82563_cable_length_table[index+5];
|
654 |
|
|
|
655 |
|
|
phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
|
656 |
|
|
|
657 |
|
|
return 0;
|
658 |
|
|
}
|
659 |
|
|
|
660 |
|
|
/**
|
661 |
|
|
* e1000_get_link_up_info_80003es2lan - Report speed and duplex
|
662 |
|
|
* @hw: pointer to the HW structure
|
663 |
|
|
* @speed: pointer to speed buffer
|
664 |
|
|
* @duplex: pointer to duplex buffer
|
665 |
|
|
*
|
666 |
|
|
* Retrieve the current speed and duplex configuration.
|
667 |
|
|
* This is a function pointer entry point called by the api module.
|
668 |
|
|
**/
|
669 |
|
|
static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
|
670 |
|
|
u16 *duplex)
|
671 |
|
|
{
|
672 |
|
|
s32 ret_val;
|
673 |
|
|
|
674 |
|
|
if (hw->media_type == e1000_media_type_copper) {
|
675 |
|
|
ret_val = e1000e_get_speed_and_duplex_copper(hw,
|
676 |
|
|
speed,
|
677 |
|
|
duplex);
|
678 |
|
|
if (ret_val)
|
679 |
|
|
return ret_val;
|
680 |
|
|
if (*speed == SPEED_1000)
|
681 |
|
|
ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
|
682 |
|
|
else
|
683 |
|
|
ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw,
|
684 |
|
|
*duplex);
|
685 |
|
|
} else {
|
686 |
|
|
ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
|
687 |
|
|
speed,
|
688 |
|
|
duplex);
|
689 |
|
|
}
|
690 |
|
|
|
691 |
|
|
return ret_val;
|
692 |
|
|
}
|
693 |
|
|
|
694 |
|
|
/**
|
695 |
|
|
* e1000_reset_hw_80003es2lan - Reset the ESB2 controller
|
696 |
|
|
* @hw: pointer to the HW structure
|
697 |
|
|
*
|
698 |
|
|
* Perform a global reset to the ESB2 controller.
|
699 |
|
|
* This is a function pointer entry point called by the api module.
|
700 |
|
|
**/
|
701 |
|
|
static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
|
702 |
|
|
{
|
703 |
|
|
u32 ctrl;
|
704 |
|
|
u32 icr;
|
705 |
|
|
s32 ret_val;
|
706 |
|
|
|
707 |
|
|
/* Prevent the PCI-E bus from sticking if there is no TLP connection
|
708 |
|
|
* on the last TLP read/write transaction when MAC is reset.
|
709 |
|
|
*/
|
710 |
|
|
ret_val = e1000e_disable_pcie_master(hw);
|
711 |
|
|
if (ret_val)
|
712 |
|
|
hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
|
713 |
|
|
|
714 |
|
|
hw_dbg(hw, "Masking off all interrupts\n");
|
715 |
|
|
ew32(IMC, 0xffffffff);
|
716 |
|
|
|
717 |
|
|
ew32(RCTL, 0);
|
718 |
|
|
ew32(TCTL, E1000_TCTL_PSP);
|
719 |
|
|
e1e_flush();
|
720 |
|
|
|
721 |
|
|
msleep(10);
|
722 |
|
|
|
723 |
|
|
ctrl = er32(CTRL);
|
724 |
|
|
|
725 |
|
|
hw_dbg(hw, "Issuing a global reset to MAC\n");
|
726 |
|
|
ew32(CTRL, ctrl | E1000_CTRL_RST);
|
727 |
|
|
|
728 |
|
|
ret_val = e1000e_get_auto_rd_done(hw);
|
729 |
|
|
if (ret_val)
|
730 |
|
|
/* We don't want to continue accessing MAC registers. */
|
731 |
|
|
return ret_val;
|
732 |
|
|
|
733 |
|
|
/* Clear any pending interrupt events. */
|
734 |
|
|
ew32(IMC, 0xffffffff);
|
735 |
|
|
icr = er32(ICR);
|
736 |
|
|
|
737 |
|
|
return 0;
|
738 |
|
|
}
|
739 |
|
|
|
740 |
|
|
/**
|
741 |
|
|
* e1000_init_hw_80003es2lan - Initialize the ESB2 controller
|
742 |
|
|
* @hw: pointer to the HW structure
|
743 |
|
|
*
|
744 |
|
|
* Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
|
745 |
|
|
* This is a function pointer entry point called by the api module.
|
746 |
|
|
**/
|
747 |
|
|
static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
|
748 |
|
|
{
|
749 |
|
|
struct e1000_mac_info *mac = &hw->mac;
|
750 |
|
|
u32 reg_data;
|
751 |
|
|
s32 ret_val;
|
752 |
|
|
u16 i;
|
753 |
|
|
|
754 |
|
|
e1000_initialize_hw_bits_80003es2lan(hw);
|
755 |
|
|
|
756 |
|
|
/* Initialize identification LED */
|
757 |
|
|
ret_val = e1000e_id_led_init(hw);
|
758 |
|
|
if (ret_val) {
|
759 |
|
|
hw_dbg(hw, "Error initializing identification LED\n");
|
760 |
|
|
return ret_val;
|
761 |
|
|
}
|
762 |
|
|
|
763 |
|
|
/* Disabling VLAN filtering */
|
764 |
|
|
hw_dbg(hw, "Initializing the IEEE VLAN\n");
|
765 |
|
|
e1000e_clear_vfta(hw);
|
766 |
|
|
|
767 |
|
|
/* Setup the receive address. */
|
768 |
|
|
e1000e_init_rx_addrs(hw, mac->rar_entry_count);
|
769 |
|
|
|
770 |
|
|
/* Zero out the Multicast HASH table */
|
771 |
|
|
hw_dbg(hw, "Zeroing the MTA\n");
|
772 |
|
|
for (i = 0; i < mac->mta_reg_count; i++)
|
773 |
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
|
774 |
|
|
|
775 |
|
|
/* Setup link and flow control */
|
776 |
|
|
ret_val = e1000e_setup_link(hw);
|
777 |
|
|
|
778 |
|
|
/* Set the transmit descriptor write-back policy */
|
779 |
|
|
reg_data = er32(TXDCTL);
|
780 |
|
|
reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
|
781 |
|
|
E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
|
782 |
|
|
ew32(TXDCTL, reg_data);
|
783 |
|
|
|
784 |
|
|
/* ...for both queues. */
|
785 |
|
|
reg_data = er32(TXDCTL1);
|
786 |
|
|
reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
|
787 |
|
|
E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
|
788 |
|
|
ew32(TXDCTL1, reg_data);
|
789 |
|
|
|
790 |
|
|
/* Enable retransmit on late collisions */
|
791 |
|
|
reg_data = er32(TCTL);
|
792 |
|
|
reg_data |= E1000_TCTL_RTLC;
|
793 |
|
|
ew32(TCTL, reg_data);
|
794 |
|
|
|
795 |
|
|
/* Configure Gigabit Carry Extend Padding */
|
796 |
|
|
reg_data = er32(TCTL_EXT);
|
797 |
|
|
reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
|
798 |
|
|
reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
|
799 |
|
|
ew32(TCTL_EXT, reg_data);
|
800 |
|
|
|
801 |
|
|
/* Configure Transmit Inter-Packet Gap */
|
802 |
|
|
reg_data = er32(TIPG);
|
803 |
|
|
reg_data &= ~E1000_TIPG_IPGT_MASK;
|
804 |
|
|
reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
|
805 |
|
|
ew32(TIPG, reg_data);
|
806 |
|
|
|
807 |
|
|
reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
|
808 |
|
|
reg_data &= ~0x00100000;
|
809 |
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
|
810 |
|
|
|
811 |
|
|
/* Clear all of the statistics registers (clear on read). It is
|
812 |
|
|
* important that we do this after we have tried to establish link
|
813 |
|
|
* because the symbol error count will increment wildly if there
|
814 |
|
|
* is no link.
|
815 |
|
|
*/
|
816 |
|
|
e1000_clear_hw_cntrs_80003es2lan(hw);
|
817 |
|
|
|
818 |
|
|
return ret_val;
|
819 |
|
|
}
|
820 |
|
|
|
821 |
|
|
/**
|
822 |
|
|
* e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
|
823 |
|
|
* @hw: pointer to the HW structure
|
824 |
|
|
*
|
825 |
|
|
* Initializes required hardware-dependent bits needed for normal operation.
|
826 |
|
|
**/
|
827 |
|
|
static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
|
828 |
|
|
{
|
829 |
|
|
u32 reg;
|
830 |
|
|
|
831 |
|
|
/* Transmit Descriptor Control 0 */
|
832 |
|
|
reg = er32(TXDCTL);
|
833 |
|
|
reg |= (1 << 22);
|
834 |
|
|
ew32(TXDCTL, reg);
|
835 |
|
|
|
836 |
|
|
/* Transmit Descriptor Control 1 */
|
837 |
|
|
reg = er32(TXDCTL1);
|
838 |
|
|
reg |= (1 << 22);
|
839 |
|
|
ew32(TXDCTL1, reg);
|
840 |
|
|
|
841 |
|
|
/* Transmit Arbitration Control 0 */
|
842 |
|
|
reg = er32(TARC0);
|
843 |
|
|
reg &= ~(0xF << 27); /* 30:27 */
|
844 |
|
|
if (hw->media_type != e1000_media_type_copper)
|
845 |
|
|
reg &= ~(1 << 20);
|
846 |
|
|
ew32(TARC0, reg);
|
847 |
|
|
|
848 |
|
|
/* Transmit Arbitration Control 1 */
|
849 |
|
|
reg = er32(TARC1);
|
850 |
|
|
if (er32(TCTL) & E1000_TCTL_MULR)
|
851 |
|
|
reg &= ~(1 << 28);
|
852 |
|
|
else
|
853 |
|
|
reg |= (1 << 28);
|
854 |
|
|
ew32(TARC1, reg);
|
855 |
|
|
}
|
856 |
|
|
|
857 |
|
|
/**
|
858 |
|
|
* e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
|
859 |
|
|
* @hw: pointer to the HW structure
|
860 |
|
|
*
|
861 |
|
|
* Setup some GG82563 PHY registers for obtaining link
|
862 |
|
|
**/
|
863 |
|
|
static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
|
864 |
|
|
{
|
865 |
|
|
struct e1000_phy_info *phy = &hw->phy;
|
866 |
|
|
s32 ret_val;
|
867 |
|
|
u32 ctrl_ext;
|
868 |
|
|
u16 data;
|
869 |
|
|
|
870 |
|
|
ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL,
|
871 |
|
|
&data);
|
872 |
|
|
if (ret_val)
|
873 |
|
|
return ret_val;
|
874 |
|
|
|
875 |
|
|
data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
|
876 |
|
|
/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
|
877 |
|
|
data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
|
878 |
|
|
|
879 |
|
|
ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL,
|
880 |
|
|
data);
|
881 |
|
|
if (ret_val)
|
882 |
|
|
return ret_val;
|
883 |
|
|
|
884 |
|
|
/* Options:
|
885 |
|
|
* MDI/MDI-X = 0 (default)
|
886 |
|
|
* 0 - Auto for all speeds
|
887 |
|
|
* 1 - MDI mode
|
888 |
|
|
* 2 - MDI-X mode
|
889 |
|
|
* 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
|
890 |
|
|
*/
|
891 |
|
|
ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
|
892 |
|
|
if (ret_val)
|
893 |
|
|
return ret_val;
|
894 |
|
|
|
895 |
|
|
data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
|
896 |
|
|
|
897 |
|
|
switch (phy->mdix) {
|
898 |
|
|
case 1:
|
899 |
|
|
data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
|
900 |
|
|
break;
|
901 |
|
|
case 2:
|
902 |
|
|
data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
|
903 |
|
|
break;
|
904 |
|
|
case 0:
|
905 |
|
|
default:
|
906 |
|
|
data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
|
907 |
|
|
break;
|
908 |
|
|
}
|
909 |
|
|
|
910 |
|
|
/* Options:
|
911 |
|
|
* disable_polarity_correction = 0 (default)
|
912 |
|
|
* Automatic Correction for Reversed Cable Polarity
|
913 |
|
|
* 0 - Disabled
|
914 |
|
|
* 1 - Enabled
|
915 |
|
|
*/
|
916 |
|
|
data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
|
917 |
|
|
if (phy->disable_polarity_correction)
|
918 |
|
|
data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
|
919 |
|
|
|
920 |
|
|
ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
|
921 |
|
|
if (ret_val)
|
922 |
|
|
return ret_val;
|
923 |
|
|
|
924 |
|
|
/* SW Reset the PHY so all changes take effect */
|
925 |
|
|
ret_val = e1000e_commit_phy(hw);
|
926 |
|
|
if (ret_val) {
|
927 |
|
|
hw_dbg(hw, "Error Resetting the PHY\n");
|
928 |
|
|
return ret_val;
|
929 |
|
|
}
|
930 |
|
|
|
931 |
|
|
/* Bypass RX and TX FIFO's */
|
932 |
|
|
ret_val = e1000e_write_kmrn_reg(hw,
|
933 |
|
|
E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
|
934 |
|
|
E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
|
935 |
|
|
E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
|
936 |
|
|
if (ret_val)
|
937 |
|
|
return ret_val;
|
938 |
|
|
|
939 |
|
|
ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
|
940 |
|
|
if (ret_val)
|
941 |
|
|
return ret_val;
|
942 |
|
|
|
943 |
|
|
data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
|
944 |
|
|
ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
|
945 |
|
|
if (ret_val)
|
946 |
|
|
return ret_val;
|
947 |
|
|
|
948 |
|
|
ctrl_ext = er32(CTRL_EXT);
|
949 |
|
|
ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
|
950 |
|
|
ew32(CTRL_EXT, ctrl_ext);
|
951 |
|
|
|
952 |
|
|
ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
|
953 |
|
|
if (ret_val)
|
954 |
|
|
return ret_val;
|
955 |
|
|
|
956 |
|
|
/* Do not init these registers when the HW is in IAMT mode, since the
|
957 |
|
|
* firmware will have already initialized them. We only initialize
|
958 |
|
|
* them if the HW is not in IAMT mode.
|
959 |
|
|
*/
|
960 |
|
|
if (!e1000e_check_mng_mode(hw)) {
|
961 |
|
|
/* Enable Electrical Idle on the PHY */
|
962 |
|
|
data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
|
963 |
|
|
ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
|
964 |
|
|
if (ret_val)
|
965 |
|
|
return ret_val;
|
966 |
|
|
|
967 |
|
|
ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
|
968 |
|
|
if (ret_val)
|
969 |
|
|
return ret_val;
|
970 |
|
|
|
971 |
|
|
data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
|
972 |
|
|
ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
|
973 |
|
|
if (ret_val)
|
974 |
|
|
return ret_val;
|
975 |
|
|
}
|
976 |
|
|
|
977 |
|
|
/* Workaround: Disable padding in Kumeran interface in the MAC
|
978 |
|
|
* and in the PHY to avoid CRC errors.
|
979 |
|
|
*/
|
980 |
|
|
ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
|
981 |
|
|
if (ret_val)
|
982 |
|
|
return ret_val;
|
983 |
|
|
|
984 |
|
|
data |= GG82563_ICR_DIS_PADDING;
|
985 |
|
|
ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
|
986 |
|
|
if (ret_val)
|
987 |
|
|
return ret_val;
|
988 |
|
|
|
989 |
|
|
return 0;
|
990 |
|
|
}
|
991 |
|
|
|
992 |
|
|
/**
|
993 |
|
|
* e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
|
994 |
|
|
* @hw: pointer to the HW structure
|
995 |
|
|
*
|
996 |
|
|
* Essentially a wrapper for setting up all things "copper" related.
|
997 |
|
|
* This is a function pointer entry point called by the mac module.
|
998 |
|
|
**/
|
999 |
|
|
static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
|
1000 |
|
|
{
|
1001 |
|
|
u32 ctrl;
|
1002 |
|
|
s32 ret_val;
|
1003 |
|
|
u16 reg_data;
|
1004 |
|
|
|
1005 |
|
|
ctrl = er32(CTRL);
|
1006 |
|
|
ctrl |= E1000_CTRL_SLU;
|
1007 |
|
|
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
|
1008 |
|
|
ew32(CTRL, ctrl);
|
1009 |
|
|
|
1010 |
|
|
/* Set the mac to wait the maximum time between each
|
1011 |
|
|
* iteration and increase the max iterations when
|
1012 |
|
|
* polling the phy; this fixes erroneous timeouts at 10Mbps. */
|
1013 |
|
|
ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
|
1014 |
|
|
if (ret_val)
|
1015 |
|
|
return ret_val;
|
1016 |
|
|
ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), ®_data);
|
1017 |
|
|
if (ret_val)
|
1018 |
|
|
return ret_val;
|
1019 |
|
|
reg_data |= 0x3F;
|
1020 |
|
|
ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
|
1021 |
|
|
if (ret_val)
|
1022 |
|
|
return ret_val;
|
1023 |
|
|
ret_val = e1000e_read_kmrn_reg(hw,
|
1024 |
|
|
E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
|
1025 |
|
|
®_data);
|
1026 |
|
|
if (ret_val)
|
1027 |
|
|
return ret_val;
|
1028 |
|
|
reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
|
1029 |
|
|
ret_val = e1000e_write_kmrn_reg(hw,
|
1030 |
|
|
E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
|
1031 |
|
|
reg_data);
|
1032 |
|
|
if (ret_val)
|
1033 |
|
|
return ret_val;
|
1034 |
|
|
|
1035 |
|
|
ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
|
1036 |
|
|
if (ret_val)
|
1037 |
|
|
return ret_val;
|
1038 |
|
|
|
1039 |
|
|
ret_val = e1000e_setup_copper_link(hw);
|
1040 |
|
|
|
1041 |
|
|
return 0;
|
1042 |
|
|
}
|
1043 |
|
|
|
1044 |
|
|
/**
|
1045 |
|
|
* e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
|
1046 |
|
|
* @hw: pointer to the HW structure
|
1047 |
|
|
* @duplex: current duplex setting
|
1048 |
|
|
*
|
1049 |
|
|
* Configure the KMRN interface by applying last minute quirks for
|
1050 |
|
|
* 10/100 operation.
|
1051 |
|
|
**/
|
1052 |
|
|
static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
|
1053 |
|
|
{
|
1054 |
|
|
s32 ret_val;
|
1055 |
|
|
u32 tipg;
|
1056 |
|
|
u16 reg_data;
|
1057 |
|
|
|
1058 |
|
|
reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
|
1059 |
|
|
ret_val = e1000e_write_kmrn_reg(hw,
|
1060 |
|
|
E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
|
1061 |
|
|
reg_data);
|
1062 |
|
|
if (ret_val)
|
1063 |
|
|
return ret_val;
|
1064 |
|
|
|
1065 |
|
|
/* Configure Transmit Inter-Packet Gap */
|
1066 |
|
|
tipg = er32(TIPG);
|
1067 |
|
|
tipg &= ~E1000_TIPG_IPGT_MASK;
|
1068 |
|
|
tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
|
1069 |
|
|
ew32(TIPG, tipg);
|
1070 |
|
|
|
1071 |
|
|
ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data);
|
1072 |
|
|
if (ret_val)
|
1073 |
|
|
return ret_val;
|
1074 |
|
|
|
1075 |
|
|
if (duplex == HALF_DUPLEX)
|
1076 |
|
|
reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
|
1077 |
|
|
else
|
1078 |
|
|
reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
|
1079 |
|
|
|
1080 |
|
|
ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
|
1081 |
|
|
|
1082 |
|
|
return 0;
|
1083 |
|
|
}
|
1084 |
|
|
|
1085 |
|
|
/**
|
1086 |
|
|
* e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
|
1087 |
|
|
* @hw: pointer to the HW structure
|
1088 |
|
|
*
|
1089 |
|
|
* Configure the KMRN interface by applying last minute quirks for
|
1090 |
|
|
* gigabit operation.
|
1091 |
|
|
**/
|
1092 |
|
|
static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
|
1093 |
|
|
{
|
1094 |
|
|
s32 ret_val;
|
1095 |
|
|
u16 reg_data;
|
1096 |
|
|
u32 tipg;
|
1097 |
|
|
|
1098 |
|
|
reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
|
1099 |
|
|
ret_val = e1000e_write_kmrn_reg(hw,
|
1100 |
|
|
E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
|
1101 |
|
|
reg_data);
|
1102 |
|
|
if (ret_val)
|
1103 |
|
|
return ret_val;
|
1104 |
|
|
|
1105 |
|
|
/* Configure Transmit Inter-Packet Gap */
|
1106 |
|
|
tipg = er32(TIPG);
|
1107 |
|
|
tipg &= ~E1000_TIPG_IPGT_MASK;
|
1108 |
|
|
tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
|
1109 |
|
|
ew32(TIPG, tipg);
|
1110 |
|
|
|
1111 |
|
|
ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data);
|
1112 |
|
|
if (ret_val)
|
1113 |
|
|
return ret_val;
|
1114 |
|
|
|
1115 |
|
|
reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
|
1116 |
|
|
ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
|
1117 |
|
|
|
1118 |
|
|
return ret_val;
|
1119 |
|
|
}
|
1120 |
|
|
|
1121 |
|
|
/**
|
1122 |
|
|
* e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
|
1123 |
|
|
* @hw: pointer to the HW structure
|
1124 |
|
|
*
|
1125 |
|
|
* Clears the hardware counters by reading the counter registers.
|
1126 |
|
|
**/
|
1127 |
|
|
static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
|
1128 |
|
|
{
|
1129 |
|
|
u32 temp;
|
1130 |
|
|
|
1131 |
|
|
e1000e_clear_hw_cntrs_base(hw);
|
1132 |
|
|
|
1133 |
|
|
temp = er32(PRC64);
|
1134 |
|
|
temp = er32(PRC127);
|
1135 |
|
|
temp = er32(PRC255);
|
1136 |
|
|
temp = er32(PRC511);
|
1137 |
|
|
temp = er32(PRC1023);
|
1138 |
|
|
temp = er32(PRC1522);
|
1139 |
|
|
temp = er32(PTC64);
|
1140 |
|
|
temp = er32(PTC127);
|
1141 |
|
|
temp = er32(PTC255);
|
1142 |
|
|
temp = er32(PTC511);
|
1143 |
|
|
temp = er32(PTC1023);
|
1144 |
|
|
temp = er32(PTC1522);
|
1145 |
|
|
|
1146 |
|
|
temp = er32(ALGNERRC);
|
1147 |
|
|
temp = er32(RXERRC);
|
1148 |
|
|
temp = er32(TNCRS);
|
1149 |
|
|
temp = er32(CEXTERR);
|
1150 |
|
|
temp = er32(TSCTC);
|
1151 |
|
|
temp = er32(TSCTFC);
|
1152 |
|
|
|
1153 |
|
|
temp = er32(MGTPRC);
|
1154 |
|
|
temp = er32(MGTPDC);
|
1155 |
|
|
temp = er32(MGTPTC);
|
1156 |
|
|
|
1157 |
|
|
temp = er32(IAC);
|
1158 |
|
|
temp = er32(ICRXOC);
|
1159 |
|
|
|
1160 |
|
|
temp = er32(ICRXPTC);
|
1161 |
|
|
temp = er32(ICRXATC);
|
1162 |
|
|
temp = er32(ICTXPTC);
|
1163 |
|
|
temp = er32(ICTXATC);
|
1164 |
|
|
temp = er32(ICTXQEC);
|
1165 |
|
|
temp = er32(ICTXQMTC);
|
1166 |
|
|
temp = er32(ICRXDMTC);
|
1167 |
|
|
}
|
1168 |
|
|
|
1169 |
|
|
static struct e1000_mac_operations es2_mac_ops = {
|
1170 |
|
|
.mng_mode_enab = E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT,
|
1171 |
|
|
/* check_for_link dependent on media type */
|
1172 |
|
|
.cleanup_led = e1000e_cleanup_led_generic,
|
1173 |
|
|
.clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan,
|
1174 |
|
|
.get_bus_info = e1000e_get_bus_info_pcie,
|
1175 |
|
|
.get_link_up_info = e1000_get_link_up_info_80003es2lan,
|
1176 |
|
|
.led_on = e1000e_led_on_generic,
|
1177 |
|
|
.led_off = e1000e_led_off_generic,
|
1178 |
|
|
.mc_addr_list_update = e1000e_mc_addr_list_update_generic,
|
1179 |
|
|
.reset_hw = e1000_reset_hw_80003es2lan,
|
1180 |
|
|
.init_hw = e1000_init_hw_80003es2lan,
|
1181 |
|
|
.setup_link = e1000e_setup_link,
|
1182 |
|
|
/* setup_physical_interface dependent on media type */
|
1183 |
|
|
};
|
1184 |
|
|
|
1185 |
|
|
static struct e1000_phy_operations es2_phy_ops = {
|
1186 |
|
|
.acquire_phy = e1000_acquire_phy_80003es2lan,
|
1187 |
|
|
.check_reset_block = e1000e_check_reset_block_generic,
|
1188 |
|
|
.commit_phy = e1000e_phy_sw_reset,
|
1189 |
|
|
.force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan,
|
1190 |
|
|
.get_cfg_done = e1000_get_cfg_done_80003es2lan,
|
1191 |
|
|
.get_cable_length = e1000_get_cable_length_80003es2lan,
|
1192 |
|
|
.get_phy_info = e1000e_get_phy_info_m88,
|
1193 |
|
|
.read_phy_reg = e1000_read_phy_reg_gg82563_80003es2lan,
|
1194 |
|
|
.release_phy = e1000_release_phy_80003es2lan,
|
1195 |
|
|
.reset_phy = e1000e_phy_hw_reset_generic,
|
1196 |
|
|
.set_d0_lplu_state = NULL,
|
1197 |
|
|
.set_d3_lplu_state = e1000e_set_d3_lplu_state,
|
1198 |
|
|
.write_phy_reg = e1000_write_phy_reg_gg82563_80003es2lan,
|
1199 |
|
|
};
|
1200 |
|
|
|
1201 |
|
|
static struct e1000_nvm_operations es2_nvm_ops = {
|
1202 |
|
|
.acquire_nvm = e1000_acquire_nvm_80003es2lan,
|
1203 |
|
|
.read_nvm = e1000e_read_nvm_eerd,
|
1204 |
|
|
.release_nvm = e1000_release_nvm_80003es2lan,
|
1205 |
|
|
.update_nvm = e1000e_update_nvm_checksum_generic,
|
1206 |
|
|
.valid_led_default = e1000e_valid_led_default,
|
1207 |
|
|
.validate_nvm = e1000e_validate_nvm_checksum_generic,
|
1208 |
|
|
.write_nvm = e1000_write_nvm_80003es2lan,
|
1209 |
|
|
};
|
1210 |
|
|
|
1211 |
|
|
struct e1000_info e1000_es2_info = {
|
1212 |
|
|
.mac = e1000_80003es2lan,
|
1213 |
|
|
.flags = FLAG_HAS_HW_VLAN_FILTER
|
1214 |
|
|
| FLAG_HAS_JUMBO_FRAMES
|
1215 |
|
|
| FLAG_HAS_STATS_PTC_PRC
|
1216 |
|
|
| FLAG_HAS_WOL
|
1217 |
|
|
| FLAG_APME_IN_CTRL3
|
1218 |
|
|
| FLAG_RX_CSUM_ENABLED
|
1219 |
|
|
| FLAG_HAS_CTRLEXT_ON_LOAD
|
1220 |
|
|
| FLAG_HAS_STATS_ICR_ICT
|
1221 |
|
|
| FLAG_RX_NEEDS_RESTART /* errata */
|
1222 |
|
|
| FLAG_TARC_SET_BIT_ZERO /* errata */
|
1223 |
|
|
| FLAG_APME_CHECK_PORT_B
|
1224 |
|
|
| FLAG_DISABLE_FC_PAUSE_TIME /* errata */
|
1225 |
|
|
| FLAG_TIPG_MEDIUM_FOR_80003ESLAN,
|
1226 |
|
|
.pba = 38,
|
1227 |
|
|
.get_invariants = e1000_get_invariants_80003es2lan,
|
1228 |
|
|
.mac_ops = &es2_mac_ops,
|
1229 |
|
|
.phy_ops = &es2_phy_ops,
|
1230 |
|
|
.nvm_ops = &es2_nvm_ops,
|
1231 |
|
|
};
|
1232 |
|
|
|