OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [drivers/] [net/] [e1000e/] [phy.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*******************************************************************************
2
 
3
  Intel PRO/1000 Linux driver
4
  Copyright(c) 1999 - 2007 Intel Corporation.
5
 
6
  This program is free software; you can redistribute it and/or modify it
7
  under the terms and conditions of the GNU General Public License,
8
  version 2, as published by the Free Software Foundation.
9
 
10
  This program is distributed in the hope it will be useful, but WITHOUT
11
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13
  more details.
14
 
15
  You should have received a copy of the GNU General Public License along with
16
  this program; if not, write to the Free Software Foundation, Inc.,
17
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
 
19
  The full GNU General Public License is included in this distribution in
20
  the file called "COPYING".
21
 
22
  Contact Information:
23
  Linux NICS <linux.nics@intel.com>
24
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
 
27
*******************************************************************************/
28
 
29
#include <linux/delay.h>
30
 
31
#include "e1000.h"
32
 
33
static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
34
static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
35
static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
36
static s32 e1000_wait_autoneg(struct e1000_hw *hw);
37
 
38
/* Cable length tables */
39
static const u16 e1000_m88_cable_length_table[] =
40
        { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
41
 
42
static const u16 e1000_igp_2_cable_length_table[] =
43
        { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
44
          6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
45
          26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
46
          44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
47
          66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
48
          87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
49
          100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
50
          124};
51
#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
52
                (sizeof(e1000_igp_2_cable_length_table) / \
53
                 sizeof(e1000_igp_2_cable_length_table[0]))
54
 
55
/**
56
 *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
57
 *  @hw: pointer to the HW structure
58
 *
59
 *  Read the PHY management control register and check whether a PHY reset
60
 *  is blocked.  If a reset is not blocked return 0, otherwise
61
 *  return E1000_BLK_PHY_RESET (12).
62
 **/
63
s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
64
{
65
        u32 manc;
66
 
67
        manc = er32(MANC);
68
 
69
        return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
70
               E1000_BLK_PHY_RESET : 0;
71
}
72
 
73
/**
74
 *  e1000e_get_phy_id - Retrieve the PHY ID and revision
75
 *  @hw: pointer to the HW structure
76
 *
77
 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
78
 *  revision in the hardware structure.
79
 **/
80
s32 e1000e_get_phy_id(struct e1000_hw *hw)
81
{
82
        struct e1000_phy_info *phy = &hw->phy;
83
        s32 ret_val;
84
        u16 phy_id;
85
 
86
        ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
87
        if (ret_val)
88
                return ret_val;
89
 
90
        phy->id = (u32)(phy_id << 16);
91
        udelay(20);
92
        ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
93
        if (ret_val)
94
                return ret_val;
95
 
96
        phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
97
        phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
98
 
99
        return 0;
100
}
101
 
102
/**
103
 *  e1000e_phy_reset_dsp - Reset PHY DSP
104
 *  @hw: pointer to the HW structure
105
 *
106
 *  Reset the digital signal processor.
107
 **/
108
s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
109
{
110
        s32 ret_val;
111
 
112
        ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
113
        if (ret_val)
114
                return ret_val;
115
 
116
        return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
117
}
118
 
119
/**
120
 *  e1000_read_phy_reg_mdic - Read MDI control register
121
 *  @hw: pointer to the HW structure
122
 *  @offset: register offset to be read
123
 *  @data: pointer to the read data
124
 *
125
 *  Reads the MDI control regsiter in the PHY at offset and stores the
126
 *  information read to data.
127
 **/
128
static s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
129
{
130
        struct e1000_phy_info *phy = &hw->phy;
131
        u32 i, mdic = 0;
132
 
133
        if (offset > MAX_PHY_REG_ADDRESS) {
134
                hw_dbg(hw, "PHY Address %d is out of range\n", offset);
135
                return -E1000_ERR_PARAM;
136
        }
137
 
138
        /* Set up Op-code, Phy Address, and register offset in the MDI
139
         * Control register.  The MAC will take care of interfacing with the
140
         * PHY to retrieve the desired data.
141
         */
142
        mdic = ((offset << E1000_MDIC_REG_SHIFT) |
143
                (phy->addr << E1000_MDIC_PHY_SHIFT) |
144
                (E1000_MDIC_OP_READ));
145
 
146
        ew32(MDIC, mdic);
147
 
148
        /* Poll the ready bit to see if the MDI read completed */
149
        for (i = 0; i < 64; i++) {
150
                udelay(50);
151
                mdic = er32(MDIC);
152
                if (mdic & E1000_MDIC_READY)
153
                        break;
154
        }
155
        if (!(mdic & E1000_MDIC_READY)) {
156
                hw_dbg(hw, "MDI Read did not complete\n");
157
                return -E1000_ERR_PHY;
158
        }
159
        if (mdic & E1000_MDIC_ERROR) {
160
                hw_dbg(hw, "MDI Error\n");
161
                return -E1000_ERR_PHY;
162
        }
163
        *data = (u16) mdic;
164
 
165
        return 0;
166
}
167
 
168
/**
169
 *  e1000_write_phy_reg_mdic - Write MDI control register
170
 *  @hw: pointer to the HW structure
171
 *  @offset: register offset to write to
172
 *  @data: data to write to register at offset
173
 *
174
 *  Writes data to MDI control register in the PHY at offset.
175
 **/
176
static s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
177
{
178
        struct e1000_phy_info *phy = &hw->phy;
179
        u32 i, mdic = 0;
180
 
181
        if (offset > MAX_PHY_REG_ADDRESS) {
182
                hw_dbg(hw, "PHY Address %d is out of range\n", offset);
183
                return -E1000_ERR_PARAM;
184
        }
185
 
186
        /* Set up Op-code, Phy Address, and register offset in the MDI
187
         * Control register.  The MAC will take care of interfacing with the
188
         * PHY to retrieve the desired data.
189
         */
190
        mdic = (((u32)data) |
191
                (offset << E1000_MDIC_REG_SHIFT) |
192
                (phy->addr << E1000_MDIC_PHY_SHIFT) |
193
                (E1000_MDIC_OP_WRITE));
194
 
195
        ew32(MDIC, mdic);
196
 
197
        /* Poll the ready bit to see if the MDI read completed */
198
        for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
199
                udelay(5);
200
                mdic = er32(MDIC);
201
                if (mdic & E1000_MDIC_READY)
202
                        break;
203
        }
204
        if (!(mdic & E1000_MDIC_READY)) {
205
                hw_dbg(hw, "MDI Write did not complete\n");
206
                return -E1000_ERR_PHY;
207
        }
208
 
209
        return 0;
210
}
211
 
212
/**
213
 *  e1000e_read_phy_reg_m88 - Read m88 PHY register
214
 *  @hw: pointer to the HW structure
215
 *  @offset: register offset to be read
216
 *  @data: pointer to the read data
217
 *
218
 *  Acquires semaphore, if necessary, then reads the PHY register at offset
219
 *  and storing the retrieved information in data.  Release any acquired
220
 *  semaphores before exiting.
221
 **/
222
s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
223
{
224
        s32 ret_val;
225
 
226
        ret_val = hw->phy.ops.acquire_phy(hw);
227
        if (ret_val)
228
                return ret_val;
229
 
230
        ret_val = e1000_read_phy_reg_mdic(hw,
231
                                          MAX_PHY_REG_ADDRESS & offset,
232
                                          data);
233
 
234
        hw->phy.ops.release_phy(hw);
235
 
236
        return ret_val;
237
}
238
 
239
/**
240
 *  e1000e_write_phy_reg_m88 - Write m88 PHY register
241
 *  @hw: pointer to the HW structure
242
 *  @offset: register offset to write to
243
 *  @data: data to write at register offset
244
 *
245
 *  Acquires semaphore, if necessary, then writes the data to PHY register
246
 *  at the offset.  Release any acquired semaphores before exiting.
247
 **/
248
s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
249
{
250
        s32 ret_val;
251
 
252
        ret_val = hw->phy.ops.acquire_phy(hw);
253
        if (ret_val)
254
                return ret_val;
255
 
256
        ret_val = e1000_write_phy_reg_mdic(hw,
257
                                           MAX_PHY_REG_ADDRESS & offset,
258
                                           data);
259
 
260
        hw->phy.ops.release_phy(hw);
261
 
262
        return ret_val;
263
}
264
 
265
/**
266
 *  e1000e_read_phy_reg_igp - Read igp PHY register
267
 *  @hw: pointer to the HW structure
268
 *  @offset: register offset to be read
269
 *  @data: pointer to the read data
270
 *
271
 *  Acquires semaphore, if necessary, then reads the PHY register at offset
272
 *  and storing the retrieved information in data.  Release any acquired
273
 *  semaphores before exiting.
274
 **/
275
s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
276
{
277
        s32 ret_val;
278
 
279
        ret_val = hw->phy.ops.acquire_phy(hw);
280
        if (ret_val)
281
                return ret_val;
282
 
283
        if (offset > MAX_PHY_MULTI_PAGE_REG) {
284
                ret_val = e1000_write_phy_reg_mdic(hw,
285
                                                   IGP01E1000_PHY_PAGE_SELECT,
286
                                                   (u16)offset);
287
                if (ret_val) {
288
                        hw->phy.ops.release_phy(hw);
289
                        return ret_val;
290
                }
291
        }
292
 
293
        ret_val = e1000_read_phy_reg_mdic(hw,
294
                                          MAX_PHY_REG_ADDRESS & offset,
295
                                          data);
296
 
297
        hw->phy.ops.release_phy(hw);
298
 
299
        return ret_val;
300
}
301
 
302
/**
303
 *  e1000e_write_phy_reg_igp - Write igp PHY register
304
 *  @hw: pointer to the HW structure
305
 *  @offset: register offset to write to
306
 *  @data: data to write at register offset
307
 *
308
 *  Acquires semaphore, if necessary, then writes the data to PHY register
309
 *  at the offset.  Release any acquired semaphores before exiting.
310
 **/
311
s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
312
{
313
        s32 ret_val;
314
 
315
        ret_val = hw->phy.ops.acquire_phy(hw);
316
        if (ret_val)
317
                return ret_val;
318
 
319
        if (offset > MAX_PHY_MULTI_PAGE_REG) {
320
                ret_val = e1000_write_phy_reg_mdic(hw,
321
                                                   IGP01E1000_PHY_PAGE_SELECT,
322
                                                   (u16)offset);
323
                if (ret_val) {
324
                        hw->phy.ops.release_phy(hw);
325
                        return ret_val;
326
                }
327
        }
328
 
329
        ret_val = e1000_write_phy_reg_mdic(hw,
330
                                           MAX_PHY_REG_ADDRESS & offset,
331
                                           data);
332
 
333
        hw->phy.ops.release_phy(hw);
334
 
335
        return ret_val;
336
}
337
 
338
/**
339
 *  e1000e_read_kmrn_reg - Read kumeran register
340
 *  @hw: pointer to the HW structure
341
 *  @offset: register offset to be read
342
 *  @data: pointer to the read data
343
 *
344
 *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
345
 *  using the kumeran interface.  The information retrieved is stored in data.
346
 *  Release any acquired semaphores before exiting.
347
 **/
348
s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
349
{
350
        u32 kmrnctrlsta;
351
        s32 ret_val;
352
 
353
        ret_val = hw->phy.ops.acquire_phy(hw);
354
        if (ret_val)
355
                return ret_val;
356
 
357
        kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
358
                       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
359
        ew32(KMRNCTRLSTA, kmrnctrlsta);
360
 
361
        udelay(2);
362
 
363
        kmrnctrlsta = er32(KMRNCTRLSTA);
364
        *data = (u16)kmrnctrlsta;
365
 
366
        hw->phy.ops.release_phy(hw);
367
 
368
        return ret_val;
369
}
370
 
371
/**
372
 *  e1000e_write_kmrn_reg - Write kumeran register
373
 *  @hw: pointer to the HW structure
374
 *  @offset: register offset to write to
375
 *  @data: data to write at register offset
376
 *
377
 *  Acquires semaphore, if necessary.  Then write the data to PHY register
378
 *  at the offset using the kumeran interface.  Release any acquired semaphores
379
 *  before exiting.
380
 **/
381
s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
382
{
383
        u32 kmrnctrlsta;
384
        s32 ret_val;
385
 
386
        ret_val = hw->phy.ops.acquire_phy(hw);
387
        if (ret_val)
388
                return ret_val;
389
 
390
        kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
391
                       E1000_KMRNCTRLSTA_OFFSET) | data;
392
        ew32(KMRNCTRLSTA, kmrnctrlsta);
393
 
394
        udelay(2);
395
        hw->phy.ops.release_phy(hw);
396
 
397
        return ret_val;
398
}
399
 
400
/**
401
 *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
402
 *  @hw: pointer to the HW structure
403
 *
404
 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
405
 *  and downshift values are set also.
406
 **/
407
s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
408
{
409
        struct e1000_phy_info *phy = &hw->phy;
410
        s32 ret_val;
411
        u16 phy_data;
412
 
413
        /* Enable CRS on TX. This must be set for half-duplex operation. */
414
        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
415
        if (ret_val)
416
                return ret_val;
417
 
418
        phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
419
 
420
        /* Options:
421
         *   MDI/MDI-X = 0 (default)
422
         *   0 - Auto for all speeds
423
         *   1 - MDI mode
424
         *   2 - MDI-X mode
425
         *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
426
         */
427
        phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
428
 
429
        switch (phy->mdix) {
430
        case 1:
431
                phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
432
                break;
433
        case 2:
434
                phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
435
                break;
436
        case 3:
437
                phy_data |= M88E1000_PSCR_AUTO_X_1000T;
438
                break;
439
        case 0:
440
        default:
441
                phy_data |= M88E1000_PSCR_AUTO_X_MODE;
442
                break;
443
        }
444
 
445
        /* Options:
446
         *   disable_polarity_correction = 0 (default)
447
         *       Automatic Correction for Reversed Cable Polarity
448
         *   0 - Disabled
449
         *   1 - Enabled
450
         */
451
        phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
452
        if (phy->disable_polarity_correction == 1)
453
                phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
454
 
455
        ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
456
        if (ret_val)
457
                return ret_val;
458
 
459
        if (phy->revision < 4) {
460
                /* Force TX_CLK in the Extended PHY Specific Control Register
461
                 * to 25MHz clock.
462
                 */
463
                ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
464
                if (ret_val)
465
                        return ret_val;
466
 
467
                phy_data |= M88E1000_EPSCR_TX_CLK_25;
468
 
469
                if ((phy->revision == 2) &&
470
                    (phy->id == M88E1111_I_PHY_ID)) {
471
                        /* 82573L PHY - set the downshift counter to 5x. */
472
                        phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
473
                        phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
474
                } else {
475
                        /* Configure Master and Slave downshift values */
476
                        phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
477
                                      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
478
                        phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
479
                                     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
480
                }
481
                ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
482
                if (ret_val)
483
                        return ret_val;
484
        }
485
 
486
        /* Commit the changes. */
487
        ret_val = e1000e_commit_phy(hw);
488
        if (ret_val)
489
                hw_dbg(hw, "Error committing the PHY changes\n");
490
 
491
        return ret_val;
492
}
493
 
494
/**
495
 *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
496
 *  @hw: pointer to the HW structure
497
 *
498
 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
499
 *  igp PHY's.
500
 **/
501
s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
502
{
503
        struct e1000_phy_info *phy = &hw->phy;
504
        s32 ret_val;
505
        u16 data;
506
 
507
        ret_val = e1000_phy_hw_reset(hw);
508
        if (ret_val) {
509
                hw_dbg(hw, "Error resetting the PHY.\n");
510
                return ret_val;
511
        }
512
 
513
        /* Wait 15ms for MAC to configure PHY from NVM settings. */
514
        msleep(15);
515
 
516
        /* disable lplu d0 during driver init */
517
        ret_val = e1000_set_d0_lplu_state(hw, 0);
518
        if (ret_val) {
519
                hw_dbg(hw, "Error Disabling LPLU D0\n");
520
                return ret_val;
521
        }
522
        /* Configure mdi-mdix settings */
523
        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
524
        if (ret_val)
525
                return ret_val;
526
 
527
        data &= ~IGP01E1000_PSCR_AUTO_MDIX;
528
 
529
        switch (phy->mdix) {
530
        case 1:
531
                data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
532
                break;
533
        case 2:
534
                data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
535
                break;
536
        case 0:
537
        default:
538
                data |= IGP01E1000_PSCR_AUTO_MDIX;
539
                break;
540
        }
541
        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
542
        if (ret_val)
543
                return ret_val;
544
 
545
        /* set auto-master slave resolution settings */
546
        if (hw->mac.autoneg) {
547
                /* when autonegotiation advertisement is only 1000Mbps then we
548
                 * should disable SmartSpeed and enable Auto MasterSlave
549
                 * resolution as hardware default. */
550
                if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
551
                        /* Disable SmartSpeed */
552
                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
553
                                                     &data);
554
                        if (ret_val)
555
                                return ret_val;
556
 
557
                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
558
                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
559
                                                     data);
560
                        if (ret_val)
561
                                return ret_val;
562
 
563
                        /* Set auto Master/Slave resolution process */
564
                        ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
565
                        if (ret_val)
566
                                return ret_val;
567
 
568
                        data &= ~CR_1000T_MS_ENABLE;
569
                        ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
570
                        if (ret_val)
571
                                return ret_val;
572
                }
573
 
574
                ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
575
                if (ret_val)
576
                        return ret_val;
577
 
578
                /* load defaults for future use */
579
                phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
580
                        ((data & CR_1000T_MS_VALUE) ?
581
                        e1000_ms_force_master :
582
                        e1000_ms_force_slave) :
583
                        e1000_ms_auto;
584
 
585
                switch (phy->ms_type) {
586
                case e1000_ms_force_master:
587
                        data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
588
                        break;
589
                case e1000_ms_force_slave:
590
                        data |= CR_1000T_MS_ENABLE;
591
                        data &= ~(CR_1000T_MS_VALUE);
592
                        break;
593
                case e1000_ms_auto:
594
                        data &= ~CR_1000T_MS_ENABLE;
595
                default:
596
                        break;
597
                }
598
                ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
599
        }
600
 
601
        return ret_val;
602
}
603
 
604
/**
605
 *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
606
 *  @hw: pointer to the HW structure
607
 *
608
 *  Reads the MII auto-neg advertisement register and/or the 1000T control
609
 *  register and if the PHY is already setup for auto-negotiation, then
610
 *  return successful.  Otherwise, setup advertisement and flow control to
611
 *  the appropriate values for the wanted auto-negotiation.
612
 **/
613
static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
614
{
615
        struct e1000_phy_info *phy = &hw->phy;
616
        s32 ret_val;
617
        u16 mii_autoneg_adv_reg;
618
        u16 mii_1000t_ctrl_reg = 0;
619
 
620
        phy->autoneg_advertised &= phy->autoneg_mask;
621
 
622
        /* Read the MII Auto-Neg Advertisement Register (Address 4). */
623
        ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
624
        if (ret_val)
625
                return ret_val;
626
 
627
        if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
628
                /* Read the MII 1000Base-T Control Register (Address 9). */
629
                ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
630
                if (ret_val)
631
                        return ret_val;
632
        }
633
 
634
        /* Need to parse both autoneg_advertised and fc and set up
635
         * the appropriate PHY registers.  First we will parse for
636
         * autoneg_advertised software override.  Since we can advertise
637
         * a plethora of combinations, we need to check each bit
638
         * individually.
639
         */
640
 
641
        /* First we clear all the 10/100 mb speed bits in the Auto-Neg
642
         * Advertisement Register (Address 4) and the 1000 mb speed bits in
643
         * the  1000Base-T Control Register (Address 9).
644
         */
645
        mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
646
                                 NWAY_AR_100TX_HD_CAPS |
647
                                 NWAY_AR_10T_FD_CAPS   |
648
                                 NWAY_AR_10T_HD_CAPS);
649
        mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
650
 
651
        hw_dbg(hw, "autoneg_advertised %x\n", phy->autoneg_advertised);
652
 
653
        /* Do we want to advertise 10 Mb Half Duplex? */
654
        if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
655
                hw_dbg(hw, "Advertise 10mb Half duplex\n");
656
                mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
657
        }
658
 
659
        /* Do we want to advertise 10 Mb Full Duplex? */
660
        if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
661
                hw_dbg(hw, "Advertise 10mb Full duplex\n");
662
                mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
663
        }
664
 
665
        /* Do we want to advertise 100 Mb Half Duplex? */
666
        if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
667
                hw_dbg(hw, "Advertise 100mb Half duplex\n");
668
                mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
669
        }
670
 
671
        /* Do we want to advertise 100 Mb Full Duplex? */
672
        if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
673
                hw_dbg(hw, "Advertise 100mb Full duplex\n");
674
                mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
675
        }
676
 
677
        /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
678
        if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
679
                hw_dbg(hw, "Advertise 1000mb Half duplex request denied!\n");
680
 
681
        /* Do we want to advertise 1000 Mb Full Duplex? */
682
        if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
683
                hw_dbg(hw, "Advertise 1000mb Full duplex\n");
684
                mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
685
        }
686
 
687
        /* Check for a software override of the flow control settings, and
688
         * setup the PHY advertisement registers accordingly.  If
689
         * auto-negotiation is enabled, then software will have to set the
690
         * "PAUSE" bits to the correct value in the Auto-Negotiation
691
         * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
692
         * negotiation.
693
         *
694
         * The possible values of the "fc" parameter are:
695
         *      0:  Flow control is completely disabled
696
         *      1:  Rx flow control is enabled (we can receive pause frames
697
         *        but not send pause frames).
698
         *      2:  Tx flow control is enabled (we can send pause frames
699
         *        but we do not support receiving pause frames).
700
         *      3:  Both Rx and TX flow control (symmetric) are enabled.
701
         *  other:  No software override.  The flow control configuration
702
         *        in the EEPROM is used.
703
         */
704
        switch (hw->mac.fc) {
705
        case e1000_fc_none:
706
                /* Flow control (RX & TX) is completely disabled by a
707
                 * software over-ride.
708
                 */
709
                mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
710
                break;
711
        case e1000_fc_rx_pause:
712
                /* RX Flow control is enabled, and TX Flow control is
713
                 * disabled, by a software over-ride.
714
                 */
715
                /* Since there really isn't a way to advertise that we are
716
                 * capable of RX Pause ONLY, we will advertise that we
717
                 * support both symmetric and asymmetric RX PAUSE.  Later
718
                 * (in e1000e_config_fc_after_link_up) we will disable the
719
                 * hw's ability to send PAUSE frames.
720
                 */
721
                mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
722
                break;
723
        case e1000_fc_tx_pause:
724
                /* TX Flow control is enabled, and RX Flow control is
725
                 * disabled, by a software over-ride.
726
                 */
727
                mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
728
                mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
729
                break;
730
        case e1000_fc_full:
731
                /* Flow control (both RX and TX) is enabled by a software
732
                 * over-ride.
733
                 */
734
                mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
735
                break;
736
        default:
737
                hw_dbg(hw, "Flow control param set incorrectly\n");
738
                ret_val = -E1000_ERR_CONFIG;
739
                return ret_val;
740
        }
741
 
742
        ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
743
        if (ret_val)
744
                return ret_val;
745
 
746
        hw_dbg(hw, "Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
747
 
748
        if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
749
                ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
750
        }
751
 
752
        return ret_val;
753
}
754
 
755
/**
756
 *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
757
 *  @hw: pointer to the HW structure
758
 *
759
 *  Performs initial bounds checking on autoneg advertisement parameter, then
760
 *  configure to advertise the full capability.  Setup the PHY to autoneg
761
 *  and restart the negotiation process between the link partner.  If
762
 *  wait_for_link, then wait for autoneg to complete before exiting.
763
 **/
764
static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
765
{
766
        struct e1000_phy_info *phy = &hw->phy;
767
        s32 ret_val;
768
        u16 phy_ctrl;
769
 
770
        /* Perform some bounds checking on the autoneg advertisement
771
         * parameter.
772
         */
773
        phy->autoneg_advertised &= phy->autoneg_mask;
774
 
775
        /* If autoneg_advertised is zero, we assume it was not defaulted
776
         * by the calling code so we set to advertise full capability.
777
         */
778
        if (phy->autoneg_advertised == 0)
779
                phy->autoneg_advertised = phy->autoneg_mask;
780
 
781
        hw_dbg(hw, "Reconfiguring auto-neg advertisement params\n");
782
        ret_val = e1000_phy_setup_autoneg(hw);
783
        if (ret_val) {
784
                hw_dbg(hw, "Error Setting up Auto-Negotiation\n");
785
                return ret_val;
786
        }
787
        hw_dbg(hw, "Restarting Auto-Neg\n");
788
 
789
        /* Restart auto-negotiation by setting the Auto Neg Enable bit and
790
         * the Auto Neg Restart bit in the PHY control register.
791
         */
792
        ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
793
        if (ret_val)
794
                return ret_val;
795
 
796
        phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
797
        ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
798
        if (ret_val)
799
                return ret_val;
800
 
801
        /* Does the user want to wait for Auto-Neg to complete here, or
802
         * check at a later time (for example, callback routine).
803
         */
804
        if (phy->wait_for_link) {
805
                ret_val = e1000_wait_autoneg(hw);
806
                if (ret_val) {
807
                        hw_dbg(hw, "Error while waiting for "
808
                                 "autoneg to complete\n");
809
                        return ret_val;
810
                }
811
        }
812
 
813
        hw->mac.get_link_status = 1;
814
 
815
        return ret_val;
816
}
817
 
818
/**
819
 *  e1000e_setup_copper_link - Configure copper link settings
820
 *  @hw: pointer to the HW structure
821
 *
822
 *  Calls the appropriate function to configure the link for auto-neg or forced
823
 *  speed and duplex.  Then we check for link, once link is established calls
824
 *  to configure collision distance and flow control are called.  If link is
825
 *  not established, we return -E1000_ERR_PHY (-2).
826
 **/
827
s32 e1000e_setup_copper_link(struct e1000_hw *hw)
828
{
829
        s32 ret_val;
830
        bool link;
831
 
832
        if (hw->mac.autoneg) {
833
                /* Setup autoneg and flow control advertisement and perform
834
                 * autonegotiation. */
835
                ret_val = e1000_copper_link_autoneg(hw);
836
                if (ret_val)
837
                        return ret_val;
838
        } else {
839
                /* PHY will be set to 10H, 10F, 100H or 100F
840
                 * depending on user settings. */
841
                hw_dbg(hw, "Forcing Speed and Duplex\n");
842
                ret_val = e1000_phy_force_speed_duplex(hw);
843
                if (ret_val) {
844
                        hw_dbg(hw, "Error Forcing Speed and Duplex\n");
845
                        return ret_val;
846
                }
847
        }
848
 
849
        /* Check link status. Wait up to 100 microseconds for link to become
850
         * valid.
851
         */
852
        ret_val = e1000e_phy_has_link_generic(hw,
853
                                             COPPER_LINK_UP_LIMIT,
854
                                             10,
855
                                             &link);
856
        if (ret_val)
857
                return ret_val;
858
 
859
        if (link) {
860
                hw_dbg(hw, "Valid link established!!!\n");
861
                e1000e_config_collision_dist(hw);
862
                ret_val = e1000e_config_fc_after_link_up(hw);
863
        } else {
864
                hw_dbg(hw, "Unable to establish link!!!\n");
865
        }
866
 
867
        return ret_val;
868
}
869
 
870
/**
871
 *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
872
 *  @hw: pointer to the HW structure
873
 *
874
 *  Calls the PHY setup function to force speed and duplex.  Clears the
875
 *  auto-crossover to force MDI manually.  Waits for link and returns
876
 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
877
 **/
878
s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
879
{
880
        struct e1000_phy_info *phy = &hw->phy;
881
        s32 ret_val;
882
        u16 phy_data;
883
        bool link;
884
 
885
        ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
886
        if (ret_val)
887
                return ret_val;
888
 
889
        e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
890
 
891
        ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
892
        if (ret_val)
893
                return ret_val;
894
 
895
        /* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
896
         * forced whenever speed and duplex are forced.
897
         */
898
        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
899
        if (ret_val)
900
                return ret_val;
901
 
902
        phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
903
        phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
904
 
905
        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
906
        if (ret_val)
907
                return ret_val;
908
 
909
        hw_dbg(hw, "IGP PSCR: %X\n", phy_data);
910
 
911
        udelay(1);
912
 
913
        if (phy->wait_for_link) {
914
                hw_dbg(hw, "Waiting for forced speed/duplex link on IGP phy.\n");
915
 
916
                ret_val = e1000e_phy_has_link_generic(hw,
917
                                                     PHY_FORCE_LIMIT,
918
                                                     100000,
919
                                                     &link);
920
                if (ret_val)
921
                        return ret_val;
922
 
923
                if (!link)
924
                        hw_dbg(hw, "Link taking longer than expected.\n");
925
 
926
                /* Try once more */
927
                ret_val = e1000e_phy_has_link_generic(hw,
928
                                                     PHY_FORCE_LIMIT,
929
                                                     100000,
930
                                                     &link);
931
                if (ret_val)
932
                        return ret_val;
933
        }
934
 
935
        return ret_val;
936
}
937
 
938
/**
939
 *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
940
 *  @hw: pointer to the HW structure
941
 *
942
 *  Calls the PHY setup function to force speed and duplex.  Clears the
943
 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
944
 *  changes.  If time expires while waiting for link up, we reset the DSP.
945
 *  After reset, TX_CLK and CRS on TX must be set.  Return successful upon
946
 *  successful completion, else return corresponding error code.
947
 **/
948
s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
949
{
950
        struct e1000_phy_info *phy = &hw->phy;
951
        s32 ret_val;
952
        u16 phy_data;
953
        bool link;
954
 
955
        /* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
956
         * forced whenever speed and duplex are forced.
957
         */
958
        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
959
        if (ret_val)
960
                return ret_val;
961
 
962
        phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
963
        ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
964
        if (ret_val)
965
                return ret_val;
966
 
967
        hw_dbg(hw, "M88E1000 PSCR: %X\n", phy_data);
968
 
969
        ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
970
        if (ret_val)
971
                return ret_val;
972
 
973
        e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
974
 
975
        /* Reset the phy to commit changes. */
976
        phy_data |= MII_CR_RESET;
977
 
978
        ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
979
        if (ret_val)
980
                return ret_val;
981
 
982
        udelay(1);
983
 
984
        if (phy->wait_for_link) {
985
                hw_dbg(hw, "Waiting for forced speed/duplex link on M88 phy.\n");
986
 
987
                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
988
                                                     100000, &link);
989
                if (ret_val)
990
                        return ret_val;
991
 
992
                if (!link) {
993
                        /* We didn't get link.
994
                         * Reset the DSP and cross our fingers.
995
                         */
996
                        ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT, 0x001d);
997
                        if (ret_val)
998
                                return ret_val;
999
                        ret_val = e1000e_phy_reset_dsp(hw);
1000
                        if (ret_val)
1001
                                return ret_val;
1002
                }
1003
 
1004
                /* Try once more */
1005
                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1006
                                                     100000, &link);
1007
                if (ret_val)
1008
                        return ret_val;
1009
        }
1010
 
1011
        ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1012
        if (ret_val)
1013
                return ret_val;
1014
 
1015
        /* Resetting the phy means we need to re-force TX_CLK in the
1016
         * Extended PHY Specific Control Register to 25MHz clock from
1017
         * the reset value of 2.5MHz.
1018
         */
1019
        phy_data |= M88E1000_EPSCR_TX_CLK_25;
1020
        ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1021
        if (ret_val)
1022
                return ret_val;
1023
 
1024
        /* In addition, we must re-enable CRS on Tx for both half and full
1025
         * duplex.
1026
         */
1027
        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1028
        if (ret_val)
1029
                return ret_val;
1030
 
1031
        phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1032
        ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1033
 
1034
        return ret_val;
1035
}
1036
 
1037
/**
1038
 *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1039
 *  @hw: pointer to the HW structure
1040
 *  @phy_ctrl: pointer to current value of PHY_CONTROL
1041
 *
1042
 *  Forces speed and duplex on the PHY by doing the following: disable flow
1043
 *  control, force speed/duplex on the MAC, disable auto speed detection,
1044
 *  disable auto-negotiation, configure duplex, configure speed, configure
1045
 *  the collision distance, write configuration to CTRL register.  The
1046
 *  caller must write to the PHY_CONTROL register for these settings to
1047
 *  take affect.
1048
 **/
1049
void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1050
{
1051
        struct e1000_mac_info *mac = &hw->mac;
1052
        u32 ctrl;
1053
 
1054
        /* Turn off flow control when forcing speed/duplex */
1055
        mac->fc = e1000_fc_none;
1056
 
1057
        /* Force speed/duplex on the mac */
1058
        ctrl = er32(CTRL);
1059
        ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1060
        ctrl &= ~E1000_CTRL_SPD_SEL;
1061
 
1062
        /* Disable Auto Speed Detection */
1063
        ctrl &= ~E1000_CTRL_ASDE;
1064
 
1065
        /* Disable autoneg on the phy */
1066
        *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1067
 
1068
        /* Forcing Full or Half Duplex? */
1069
        if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1070
                ctrl &= ~E1000_CTRL_FD;
1071
                *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1072
                hw_dbg(hw, "Half Duplex\n");
1073
        } else {
1074
                ctrl |= E1000_CTRL_FD;
1075
                *phy_ctrl |= MII_CR_FULL_DUPLEX;
1076
                hw_dbg(hw, "Full Duplex\n");
1077
        }
1078
 
1079
        /* Forcing 10mb or 100mb? */
1080
        if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1081
                ctrl |= E1000_CTRL_SPD_100;
1082
                *phy_ctrl |= MII_CR_SPEED_100;
1083
                *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1084
                hw_dbg(hw, "Forcing 100mb\n");
1085
        } else {
1086
                ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1087
                *phy_ctrl |= MII_CR_SPEED_10;
1088
                *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1089
                hw_dbg(hw, "Forcing 10mb\n");
1090
        }
1091
 
1092
        e1000e_config_collision_dist(hw);
1093
 
1094
        ew32(CTRL, ctrl);
1095
}
1096
 
1097
/**
1098
 *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1099
 *  @hw: pointer to the HW structure
1100
 *  @active: boolean used to enable/disable lplu
1101
 *
1102
 *  Success returns 0, Failure returns 1
1103
 *
1104
 *  The low power link up (lplu) state is set to the power management level D3
1105
 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1106
 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1107
 *  is used during Dx states where the power conservation is most important.
1108
 *  During driver activity, SmartSpeed should be enabled so performance is
1109
 *  maintained.
1110
 **/
1111
s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1112
{
1113
        struct e1000_phy_info *phy = &hw->phy;
1114
        s32 ret_val;
1115
        u16 data;
1116
 
1117
        ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1118
        if (ret_val)
1119
                return ret_val;
1120
 
1121
        if (!active) {
1122
                data &= ~IGP02E1000_PM_D3_LPLU;
1123
                ret_val = e1e_wphy(hw,
1124
                                             IGP02E1000_PHY_POWER_MGMT,
1125
                                             data);
1126
                if (ret_val)
1127
                        return ret_val;
1128
                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1129
                 * during Dx states where the power conservation is most
1130
                 * important.  During driver activity we should enable
1131
                 * SmartSpeed, so performance is maintained. */
1132
                if (phy->smart_speed == e1000_smart_speed_on) {
1133
                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1134
                                                    &data);
1135
                        if (ret_val)
1136
                                return ret_val;
1137
 
1138
                        data |= IGP01E1000_PSCFR_SMART_SPEED;
1139
                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1140
                                                     data);
1141
                        if (ret_val)
1142
                                return ret_val;
1143
                } else if (phy->smart_speed == e1000_smart_speed_off) {
1144
                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1145
                                                     &data);
1146
                        if (ret_val)
1147
                                return ret_val;
1148
 
1149
                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1150
                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1151
                                                     data);
1152
                        if (ret_val)
1153
                                return ret_val;
1154
                }
1155
        } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1156
                   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1157
                   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1158
                data |= IGP02E1000_PM_D3_LPLU;
1159
                ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1160
                if (ret_val)
1161
                        return ret_val;
1162
 
1163
                /* When LPLU is enabled, we should disable SmartSpeed */
1164
                ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1165
                if (ret_val)
1166
                        return ret_val;
1167
 
1168
                data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1169
                ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1170
        }
1171
 
1172
        return ret_val;
1173
}
1174
 
1175
/**
1176
 *  e1000e_check_downshift - Checks whether a downshift in speed occured
1177
 *  @hw: pointer to the HW structure
1178
 *
1179
 *  Success returns 0, Failure returns 1
1180
 *
1181
 *  A downshift is detected by querying the PHY link health.
1182
 **/
1183
s32 e1000e_check_downshift(struct e1000_hw *hw)
1184
{
1185
        struct e1000_phy_info *phy = &hw->phy;
1186
        s32 ret_val;
1187
        u16 phy_data, offset, mask;
1188
 
1189
        switch (phy->type) {
1190
        case e1000_phy_m88:
1191
        case e1000_phy_gg82563:
1192
                offset  = M88E1000_PHY_SPEC_STATUS;
1193
                mask    = M88E1000_PSSR_DOWNSHIFT;
1194
                break;
1195
        case e1000_phy_igp_2:
1196
        case e1000_phy_igp_3:
1197
                offset  = IGP01E1000_PHY_LINK_HEALTH;
1198
                mask    = IGP01E1000_PLHR_SS_DOWNGRADE;
1199
                break;
1200
        default:
1201
                /* speed downshift not supported */
1202
                phy->speed_downgraded = 0;
1203
                return 0;
1204
        }
1205
 
1206
        ret_val = e1e_rphy(hw, offset, &phy_data);
1207
 
1208
        if (!ret_val)
1209
                phy->speed_downgraded = (phy_data & mask);
1210
 
1211
        return ret_val;
1212
}
1213
 
1214
/**
1215
 *  e1000_check_polarity_m88 - Checks the polarity.
1216
 *  @hw: pointer to the HW structure
1217
 *
1218
 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1219
 *
1220
 *  Polarity is determined based on the PHY specific status register.
1221
 **/
1222
static s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1223
{
1224
        struct e1000_phy_info *phy = &hw->phy;
1225
        s32 ret_val;
1226
        u16 data;
1227
 
1228
        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1229
 
1230
        if (!ret_val)
1231
                phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1232
                                      ? e1000_rev_polarity_reversed
1233
                                      : e1000_rev_polarity_normal;
1234
 
1235
        return ret_val;
1236
}
1237
 
1238
/**
1239
 *  e1000_check_polarity_igp - Checks the polarity.
1240
 *  @hw: pointer to the HW structure
1241
 *
1242
 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1243
 *
1244
 *  Polarity is determined based on the PHY port status register, and the
1245
 *  current speed (since there is no polarity at 100Mbps).
1246
 **/
1247
static s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1248
{
1249
        struct e1000_phy_info *phy = &hw->phy;
1250
        s32 ret_val;
1251
        u16 data, offset, mask;
1252
 
1253
        /* Polarity is determined based on the speed of
1254
         * our connection. */
1255
        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1256
        if (ret_val)
1257
                return ret_val;
1258
 
1259
        if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1260
            IGP01E1000_PSSR_SPEED_1000MBPS) {
1261
                offset  = IGP01E1000_PHY_PCS_INIT_REG;
1262
                mask    = IGP01E1000_PHY_POLARITY_MASK;
1263
        } else {
1264
                /* This really only applies to 10Mbps since
1265
                 * there is no polarity for 100Mbps (always 0).
1266
                 */
1267
                offset  = IGP01E1000_PHY_PORT_STATUS;
1268
                mask    = IGP01E1000_PSSR_POLARITY_REVERSED;
1269
        }
1270
 
1271
        ret_val = e1e_rphy(hw, offset, &data);
1272
 
1273
        if (!ret_val)
1274
                phy->cable_polarity = (data & mask)
1275
                                      ? e1000_rev_polarity_reversed
1276
                                      : e1000_rev_polarity_normal;
1277
 
1278
        return ret_val;
1279
}
1280
 
1281
/**
1282
 *  e1000_wait_autoneg - Wait for auto-neg compeletion
1283
 *  @hw: pointer to the HW structure
1284
 *
1285
 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1286
 *  limit to expire, which ever happens first.
1287
 **/
1288
static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1289
{
1290
        s32 ret_val = 0;
1291
        u16 i, phy_status;
1292
 
1293
        /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1294
        for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1295
                ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1296
                if (ret_val)
1297
                        break;
1298
                ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1299
                if (ret_val)
1300
                        break;
1301
                if (phy_status & MII_SR_AUTONEG_COMPLETE)
1302
                        break;
1303
                msleep(100);
1304
        }
1305
 
1306
        /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1307
         * has completed.
1308
         */
1309
        return ret_val;
1310
}
1311
 
1312
/**
1313
 *  e1000e_phy_has_link_generic - Polls PHY for link
1314
 *  @hw: pointer to the HW structure
1315
 *  @iterations: number of times to poll for link
1316
 *  @usec_interval: delay between polling attempts
1317
 *  @success: pointer to whether polling was successful or not
1318
 *
1319
 *  Polls the PHY status register for link, 'iterations' number of times.
1320
 **/
1321
s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1322
                               u32 usec_interval, bool *success)
1323
{
1324
        s32 ret_val = 0;
1325
        u16 i, phy_status;
1326
 
1327
        for (i = 0; i < iterations; i++) {
1328
                /* Some PHYs require the PHY_STATUS register to be read
1329
                 * twice due to the link bit being sticky.  No harm doing
1330
                 * it across the board.
1331
                 */
1332
                ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1333
                if (ret_val)
1334
                        break;
1335
                ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1336
                if (ret_val)
1337
                        break;
1338
                if (phy_status & MII_SR_LINK_STATUS)
1339
                        break;
1340
                if (usec_interval >= 1000)
1341
                        mdelay(usec_interval/1000);
1342
                else
1343
                        udelay(usec_interval);
1344
        }
1345
 
1346
        *success = (i < iterations);
1347
 
1348
        return ret_val;
1349
}
1350
 
1351
/**
1352
 *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1353
 *  @hw: pointer to the HW structure
1354
 *
1355
 *  Reads the PHY specific status register to retrieve the cable length
1356
 *  information.  The cable length is determined by averaging the minimum and
1357
 *  maximum values to get the "average" cable length.  The m88 PHY has four
1358
 *  possible cable length values, which are:
1359
 *      Register Value          Cable Length
1360
 *      0                        < 50 meters
1361
 *      1                       50 - 80 meters
1362
 *      2                       80 - 110 meters
1363
 *      3                       110 - 140 meters
1364
 *      4                       > 140 meters
1365
 **/
1366
s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1367
{
1368
        struct e1000_phy_info *phy = &hw->phy;
1369
        s32 ret_val;
1370
        u16 phy_data, index;
1371
 
1372
        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1373
        if (ret_val)
1374
                return ret_val;
1375
 
1376
        index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1377
                M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1378
        phy->min_cable_length = e1000_m88_cable_length_table[index];
1379
        phy->max_cable_length = e1000_m88_cable_length_table[index+1];
1380
 
1381
        phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1382
 
1383
        return ret_val;
1384
}
1385
 
1386
/**
1387
 *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1388
 *  @hw: pointer to the HW structure
1389
 *
1390
 *  The automatic gain control (agc) normalizes the amplitude of the
1391
 *  received signal, adjusting for the attenuation produced by the
1392
 *  cable.  By reading the AGC registers, which reperesent the
1393
 *  cobination of course and fine gain value, the value can be put
1394
 *  into a lookup table to obtain the approximate cable length
1395
 *  for each channel.
1396
 **/
1397
s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1398
{
1399
        struct e1000_phy_info *phy = &hw->phy;
1400
        s32 ret_val;
1401
        u16 phy_data, i, agc_value = 0;
1402
        u16 cur_agc_index, max_agc_index = 0;
1403
        u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1404
        u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
1405
                                                         {IGP02E1000_PHY_AGC_A,
1406
                                                          IGP02E1000_PHY_AGC_B,
1407
                                                          IGP02E1000_PHY_AGC_C,
1408
                                                          IGP02E1000_PHY_AGC_D};
1409
 
1410
        /* Read the AGC registers for all channels */
1411
        for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1412
                ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1413
                if (ret_val)
1414
                        return ret_val;
1415
 
1416
                /* Getting bits 15:9, which represent the combination of
1417
                 * course and fine gain values.  The result is a number
1418
                 * that can be put into the lookup table to obtain the
1419
                 * approximate cable length. */
1420
                cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1421
                                IGP02E1000_AGC_LENGTH_MASK;
1422
 
1423
                /* Array index bound check. */
1424
                if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1425
                    (cur_agc_index == 0))
1426
                        return -E1000_ERR_PHY;
1427
 
1428
                /* Remove min & max AGC values from calculation. */
1429
                if (e1000_igp_2_cable_length_table[min_agc_index] >
1430
                    e1000_igp_2_cable_length_table[cur_agc_index])
1431
                        min_agc_index = cur_agc_index;
1432
                if (e1000_igp_2_cable_length_table[max_agc_index] <
1433
                    e1000_igp_2_cable_length_table[cur_agc_index])
1434
                        max_agc_index = cur_agc_index;
1435
 
1436
                agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1437
        }
1438
 
1439
        agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1440
                      e1000_igp_2_cable_length_table[max_agc_index]);
1441
        agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1442
 
1443
        /* Calculate cable length with the error range of +/- 10 meters. */
1444
        phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1445
                                 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1446
        phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1447
 
1448
        phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1449
 
1450
        return ret_val;
1451
}
1452
 
1453
/**
1454
 *  e1000e_get_phy_info_m88 - Retrieve PHY information
1455
 *  @hw: pointer to the HW structure
1456
 *
1457
 *  Valid for only copper links.  Read the PHY status register (sticky read)
1458
 *  to verify that link is up.  Read the PHY special control register to
1459
 *  determine the polarity and 10base-T extended distance.  Read the PHY
1460
 *  special status register to determine MDI/MDIx and current speed.  If
1461
 *  speed is 1000, then determine cable length, local and remote receiver.
1462
 **/
1463
s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1464
{
1465
        struct e1000_phy_info *phy = &hw->phy;
1466
        s32  ret_val;
1467
        u16 phy_data;
1468
        bool link;
1469
 
1470
        if (hw->media_type != e1000_media_type_copper) {
1471
                hw_dbg(hw, "Phy info is only valid for copper media\n");
1472
                return -E1000_ERR_CONFIG;
1473
        }
1474
 
1475
        ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1476
        if (ret_val)
1477
                return ret_val;
1478
 
1479
        if (!link) {
1480
                hw_dbg(hw, "Phy info is only valid if link is up\n");
1481
                return -E1000_ERR_CONFIG;
1482
        }
1483
 
1484
        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1485
        if (ret_val)
1486
                return ret_val;
1487
 
1488
        phy->polarity_correction = (phy_data &
1489
                                    M88E1000_PSCR_POLARITY_REVERSAL);
1490
 
1491
        ret_val = e1000_check_polarity_m88(hw);
1492
        if (ret_val)
1493
                return ret_val;
1494
 
1495
        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1496
        if (ret_val)
1497
                return ret_val;
1498
 
1499
        phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX);
1500
 
1501
        if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1502
                ret_val = e1000_get_cable_length(hw);
1503
                if (ret_val)
1504
                        return ret_val;
1505
 
1506
                ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
1507
                if (ret_val)
1508
                        return ret_val;
1509
 
1510
                phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1511
                                ? e1000_1000t_rx_status_ok
1512
                                : e1000_1000t_rx_status_not_ok;
1513
 
1514
                phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1515
                                 ? e1000_1000t_rx_status_ok
1516
                                 : e1000_1000t_rx_status_not_ok;
1517
        } else {
1518
                /* Set values to "undefined" */
1519
                phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1520
                phy->local_rx = e1000_1000t_rx_status_undefined;
1521
                phy->remote_rx = e1000_1000t_rx_status_undefined;
1522
        }
1523
 
1524
        return ret_val;
1525
}
1526
 
1527
/**
1528
 *  e1000e_get_phy_info_igp - Retrieve igp PHY information
1529
 *  @hw: pointer to the HW structure
1530
 *
1531
 *  Read PHY status to determine if link is up.  If link is up, then
1532
 *  set/determine 10base-T extended distance and polarity correction.  Read
1533
 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1534
 *  determine on the cable length, local and remote receiver.
1535
 **/
1536
s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
1537
{
1538
        struct e1000_phy_info *phy = &hw->phy;
1539
        s32 ret_val;
1540
        u16 data;
1541
        bool link;
1542
 
1543
        ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1544
        if (ret_val)
1545
                return ret_val;
1546
 
1547
        if (!link) {
1548
                hw_dbg(hw, "Phy info is only valid if link is up\n");
1549
                return -E1000_ERR_CONFIG;
1550
        }
1551
 
1552
        phy->polarity_correction = 1;
1553
 
1554
        ret_val = e1000_check_polarity_igp(hw);
1555
        if (ret_val)
1556
                return ret_val;
1557
 
1558
        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1559
        if (ret_val)
1560
                return ret_val;
1561
 
1562
        phy->is_mdix = (data & IGP01E1000_PSSR_MDIX);
1563
 
1564
        if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1565
            IGP01E1000_PSSR_SPEED_1000MBPS) {
1566
                ret_val = e1000_get_cable_length(hw);
1567
                if (ret_val)
1568
                        return ret_val;
1569
 
1570
                ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
1571
                if (ret_val)
1572
                        return ret_val;
1573
 
1574
                phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
1575
                                ? e1000_1000t_rx_status_ok
1576
                                : e1000_1000t_rx_status_not_ok;
1577
 
1578
                phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
1579
                                 ? e1000_1000t_rx_status_ok
1580
                                 : e1000_1000t_rx_status_not_ok;
1581
        } else {
1582
                phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1583
                phy->local_rx = e1000_1000t_rx_status_undefined;
1584
                phy->remote_rx = e1000_1000t_rx_status_undefined;
1585
        }
1586
 
1587
        return ret_val;
1588
}
1589
 
1590
/**
1591
 *  e1000e_phy_sw_reset - PHY software reset
1592
 *  @hw: pointer to the HW structure
1593
 *
1594
 *  Does a software reset of the PHY by reading the PHY control register and
1595
 *  setting/write the control register reset bit to the PHY.
1596
 **/
1597
s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
1598
{
1599
        s32 ret_val;
1600
        u16 phy_ctrl;
1601
 
1602
        ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
1603
        if (ret_val)
1604
                return ret_val;
1605
 
1606
        phy_ctrl |= MII_CR_RESET;
1607
        ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
1608
        if (ret_val)
1609
                return ret_val;
1610
 
1611
        udelay(1);
1612
 
1613
        return ret_val;
1614
}
1615
 
1616
/**
1617
 *  e1000e_phy_hw_reset_generic - PHY hardware reset
1618
 *  @hw: pointer to the HW structure
1619
 *
1620
 *  Verify the reset block is not blocking us from resetting.  Acquire
1621
 *  semaphore (if necessary) and read/set/write the device control reset
1622
 *  bit in the PHY.  Wait the appropriate delay time for the device to
1623
 *  reset and relase the semaphore (if necessary).
1624
 **/
1625
s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
1626
{
1627
        struct e1000_phy_info *phy = &hw->phy;
1628
        s32 ret_val;
1629
        u32 ctrl;
1630
 
1631
        ret_val = e1000_check_reset_block(hw);
1632
        if (ret_val)
1633
                return 0;
1634
 
1635
        ret_val = phy->ops.acquire_phy(hw);
1636
        if (ret_val)
1637
                return ret_val;
1638
 
1639
        ctrl = er32(CTRL);
1640
        ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
1641
        e1e_flush();
1642
 
1643
        udelay(phy->reset_delay_us);
1644
 
1645
        ew32(CTRL, ctrl);
1646
        e1e_flush();
1647
 
1648
        udelay(150);
1649
 
1650
        phy->ops.release_phy(hw);
1651
 
1652
        return e1000_get_phy_cfg_done(hw);
1653
}
1654
 
1655
/**
1656
 *  e1000e_get_cfg_done - Generic configuration done
1657
 *  @hw: pointer to the HW structure
1658
 *
1659
 *  Generic function to wait 10 milli-seconds for configuration to complete
1660
 *  and return success.
1661
 **/
1662
s32 e1000e_get_cfg_done(struct e1000_hw *hw)
1663
{
1664
        mdelay(10);
1665
        return 0;
1666
}
1667
 
1668
/* Internal function pointers */
1669
 
1670
/**
1671
 *  e1000_get_phy_cfg_done - Generic PHY configuration done
1672
 *  @hw: pointer to the HW structure
1673
 *
1674
 *  Return success if silicon family did not implement a family specific
1675
 *  get_cfg_done function.
1676
 **/
1677
static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
1678
{
1679
        if (hw->phy.ops.get_cfg_done)
1680
                return hw->phy.ops.get_cfg_done(hw);
1681
 
1682
        return 0;
1683
}
1684
 
1685
/**
1686
 *  e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
1687
 *  @hw: pointer to the HW structure
1688
 *
1689
 *  When the silicon family has not implemented a forced speed/duplex
1690
 *  function for the PHY, simply return 0.
1691
 **/
1692
static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
1693
{
1694
        if (hw->phy.ops.force_speed_duplex)
1695
                return hw->phy.ops.force_speed_duplex(hw);
1696
 
1697
        return 0;
1698
}
1699
 
1700
/**
1701
 *  e1000e_get_phy_type_from_id - Get PHY type from id
1702
 *  @phy_id: phy_id read from the phy
1703
 *
1704
 *  Returns the phy type from the id.
1705
 **/
1706
enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
1707
{
1708
        enum e1000_phy_type phy_type = e1000_phy_unknown;
1709
 
1710
        switch (phy_id) {
1711
        case M88E1000_I_PHY_ID:
1712
        case M88E1000_E_PHY_ID:
1713
        case M88E1111_I_PHY_ID:
1714
        case M88E1011_I_PHY_ID:
1715
                phy_type = e1000_phy_m88;
1716
                break;
1717
        case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
1718
                phy_type = e1000_phy_igp_2;
1719
                break;
1720
        case GG82563_E_PHY_ID:
1721
                phy_type = e1000_phy_gg82563;
1722
                break;
1723
        case IGP03E1000_E_PHY_ID:
1724
                phy_type = e1000_phy_igp_3;
1725
                break;
1726
        case IFE_E_PHY_ID:
1727
        case IFE_PLUS_E_PHY_ID:
1728
        case IFE_C_E_PHY_ID:
1729
                phy_type = e1000_phy_ife;
1730
                break;
1731
        default:
1732
                phy_type = e1000_phy_unknown;
1733
                break;
1734
        }
1735
        return phy_type;
1736
}
1737
 
1738
/**
1739
 *  e1000e_commit_phy - Soft PHY reset
1740
 *  @hw: pointer to the HW structure
1741
 *
1742
 *  Performs a soft PHY reset on those that apply. This is a function pointer
1743
 *  entry point called by drivers.
1744
 **/
1745
s32 e1000e_commit_phy(struct e1000_hw *hw)
1746
{
1747
        if (hw->phy.ops.commit_phy)
1748
                return hw->phy.ops.commit_phy(hw);
1749
 
1750
        return 0;
1751
}
1752
 
1753
/**
1754
 *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1755
 *  @hw: pointer to the HW structure
1756
 *  @active: boolean used to enable/disable lplu
1757
 *
1758
 *  Success returns 0, Failure returns 1
1759
 *
1760
 *  The low power link up (lplu) state is set to the power management level D0
1761
 *  and SmartSpeed is disabled when active is true, else clear lplu for D0
1762
 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1763
 *  is used during Dx states where the power conservation is most important.
1764
 *  During driver activity, SmartSpeed should be enabled so performance is
1765
 *  maintained.  This is a function pointer entry point called by drivers.
1766
 **/
1767
static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1768
{
1769
        if (hw->phy.ops.set_d0_lplu_state)
1770
                return hw->phy.ops.set_d0_lplu_state(hw, active);
1771
 
1772
        return 0;
1773
}

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.