1 |
62 |
marcus.erl |
/*******************************************************************************
|
2 |
|
|
|
3 |
|
|
Intel PRO/1000 Linux driver
|
4 |
|
|
Copyright(c) 1999 - 2007 Intel Corporation.
|
5 |
|
|
|
6 |
|
|
This program is free software; you can redistribute it and/or modify it
|
7 |
|
|
under the terms and conditions of the GNU General Public License,
|
8 |
|
|
version 2, as published by the Free Software Foundation.
|
9 |
|
|
|
10 |
|
|
This program is distributed in the hope it will be useful, but WITHOUT
|
11 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
12 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
13 |
|
|
more details.
|
14 |
|
|
|
15 |
|
|
You should have received a copy of the GNU General Public License along with
|
16 |
|
|
this program; if not, write to the Free Software Foundation, Inc.,
|
17 |
|
|
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
|
18 |
|
|
|
19 |
|
|
The full GNU General Public License is included in this distribution in
|
20 |
|
|
the file called "COPYING".
|
21 |
|
|
|
22 |
|
|
Contact Information:
|
23 |
|
|
Linux NICS <linux.nics@intel.com>
|
24 |
|
|
e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
|
25 |
|
|
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
26 |
|
|
|
27 |
|
|
*******************************************************************************/
|
28 |
|
|
|
29 |
|
|
#include <linux/delay.h>
|
30 |
|
|
|
31 |
|
|
#include "e1000.h"
|
32 |
|
|
|
33 |
|
|
static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
|
34 |
|
|
static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
|
35 |
|
|
static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
|
36 |
|
|
static s32 e1000_wait_autoneg(struct e1000_hw *hw);
|
37 |
|
|
|
38 |
|
|
/* Cable length tables */
|
39 |
|
|
static const u16 e1000_m88_cable_length_table[] =
|
40 |
|
|
{ 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
|
41 |
|
|
|
42 |
|
|
static const u16 e1000_igp_2_cable_length_table[] =
|
43 |
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
|
44 |
|
|
6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
|
45 |
|
|
26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
|
46 |
|
|
44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
|
47 |
|
|
66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
|
48 |
|
|
87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
|
49 |
|
|
100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
|
50 |
|
|
124};
|
51 |
|
|
#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
|
52 |
|
|
(sizeof(e1000_igp_2_cable_length_table) / \
|
53 |
|
|
sizeof(e1000_igp_2_cable_length_table[0]))
|
54 |
|
|
|
55 |
|
|
/**
|
56 |
|
|
* e1000e_check_reset_block_generic - Check if PHY reset is blocked
|
57 |
|
|
* @hw: pointer to the HW structure
|
58 |
|
|
*
|
59 |
|
|
* Read the PHY management control register and check whether a PHY reset
|
60 |
|
|
* is blocked. If a reset is not blocked return 0, otherwise
|
61 |
|
|
* return E1000_BLK_PHY_RESET (12).
|
62 |
|
|
**/
|
63 |
|
|
s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
|
64 |
|
|
{
|
65 |
|
|
u32 manc;
|
66 |
|
|
|
67 |
|
|
manc = er32(MANC);
|
68 |
|
|
|
69 |
|
|
return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
|
70 |
|
|
E1000_BLK_PHY_RESET : 0;
|
71 |
|
|
}
|
72 |
|
|
|
73 |
|
|
/**
|
74 |
|
|
* e1000e_get_phy_id - Retrieve the PHY ID and revision
|
75 |
|
|
* @hw: pointer to the HW structure
|
76 |
|
|
*
|
77 |
|
|
* Reads the PHY registers and stores the PHY ID and possibly the PHY
|
78 |
|
|
* revision in the hardware structure.
|
79 |
|
|
**/
|
80 |
|
|
s32 e1000e_get_phy_id(struct e1000_hw *hw)
|
81 |
|
|
{
|
82 |
|
|
struct e1000_phy_info *phy = &hw->phy;
|
83 |
|
|
s32 ret_val;
|
84 |
|
|
u16 phy_id;
|
85 |
|
|
|
86 |
|
|
ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
|
87 |
|
|
if (ret_val)
|
88 |
|
|
return ret_val;
|
89 |
|
|
|
90 |
|
|
phy->id = (u32)(phy_id << 16);
|
91 |
|
|
udelay(20);
|
92 |
|
|
ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
|
93 |
|
|
if (ret_val)
|
94 |
|
|
return ret_val;
|
95 |
|
|
|
96 |
|
|
phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
|
97 |
|
|
phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
|
98 |
|
|
|
99 |
|
|
return 0;
|
100 |
|
|
}
|
101 |
|
|
|
102 |
|
|
/**
|
103 |
|
|
* e1000e_phy_reset_dsp - Reset PHY DSP
|
104 |
|
|
* @hw: pointer to the HW structure
|
105 |
|
|
*
|
106 |
|
|
* Reset the digital signal processor.
|
107 |
|
|
**/
|
108 |
|
|
s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
|
109 |
|
|
{
|
110 |
|
|
s32 ret_val;
|
111 |
|
|
|
112 |
|
|
ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
|
113 |
|
|
if (ret_val)
|
114 |
|
|
return ret_val;
|
115 |
|
|
|
116 |
|
|
return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
|
117 |
|
|
}
|
118 |
|
|
|
119 |
|
|
/**
|
120 |
|
|
* e1000_read_phy_reg_mdic - Read MDI control register
|
121 |
|
|
* @hw: pointer to the HW structure
|
122 |
|
|
* @offset: register offset to be read
|
123 |
|
|
* @data: pointer to the read data
|
124 |
|
|
*
|
125 |
|
|
* Reads the MDI control regsiter in the PHY at offset and stores the
|
126 |
|
|
* information read to data.
|
127 |
|
|
**/
|
128 |
|
|
static s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
|
129 |
|
|
{
|
130 |
|
|
struct e1000_phy_info *phy = &hw->phy;
|
131 |
|
|
u32 i, mdic = 0;
|
132 |
|
|
|
133 |
|
|
if (offset > MAX_PHY_REG_ADDRESS) {
|
134 |
|
|
hw_dbg(hw, "PHY Address %d is out of range\n", offset);
|
135 |
|
|
return -E1000_ERR_PARAM;
|
136 |
|
|
}
|
137 |
|
|
|
138 |
|
|
/* Set up Op-code, Phy Address, and register offset in the MDI
|
139 |
|
|
* Control register. The MAC will take care of interfacing with the
|
140 |
|
|
* PHY to retrieve the desired data.
|
141 |
|
|
*/
|
142 |
|
|
mdic = ((offset << E1000_MDIC_REG_SHIFT) |
|
143 |
|
|
(phy->addr << E1000_MDIC_PHY_SHIFT) |
|
144 |
|
|
(E1000_MDIC_OP_READ));
|
145 |
|
|
|
146 |
|
|
ew32(MDIC, mdic);
|
147 |
|
|
|
148 |
|
|
/* Poll the ready bit to see if the MDI read completed */
|
149 |
|
|
for (i = 0; i < 64; i++) {
|
150 |
|
|
udelay(50);
|
151 |
|
|
mdic = er32(MDIC);
|
152 |
|
|
if (mdic & E1000_MDIC_READY)
|
153 |
|
|
break;
|
154 |
|
|
}
|
155 |
|
|
if (!(mdic & E1000_MDIC_READY)) {
|
156 |
|
|
hw_dbg(hw, "MDI Read did not complete\n");
|
157 |
|
|
return -E1000_ERR_PHY;
|
158 |
|
|
}
|
159 |
|
|
if (mdic & E1000_MDIC_ERROR) {
|
160 |
|
|
hw_dbg(hw, "MDI Error\n");
|
161 |
|
|
return -E1000_ERR_PHY;
|
162 |
|
|
}
|
163 |
|
|
*data = (u16) mdic;
|
164 |
|
|
|
165 |
|
|
return 0;
|
166 |
|
|
}
|
167 |
|
|
|
168 |
|
|
/**
|
169 |
|
|
* e1000_write_phy_reg_mdic - Write MDI control register
|
170 |
|
|
* @hw: pointer to the HW structure
|
171 |
|
|
* @offset: register offset to write to
|
172 |
|
|
* @data: data to write to register at offset
|
173 |
|
|
*
|
174 |
|
|
* Writes data to MDI control register in the PHY at offset.
|
175 |
|
|
**/
|
176 |
|
|
static s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
|
177 |
|
|
{
|
178 |
|
|
struct e1000_phy_info *phy = &hw->phy;
|
179 |
|
|
u32 i, mdic = 0;
|
180 |
|
|
|
181 |
|
|
if (offset > MAX_PHY_REG_ADDRESS) {
|
182 |
|
|
hw_dbg(hw, "PHY Address %d is out of range\n", offset);
|
183 |
|
|
return -E1000_ERR_PARAM;
|
184 |
|
|
}
|
185 |
|
|
|
186 |
|
|
/* Set up Op-code, Phy Address, and register offset in the MDI
|
187 |
|
|
* Control register. The MAC will take care of interfacing with the
|
188 |
|
|
* PHY to retrieve the desired data.
|
189 |
|
|
*/
|
190 |
|
|
mdic = (((u32)data) |
|
191 |
|
|
(offset << E1000_MDIC_REG_SHIFT) |
|
192 |
|
|
(phy->addr << E1000_MDIC_PHY_SHIFT) |
|
193 |
|
|
(E1000_MDIC_OP_WRITE));
|
194 |
|
|
|
195 |
|
|
ew32(MDIC, mdic);
|
196 |
|
|
|
197 |
|
|
/* Poll the ready bit to see if the MDI read completed */
|
198 |
|
|
for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
|
199 |
|
|
udelay(5);
|
200 |
|
|
mdic = er32(MDIC);
|
201 |
|
|
if (mdic & E1000_MDIC_READY)
|
202 |
|
|
break;
|
203 |
|
|
}
|
204 |
|
|
if (!(mdic & E1000_MDIC_READY)) {
|
205 |
|
|
hw_dbg(hw, "MDI Write did not complete\n");
|
206 |
|
|
return -E1000_ERR_PHY;
|
207 |
|
|
}
|
208 |
|
|
|
209 |
|
|
return 0;
|
210 |
|
|
}
|
211 |
|
|
|
212 |
|
|
/**
|
213 |
|
|
* e1000e_read_phy_reg_m88 - Read m88 PHY register
|
214 |
|
|
* @hw: pointer to the HW structure
|
215 |
|
|
* @offset: register offset to be read
|
216 |
|
|
* @data: pointer to the read data
|
217 |
|
|
*
|
218 |
|
|
* Acquires semaphore, if necessary, then reads the PHY register at offset
|
219 |
|
|
* and storing the retrieved information in data. Release any acquired
|
220 |
|
|
* semaphores before exiting.
|
221 |
|
|
**/
|
222 |
|
|
s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
|
223 |
|
|
{
|
224 |
|
|
s32 ret_val;
|
225 |
|
|
|
226 |
|
|
ret_val = hw->phy.ops.acquire_phy(hw);
|
227 |
|
|
if (ret_val)
|
228 |
|
|
return ret_val;
|
229 |
|
|
|
230 |
|
|
ret_val = e1000_read_phy_reg_mdic(hw,
|
231 |
|
|
MAX_PHY_REG_ADDRESS & offset,
|
232 |
|
|
data);
|
233 |
|
|
|
234 |
|
|
hw->phy.ops.release_phy(hw);
|
235 |
|
|
|
236 |
|
|
return ret_val;
|
237 |
|
|
}
|
238 |
|
|
|
239 |
|
|
/**
|
240 |
|
|
* e1000e_write_phy_reg_m88 - Write m88 PHY register
|
241 |
|
|
* @hw: pointer to the HW structure
|
242 |
|
|
* @offset: register offset to write to
|
243 |
|
|
* @data: data to write at register offset
|
244 |
|
|
*
|
245 |
|
|
* Acquires semaphore, if necessary, then writes the data to PHY register
|
246 |
|
|
* at the offset. Release any acquired semaphores before exiting.
|
247 |
|
|
**/
|
248 |
|
|
s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
|
249 |
|
|
{
|
250 |
|
|
s32 ret_val;
|
251 |
|
|
|
252 |
|
|
ret_val = hw->phy.ops.acquire_phy(hw);
|
253 |
|
|
if (ret_val)
|
254 |
|
|
return ret_val;
|
255 |
|
|
|
256 |
|
|
ret_val = e1000_write_phy_reg_mdic(hw,
|
257 |
|
|
MAX_PHY_REG_ADDRESS & offset,
|
258 |
|
|
data);
|
259 |
|
|
|
260 |
|
|
hw->phy.ops.release_phy(hw);
|
261 |
|
|
|
262 |
|
|
return ret_val;
|
263 |
|
|
}
|
264 |
|
|
|
265 |
|
|
/**
|
266 |
|
|
* e1000e_read_phy_reg_igp - Read igp PHY register
|
267 |
|
|
* @hw: pointer to the HW structure
|
268 |
|
|
* @offset: register offset to be read
|
269 |
|
|
* @data: pointer to the read data
|
270 |
|
|
*
|
271 |
|
|
* Acquires semaphore, if necessary, then reads the PHY register at offset
|
272 |
|
|
* and storing the retrieved information in data. Release any acquired
|
273 |
|
|
* semaphores before exiting.
|
274 |
|
|
**/
|
275 |
|
|
s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
|
276 |
|
|
{
|
277 |
|
|
s32 ret_val;
|
278 |
|
|
|
279 |
|
|
ret_val = hw->phy.ops.acquire_phy(hw);
|
280 |
|
|
if (ret_val)
|
281 |
|
|
return ret_val;
|
282 |
|
|
|
283 |
|
|
if (offset > MAX_PHY_MULTI_PAGE_REG) {
|
284 |
|
|
ret_val = e1000_write_phy_reg_mdic(hw,
|
285 |
|
|
IGP01E1000_PHY_PAGE_SELECT,
|
286 |
|
|
(u16)offset);
|
287 |
|
|
if (ret_val) {
|
288 |
|
|
hw->phy.ops.release_phy(hw);
|
289 |
|
|
return ret_val;
|
290 |
|
|
}
|
291 |
|
|
}
|
292 |
|
|
|
293 |
|
|
ret_val = e1000_read_phy_reg_mdic(hw,
|
294 |
|
|
MAX_PHY_REG_ADDRESS & offset,
|
295 |
|
|
data);
|
296 |
|
|
|
297 |
|
|
hw->phy.ops.release_phy(hw);
|
298 |
|
|
|
299 |
|
|
return ret_val;
|
300 |
|
|
}
|
301 |
|
|
|
302 |
|
|
/**
|
303 |
|
|
* e1000e_write_phy_reg_igp - Write igp PHY register
|
304 |
|
|
* @hw: pointer to the HW structure
|
305 |
|
|
* @offset: register offset to write to
|
306 |
|
|
* @data: data to write at register offset
|
307 |
|
|
*
|
308 |
|
|
* Acquires semaphore, if necessary, then writes the data to PHY register
|
309 |
|
|
* at the offset. Release any acquired semaphores before exiting.
|
310 |
|
|
**/
|
311 |
|
|
s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
|
312 |
|
|
{
|
313 |
|
|
s32 ret_val;
|
314 |
|
|
|
315 |
|
|
ret_val = hw->phy.ops.acquire_phy(hw);
|
316 |
|
|
if (ret_val)
|
317 |
|
|
return ret_val;
|
318 |
|
|
|
319 |
|
|
if (offset > MAX_PHY_MULTI_PAGE_REG) {
|
320 |
|
|
ret_val = e1000_write_phy_reg_mdic(hw,
|
321 |
|
|
IGP01E1000_PHY_PAGE_SELECT,
|
322 |
|
|
(u16)offset);
|
323 |
|
|
if (ret_val) {
|
324 |
|
|
hw->phy.ops.release_phy(hw);
|
325 |
|
|
return ret_val;
|
326 |
|
|
}
|
327 |
|
|
}
|
328 |
|
|
|
329 |
|
|
ret_val = e1000_write_phy_reg_mdic(hw,
|
330 |
|
|
MAX_PHY_REG_ADDRESS & offset,
|
331 |
|
|
data);
|
332 |
|
|
|
333 |
|
|
hw->phy.ops.release_phy(hw);
|
334 |
|
|
|
335 |
|
|
return ret_val;
|
336 |
|
|
}
|
337 |
|
|
|
338 |
|
|
/**
|
339 |
|
|
* e1000e_read_kmrn_reg - Read kumeran register
|
340 |
|
|
* @hw: pointer to the HW structure
|
341 |
|
|
* @offset: register offset to be read
|
342 |
|
|
* @data: pointer to the read data
|
343 |
|
|
*
|
344 |
|
|
* Acquires semaphore, if necessary. Then reads the PHY register at offset
|
345 |
|
|
* using the kumeran interface. The information retrieved is stored in data.
|
346 |
|
|
* Release any acquired semaphores before exiting.
|
347 |
|
|
**/
|
348 |
|
|
s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
|
349 |
|
|
{
|
350 |
|
|
u32 kmrnctrlsta;
|
351 |
|
|
s32 ret_val;
|
352 |
|
|
|
353 |
|
|
ret_val = hw->phy.ops.acquire_phy(hw);
|
354 |
|
|
if (ret_val)
|
355 |
|
|
return ret_val;
|
356 |
|
|
|
357 |
|
|
kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
|
358 |
|
|
E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
|
359 |
|
|
ew32(KMRNCTRLSTA, kmrnctrlsta);
|
360 |
|
|
|
361 |
|
|
udelay(2);
|
362 |
|
|
|
363 |
|
|
kmrnctrlsta = er32(KMRNCTRLSTA);
|
364 |
|
|
*data = (u16)kmrnctrlsta;
|
365 |
|
|
|
366 |
|
|
hw->phy.ops.release_phy(hw);
|
367 |
|
|
|
368 |
|
|
return ret_val;
|
369 |
|
|
}
|
370 |
|
|
|
371 |
|
|
/**
|
372 |
|
|
* e1000e_write_kmrn_reg - Write kumeran register
|
373 |
|
|
* @hw: pointer to the HW structure
|
374 |
|
|
* @offset: register offset to write to
|
375 |
|
|
* @data: data to write at register offset
|
376 |
|
|
*
|
377 |
|
|
* Acquires semaphore, if necessary. Then write the data to PHY register
|
378 |
|
|
* at the offset using the kumeran interface. Release any acquired semaphores
|
379 |
|
|
* before exiting.
|
380 |
|
|
**/
|
381 |
|
|
s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
|
382 |
|
|
{
|
383 |
|
|
u32 kmrnctrlsta;
|
384 |
|
|
s32 ret_val;
|
385 |
|
|
|
386 |
|
|
ret_val = hw->phy.ops.acquire_phy(hw);
|
387 |
|
|
if (ret_val)
|
388 |
|
|
return ret_val;
|
389 |
|
|
|
390 |
|
|
kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
|
391 |
|
|
E1000_KMRNCTRLSTA_OFFSET) | data;
|
392 |
|
|
ew32(KMRNCTRLSTA, kmrnctrlsta);
|
393 |
|
|
|
394 |
|
|
udelay(2);
|
395 |
|
|
hw->phy.ops.release_phy(hw);
|
396 |
|
|
|
397 |
|
|
return ret_val;
|
398 |
|
|
}
|
399 |
|
|
|
400 |
|
|
/**
|
401 |
|
|
* e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
|
402 |
|
|
* @hw: pointer to the HW structure
|
403 |
|
|
*
|
404 |
|
|
* Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
|
405 |
|
|
* and downshift values are set also.
|
406 |
|
|
**/
|
407 |
|
|
s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
|
408 |
|
|
{
|
409 |
|
|
struct e1000_phy_info *phy = &hw->phy;
|
410 |
|
|
s32 ret_val;
|
411 |
|
|
u16 phy_data;
|
412 |
|
|
|
413 |
|
|
/* Enable CRS on TX. This must be set for half-duplex operation. */
|
414 |
|
|
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
|
415 |
|
|
if (ret_val)
|
416 |
|
|
return ret_val;
|
417 |
|
|
|
418 |
|
|
phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
|
419 |
|
|
|
420 |
|
|
/* Options:
|
421 |
|
|
* MDI/MDI-X = 0 (default)
|
422 |
|
|
* 0 - Auto for all speeds
|
423 |
|
|
* 1 - MDI mode
|
424 |
|
|
* 2 - MDI-X mode
|
425 |
|
|
* 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
|
426 |
|
|
*/
|
427 |
|
|
phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
|
428 |
|
|
|
429 |
|
|
switch (phy->mdix) {
|
430 |
|
|
case 1:
|
431 |
|
|
phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
|
432 |
|
|
break;
|
433 |
|
|
case 2:
|
434 |
|
|
phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
|
435 |
|
|
break;
|
436 |
|
|
case 3:
|
437 |
|
|
phy_data |= M88E1000_PSCR_AUTO_X_1000T;
|
438 |
|
|
break;
|
439 |
|
|
case 0:
|
440 |
|
|
default:
|
441 |
|
|
phy_data |= M88E1000_PSCR_AUTO_X_MODE;
|
442 |
|
|
break;
|
443 |
|
|
}
|
444 |
|
|
|
445 |
|
|
/* Options:
|
446 |
|
|
* disable_polarity_correction = 0 (default)
|
447 |
|
|
* Automatic Correction for Reversed Cable Polarity
|
448 |
|
|
* 0 - Disabled
|
449 |
|
|
* 1 - Enabled
|
450 |
|
|
*/
|
451 |
|
|
phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
|
452 |
|
|
if (phy->disable_polarity_correction == 1)
|
453 |
|
|
phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
|
454 |
|
|
|
455 |
|
|
ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
|
456 |
|
|
if (ret_val)
|
457 |
|
|
return ret_val;
|
458 |
|
|
|
459 |
|
|
if (phy->revision < 4) {
|
460 |
|
|
/* Force TX_CLK in the Extended PHY Specific Control Register
|
461 |
|
|
* to 25MHz clock.
|
462 |
|
|
*/
|
463 |
|
|
ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
|
464 |
|
|
if (ret_val)
|
465 |
|
|
return ret_val;
|
466 |
|
|
|
467 |
|
|
phy_data |= M88E1000_EPSCR_TX_CLK_25;
|
468 |
|
|
|
469 |
|
|
if ((phy->revision == 2) &&
|
470 |
|
|
(phy->id == M88E1111_I_PHY_ID)) {
|
471 |
|
|
/* 82573L PHY - set the downshift counter to 5x. */
|
472 |
|
|
phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
|
473 |
|
|
phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
|
474 |
|
|
} else {
|
475 |
|
|
/* Configure Master and Slave downshift values */
|
476 |
|
|
phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
|
477 |
|
|
M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
|
478 |
|
|
phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
|
479 |
|
|
M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
|
480 |
|
|
}
|
481 |
|
|
ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
|
482 |
|
|
if (ret_val)
|
483 |
|
|
return ret_val;
|
484 |
|
|
}
|
485 |
|
|
|
486 |
|
|
/* Commit the changes. */
|
487 |
|
|
ret_val = e1000e_commit_phy(hw);
|
488 |
|
|
if (ret_val)
|
489 |
|
|
hw_dbg(hw, "Error committing the PHY changes\n");
|
490 |
|
|
|
491 |
|
|
return ret_val;
|
492 |
|
|
}
|
493 |
|
|
|
494 |
|
|
/**
|
495 |
|
|
* e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
|
496 |
|
|
* @hw: pointer to the HW structure
|
497 |
|
|
*
|
498 |
|
|
* Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
|
499 |
|
|
* igp PHY's.
|
500 |
|
|
**/
|
501 |
|
|
s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
|
502 |
|
|
{
|
503 |
|
|
struct e1000_phy_info *phy = &hw->phy;
|
504 |
|
|
s32 ret_val;
|
505 |
|
|
u16 data;
|
506 |
|
|
|
507 |
|
|
ret_val = e1000_phy_hw_reset(hw);
|
508 |
|
|
if (ret_val) {
|
509 |
|
|
hw_dbg(hw, "Error resetting the PHY.\n");
|
510 |
|
|
return ret_val;
|
511 |
|
|
}
|
512 |
|
|
|
513 |
|
|
/* Wait 15ms for MAC to configure PHY from NVM settings. */
|
514 |
|
|
msleep(15);
|
515 |
|
|
|
516 |
|
|
/* disable lplu d0 during driver init */
|
517 |
|
|
ret_val = e1000_set_d0_lplu_state(hw, 0);
|
518 |
|
|
if (ret_val) {
|
519 |
|
|
hw_dbg(hw, "Error Disabling LPLU D0\n");
|
520 |
|
|
return ret_val;
|
521 |
|
|
}
|
522 |
|
|
/* Configure mdi-mdix settings */
|
523 |
|
|
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
|
524 |
|
|
if (ret_val)
|
525 |
|
|
return ret_val;
|
526 |
|
|
|
527 |
|
|
data &= ~IGP01E1000_PSCR_AUTO_MDIX;
|
528 |
|
|
|
529 |
|
|
switch (phy->mdix) {
|
530 |
|
|
case 1:
|
531 |
|
|
data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
|
532 |
|
|
break;
|
533 |
|
|
case 2:
|
534 |
|
|
data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
|
535 |
|
|
break;
|
536 |
|
|
case 0:
|
537 |
|
|
default:
|
538 |
|
|
data |= IGP01E1000_PSCR_AUTO_MDIX;
|
539 |
|
|
break;
|
540 |
|
|
}
|
541 |
|
|
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
|
542 |
|
|
if (ret_val)
|
543 |
|
|
return ret_val;
|
544 |
|
|
|
545 |
|
|
/* set auto-master slave resolution settings */
|
546 |
|
|
if (hw->mac.autoneg) {
|
547 |
|
|
/* when autonegotiation advertisement is only 1000Mbps then we
|
548 |
|
|
* should disable SmartSpeed and enable Auto MasterSlave
|
549 |
|
|
* resolution as hardware default. */
|
550 |
|
|
if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
|
551 |
|
|
/* Disable SmartSpeed */
|
552 |
|
|
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
553 |
|
|
&data);
|
554 |
|
|
if (ret_val)
|
555 |
|
|
return ret_val;
|
556 |
|
|
|
557 |
|
|
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
558 |
|
|
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
559 |
|
|
data);
|
560 |
|
|
if (ret_val)
|
561 |
|
|
return ret_val;
|
562 |
|
|
|
563 |
|
|
/* Set auto Master/Slave resolution process */
|
564 |
|
|
ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
|
565 |
|
|
if (ret_val)
|
566 |
|
|
return ret_val;
|
567 |
|
|
|
568 |
|
|
data &= ~CR_1000T_MS_ENABLE;
|
569 |
|
|
ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
|
570 |
|
|
if (ret_val)
|
571 |
|
|
return ret_val;
|
572 |
|
|
}
|
573 |
|
|
|
574 |
|
|
ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
|
575 |
|
|
if (ret_val)
|
576 |
|
|
return ret_val;
|
577 |
|
|
|
578 |
|
|
/* load defaults for future use */
|
579 |
|
|
phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
|
580 |
|
|
((data & CR_1000T_MS_VALUE) ?
|
581 |
|
|
e1000_ms_force_master :
|
582 |
|
|
e1000_ms_force_slave) :
|
583 |
|
|
e1000_ms_auto;
|
584 |
|
|
|
585 |
|
|
switch (phy->ms_type) {
|
586 |
|
|
case e1000_ms_force_master:
|
587 |
|
|
data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
|
588 |
|
|
break;
|
589 |
|
|
case e1000_ms_force_slave:
|
590 |
|
|
data |= CR_1000T_MS_ENABLE;
|
591 |
|
|
data &= ~(CR_1000T_MS_VALUE);
|
592 |
|
|
break;
|
593 |
|
|
case e1000_ms_auto:
|
594 |
|
|
data &= ~CR_1000T_MS_ENABLE;
|
595 |
|
|
default:
|
596 |
|
|
break;
|
597 |
|
|
}
|
598 |
|
|
ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
|
599 |
|
|
}
|
600 |
|
|
|
601 |
|
|
return ret_val;
|
602 |
|
|
}
|
603 |
|
|
|
604 |
|
|
/**
|
605 |
|
|
* e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
|
606 |
|
|
* @hw: pointer to the HW structure
|
607 |
|
|
*
|
608 |
|
|
* Reads the MII auto-neg advertisement register and/or the 1000T control
|
609 |
|
|
* register and if the PHY is already setup for auto-negotiation, then
|
610 |
|
|
* return successful. Otherwise, setup advertisement and flow control to
|
611 |
|
|
* the appropriate values for the wanted auto-negotiation.
|
612 |
|
|
**/
|
613 |
|
|
static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
|
614 |
|
|
{
|
615 |
|
|
struct e1000_phy_info *phy = &hw->phy;
|
616 |
|
|
s32 ret_val;
|
617 |
|
|
u16 mii_autoneg_adv_reg;
|
618 |
|
|
u16 mii_1000t_ctrl_reg = 0;
|
619 |
|
|
|
620 |
|
|
phy->autoneg_advertised &= phy->autoneg_mask;
|
621 |
|
|
|
622 |
|
|
/* Read the MII Auto-Neg Advertisement Register (Address 4). */
|
623 |
|
|
ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
|
624 |
|
|
if (ret_val)
|
625 |
|
|
return ret_val;
|
626 |
|
|
|
627 |
|
|
if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
|
628 |
|
|
/* Read the MII 1000Base-T Control Register (Address 9). */
|
629 |
|
|
ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
|
630 |
|
|
if (ret_val)
|
631 |
|
|
return ret_val;
|
632 |
|
|
}
|
633 |
|
|
|
634 |
|
|
/* Need to parse both autoneg_advertised and fc and set up
|
635 |
|
|
* the appropriate PHY registers. First we will parse for
|
636 |
|
|
* autoneg_advertised software override. Since we can advertise
|
637 |
|
|
* a plethora of combinations, we need to check each bit
|
638 |
|
|
* individually.
|
639 |
|
|
*/
|
640 |
|
|
|
641 |
|
|
/* First we clear all the 10/100 mb speed bits in the Auto-Neg
|
642 |
|
|
* Advertisement Register (Address 4) and the 1000 mb speed bits in
|
643 |
|
|
* the 1000Base-T Control Register (Address 9).
|
644 |
|
|
*/
|
645 |
|
|
mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
|
646 |
|
|
NWAY_AR_100TX_HD_CAPS |
|
647 |
|
|
NWAY_AR_10T_FD_CAPS |
|
648 |
|
|
NWAY_AR_10T_HD_CAPS);
|
649 |
|
|
mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
|
650 |
|
|
|
651 |
|
|
hw_dbg(hw, "autoneg_advertised %x\n", phy->autoneg_advertised);
|
652 |
|
|
|
653 |
|
|
/* Do we want to advertise 10 Mb Half Duplex? */
|
654 |
|
|
if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
|
655 |
|
|
hw_dbg(hw, "Advertise 10mb Half duplex\n");
|
656 |
|
|
mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
|
657 |
|
|
}
|
658 |
|
|
|
659 |
|
|
/* Do we want to advertise 10 Mb Full Duplex? */
|
660 |
|
|
if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
|
661 |
|
|
hw_dbg(hw, "Advertise 10mb Full duplex\n");
|
662 |
|
|
mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
|
663 |
|
|
}
|
664 |
|
|
|
665 |
|
|
/* Do we want to advertise 100 Mb Half Duplex? */
|
666 |
|
|
if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
|
667 |
|
|
hw_dbg(hw, "Advertise 100mb Half duplex\n");
|
668 |
|
|
mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
|
669 |
|
|
}
|
670 |
|
|
|
671 |
|
|
/* Do we want to advertise 100 Mb Full Duplex? */
|
672 |
|
|
if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
|
673 |
|
|
hw_dbg(hw, "Advertise 100mb Full duplex\n");
|
674 |
|
|
mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
|
675 |
|
|
}
|
676 |
|
|
|
677 |
|
|
/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
|
678 |
|
|
if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
|
679 |
|
|
hw_dbg(hw, "Advertise 1000mb Half duplex request denied!\n");
|
680 |
|
|
|
681 |
|
|
/* Do we want to advertise 1000 Mb Full Duplex? */
|
682 |
|
|
if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
|
683 |
|
|
hw_dbg(hw, "Advertise 1000mb Full duplex\n");
|
684 |
|
|
mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
|
685 |
|
|
}
|
686 |
|
|
|
687 |
|
|
/* Check for a software override of the flow control settings, and
|
688 |
|
|
* setup the PHY advertisement registers accordingly. If
|
689 |
|
|
* auto-negotiation is enabled, then software will have to set the
|
690 |
|
|
* "PAUSE" bits to the correct value in the Auto-Negotiation
|
691 |
|
|
* Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
|
692 |
|
|
* negotiation.
|
693 |
|
|
*
|
694 |
|
|
* The possible values of the "fc" parameter are:
|
695 |
|
|
* 0: Flow control is completely disabled
|
696 |
|
|
* 1: Rx flow control is enabled (we can receive pause frames
|
697 |
|
|
* but not send pause frames).
|
698 |
|
|
* 2: Tx flow control is enabled (we can send pause frames
|
699 |
|
|
* but we do not support receiving pause frames).
|
700 |
|
|
* 3: Both Rx and TX flow control (symmetric) are enabled.
|
701 |
|
|
* other: No software override. The flow control configuration
|
702 |
|
|
* in the EEPROM is used.
|
703 |
|
|
*/
|
704 |
|
|
switch (hw->mac.fc) {
|
705 |
|
|
case e1000_fc_none:
|
706 |
|
|
/* Flow control (RX & TX) is completely disabled by a
|
707 |
|
|
* software over-ride.
|
708 |
|
|
*/
|
709 |
|
|
mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
|
710 |
|
|
break;
|
711 |
|
|
case e1000_fc_rx_pause:
|
712 |
|
|
/* RX Flow control is enabled, and TX Flow control is
|
713 |
|
|
* disabled, by a software over-ride.
|
714 |
|
|
*/
|
715 |
|
|
/* Since there really isn't a way to advertise that we are
|
716 |
|
|
* capable of RX Pause ONLY, we will advertise that we
|
717 |
|
|
* support both symmetric and asymmetric RX PAUSE. Later
|
718 |
|
|
* (in e1000e_config_fc_after_link_up) we will disable the
|
719 |
|
|
* hw's ability to send PAUSE frames.
|
720 |
|
|
*/
|
721 |
|
|
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
|
722 |
|
|
break;
|
723 |
|
|
case e1000_fc_tx_pause:
|
724 |
|
|
/* TX Flow control is enabled, and RX Flow control is
|
725 |
|
|
* disabled, by a software over-ride.
|
726 |
|
|
*/
|
727 |
|
|
mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
|
728 |
|
|
mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
|
729 |
|
|
break;
|
730 |
|
|
case e1000_fc_full:
|
731 |
|
|
/* Flow control (both RX and TX) is enabled by a software
|
732 |
|
|
* over-ride.
|
733 |
|
|
*/
|
734 |
|
|
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
|
735 |
|
|
break;
|
736 |
|
|
default:
|
737 |
|
|
hw_dbg(hw, "Flow control param set incorrectly\n");
|
738 |
|
|
ret_val = -E1000_ERR_CONFIG;
|
739 |
|
|
return ret_val;
|
740 |
|
|
}
|
741 |
|
|
|
742 |
|
|
ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
|
743 |
|
|
if (ret_val)
|
744 |
|
|
return ret_val;
|
745 |
|
|
|
746 |
|
|
hw_dbg(hw, "Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
|
747 |
|
|
|
748 |
|
|
if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
|
749 |
|
|
ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
|
750 |
|
|
}
|
751 |
|
|
|
752 |
|
|
return ret_val;
|
753 |
|
|
}
|
754 |
|
|
|
755 |
|
|
/**
|
756 |
|
|
* e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
|
757 |
|
|
* @hw: pointer to the HW structure
|
758 |
|
|
*
|
759 |
|
|
* Performs initial bounds checking on autoneg advertisement parameter, then
|
760 |
|
|
* configure to advertise the full capability. Setup the PHY to autoneg
|
761 |
|
|
* and restart the negotiation process between the link partner. If
|
762 |
|
|
* wait_for_link, then wait for autoneg to complete before exiting.
|
763 |
|
|
**/
|
764 |
|
|
static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
|
765 |
|
|
{
|
766 |
|
|
struct e1000_phy_info *phy = &hw->phy;
|
767 |
|
|
s32 ret_val;
|
768 |
|
|
u16 phy_ctrl;
|
769 |
|
|
|
770 |
|
|
/* Perform some bounds checking on the autoneg advertisement
|
771 |
|
|
* parameter.
|
772 |
|
|
*/
|
773 |
|
|
phy->autoneg_advertised &= phy->autoneg_mask;
|
774 |
|
|
|
775 |
|
|
/* If autoneg_advertised is zero, we assume it was not defaulted
|
776 |
|
|
* by the calling code so we set to advertise full capability.
|
777 |
|
|
*/
|
778 |
|
|
if (phy->autoneg_advertised == 0)
|
779 |
|
|
phy->autoneg_advertised = phy->autoneg_mask;
|
780 |
|
|
|
781 |
|
|
hw_dbg(hw, "Reconfiguring auto-neg advertisement params\n");
|
782 |
|
|
ret_val = e1000_phy_setup_autoneg(hw);
|
783 |
|
|
if (ret_val) {
|
784 |
|
|
hw_dbg(hw, "Error Setting up Auto-Negotiation\n");
|
785 |
|
|
return ret_val;
|
786 |
|
|
}
|
787 |
|
|
hw_dbg(hw, "Restarting Auto-Neg\n");
|
788 |
|
|
|
789 |
|
|
/* Restart auto-negotiation by setting the Auto Neg Enable bit and
|
790 |
|
|
* the Auto Neg Restart bit in the PHY control register.
|
791 |
|
|
*/
|
792 |
|
|
ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
|
793 |
|
|
if (ret_val)
|
794 |
|
|
return ret_val;
|
795 |
|
|
|
796 |
|
|
phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
|
797 |
|
|
ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
|
798 |
|
|
if (ret_val)
|
799 |
|
|
return ret_val;
|
800 |
|
|
|
801 |
|
|
/* Does the user want to wait for Auto-Neg to complete here, or
|
802 |
|
|
* check at a later time (for example, callback routine).
|
803 |
|
|
*/
|
804 |
|
|
if (phy->wait_for_link) {
|
805 |
|
|
ret_val = e1000_wait_autoneg(hw);
|
806 |
|
|
if (ret_val) {
|
807 |
|
|
hw_dbg(hw, "Error while waiting for "
|
808 |
|
|
"autoneg to complete\n");
|
809 |
|
|
return ret_val;
|
810 |
|
|
}
|
811 |
|
|
}
|
812 |
|
|
|
813 |
|
|
hw->mac.get_link_status = 1;
|
814 |
|
|
|
815 |
|
|
return ret_val;
|
816 |
|
|
}
|
817 |
|
|
|
818 |
|
|
/**
|
819 |
|
|
* e1000e_setup_copper_link - Configure copper link settings
|
820 |
|
|
* @hw: pointer to the HW structure
|
821 |
|
|
*
|
822 |
|
|
* Calls the appropriate function to configure the link for auto-neg or forced
|
823 |
|
|
* speed and duplex. Then we check for link, once link is established calls
|
824 |
|
|
* to configure collision distance and flow control are called. If link is
|
825 |
|
|
* not established, we return -E1000_ERR_PHY (-2).
|
826 |
|
|
**/
|
827 |
|
|
s32 e1000e_setup_copper_link(struct e1000_hw *hw)
|
828 |
|
|
{
|
829 |
|
|
s32 ret_val;
|
830 |
|
|
bool link;
|
831 |
|
|
|
832 |
|
|
if (hw->mac.autoneg) {
|
833 |
|
|
/* Setup autoneg and flow control advertisement and perform
|
834 |
|
|
* autonegotiation. */
|
835 |
|
|
ret_val = e1000_copper_link_autoneg(hw);
|
836 |
|
|
if (ret_val)
|
837 |
|
|
return ret_val;
|
838 |
|
|
} else {
|
839 |
|
|
/* PHY will be set to 10H, 10F, 100H or 100F
|
840 |
|
|
* depending on user settings. */
|
841 |
|
|
hw_dbg(hw, "Forcing Speed and Duplex\n");
|
842 |
|
|
ret_val = e1000_phy_force_speed_duplex(hw);
|
843 |
|
|
if (ret_val) {
|
844 |
|
|
hw_dbg(hw, "Error Forcing Speed and Duplex\n");
|
845 |
|
|
return ret_val;
|
846 |
|
|
}
|
847 |
|
|
}
|
848 |
|
|
|
849 |
|
|
/* Check link status. Wait up to 100 microseconds for link to become
|
850 |
|
|
* valid.
|
851 |
|
|
*/
|
852 |
|
|
ret_val = e1000e_phy_has_link_generic(hw,
|
853 |
|
|
COPPER_LINK_UP_LIMIT,
|
854 |
|
|
10,
|
855 |
|
|
&link);
|
856 |
|
|
if (ret_val)
|
857 |
|
|
return ret_val;
|
858 |
|
|
|
859 |
|
|
if (link) {
|
860 |
|
|
hw_dbg(hw, "Valid link established!!!\n");
|
861 |
|
|
e1000e_config_collision_dist(hw);
|
862 |
|
|
ret_val = e1000e_config_fc_after_link_up(hw);
|
863 |
|
|
} else {
|
864 |
|
|
hw_dbg(hw, "Unable to establish link!!!\n");
|
865 |
|
|
}
|
866 |
|
|
|
867 |
|
|
return ret_val;
|
868 |
|
|
}
|
869 |
|
|
|
870 |
|
|
/**
|
871 |
|
|
* e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
|
872 |
|
|
* @hw: pointer to the HW structure
|
873 |
|
|
*
|
874 |
|
|
* Calls the PHY setup function to force speed and duplex. Clears the
|
875 |
|
|
* auto-crossover to force MDI manually. Waits for link and returns
|
876 |
|
|
* successful if link up is successful, else -E1000_ERR_PHY (-2).
|
877 |
|
|
**/
|
878 |
|
|
s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
|
879 |
|
|
{
|
880 |
|
|
struct e1000_phy_info *phy = &hw->phy;
|
881 |
|
|
s32 ret_val;
|
882 |
|
|
u16 phy_data;
|
883 |
|
|
bool link;
|
884 |
|
|
|
885 |
|
|
ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
|
886 |
|
|
if (ret_val)
|
887 |
|
|
return ret_val;
|
888 |
|
|
|
889 |
|
|
e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
|
890 |
|
|
|
891 |
|
|
ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
|
892 |
|
|
if (ret_val)
|
893 |
|
|
return ret_val;
|
894 |
|
|
|
895 |
|
|
/* Clear Auto-Crossover to force MDI manually. IGP requires MDI
|
896 |
|
|
* forced whenever speed and duplex are forced.
|
897 |
|
|
*/
|
898 |
|
|
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
|
899 |
|
|
if (ret_val)
|
900 |
|
|
return ret_val;
|
901 |
|
|
|
902 |
|
|
phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
|
903 |
|
|
phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
|
904 |
|
|
|
905 |
|
|
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
|
906 |
|
|
if (ret_val)
|
907 |
|
|
return ret_val;
|
908 |
|
|
|
909 |
|
|
hw_dbg(hw, "IGP PSCR: %X\n", phy_data);
|
910 |
|
|
|
911 |
|
|
udelay(1);
|
912 |
|
|
|
913 |
|
|
if (phy->wait_for_link) {
|
914 |
|
|
hw_dbg(hw, "Waiting for forced speed/duplex link on IGP phy.\n");
|
915 |
|
|
|
916 |
|
|
ret_val = e1000e_phy_has_link_generic(hw,
|
917 |
|
|
PHY_FORCE_LIMIT,
|
918 |
|
|
100000,
|
919 |
|
|
&link);
|
920 |
|
|
if (ret_val)
|
921 |
|
|
return ret_val;
|
922 |
|
|
|
923 |
|
|
if (!link)
|
924 |
|
|
hw_dbg(hw, "Link taking longer than expected.\n");
|
925 |
|
|
|
926 |
|
|
/* Try once more */
|
927 |
|
|
ret_val = e1000e_phy_has_link_generic(hw,
|
928 |
|
|
PHY_FORCE_LIMIT,
|
929 |
|
|
100000,
|
930 |
|
|
&link);
|
931 |
|
|
if (ret_val)
|
932 |
|
|
return ret_val;
|
933 |
|
|
}
|
934 |
|
|
|
935 |
|
|
return ret_val;
|
936 |
|
|
}
|
937 |
|
|
|
938 |
|
|
/**
|
939 |
|
|
* e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
|
940 |
|
|
* @hw: pointer to the HW structure
|
941 |
|
|
*
|
942 |
|
|
* Calls the PHY setup function to force speed and duplex. Clears the
|
943 |
|
|
* auto-crossover to force MDI manually. Resets the PHY to commit the
|
944 |
|
|
* changes. If time expires while waiting for link up, we reset the DSP.
|
945 |
|
|
* After reset, TX_CLK and CRS on TX must be set. Return successful upon
|
946 |
|
|
* successful completion, else return corresponding error code.
|
947 |
|
|
**/
|
948 |
|
|
s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
|
949 |
|
|
{
|
950 |
|
|
struct e1000_phy_info *phy = &hw->phy;
|
951 |
|
|
s32 ret_val;
|
952 |
|
|
u16 phy_data;
|
953 |
|
|
bool link;
|
954 |
|
|
|
955 |
|
|
/* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
|
956 |
|
|
* forced whenever speed and duplex are forced.
|
957 |
|
|
*/
|
958 |
|
|
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
|
959 |
|
|
if (ret_val)
|
960 |
|
|
return ret_val;
|
961 |
|
|
|
962 |
|
|
phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
|
963 |
|
|
ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
|
964 |
|
|
if (ret_val)
|
965 |
|
|
return ret_val;
|
966 |
|
|
|
967 |
|
|
hw_dbg(hw, "M88E1000 PSCR: %X\n", phy_data);
|
968 |
|
|
|
969 |
|
|
ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
|
970 |
|
|
if (ret_val)
|
971 |
|
|
return ret_val;
|
972 |
|
|
|
973 |
|
|
e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
|
974 |
|
|
|
975 |
|
|
/* Reset the phy to commit changes. */
|
976 |
|
|
phy_data |= MII_CR_RESET;
|
977 |
|
|
|
978 |
|
|
ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
|
979 |
|
|
if (ret_val)
|
980 |
|
|
return ret_val;
|
981 |
|
|
|
982 |
|
|
udelay(1);
|
983 |
|
|
|
984 |
|
|
if (phy->wait_for_link) {
|
985 |
|
|
hw_dbg(hw, "Waiting for forced speed/duplex link on M88 phy.\n");
|
986 |
|
|
|
987 |
|
|
ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
|
988 |
|
|
100000, &link);
|
989 |
|
|
if (ret_val)
|
990 |
|
|
return ret_val;
|
991 |
|
|
|
992 |
|
|
if (!link) {
|
993 |
|
|
/* We didn't get link.
|
994 |
|
|
* Reset the DSP and cross our fingers.
|
995 |
|
|
*/
|
996 |
|
|
ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT, 0x001d);
|
997 |
|
|
if (ret_val)
|
998 |
|
|
return ret_val;
|
999 |
|
|
ret_val = e1000e_phy_reset_dsp(hw);
|
1000 |
|
|
if (ret_val)
|
1001 |
|
|
return ret_val;
|
1002 |
|
|
}
|
1003 |
|
|
|
1004 |
|
|
/* Try once more */
|
1005 |
|
|
ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
|
1006 |
|
|
100000, &link);
|
1007 |
|
|
if (ret_val)
|
1008 |
|
|
return ret_val;
|
1009 |
|
|
}
|
1010 |
|
|
|
1011 |
|
|
ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
|
1012 |
|
|
if (ret_val)
|
1013 |
|
|
return ret_val;
|
1014 |
|
|
|
1015 |
|
|
/* Resetting the phy means we need to re-force TX_CLK in the
|
1016 |
|
|
* Extended PHY Specific Control Register to 25MHz clock from
|
1017 |
|
|
* the reset value of 2.5MHz.
|
1018 |
|
|
*/
|
1019 |
|
|
phy_data |= M88E1000_EPSCR_TX_CLK_25;
|
1020 |
|
|
ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
|
1021 |
|
|
if (ret_val)
|
1022 |
|
|
return ret_val;
|
1023 |
|
|
|
1024 |
|
|
/* In addition, we must re-enable CRS on Tx for both half and full
|
1025 |
|
|
* duplex.
|
1026 |
|
|
*/
|
1027 |
|
|
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
|
1028 |
|
|
if (ret_val)
|
1029 |
|
|
return ret_val;
|
1030 |
|
|
|
1031 |
|
|
phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
|
1032 |
|
|
ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
|
1033 |
|
|
|
1034 |
|
|
return ret_val;
|
1035 |
|
|
}
|
1036 |
|
|
|
1037 |
|
|
/**
|
1038 |
|
|
* e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
|
1039 |
|
|
* @hw: pointer to the HW structure
|
1040 |
|
|
* @phy_ctrl: pointer to current value of PHY_CONTROL
|
1041 |
|
|
*
|
1042 |
|
|
* Forces speed and duplex on the PHY by doing the following: disable flow
|
1043 |
|
|
* control, force speed/duplex on the MAC, disable auto speed detection,
|
1044 |
|
|
* disable auto-negotiation, configure duplex, configure speed, configure
|
1045 |
|
|
* the collision distance, write configuration to CTRL register. The
|
1046 |
|
|
* caller must write to the PHY_CONTROL register for these settings to
|
1047 |
|
|
* take affect.
|
1048 |
|
|
**/
|
1049 |
|
|
void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
|
1050 |
|
|
{
|
1051 |
|
|
struct e1000_mac_info *mac = &hw->mac;
|
1052 |
|
|
u32 ctrl;
|
1053 |
|
|
|
1054 |
|
|
/* Turn off flow control when forcing speed/duplex */
|
1055 |
|
|
mac->fc = e1000_fc_none;
|
1056 |
|
|
|
1057 |
|
|
/* Force speed/duplex on the mac */
|
1058 |
|
|
ctrl = er32(CTRL);
|
1059 |
|
|
ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
|
1060 |
|
|
ctrl &= ~E1000_CTRL_SPD_SEL;
|
1061 |
|
|
|
1062 |
|
|
/* Disable Auto Speed Detection */
|
1063 |
|
|
ctrl &= ~E1000_CTRL_ASDE;
|
1064 |
|
|
|
1065 |
|
|
/* Disable autoneg on the phy */
|
1066 |
|
|
*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
|
1067 |
|
|
|
1068 |
|
|
/* Forcing Full or Half Duplex? */
|
1069 |
|
|
if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
|
1070 |
|
|
ctrl &= ~E1000_CTRL_FD;
|
1071 |
|
|
*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
|
1072 |
|
|
hw_dbg(hw, "Half Duplex\n");
|
1073 |
|
|
} else {
|
1074 |
|
|
ctrl |= E1000_CTRL_FD;
|
1075 |
|
|
*phy_ctrl |= MII_CR_FULL_DUPLEX;
|
1076 |
|
|
hw_dbg(hw, "Full Duplex\n");
|
1077 |
|
|
}
|
1078 |
|
|
|
1079 |
|
|
/* Forcing 10mb or 100mb? */
|
1080 |
|
|
if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
|
1081 |
|
|
ctrl |= E1000_CTRL_SPD_100;
|
1082 |
|
|
*phy_ctrl |= MII_CR_SPEED_100;
|
1083 |
|
|
*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
|
1084 |
|
|
hw_dbg(hw, "Forcing 100mb\n");
|
1085 |
|
|
} else {
|
1086 |
|
|
ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
|
1087 |
|
|
*phy_ctrl |= MII_CR_SPEED_10;
|
1088 |
|
|
*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
|
1089 |
|
|
hw_dbg(hw, "Forcing 10mb\n");
|
1090 |
|
|
}
|
1091 |
|
|
|
1092 |
|
|
e1000e_config_collision_dist(hw);
|
1093 |
|
|
|
1094 |
|
|
ew32(CTRL, ctrl);
|
1095 |
|
|
}
|
1096 |
|
|
|
1097 |
|
|
/**
|
1098 |
|
|
* e1000e_set_d3_lplu_state - Sets low power link up state for D3
|
1099 |
|
|
* @hw: pointer to the HW structure
|
1100 |
|
|
* @active: boolean used to enable/disable lplu
|
1101 |
|
|
*
|
1102 |
|
|
* Success returns 0, Failure returns 1
|
1103 |
|
|
*
|
1104 |
|
|
* The low power link up (lplu) state is set to the power management level D3
|
1105 |
|
|
* and SmartSpeed is disabled when active is true, else clear lplu for D3
|
1106 |
|
|
* and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
|
1107 |
|
|
* is used during Dx states where the power conservation is most important.
|
1108 |
|
|
* During driver activity, SmartSpeed should be enabled so performance is
|
1109 |
|
|
* maintained.
|
1110 |
|
|
**/
|
1111 |
|
|
s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
|
1112 |
|
|
{
|
1113 |
|
|
struct e1000_phy_info *phy = &hw->phy;
|
1114 |
|
|
s32 ret_val;
|
1115 |
|
|
u16 data;
|
1116 |
|
|
|
1117 |
|
|
ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
|
1118 |
|
|
if (ret_val)
|
1119 |
|
|
return ret_val;
|
1120 |
|
|
|
1121 |
|
|
if (!active) {
|
1122 |
|
|
data &= ~IGP02E1000_PM_D3_LPLU;
|
1123 |
|
|
ret_val = e1e_wphy(hw,
|
1124 |
|
|
IGP02E1000_PHY_POWER_MGMT,
|
1125 |
|
|
data);
|
1126 |
|
|
if (ret_val)
|
1127 |
|
|
return ret_val;
|
1128 |
|
|
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used
|
1129 |
|
|
* during Dx states where the power conservation is most
|
1130 |
|
|
* important. During driver activity we should enable
|
1131 |
|
|
* SmartSpeed, so performance is maintained. */
|
1132 |
|
|
if (phy->smart_speed == e1000_smart_speed_on) {
|
1133 |
|
|
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
1134 |
|
|
&data);
|
1135 |
|
|
if (ret_val)
|
1136 |
|
|
return ret_val;
|
1137 |
|
|
|
1138 |
|
|
data |= IGP01E1000_PSCFR_SMART_SPEED;
|
1139 |
|
|
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
1140 |
|
|
data);
|
1141 |
|
|
if (ret_val)
|
1142 |
|
|
return ret_val;
|
1143 |
|
|
} else if (phy->smart_speed == e1000_smart_speed_off) {
|
1144 |
|
|
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
1145 |
|
|
&data);
|
1146 |
|
|
if (ret_val)
|
1147 |
|
|
return ret_val;
|
1148 |
|
|
|
1149 |
|
|
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
1150 |
|
|
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
1151 |
|
|
data);
|
1152 |
|
|
if (ret_val)
|
1153 |
|
|
return ret_val;
|
1154 |
|
|
}
|
1155 |
|
|
} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
|
1156 |
|
|
(phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
|
1157 |
|
|
(phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
|
1158 |
|
|
data |= IGP02E1000_PM_D3_LPLU;
|
1159 |
|
|
ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
|
1160 |
|
|
if (ret_val)
|
1161 |
|
|
return ret_val;
|
1162 |
|
|
|
1163 |
|
|
/* When LPLU is enabled, we should disable SmartSpeed */
|
1164 |
|
|
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
|
1165 |
|
|
if (ret_val)
|
1166 |
|
|
return ret_val;
|
1167 |
|
|
|
1168 |
|
|
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
1169 |
|
|
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
|
1170 |
|
|
}
|
1171 |
|
|
|
1172 |
|
|
return ret_val;
|
1173 |
|
|
}
|
1174 |
|
|
|
1175 |
|
|
/**
|
1176 |
|
|
* e1000e_check_downshift - Checks whether a downshift in speed occured
|
1177 |
|
|
* @hw: pointer to the HW structure
|
1178 |
|
|
*
|
1179 |
|
|
* Success returns 0, Failure returns 1
|
1180 |
|
|
*
|
1181 |
|
|
* A downshift is detected by querying the PHY link health.
|
1182 |
|
|
**/
|
1183 |
|
|
s32 e1000e_check_downshift(struct e1000_hw *hw)
|
1184 |
|
|
{
|
1185 |
|
|
struct e1000_phy_info *phy = &hw->phy;
|
1186 |
|
|
s32 ret_val;
|
1187 |
|
|
u16 phy_data, offset, mask;
|
1188 |
|
|
|
1189 |
|
|
switch (phy->type) {
|
1190 |
|
|
case e1000_phy_m88:
|
1191 |
|
|
case e1000_phy_gg82563:
|
1192 |
|
|
offset = M88E1000_PHY_SPEC_STATUS;
|
1193 |
|
|
mask = M88E1000_PSSR_DOWNSHIFT;
|
1194 |
|
|
break;
|
1195 |
|
|
case e1000_phy_igp_2:
|
1196 |
|
|
case e1000_phy_igp_3:
|
1197 |
|
|
offset = IGP01E1000_PHY_LINK_HEALTH;
|
1198 |
|
|
mask = IGP01E1000_PLHR_SS_DOWNGRADE;
|
1199 |
|
|
break;
|
1200 |
|
|
default:
|
1201 |
|
|
/* speed downshift not supported */
|
1202 |
|
|
phy->speed_downgraded = 0;
|
1203 |
|
|
return 0;
|
1204 |
|
|
}
|
1205 |
|
|
|
1206 |
|
|
ret_val = e1e_rphy(hw, offset, &phy_data);
|
1207 |
|
|
|
1208 |
|
|
if (!ret_val)
|
1209 |
|
|
phy->speed_downgraded = (phy_data & mask);
|
1210 |
|
|
|
1211 |
|
|
return ret_val;
|
1212 |
|
|
}
|
1213 |
|
|
|
1214 |
|
|
/**
|
1215 |
|
|
* e1000_check_polarity_m88 - Checks the polarity.
|
1216 |
|
|
* @hw: pointer to the HW structure
|
1217 |
|
|
*
|
1218 |
|
|
* Success returns 0, Failure returns -E1000_ERR_PHY (-2)
|
1219 |
|
|
*
|
1220 |
|
|
* Polarity is determined based on the PHY specific status register.
|
1221 |
|
|
**/
|
1222 |
|
|
static s32 e1000_check_polarity_m88(struct e1000_hw *hw)
|
1223 |
|
|
{
|
1224 |
|
|
struct e1000_phy_info *phy = &hw->phy;
|
1225 |
|
|
s32 ret_val;
|
1226 |
|
|
u16 data;
|
1227 |
|
|
|
1228 |
|
|
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
|
1229 |
|
|
|
1230 |
|
|
if (!ret_val)
|
1231 |
|
|
phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
|
1232 |
|
|
? e1000_rev_polarity_reversed
|
1233 |
|
|
: e1000_rev_polarity_normal;
|
1234 |
|
|
|
1235 |
|
|
return ret_val;
|
1236 |
|
|
}
|
1237 |
|
|
|
1238 |
|
|
/**
|
1239 |
|
|
* e1000_check_polarity_igp - Checks the polarity.
|
1240 |
|
|
* @hw: pointer to the HW structure
|
1241 |
|
|
*
|
1242 |
|
|
* Success returns 0, Failure returns -E1000_ERR_PHY (-2)
|
1243 |
|
|
*
|
1244 |
|
|
* Polarity is determined based on the PHY port status register, and the
|
1245 |
|
|
* current speed (since there is no polarity at 100Mbps).
|
1246 |
|
|
**/
|
1247 |
|
|
static s32 e1000_check_polarity_igp(struct e1000_hw *hw)
|
1248 |
|
|
{
|
1249 |
|
|
struct e1000_phy_info *phy = &hw->phy;
|
1250 |
|
|
s32 ret_val;
|
1251 |
|
|
u16 data, offset, mask;
|
1252 |
|
|
|
1253 |
|
|
/* Polarity is determined based on the speed of
|
1254 |
|
|
* our connection. */
|
1255 |
|
|
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
|
1256 |
|
|
if (ret_val)
|
1257 |
|
|
return ret_val;
|
1258 |
|
|
|
1259 |
|
|
if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
|
1260 |
|
|
IGP01E1000_PSSR_SPEED_1000MBPS) {
|
1261 |
|
|
offset = IGP01E1000_PHY_PCS_INIT_REG;
|
1262 |
|
|
mask = IGP01E1000_PHY_POLARITY_MASK;
|
1263 |
|
|
} else {
|
1264 |
|
|
/* This really only applies to 10Mbps since
|
1265 |
|
|
* there is no polarity for 100Mbps (always 0).
|
1266 |
|
|
*/
|
1267 |
|
|
offset = IGP01E1000_PHY_PORT_STATUS;
|
1268 |
|
|
mask = IGP01E1000_PSSR_POLARITY_REVERSED;
|
1269 |
|
|
}
|
1270 |
|
|
|
1271 |
|
|
ret_val = e1e_rphy(hw, offset, &data);
|
1272 |
|
|
|
1273 |
|
|
if (!ret_val)
|
1274 |
|
|
phy->cable_polarity = (data & mask)
|
1275 |
|
|
? e1000_rev_polarity_reversed
|
1276 |
|
|
: e1000_rev_polarity_normal;
|
1277 |
|
|
|
1278 |
|
|
return ret_val;
|
1279 |
|
|
}
|
1280 |
|
|
|
1281 |
|
|
/**
|
1282 |
|
|
* e1000_wait_autoneg - Wait for auto-neg compeletion
|
1283 |
|
|
* @hw: pointer to the HW structure
|
1284 |
|
|
*
|
1285 |
|
|
* Waits for auto-negotiation to complete or for the auto-negotiation time
|
1286 |
|
|
* limit to expire, which ever happens first.
|
1287 |
|
|
**/
|
1288 |
|
|
static s32 e1000_wait_autoneg(struct e1000_hw *hw)
|
1289 |
|
|
{
|
1290 |
|
|
s32 ret_val = 0;
|
1291 |
|
|
u16 i, phy_status;
|
1292 |
|
|
|
1293 |
|
|
/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
|
1294 |
|
|
for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
|
1295 |
|
|
ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
|
1296 |
|
|
if (ret_val)
|
1297 |
|
|
break;
|
1298 |
|
|
ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
|
1299 |
|
|
if (ret_val)
|
1300 |
|
|
break;
|
1301 |
|
|
if (phy_status & MII_SR_AUTONEG_COMPLETE)
|
1302 |
|
|
break;
|
1303 |
|
|
msleep(100);
|
1304 |
|
|
}
|
1305 |
|
|
|
1306 |
|
|
/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
|
1307 |
|
|
* has completed.
|
1308 |
|
|
*/
|
1309 |
|
|
return ret_val;
|
1310 |
|
|
}
|
1311 |
|
|
|
1312 |
|
|
/**
|
1313 |
|
|
* e1000e_phy_has_link_generic - Polls PHY for link
|
1314 |
|
|
* @hw: pointer to the HW structure
|
1315 |
|
|
* @iterations: number of times to poll for link
|
1316 |
|
|
* @usec_interval: delay between polling attempts
|
1317 |
|
|
* @success: pointer to whether polling was successful or not
|
1318 |
|
|
*
|
1319 |
|
|
* Polls the PHY status register for link, 'iterations' number of times.
|
1320 |
|
|
**/
|
1321 |
|
|
s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
|
1322 |
|
|
u32 usec_interval, bool *success)
|
1323 |
|
|
{
|
1324 |
|
|
s32 ret_val = 0;
|
1325 |
|
|
u16 i, phy_status;
|
1326 |
|
|
|
1327 |
|
|
for (i = 0; i < iterations; i++) {
|
1328 |
|
|
/* Some PHYs require the PHY_STATUS register to be read
|
1329 |
|
|
* twice due to the link bit being sticky. No harm doing
|
1330 |
|
|
* it across the board.
|
1331 |
|
|
*/
|
1332 |
|
|
ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
|
1333 |
|
|
if (ret_val)
|
1334 |
|
|
break;
|
1335 |
|
|
ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
|
1336 |
|
|
if (ret_val)
|
1337 |
|
|
break;
|
1338 |
|
|
if (phy_status & MII_SR_LINK_STATUS)
|
1339 |
|
|
break;
|
1340 |
|
|
if (usec_interval >= 1000)
|
1341 |
|
|
mdelay(usec_interval/1000);
|
1342 |
|
|
else
|
1343 |
|
|
udelay(usec_interval);
|
1344 |
|
|
}
|
1345 |
|
|
|
1346 |
|
|
*success = (i < iterations);
|
1347 |
|
|
|
1348 |
|
|
return ret_val;
|
1349 |
|
|
}
|
1350 |
|
|
|
1351 |
|
|
/**
|
1352 |
|
|
* e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
|
1353 |
|
|
* @hw: pointer to the HW structure
|
1354 |
|
|
*
|
1355 |
|
|
* Reads the PHY specific status register to retrieve the cable length
|
1356 |
|
|
* information. The cable length is determined by averaging the minimum and
|
1357 |
|
|
* maximum values to get the "average" cable length. The m88 PHY has four
|
1358 |
|
|
* possible cable length values, which are:
|
1359 |
|
|
* Register Value Cable Length
|
1360 |
|
|
* 0 < 50 meters
|
1361 |
|
|
* 1 50 - 80 meters
|
1362 |
|
|
* 2 80 - 110 meters
|
1363 |
|
|
* 3 110 - 140 meters
|
1364 |
|
|
* 4 > 140 meters
|
1365 |
|
|
**/
|
1366 |
|
|
s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
|
1367 |
|
|
{
|
1368 |
|
|
struct e1000_phy_info *phy = &hw->phy;
|
1369 |
|
|
s32 ret_val;
|
1370 |
|
|
u16 phy_data, index;
|
1371 |
|
|
|
1372 |
|
|
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
|
1373 |
|
|
if (ret_val)
|
1374 |
|
|
return ret_val;
|
1375 |
|
|
|
1376 |
|
|
index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
|
1377 |
|
|
M88E1000_PSSR_CABLE_LENGTH_SHIFT;
|
1378 |
|
|
phy->min_cable_length = e1000_m88_cable_length_table[index];
|
1379 |
|
|
phy->max_cable_length = e1000_m88_cable_length_table[index+1];
|
1380 |
|
|
|
1381 |
|
|
phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
|
1382 |
|
|
|
1383 |
|
|
return ret_val;
|
1384 |
|
|
}
|
1385 |
|
|
|
1386 |
|
|
/**
|
1387 |
|
|
* e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
|
1388 |
|
|
* @hw: pointer to the HW structure
|
1389 |
|
|
*
|
1390 |
|
|
* The automatic gain control (agc) normalizes the amplitude of the
|
1391 |
|
|
* received signal, adjusting for the attenuation produced by the
|
1392 |
|
|
* cable. By reading the AGC registers, which reperesent the
|
1393 |
|
|
* cobination of course and fine gain value, the value can be put
|
1394 |
|
|
* into a lookup table to obtain the approximate cable length
|
1395 |
|
|
* for each channel.
|
1396 |
|
|
**/
|
1397 |
|
|
s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
|
1398 |
|
|
{
|
1399 |
|
|
struct e1000_phy_info *phy = &hw->phy;
|
1400 |
|
|
s32 ret_val;
|
1401 |
|
|
u16 phy_data, i, agc_value = 0;
|
1402 |
|
|
u16 cur_agc_index, max_agc_index = 0;
|
1403 |
|
|
u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
|
1404 |
|
|
u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
|
1405 |
|
|
{IGP02E1000_PHY_AGC_A,
|
1406 |
|
|
IGP02E1000_PHY_AGC_B,
|
1407 |
|
|
IGP02E1000_PHY_AGC_C,
|
1408 |
|
|
IGP02E1000_PHY_AGC_D};
|
1409 |
|
|
|
1410 |
|
|
/* Read the AGC registers for all channels */
|
1411 |
|
|
for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
|
1412 |
|
|
ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
|
1413 |
|
|
if (ret_val)
|
1414 |
|
|
return ret_val;
|
1415 |
|
|
|
1416 |
|
|
/* Getting bits 15:9, which represent the combination of
|
1417 |
|
|
* course and fine gain values. The result is a number
|
1418 |
|
|
* that can be put into the lookup table to obtain the
|
1419 |
|
|
* approximate cable length. */
|
1420 |
|
|
cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
|
1421 |
|
|
IGP02E1000_AGC_LENGTH_MASK;
|
1422 |
|
|
|
1423 |
|
|
/* Array index bound check. */
|
1424 |
|
|
if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
|
1425 |
|
|
(cur_agc_index == 0))
|
1426 |
|
|
return -E1000_ERR_PHY;
|
1427 |
|
|
|
1428 |
|
|
/* Remove min & max AGC values from calculation. */
|
1429 |
|
|
if (e1000_igp_2_cable_length_table[min_agc_index] >
|
1430 |
|
|
e1000_igp_2_cable_length_table[cur_agc_index])
|
1431 |
|
|
min_agc_index = cur_agc_index;
|
1432 |
|
|
if (e1000_igp_2_cable_length_table[max_agc_index] <
|
1433 |
|
|
e1000_igp_2_cable_length_table[cur_agc_index])
|
1434 |
|
|
max_agc_index = cur_agc_index;
|
1435 |
|
|
|
1436 |
|
|
agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
|
1437 |
|
|
}
|
1438 |
|
|
|
1439 |
|
|
agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
|
1440 |
|
|
e1000_igp_2_cable_length_table[max_agc_index]);
|
1441 |
|
|
agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
|
1442 |
|
|
|
1443 |
|
|
/* Calculate cable length with the error range of +/- 10 meters. */
|
1444 |
|
|
phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
|
1445 |
|
|
(agc_value - IGP02E1000_AGC_RANGE) : 0;
|
1446 |
|
|
phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
|
1447 |
|
|
|
1448 |
|
|
phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
|
1449 |
|
|
|
1450 |
|
|
return ret_val;
|
1451 |
|
|
}
|
1452 |
|
|
|
1453 |
|
|
/**
|
1454 |
|
|
* e1000e_get_phy_info_m88 - Retrieve PHY information
|
1455 |
|
|
* @hw: pointer to the HW structure
|
1456 |
|
|
*
|
1457 |
|
|
* Valid for only copper links. Read the PHY status register (sticky read)
|
1458 |
|
|
* to verify that link is up. Read the PHY special control register to
|
1459 |
|
|
* determine the polarity and 10base-T extended distance. Read the PHY
|
1460 |
|
|
* special status register to determine MDI/MDIx and current speed. If
|
1461 |
|
|
* speed is 1000, then determine cable length, local and remote receiver.
|
1462 |
|
|
**/
|
1463 |
|
|
s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
|
1464 |
|
|
{
|
1465 |
|
|
struct e1000_phy_info *phy = &hw->phy;
|
1466 |
|
|
s32 ret_val;
|
1467 |
|
|
u16 phy_data;
|
1468 |
|
|
bool link;
|
1469 |
|
|
|
1470 |
|
|
if (hw->media_type != e1000_media_type_copper) {
|
1471 |
|
|
hw_dbg(hw, "Phy info is only valid for copper media\n");
|
1472 |
|
|
return -E1000_ERR_CONFIG;
|
1473 |
|
|
}
|
1474 |
|
|
|
1475 |
|
|
ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
|
1476 |
|
|
if (ret_val)
|
1477 |
|
|
return ret_val;
|
1478 |
|
|
|
1479 |
|
|
if (!link) {
|
1480 |
|
|
hw_dbg(hw, "Phy info is only valid if link is up\n");
|
1481 |
|
|
return -E1000_ERR_CONFIG;
|
1482 |
|
|
}
|
1483 |
|
|
|
1484 |
|
|
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
|
1485 |
|
|
if (ret_val)
|
1486 |
|
|
return ret_val;
|
1487 |
|
|
|
1488 |
|
|
phy->polarity_correction = (phy_data &
|
1489 |
|
|
M88E1000_PSCR_POLARITY_REVERSAL);
|
1490 |
|
|
|
1491 |
|
|
ret_val = e1000_check_polarity_m88(hw);
|
1492 |
|
|
if (ret_val)
|
1493 |
|
|
return ret_val;
|
1494 |
|
|
|
1495 |
|
|
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
|
1496 |
|
|
if (ret_val)
|
1497 |
|
|
return ret_val;
|
1498 |
|
|
|
1499 |
|
|
phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX);
|
1500 |
|
|
|
1501 |
|
|
if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
|
1502 |
|
|
ret_val = e1000_get_cable_length(hw);
|
1503 |
|
|
if (ret_val)
|
1504 |
|
|
return ret_val;
|
1505 |
|
|
|
1506 |
|
|
ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
|
1507 |
|
|
if (ret_val)
|
1508 |
|
|
return ret_val;
|
1509 |
|
|
|
1510 |
|
|
phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
|
1511 |
|
|
? e1000_1000t_rx_status_ok
|
1512 |
|
|
: e1000_1000t_rx_status_not_ok;
|
1513 |
|
|
|
1514 |
|
|
phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
|
1515 |
|
|
? e1000_1000t_rx_status_ok
|
1516 |
|
|
: e1000_1000t_rx_status_not_ok;
|
1517 |
|
|
} else {
|
1518 |
|
|
/* Set values to "undefined" */
|
1519 |
|
|
phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
|
1520 |
|
|
phy->local_rx = e1000_1000t_rx_status_undefined;
|
1521 |
|
|
phy->remote_rx = e1000_1000t_rx_status_undefined;
|
1522 |
|
|
}
|
1523 |
|
|
|
1524 |
|
|
return ret_val;
|
1525 |
|
|
}
|
1526 |
|
|
|
1527 |
|
|
/**
|
1528 |
|
|
* e1000e_get_phy_info_igp - Retrieve igp PHY information
|
1529 |
|
|
* @hw: pointer to the HW structure
|
1530 |
|
|
*
|
1531 |
|
|
* Read PHY status to determine if link is up. If link is up, then
|
1532 |
|
|
* set/determine 10base-T extended distance and polarity correction. Read
|
1533 |
|
|
* PHY port status to determine MDI/MDIx and speed. Based on the speed,
|
1534 |
|
|
* determine on the cable length, local and remote receiver.
|
1535 |
|
|
**/
|
1536 |
|
|
s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
|
1537 |
|
|
{
|
1538 |
|
|
struct e1000_phy_info *phy = &hw->phy;
|
1539 |
|
|
s32 ret_val;
|
1540 |
|
|
u16 data;
|
1541 |
|
|
bool link;
|
1542 |
|
|
|
1543 |
|
|
ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
|
1544 |
|
|
if (ret_val)
|
1545 |
|
|
return ret_val;
|
1546 |
|
|
|
1547 |
|
|
if (!link) {
|
1548 |
|
|
hw_dbg(hw, "Phy info is only valid if link is up\n");
|
1549 |
|
|
return -E1000_ERR_CONFIG;
|
1550 |
|
|
}
|
1551 |
|
|
|
1552 |
|
|
phy->polarity_correction = 1;
|
1553 |
|
|
|
1554 |
|
|
ret_val = e1000_check_polarity_igp(hw);
|
1555 |
|
|
if (ret_val)
|
1556 |
|
|
return ret_val;
|
1557 |
|
|
|
1558 |
|
|
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
|
1559 |
|
|
if (ret_val)
|
1560 |
|
|
return ret_val;
|
1561 |
|
|
|
1562 |
|
|
phy->is_mdix = (data & IGP01E1000_PSSR_MDIX);
|
1563 |
|
|
|
1564 |
|
|
if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
|
1565 |
|
|
IGP01E1000_PSSR_SPEED_1000MBPS) {
|
1566 |
|
|
ret_val = e1000_get_cable_length(hw);
|
1567 |
|
|
if (ret_val)
|
1568 |
|
|
return ret_val;
|
1569 |
|
|
|
1570 |
|
|
ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
|
1571 |
|
|
if (ret_val)
|
1572 |
|
|
return ret_val;
|
1573 |
|
|
|
1574 |
|
|
phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
|
1575 |
|
|
? e1000_1000t_rx_status_ok
|
1576 |
|
|
: e1000_1000t_rx_status_not_ok;
|
1577 |
|
|
|
1578 |
|
|
phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
|
1579 |
|
|
? e1000_1000t_rx_status_ok
|
1580 |
|
|
: e1000_1000t_rx_status_not_ok;
|
1581 |
|
|
} else {
|
1582 |
|
|
phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
|
1583 |
|
|
phy->local_rx = e1000_1000t_rx_status_undefined;
|
1584 |
|
|
phy->remote_rx = e1000_1000t_rx_status_undefined;
|
1585 |
|
|
}
|
1586 |
|
|
|
1587 |
|
|
return ret_val;
|
1588 |
|
|
}
|
1589 |
|
|
|
1590 |
|
|
/**
|
1591 |
|
|
* e1000e_phy_sw_reset - PHY software reset
|
1592 |
|
|
* @hw: pointer to the HW structure
|
1593 |
|
|
*
|
1594 |
|
|
* Does a software reset of the PHY by reading the PHY control register and
|
1595 |
|
|
* setting/write the control register reset bit to the PHY.
|
1596 |
|
|
**/
|
1597 |
|
|
s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
|
1598 |
|
|
{
|
1599 |
|
|
s32 ret_val;
|
1600 |
|
|
u16 phy_ctrl;
|
1601 |
|
|
|
1602 |
|
|
ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
|
1603 |
|
|
if (ret_val)
|
1604 |
|
|
return ret_val;
|
1605 |
|
|
|
1606 |
|
|
phy_ctrl |= MII_CR_RESET;
|
1607 |
|
|
ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
|
1608 |
|
|
if (ret_val)
|
1609 |
|
|
return ret_val;
|
1610 |
|
|
|
1611 |
|
|
udelay(1);
|
1612 |
|
|
|
1613 |
|
|
return ret_val;
|
1614 |
|
|
}
|
1615 |
|
|
|
1616 |
|
|
/**
|
1617 |
|
|
* e1000e_phy_hw_reset_generic - PHY hardware reset
|
1618 |
|
|
* @hw: pointer to the HW structure
|
1619 |
|
|
*
|
1620 |
|
|
* Verify the reset block is not blocking us from resetting. Acquire
|
1621 |
|
|
* semaphore (if necessary) and read/set/write the device control reset
|
1622 |
|
|
* bit in the PHY. Wait the appropriate delay time for the device to
|
1623 |
|
|
* reset and relase the semaphore (if necessary).
|
1624 |
|
|
**/
|
1625 |
|
|
s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
|
1626 |
|
|
{
|
1627 |
|
|
struct e1000_phy_info *phy = &hw->phy;
|
1628 |
|
|
s32 ret_val;
|
1629 |
|
|
u32 ctrl;
|
1630 |
|
|
|
1631 |
|
|
ret_val = e1000_check_reset_block(hw);
|
1632 |
|
|
if (ret_val)
|
1633 |
|
|
return 0;
|
1634 |
|
|
|
1635 |
|
|
ret_val = phy->ops.acquire_phy(hw);
|
1636 |
|
|
if (ret_val)
|
1637 |
|
|
return ret_val;
|
1638 |
|
|
|
1639 |
|
|
ctrl = er32(CTRL);
|
1640 |
|
|
ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
|
1641 |
|
|
e1e_flush();
|
1642 |
|
|
|
1643 |
|
|
udelay(phy->reset_delay_us);
|
1644 |
|
|
|
1645 |
|
|
ew32(CTRL, ctrl);
|
1646 |
|
|
e1e_flush();
|
1647 |
|
|
|
1648 |
|
|
udelay(150);
|
1649 |
|
|
|
1650 |
|
|
phy->ops.release_phy(hw);
|
1651 |
|
|
|
1652 |
|
|
return e1000_get_phy_cfg_done(hw);
|
1653 |
|
|
}
|
1654 |
|
|
|
1655 |
|
|
/**
|
1656 |
|
|
* e1000e_get_cfg_done - Generic configuration done
|
1657 |
|
|
* @hw: pointer to the HW structure
|
1658 |
|
|
*
|
1659 |
|
|
* Generic function to wait 10 milli-seconds for configuration to complete
|
1660 |
|
|
* and return success.
|
1661 |
|
|
**/
|
1662 |
|
|
s32 e1000e_get_cfg_done(struct e1000_hw *hw)
|
1663 |
|
|
{
|
1664 |
|
|
mdelay(10);
|
1665 |
|
|
return 0;
|
1666 |
|
|
}
|
1667 |
|
|
|
1668 |
|
|
/* Internal function pointers */
|
1669 |
|
|
|
1670 |
|
|
/**
|
1671 |
|
|
* e1000_get_phy_cfg_done - Generic PHY configuration done
|
1672 |
|
|
* @hw: pointer to the HW structure
|
1673 |
|
|
*
|
1674 |
|
|
* Return success if silicon family did not implement a family specific
|
1675 |
|
|
* get_cfg_done function.
|
1676 |
|
|
**/
|
1677 |
|
|
static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
|
1678 |
|
|
{
|
1679 |
|
|
if (hw->phy.ops.get_cfg_done)
|
1680 |
|
|
return hw->phy.ops.get_cfg_done(hw);
|
1681 |
|
|
|
1682 |
|
|
return 0;
|
1683 |
|
|
}
|
1684 |
|
|
|
1685 |
|
|
/**
|
1686 |
|
|
* e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
|
1687 |
|
|
* @hw: pointer to the HW structure
|
1688 |
|
|
*
|
1689 |
|
|
* When the silicon family has not implemented a forced speed/duplex
|
1690 |
|
|
* function for the PHY, simply return 0.
|
1691 |
|
|
**/
|
1692 |
|
|
static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
|
1693 |
|
|
{
|
1694 |
|
|
if (hw->phy.ops.force_speed_duplex)
|
1695 |
|
|
return hw->phy.ops.force_speed_duplex(hw);
|
1696 |
|
|
|
1697 |
|
|
return 0;
|
1698 |
|
|
}
|
1699 |
|
|
|
1700 |
|
|
/**
|
1701 |
|
|
* e1000e_get_phy_type_from_id - Get PHY type from id
|
1702 |
|
|
* @phy_id: phy_id read from the phy
|
1703 |
|
|
*
|
1704 |
|
|
* Returns the phy type from the id.
|
1705 |
|
|
**/
|
1706 |
|
|
enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
|
1707 |
|
|
{
|
1708 |
|
|
enum e1000_phy_type phy_type = e1000_phy_unknown;
|
1709 |
|
|
|
1710 |
|
|
switch (phy_id) {
|
1711 |
|
|
case M88E1000_I_PHY_ID:
|
1712 |
|
|
case M88E1000_E_PHY_ID:
|
1713 |
|
|
case M88E1111_I_PHY_ID:
|
1714 |
|
|
case M88E1011_I_PHY_ID:
|
1715 |
|
|
phy_type = e1000_phy_m88;
|
1716 |
|
|
break;
|
1717 |
|
|
case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
|
1718 |
|
|
phy_type = e1000_phy_igp_2;
|
1719 |
|
|
break;
|
1720 |
|
|
case GG82563_E_PHY_ID:
|
1721 |
|
|
phy_type = e1000_phy_gg82563;
|
1722 |
|
|
break;
|
1723 |
|
|
case IGP03E1000_E_PHY_ID:
|
1724 |
|
|
phy_type = e1000_phy_igp_3;
|
1725 |
|
|
break;
|
1726 |
|
|
case IFE_E_PHY_ID:
|
1727 |
|
|
case IFE_PLUS_E_PHY_ID:
|
1728 |
|
|
case IFE_C_E_PHY_ID:
|
1729 |
|
|
phy_type = e1000_phy_ife;
|
1730 |
|
|
break;
|
1731 |
|
|
default:
|
1732 |
|
|
phy_type = e1000_phy_unknown;
|
1733 |
|
|
break;
|
1734 |
|
|
}
|
1735 |
|
|
return phy_type;
|
1736 |
|
|
}
|
1737 |
|
|
|
1738 |
|
|
/**
|
1739 |
|
|
* e1000e_commit_phy - Soft PHY reset
|
1740 |
|
|
* @hw: pointer to the HW structure
|
1741 |
|
|
*
|
1742 |
|
|
* Performs a soft PHY reset on those that apply. This is a function pointer
|
1743 |
|
|
* entry point called by drivers.
|
1744 |
|
|
**/
|
1745 |
|
|
s32 e1000e_commit_phy(struct e1000_hw *hw)
|
1746 |
|
|
{
|
1747 |
|
|
if (hw->phy.ops.commit_phy)
|
1748 |
|
|
return hw->phy.ops.commit_phy(hw);
|
1749 |
|
|
|
1750 |
|
|
return 0;
|
1751 |
|
|
}
|
1752 |
|
|
|
1753 |
|
|
/**
|
1754 |
|
|
* e1000_set_d0_lplu_state - Sets low power link up state for D0
|
1755 |
|
|
* @hw: pointer to the HW structure
|
1756 |
|
|
* @active: boolean used to enable/disable lplu
|
1757 |
|
|
*
|
1758 |
|
|
* Success returns 0, Failure returns 1
|
1759 |
|
|
*
|
1760 |
|
|
* The low power link up (lplu) state is set to the power management level D0
|
1761 |
|
|
* and SmartSpeed is disabled when active is true, else clear lplu for D0
|
1762 |
|
|
* and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
|
1763 |
|
|
* is used during Dx states where the power conservation is most important.
|
1764 |
|
|
* During driver activity, SmartSpeed should be enabled so performance is
|
1765 |
|
|
* maintained. This is a function pointer entry point called by drivers.
|
1766 |
|
|
**/
|
1767 |
|
|
static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
|
1768 |
|
|
{
|
1769 |
|
|
if (hw->phy.ops.set_d0_lplu_state)
|
1770 |
|
|
return hw->phy.ops.set_d0_lplu_state(hw, active);
|
1771 |
|
|
|
1772 |
|
|
return 0;
|
1773 |
|
|
}
|