OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [drivers/] [net/] [fec.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3
 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4
 *
5
 * This version of the driver is specific to the FADS implementation,
6
 * since the board contains control registers external to the processor
7
 * for the control of the LevelOne LXT970 transceiver.  The MPC860T manual
8
 * describes connections using the internal parallel port I/O, which
9
 * is basically all of Port D.
10
 *
11
 * Right now, I am very wasteful with the buffers.  I allocate memory
12
 * pages and then divide them into 2K frame buffers.  This way I know I
13
 * have buffers large enough to hold one frame within one buffer descriptor.
14
 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
15
 * will be much more memory efficient and will easily handle lots of
16
 * small packets.
17
 *
18
 * Much better multiple PHY support by Magnus Damm.
19
 * Copyright (c) 2000 Ericsson Radio Systems AB.
20
 *
21
 * Support for FEC controller of ColdFire processors.
22
 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
23
 *
24
 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
25
 * Copyright (c) 2004-2006 Macq Electronique SA.
26
 */
27
 
28
#include <linux/module.h>
29
#include <linux/kernel.h>
30
#include <linux/string.h>
31
#include <linux/ptrace.h>
32
#include <linux/errno.h>
33
#include <linux/ioport.h>
34
#include <linux/slab.h>
35
#include <linux/interrupt.h>
36
#include <linux/pci.h>
37
#include <linux/init.h>
38
#include <linux/delay.h>
39
#include <linux/netdevice.h>
40
#include <linux/etherdevice.h>
41
#include <linux/skbuff.h>
42
#include <linux/spinlock.h>
43
#include <linux/workqueue.h>
44
#include <linux/bitops.h>
45
 
46
#include <asm/irq.h>
47
#include <asm/uaccess.h>
48
#include <asm/io.h>
49
#include <asm/pgtable.h>
50
#include <asm/cacheflush.h>
51
 
52
#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || \
53
    defined(CONFIG_M5272) || defined(CONFIG_M528x) || \
54
    defined(CONFIG_M520x) || defined(CONFIG_M532x)
55
#include <asm/coldfire.h>
56
#include <asm/mcfsim.h>
57
#include "fec.h"
58
#else
59
#include <asm/8xx_immap.h>
60
#include <asm/mpc8xx.h>
61
#include "commproc.h"
62
#endif
63
 
64
#if defined(CONFIG_FEC2)
65
#define FEC_MAX_PORTS   2
66
#else
67
#define FEC_MAX_PORTS   1
68
#endif
69
 
70
/*
71
 * Define the fixed address of the FEC hardware.
72
 */
73
static unsigned int fec_hw[] = {
74
#if defined(CONFIG_M5272)
75
        (MCF_MBAR + 0x840),
76
#elif defined(CONFIG_M527x)
77
        (MCF_MBAR + 0x1000),
78
        (MCF_MBAR + 0x1800),
79
#elif defined(CONFIG_M523x) || defined(CONFIG_M528x)
80
        (MCF_MBAR + 0x1000),
81
#elif defined(CONFIG_M520x)
82
        (MCF_MBAR+0x30000),
83
#elif defined(CONFIG_M532x)
84
        (MCF_MBAR+0xfc030000),
85
#else
86
        &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec),
87
#endif
88
};
89
 
90
static unsigned char    fec_mac_default[] = {
91
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
92
};
93
 
94
/*
95
 * Some hardware gets it MAC address out of local flash memory.
96
 * if this is non-zero then assume it is the address to get MAC from.
97
 */
98
#if defined(CONFIG_NETtel)
99
#define FEC_FLASHMAC    0xf0006006
100
#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
101
#define FEC_FLASHMAC    0xf0006000
102
#elif defined(CONFIG_CANCam)
103
#define FEC_FLASHMAC    0xf0020000
104
#elif defined (CONFIG_M5272C3)
105
#define FEC_FLASHMAC    (0xffe04000 + 4)
106
#elif defined(CONFIG_MOD5272)
107
#define FEC_FLASHMAC    0xffc0406b
108
#else
109
#define FEC_FLASHMAC    0
110
#endif
111
 
112
/* Forward declarations of some structures to support different PHYs
113
*/
114
 
115
typedef struct {
116
        uint mii_data;
117
        void (*funct)(uint mii_reg, struct net_device *dev);
118
} phy_cmd_t;
119
 
120
typedef struct {
121
        uint id;
122
        char *name;
123
 
124
        const phy_cmd_t *config;
125
        const phy_cmd_t *startup;
126
        const phy_cmd_t *ack_int;
127
        const phy_cmd_t *shutdown;
128
} phy_info_t;
129
 
130
/* The number of Tx and Rx buffers.  These are allocated from the page
131
 * pool.  The code may assume these are power of two, so it it best
132
 * to keep them that size.
133
 * We don't need to allocate pages for the transmitter.  We just use
134
 * the skbuffer directly.
135
 */
136
#define FEC_ENET_RX_PAGES       8
137
#define FEC_ENET_RX_FRSIZE      2048
138
#define FEC_ENET_RX_FRPPG       (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
139
#define RX_RING_SIZE            (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
140
#define FEC_ENET_TX_FRSIZE      2048
141
#define FEC_ENET_TX_FRPPG       (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
142
#define TX_RING_SIZE            16      /* Must be power of two */
143
#define TX_RING_MOD_MASK        15      /*   for this to work */
144
 
145
#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
146
#error "FEC: descriptor ring size constants too large"
147
#endif
148
 
149
/* Interrupt events/masks.
150
*/
151
#define FEC_ENET_HBERR  ((uint)0x80000000)      /* Heartbeat error */
152
#define FEC_ENET_BABR   ((uint)0x40000000)      /* Babbling receiver */
153
#define FEC_ENET_BABT   ((uint)0x20000000)      /* Babbling transmitter */
154
#define FEC_ENET_GRA    ((uint)0x10000000)      /* Graceful stop complete */
155
#define FEC_ENET_TXF    ((uint)0x08000000)      /* Full frame transmitted */
156
#define FEC_ENET_TXB    ((uint)0x04000000)      /* A buffer was transmitted */
157
#define FEC_ENET_RXF    ((uint)0x02000000)      /* Full frame received */
158
#define FEC_ENET_RXB    ((uint)0x01000000)      /* A buffer was received */
159
#define FEC_ENET_MII    ((uint)0x00800000)      /* MII interrupt */
160
#define FEC_ENET_EBERR  ((uint)0x00400000)      /* SDMA bus error */
161
 
162
/* The FEC stores dest/src/type, data, and checksum for receive packets.
163
 */
164
#define PKT_MAXBUF_SIZE         1518
165
#define PKT_MINBUF_SIZE         64
166
#define PKT_MAXBLR_SIZE         1520
167
 
168
 
169
/*
170
 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
171
 * size bits. Other FEC hardware does not, so we need to take that into
172
 * account when setting it.
173
 */
174
#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
175
    defined(CONFIG_M520x) || defined(CONFIG_M532x)
176
#define OPT_FRAME_SIZE  (PKT_MAXBUF_SIZE << 16)
177
#else
178
#define OPT_FRAME_SIZE  0
179
#endif
180
 
181
/* The FEC buffer descriptors track the ring buffers.  The rx_bd_base and
182
 * tx_bd_base always point to the base of the buffer descriptors.  The
183
 * cur_rx and cur_tx point to the currently available buffer.
184
 * The dirty_tx tracks the current buffer that is being sent by the
185
 * controller.  The cur_tx and dirty_tx are equal under both completely
186
 * empty and completely full conditions.  The empty/ready indicator in
187
 * the buffer descriptor determines the actual condition.
188
 */
189
struct fec_enet_private {
190
        /* Hardware registers of the FEC device */
191
        volatile fec_t  *hwp;
192
 
193
        struct net_device *netdev;
194
 
195
        /* The saved address of a sent-in-place packet/buffer, for skfree(). */
196
        unsigned char *tx_bounce[TX_RING_SIZE];
197
        struct  sk_buff* tx_skbuff[TX_RING_SIZE];
198
        ushort  skb_cur;
199
        ushort  skb_dirty;
200
 
201
        /* CPM dual port RAM relative addresses.
202
        */
203
        cbd_t   *rx_bd_base;            /* Address of Rx and Tx buffers. */
204
        cbd_t   *tx_bd_base;
205
        cbd_t   *cur_rx, *cur_tx;               /* The next free ring entry */
206
        cbd_t   *dirty_tx;      /* The ring entries to be free()ed. */
207
        uint    tx_full;
208
        spinlock_t lock;
209
 
210
        uint    phy_id;
211
        uint    phy_id_done;
212
        uint    phy_status;
213
        uint    phy_speed;
214
        phy_info_t const        *phy;
215
        struct work_struct phy_task;
216
 
217
        uint    sequence_done;
218
        uint    mii_phy_task_queued;
219
 
220
        uint    phy_addr;
221
 
222
        int     index;
223
        int     opened;
224
        int     link;
225
        int     old_link;
226
        int     full_duplex;
227
};
228
 
229
static int fec_enet_open(struct net_device *dev);
230
static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
231
static void fec_enet_mii(struct net_device *dev);
232
static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
233
static void fec_enet_tx(struct net_device *dev);
234
static void fec_enet_rx(struct net_device *dev);
235
static int fec_enet_close(struct net_device *dev);
236
static void set_multicast_list(struct net_device *dev);
237
static void fec_restart(struct net_device *dev, int duplex);
238
static void fec_stop(struct net_device *dev);
239
static void fec_set_mac_address(struct net_device *dev);
240
 
241
 
242
/* MII processing.  We keep this as simple as possible.  Requests are
243
 * placed on the list (if there is room).  When the request is finished
244
 * by the MII, an optional function may be called.
245
 */
246
typedef struct mii_list {
247
        uint    mii_regval;
248
        void    (*mii_func)(uint val, struct net_device *dev);
249
        struct  mii_list *mii_next;
250
} mii_list_t;
251
 
252
#define         NMII    20
253
static mii_list_t       mii_cmds[NMII];
254
static mii_list_t       *mii_free;
255
static mii_list_t       *mii_head;
256
static mii_list_t       *mii_tail;
257
 
258
static int      mii_queue(struct net_device *dev, int request,
259
                                void (*func)(uint, struct net_device *));
260
 
261
/* Make MII read/write commands for the FEC.
262
*/
263
#define mk_mii_read(REG)        (0x60020000 | ((REG & 0x1f) << 18))
264
#define mk_mii_write(REG, VAL)  (0x50020000 | ((REG & 0x1f) << 18) | \
265
                                                (VAL & 0xffff))
266
#define mk_mii_end      0
267
 
268
/* Transmitter timeout.
269
*/
270
#define TX_TIMEOUT (2*HZ)
271
 
272
/* Register definitions for the PHY.
273
*/
274
 
275
#define MII_REG_CR          0  /* Control Register                         */
276
#define MII_REG_SR          1  /* Status Register                          */
277
#define MII_REG_PHYIR1      2  /* PHY Identification Register 1            */
278
#define MII_REG_PHYIR2      3  /* PHY Identification Register 2            */
279
#define MII_REG_ANAR        4  /* A-N Advertisement Register               */
280
#define MII_REG_ANLPAR      5  /* A-N Link Partner Ability Register        */
281
#define MII_REG_ANER        6  /* A-N Expansion Register                   */
282
#define MII_REG_ANNPTR      7  /* A-N Next Page Transmit Register          */
283
#define MII_REG_ANLPRNPR    8  /* A-N Link Partner Received Next Page Reg. */
284
 
285
/* values for phy_status */
286
 
287
#define PHY_CONF_ANE    0x0001  /* 1 auto-negotiation enabled */
288
#define PHY_CONF_LOOP   0x0002  /* 1 loopback mode enabled */
289
#define PHY_CONF_SPMASK 0x00f0  /* mask for speed */
290
#define PHY_CONF_10HDX  0x0010  /* 10 Mbit half duplex supported */
291
#define PHY_CONF_10FDX  0x0020  /* 10 Mbit full duplex supported */
292
#define PHY_CONF_100HDX 0x0040  /* 100 Mbit half duplex supported */
293
#define PHY_CONF_100FDX 0x0080  /* 100 Mbit full duplex supported */
294
 
295
#define PHY_STAT_LINK   0x0100  /* 1 up - 0 down */
296
#define PHY_STAT_FAULT  0x0200  /* 1 remote fault */
297
#define PHY_STAT_ANC    0x0400  /* 1 auto-negotiation complete  */
298
#define PHY_STAT_SPMASK 0xf000  /* mask for speed */
299
#define PHY_STAT_10HDX  0x1000  /* 10 Mbit half duplex selected */
300
#define PHY_STAT_10FDX  0x2000  /* 10 Mbit full duplex selected */
301
#define PHY_STAT_100HDX 0x4000  /* 100 Mbit half duplex selected */
302
#define PHY_STAT_100FDX 0x8000  /* 100 Mbit full duplex selected */
303
 
304
 
305
static int
306
fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
307
{
308
        struct fec_enet_private *fep;
309
        volatile fec_t  *fecp;
310
        volatile cbd_t  *bdp;
311
        unsigned short  status;
312
 
313
        fep = netdev_priv(dev);
314
        fecp = (volatile fec_t*)dev->base_addr;
315
 
316
        if (!fep->link) {
317
                /* Link is down or autonegotiation is in progress. */
318
                return 1;
319
        }
320
 
321
        /* Fill in a Tx ring entry */
322
        bdp = fep->cur_tx;
323
 
324
        status = bdp->cbd_sc;
325
#ifndef final_version
326
        if (status & BD_ENET_TX_READY) {
327
                /* Ooops.  All transmit buffers are full.  Bail out.
328
                 * This should not happen, since dev->tbusy should be set.
329
                 */
330
                printk("%s: tx queue full!.\n", dev->name);
331
                return 1;
332
        }
333
#endif
334
 
335
        /* Clear all of the status flags.
336
         */
337
        status &= ~BD_ENET_TX_STATS;
338
 
339
        /* Set buffer length and buffer pointer.
340
        */
341
        bdp->cbd_bufaddr = __pa(skb->data);
342
        bdp->cbd_datlen = skb->len;
343
 
344
        /*
345
         *      On some FEC implementations data must be aligned on
346
         *      4-byte boundaries. Use bounce buffers to copy data
347
         *      and get it aligned. Ugh.
348
         */
349
        if (bdp->cbd_bufaddr & 0x3) {
350
                unsigned int index;
351
                index = bdp - fep->tx_bd_base;
352
                memcpy(fep->tx_bounce[index], (void *) bdp->cbd_bufaddr, bdp->cbd_datlen);
353
                bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
354
        }
355
 
356
        /* Save skb pointer.
357
        */
358
        fep->tx_skbuff[fep->skb_cur] = skb;
359
 
360
        dev->stats.tx_bytes += skb->len;
361
        fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
362
 
363
        /* Push the data cache so the CPM does not get stale memory
364
         * data.
365
         */
366
        flush_dcache_range((unsigned long)skb->data,
367
                           (unsigned long)skb->data + skb->len);
368
 
369
        spin_lock_irq(&fep->lock);
370
 
371
        /* Send it on its way.  Tell FEC it's ready, interrupt when done,
372
         * it's the last BD of the frame, and to put the CRC on the end.
373
         */
374
 
375
        status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
376
                        | BD_ENET_TX_LAST | BD_ENET_TX_TC);
377
        bdp->cbd_sc = status;
378
 
379
        dev->trans_start = jiffies;
380
 
381
        /* Trigger transmission start */
382
        fecp->fec_x_des_active = 0;
383
 
384
        /* If this was the last BD in the ring, start at the beginning again.
385
        */
386
        if (status & BD_ENET_TX_WRAP) {
387
                bdp = fep->tx_bd_base;
388
        } else {
389
                bdp++;
390
        }
391
 
392
        if (bdp == fep->dirty_tx) {
393
                fep->tx_full = 1;
394
                netif_stop_queue(dev);
395
        }
396
 
397
        fep->cur_tx = (cbd_t *)bdp;
398
 
399
        spin_unlock_irq(&fep->lock);
400
 
401
        return 0;
402
}
403
 
404
static void
405
fec_timeout(struct net_device *dev)
406
{
407
        struct fec_enet_private *fep = netdev_priv(dev);
408
 
409
        printk("%s: transmit timed out.\n", dev->name);
410
        dev->stats.tx_errors++;
411
#ifndef final_version
412
        {
413
        int     i;
414
        cbd_t   *bdp;
415
 
416
        printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
417
               (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
418
               (unsigned long)fep->dirty_tx,
419
               (unsigned long)fep->cur_rx);
420
 
421
        bdp = fep->tx_bd_base;
422
        printk(" tx: %u buffers\n",  TX_RING_SIZE);
423
        for (i = 0 ; i < TX_RING_SIZE; i++) {
424
                printk("  %08x: %04x %04x %08x\n",
425
                       (uint) bdp,
426
                       bdp->cbd_sc,
427
                       bdp->cbd_datlen,
428
                       (int) bdp->cbd_bufaddr);
429
                bdp++;
430
        }
431
 
432
        bdp = fep->rx_bd_base;
433
        printk(" rx: %lu buffers\n",  (unsigned long) RX_RING_SIZE);
434
        for (i = 0 ; i < RX_RING_SIZE; i++) {
435
                printk("  %08x: %04x %04x %08x\n",
436
                       (uint) bdp,
437
                       bdp->cbd_sc,
438
                       bdp->cbd_datlen,
439
                       (int) bdp->cbd_bufaddr);
440
                bdp++;
441
        }
442
        }
443
#endif
444
        fec_restart(dev, fep->full_duplex);
445
        netif_wake_queue(dev);
446
}
447
 
448
/* The interrupt handler.
449
 * This is called from the MPC core interrupt.
450
 */
451
static irqreturn_t
452
fec_enet_interrupt(int irq, void * dev_id)
453
{
454
        struct  net_device *dev = dev_id;
455
        volatile fec_t  *fecp;
456
        uint    int_events;
457
        int handled = 0;
458
 
459
        fecp = (volatile fec_t*)dev->base_addr;
460
 
461
        /* Get the interrupt events that caused us to be here.
462
        */
463
        while ((int_events = fecp->fec_ievent) != 0) {
464
                fecp->fec_ievent = int_events;
465
 
466
                /* Handle receive event in its own function.
467
                 */
468
                if (int_events & FEC_ENET_RXF) {
469
                        handled = 1;
470
                        fec_enet_rx(dev);
471
                }
472
 
473
                /* Transmit OK, or non-fatal error. Update the buffer
474
                   descriptors. FEC handles all errors, we just discover
475
                   them as part of the transmit process.
476
                */
477
                if (int_events & FEC_ENET_TXF) {
478
                        handled = 1;
479
                        fec_enet_tx(dev);
480
                }
481
 
482
                if (int_events & FEC_ENET_MII) {
483
                        handled = 1;
484
                        fec_enet_mii(dev);
485
                }
486
 
487
        }
488
        return IRQ_RETVAL(handled);
489
}
490
 
491
 
492
static void
493
fec_enet_tx(struct net_device *dev)
494
{
495
        struct  fec_enet_private *fep;
496
        volatile cbd_t  *bdp;
497
        unsigned short status;
498
        struct  sk_buff *skb;
499
 
500
        fep = netdev_priv(dev);
501
        spin_lock(&fep->lock);
502
        bdp = fep->dirty_tx;
503
 
504
        while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
505
                if (bdp == fep->cur_tx && fep->tx_full == 0) break;
506
 
507
                skb = fep->tx_skbuff[fep->skb_dirty];
508
                /* Check for errors. */
509
                if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
510
                                   BD_ENET_TX_RL | BD_ENET_TX_UN |
511
                                   BD_ENET_TX_CSL)) {
512
                        dev->stats.tx_errors++;
513
                        if (status & BD_ENET_TX_HB)  /* No heartbeat */
514
                                dev->stats.tx_heartbeat_errors++;
515
                        if (status & BD_ENET_TX_LC)  /* Late collision */
516
                                dev->stats.tx_window_errors++;
517
                        if (status & BD_ENET_TX_RL)  /* Retrans limit */
518
                                dev->stats.tx_aborted_errors++;
519
                        if (status & BD_ENET_TX_UN)  /* Underrun */
520
                                dev->stats.tx_fifo_errors++;
521
                        if (status & BD_ENET_TX_CSL) /* Carrier lost */
522
                                dev->stats.tx_carrier_errors++;
523
                } else {
524
                        dev->stats.tx_packets++;
525
                }
526
 
527
#ifndef final_version
528
                if (status & BD_ENET_TX_READY)
529
                        printk("HEY! Enet xmit interrupt and TX_READY.\n");
530
#endif
531
                /* Deferred means some collisions occurred during transmit,
532
                 * but we eventually sent the packet OK.
533
                 */
534
                if (status & BD_ENET_TX_DEF)
535
                        dev->stats.collisions++;
536
 
537
                /* Free the sk buffer associated with this last transmit.
538
                 */
539
                dev_kfree_skb_any(skb);
540
                fep->tx_skbuff[fep->skb_dirty] = NULL;
541
                fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
542
 
543
                /* Update pointer to next buffer descriptor to be transmitted.
544
                 */
545
                if (status & BD_ENET_TX_WRAP)
546
                        bdp = fep->tx_bd_base;
547
                else
548
                        bdp++;
549
 
550
                /* Since we have freed up a buffer, the ring is no longer
551
                 * full.
552
                 */
553
                if (fep->tx_full) {
554
                        fep->tx_full = 0;
555
                        if (netif_queue_stopped(dev))
556
                                netif_wake_queue(dev);
557
                }
558
        }
559
        fep->dirty_tx = (cbd_t *)bdp;
560
        spin_unlock(&fep->lock);
561
}
562
 
563
 
564
/* During a receive, the cur_rx points to the current incoming buffer.
565
 * When we update through the ring, if the next incoming buffer has
566
 * not been given to the system, we just set the empty indicator,
567
 * effectively tossing the packet.
568
 */
569
static void
570
fec_enet_rx(struct net_device *dev)
571
{
572
        struct  fec_enet_private *fep;
573
        volatile fec_t  *fecp;
574
        volatile cbd_t *bdp;
575
        unsigned short status;
576
        struct  sk_buff *skb;
577
        ushort  pkt_len;
578
        __u8 *data;
579
 
580
#ifdef CONFIG_M532x
581
        flush_cache_all();
582
#endif
583
 
584
        fep = netdev_priv(dev);
585
        fecp = (volatile fec_t*)dev->base_addr;
586
 
587
        /* First, grab all of the stats for the incoming packet.
588
         * These get messed up if we get called due to a busy condition.
589
         */
590
        bdp = fep->cur_rx;
591
 
592
while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
593
 
594
#ifndef final_version
595
        /* Since we have allocated space to hold a complete frame,
596
         * the last indicator should be set.
597
         */
598
        if ((status & BD_ENET_RX_LAST) == 0)
599
                printk("FEC ENET: rcv is not +last\n");
600
#endif
601
 
602
        if (!fep->opened)
603
                goto rx_processing_done;
604
 
605
        /* Check for errors. */
606
        if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
607
                           BD_ENET_RX_CR | BD_ENET_RX_OV)) {
608
                dev->stats.rx_errors++;
609
                if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
610
                /* Frame too long or too short. */
611
                        dev->stats.rx_length_errors++;
612
                }
613
                if (status & BD_ENET_RX_NO)     /* Frame alignment */
614
                        dev->stats.rx_frame_errors++;
615
                if (status & BD_ENET_RX_CR)     /* CRC Error */
616
                        dev->stats.rx_crc_errors++;
617
                if (status & BD_ENET_RX_OV)     /* FIFO overrun */
618
                        dev->stats.rx_fifo_errors++;
619
        }
620
 
621
        /* Report late collisions as a frame error.
622
         * On this error, the BD is closed, but we don't know what we
623
         * have in the buffer.  So, just drop this frame on the floor.
624
         */
625
        if (status & BD_ENET_RX_CL) {
626
                dev->stats.rx_errors++;
627
                dev->stats.rx_frame_errors++;
628
                goto rx_processing_done;
629
        }
630
 
631
        /* Process the incoming frame.
632
         */
633
        dev->stats.rx_packets++;
634
        pkt_len = bdp->cbd_datlen;
635
        dev->stats.rx_bytes += pkt_len;
636
        data = (__u8*)__va(bdp->cbd_bufaddr);
637
 
638
        /* This does 16 byte alignment, exactly what we need.
639
         * The packet length includes FCS, but we don't want to
640
         * include that when passing upstream as it messes up
641
         * bridging applications.
642
         */
643
        skb = dev_alloc_skb(pkt_len-4);
644
 
645
        if (skb == NULL) {
646
                printk("%s: Memory squeeze, dropping packet.\n", dev->name);
647
                dev->stats.rx_dropped++;
648
        } else {
649
                skb_put(skb,pkt_len-4); /* Make room */
650
                skb_copy_to_linear_data(skb, data, pkt_len-4);
651
                skb->protocol=eth_type_trans(skb,dev);
652
                netif_rx(skb);
653
        }
654
  rx_processing_done:
655
 
656
        /* Clear the status flags for this buffer.
657
        */
658
        status &= ~BD_ENET_RX_STATS;
659
 
660
        /* Mark the buffer empty.
661
        */
662
        status |= BD_ENET_RX_EMPTY;
663
        bdp->cbd_sc = status;
664
 
665
        /* Update BD pointer to next entry.
666
        */
667
        if (status & BD_ENET_RX_WRAP)
668
                bdp = fep->rx_bd_base;
669
        else
670
                bdp++;
671
 
672
#if 1
673
        /* Doing this here will keep the FEC running while we process
674
         * incoming frames.  On a heavily loaded network, we should be
675
         * able to keep up at the expense of system resources.
676
         */
677
        fecp->fec_r_des_active = 0;
678
#endif
679
   } /* while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) */
680
        fep->cur_rx = (cbd_t *)bdp;
681
 
682
#if 0
683
        /* Doing this here will allow us to process all frames in the
684
         * ring before the FEC is allowed to put more there.  On a heavily
685
         * loaded network, some frames may be lost.  Unfortunately, this
686
         * increases the interrupt overhead since we can potentially work
687
         * our way back to the interrupt return only to come right back
688
         * here.
689
         */
690
        fecp->fec_r_des_active = 0;
691
#endif
692
}
693
 
694
 
695
/* called from interrupt context */
696
static void
697
fec_enet_mii(struct net_device *dev)
698
{
699
        struct  fec_enet_private *fep;
700
        volatile fec_t  *ep;
701
        mii_list_t      *mip;
702
        uint            mii_reg;
703
 
704
        fep = netdev_priv(dev);
705
        ep = fep->hwp;
706
        mii_reg = ep->fec_mii_data;
707
 
708
        spin_lock(&fep->lock);
709
 
710
        if ((mip = mii_head) == NULL) {
711
                printk("MII and no head!\n");
712
                goto unlock;
713
        }
714
 
715
        if (mip->mii_func != NULL)
716
                (*(mip->mii_func))(mii_reg, dev);
717
 
718
        mii_head = mip->mii_next;
719
        mip->mii_next = mii_free;
720
        mii_free = mip;
721
 
722
        if ((mip = mii_head) != NULL)
723
                ep->fec_mii_data = mip->mii_regval;
724
 
725
unlock:
726
        spin_unlock(&fep->lock);
727
}
728
 
729
static int
730
mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
731
{
732
        struct fec_enet_private *fep;
733
        unsigned long   flags;
734
        mii_list_t      *mip;
735
        int             retval;
736
 
737
        /* Add PHY address to register command.
738
        */
739
        fep = netdev_priv(dev);
740
        regval |= fep->phy_addr << 23;
741
 
742
        retval = 0;
743
 
744
        spin_lock_irqsave(&fep->lock,flags);
745
 
746
        if ((mip = mii_free) != NULL) {
747
                mii_free = mip->mii_next;
748
                mip->mii_regval = regval;
749
                mip->mii_func = func;
750
                mip->mii_next = NULL;
751
                if (mii_head) {
752
                        mii_tail->mii_next = mip;
753
                        mii_tail = mip;
754
                } else {
755
                        mii_head = mii_tail = mip;
756
                        fep->hwp->fec_mii_data = regval;
757
                }
758
        } else {
759
                retval = 1;
760
        }
761
 
762
        spin_unlock_irqrestore(&fep->lock,flags);
763
 
764
        return(retval);
765
}
766
 
767
static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
768
{
769
        if(!c)
770
                return;
771
 
772
        for (; c->mii_data != mk_mii_end; c++)
773
                mii_queue(dev, c->mii_data, c->funct);
774
}
775
 
776
static void mii_parse_sr(uint mii_reg, struct net_device *dev)
777
{
778
        struct fec_enet_private *fep = netdev_priv(dev);
779
        volatile uint *s = &(fep->phy_status);
780
        uint status;
781
 
782
        status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
783
 
784
        if (mii_reg & 0x0004)
785
                status |= PHY_STAT_LINK;
786
        if (mii_reg & 0x0010)
787
                status |= PHY_STAT_FAULT;
788
        if (mii_reg & 0x0020)
789
                status |= PHY_STAT_ANC;
790
        *s = status;
791
}
792
 
793
static void mii_parse_cr(uint mii_reg, struct net_device *dev)
794
{
795
        struct fec_enet_private *fep = netdev_priv(dev);
796
        volatile uint *s = &(fep->phy_status);
797
        uint status;
798
 
799
        status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP);
800
 
801
        if (mii_reg & 0x1000)
802
                status |= PHY_CONF_ANE;
803
        if (mii_reg & 0x4000)
804
                status |= PHY_CONF_LOOP;
805
        *s = status;
806
}
807
 
808
static void mii_parse_anar(uint mii_reg, struct net_device *dev)
809
{
810
        struct fec_enet_private *fep = netdev_priv(dev);
811
        volatile uint *s = &(fep->phy_status);
812
        uint status;
813
 
814
        status = *s & ~(PHY_CONF_SPMASK);
815
 
816
        if (mii_reg & 0x0020)
817
                status |= PHY_CONF_10HDX;
818
        if (mii_reg & 0x0040)
819
                status |= PHY_CONF_10FDX;
820
        if (mii_reg & 0x0080)
821
                status |= PHY_CONF_100HDX;
822
        if (mii_reg & 0x00100)
823
                status |= PHY_CONF_100FDX;
824
        *s = status;
825
}
826
 
827
/* ------------------------------------------------------------------------- */
828
/* The Level one LXT970 is used by many boards                               */
829
 
830
#define MII_LXT970_MIRROR    16  /* Mirror register           */
831
#define MII_LXT970_IER       17  /* Interrupt Enable Register */
832
#define MII_LXT970_ISR       18  /* Interrupt Status Register */
833
#define MII_LXT970_CONFIG    19  /* Configuration Register    */
834
#define MII_LXT970_CSR       20  /* Chip Status Register      */
835
 
836
static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
837
{
838
        struct fec_enet_private *fep = netdev_priv(dev);
839
        volatile uint *s = &(fep->phy_status);
840
        uint status;
841
 
842
        status = *s & ~(PHY_STAT_SPMASK);
843
        if (mii_reg & 0x0800) {
844
                if (mii_reg & 0x1000)
845
                        status |= PHY_STAT_100FDX;
846
                else
847
                        status |= PHY_STAT_100HDX;
848
        } else {
849
                if (mii_reg & 0x1000)
850
                        status |= PHY_STAT_10FDX;
851
                else
852
                        status |= PHY_STAT_10HDX;
853
        }
854
        *s = status;
855
}
856
 
857
static phy_cmd_t const phy_cmd_lxt970_config[] = {
858
                { mk_mii_read(MII_REG_CR), mii_parse_cr },
859
                { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
860
                { mk_mii_end, }
861
        };
862
static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
863
                { mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
864
                { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
865
                { mk_mii_end, }
866
        };
867
static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
868
                /* read SR and ISR to acknowledge */
869
                { mk_mii_read(MII_REG_SR), mii_parse_sr },
870
                { mk_mii_read(MII_LXT970_ISR), NULL },
871
 
872
                /* find out the current status */
873
                { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
874
                { mk_mii_end, }
875
        };
876
static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
877
                { mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
878
                { mk_mii_end, }
879
        };
880
static phy_info_t const phy_info_lxt970 = {
881
        .id = 0x07810000,
882
        .name = "LXT970",
883
        .config = phy_cmd_lxt970_config,
884
        .startup = phy_cmd_lxt970_startup,
885
        .ack_int = phy_cmd_lxt970_ack_int,
886
        .shutdown = phy_cmd_lxt970_shutdown
887
};
888
 
889
/* ------------------------------------------------------------------------- */
890
/* The Level one LXT971 is used on some of my custom boards                  */
891
 
892
/* register definitions for the 971 */
893
 
894
#define MII_LXT971_PCR       16  /* Port Control Register     */
895
#define MII_LXT971_SR2       17  /* Status Register 2         */
896
#define MII_LXT971_IER       18  /* Interrupt Enable Register */
897
#define MII_LXT971_ISR       19  /* Interrupt Status Register */
898
#define MII_LXT971_LCR       20  /* LED Control Register      */
899
#define MII_LXT971_TCR       30  /* Transmit Control Register */
900
 
901
/*
902
 * I had some nice ideas of running the MDIO faster...
903
 * The 971 should support 8MHz and I tried it, but things acted really
904
 * weird, so 2.5 MHz ought to be enough for anyone...
905
 */
906
 
907
static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
908
{
909
        struct fec_enet_private *fep = netdev_priv(dev);
910
        volatile uint *s = &(fep->phy_status);
911
        uint status;
912
 
913
        status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
914
 
915
        if (mii_reg & 0x0400) {
916
                fep->link = 1;
917
                status |= PHY_STAT_LINK;
918
        } else {
919
                fep->link = 0;
920
        }
921
        if (mii_reg & 0x0080)
922
                status |= PHY_STAT_ANC;
923
        if (mii_reg & 0x4000) {
924
                if (mii_reg & 0x0200)
925
                        status |= PHY_STAT_100FDX;
926
                else
927
                        status |= PHY_STAT_100HDX;
928
        } else {
929
                if (mii_reg & 0x0200)
930
                        status |= PHY_STAT_10FDX;
931
                else
932
                        status |= PHY_STAT_10HDX;
933
        }
934
        if (mii_reg & 0x0008)
935
                status |= PHY_STAT_FAULT;
936
 
937
        *s = status;
938
}
939
 
940
static phy_cmd_t const phy_cmd_lxt971_config[] = {
941
                /* limit to 10MBit because my prototype board
942
                 * doesn't work with 100. */
943
                { mk_mii_read(MII_REG_CR), mii_parse_cr },
944
                { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
945
                { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
946
                { mk_mii_end, }
947
        };
948
static phy_cmd_t const phy_cmd_lxt971_startup[] = {  /* enable interrupts */
949
                { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
950
                { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
951
                { mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
952
                /* Somehow does the 971 tell me that the link is down
953
                 * the first read after power-up.
954
                 * read here to get a valid value in ack_int */
955
                { mk_mii_read(MII_REG_SR), mii_parse_sr },
956
                { mk_mii_end, }
957
        };
958
static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
959
                /* acknowledge the int before reading status ! */
960
                { mk_mii_read(MII_LXT971_ISR), NULL },
961
                /* find out the current status */
962
                { mk_mii_read(MII_REG_SR), mii_parse_sr },
963
                { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
964
                { mk_mii_end, }
965
        };
966
static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
967
                { mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
968
                { mk_mii_end, }
969
        };
970
static phy_info_t const phy_info_lxt971 = {
971
        .id = 0x0001378e,
972
        .name = "LXT971",
973
        .config = phy_cmd_lxt971_config,
974
        .startup = phy_cmd_lxt971_startup,
975
        .ack_int = phy_cmd_lxt971_ack_int,
976
        .shutdown = phy_cmd_lxt971_shutdown
977
};
978
 
979
/* ------------------------------------------------------------------------- */
980
/* The Quality Semiconductor QS6612 is used on the RPX CLLF                  */
981
 
982
/* register definitions */
983
 
984
#define MII_QS6612_MCR       17  /* Mode Control Register      */
985
#define MII_QS6612_FTR       27  /* Factory Test Register      */
986
#define MII_QS6612_MCO       28  /* Misc. Control Register     */
987
#define MII_QS6612_ISR       29  /* Interrupt Source Register  */
988
#define MII_QS6612_IMR       30  /* Interrupt Mask Register    */
989
#define MII_QS6612_PCR       31  /* 100BaseTx PHY Control Reg. */
990
 
991
static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
992
{
993
        struct fec_enet_private *fep = netdev_priv(dev);
994
        volatile uint *s = &(fep->phy_status);
995
        uint status;
996
 
997
        status = *s & ~(PHY_STAT_SPMASK);
998
 
999
        switch((mii_reg >> 2) & 7) {
1000
        case 1: status |= PHY_STAT_10HDX; break;
1001
        case 2: status |= PHY_STAT_100HDX; break;
1002
        case 5: status |= PHY_STAT_10FDX; break;
1003
        case 6: status |= PHY_STAT_100FDX; break;
1004
}
1005
 
1006
        *s = status;
1007
}
1008
 
1009
static phy_cmd_t const phy_cmd_qs6612_config[] = {
1010
                /* The PHY powers up isolated on the RPX,
1011
                 * so send a command to allow operation.
1012
                 */
1013
                { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
1014
 
1015
                /* parse cr and anar to get some info */
1016
                { mk_mii_read(MII_REG_CR), mii_parse_cr },
1017
                { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1018
                { mk_mii_end, }
1019
        };
1020
static phy_cmd_t const phy_cmd_qs6612_startup[] = {  /* enable interrupts */
1021
                { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
1022
                { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1023
                { mk_mii_end, }
1024
        };
1025
static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
1026
                /* we need to read ISR, SR and ANER to acknowledge */
1027
                { mk_mii_read(MII_QS6612_ISR), NULL },
1028
                { mk_mii_read(MII_REG_SR), mii_parse_sr },
1029
                { mk_mii_read(MII_REG_ANER), NULL },
1030
 
1031
                /* read pcr to get info */
1032
                { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
1033
                { mk_mii_end, }
1034
        };
1035
static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
1036
                { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
1037
                { mk_mii_end, }
1038
        };
1039
static phy_info_t const phy_info_qs6612 = {
1040
        .id = 0x00181440,
1041
        .name = "QS6612",
1042
        .config = phy_cmd_qs6612_config,
1043
        .startup = phy_cmd_qs6612_startup,
1044
        .ack_int = phy_cmd_qs6612_ack_int,
1045
        .shutdown = phy_cmd_qs6612_shutdown
1046
};
1047
 
1048
/* ------------------------------------------------------------------------- */
1049
/* AMD AM79C874 phy                                                          */
1050
 
1051
/* register definitions for the 874 */
1052
 
1053
#define MII_AM79C874_MFR       16  /* Miscellaneous Feature Register */
1054
#define MII_AM79C874_ICSR      17  /* Interrupt/Status Register      */
1055
#define MII_AM79C874_DR        18  /* Diagnostic Register            */
1056
#define MII_AM79C874_PMLR      19  /* Power and Loopback Register    */
1057
#define MII_AM79C874_MCR       21  /* ModeControl Register           */
1058
#define MII_AM79C874_DC        23  /* Disconnect Counter             */
1059
#define MII_AM79C874_REC       24  /* Recieve Error Counter          */
1060
 
1061
static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
1062
{
1063
        struct fec_enet_private *fep = netdev_priv(dev);
1064
        volatile uint *s = &(fep->phy_status);
1065
        uint status;
1066
 
1067
        status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
1068
 
1069
        if (mii_reg & 0x0080)
1070
                status |= PHY_STAT_ANC;
1071
        if (mii_reg & 0x0400)
1072
                status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
1073
        else
1074
                status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);
1075
 
1076
        *s = status;
1077
}
1078
 
1079
static phy_cmd_t const phy_cmd_am79c874_config[] = {
1080
                { mk_mii_read(MII_REG_CR), mii_parse_cr },
1081
                { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1082
                { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1083
                { mk_mii_end, }
1084
        };
1085
static phy_cmd_t const phy_cmd_am79c874_startup[] = {  /* enable interrupts */
1086
                { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
1087
                { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1088
                { mk_mii_read(MII_REG_SR), mii_parse_sr },
1089
                { mk_mii_end, }
1090
        };
1091
static phy_cmd_t const phy_cmd_am79c874_ack_int[] = {
1092
                /* find out the current status */
1093
                { mk_mii_read(MII_REG_SR), mii_parse_sr },
1094
                { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1095
                /* we only need to read ISR to acknowledge */
1096
                { mk_mii_read(MII_AM79C874_ICSR), NULL },
1097
                { mk_mii_end, }
1098
        };
1099
static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */
1100
                { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
1101
                { mk_mii_end, }
1102
        };
1103
static phy_info_t const phy_info_am79c874 = {
1104
        .id = 0x00022561,
1105
        .name = "AM79C874",
1106
        .config = phy_cmd_am79c874_config,
1107
        .startup = phy_cmd_am79c874_startup,
1108
        .ack_int = phy_cmd_am79c874_ack_int,
1109
        .shutdown = phy_cmd_am79c874_shutdown
1110
};
1111
 
1112
 
1113
/* ------------------------------------------------------------------------- */
1114
/* Kendin KS8721BL phy                                                       */
1115
 
1116
/* register definitions for the 8721 */
1117
 
1118
#define MII_KS8721BL_RXERCR     21
1119
#define MII_KS8721BL_ICSR       22
1120
#define MII_KS8721BL_PHYCR      31
1121
 
1122
static phy_cmd_t const phy_cmd_ks8721bl_config[] = {
1123
                { mk_mii_read(MII_REG_CR), mii_parse_cr },
1124
                { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1125
                { mk_mii_end, }
1126
        };
1127
static phy_cmd_t const phy_cmd_ks8721bl_startup[] = {  /* enable interrupts */
1128
                { mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
1129
                { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1130
                { mk_mii_read(MII_REG_SR), mii_parse_sr },
1131
                { mk_mii_end, }
1132
        };
1133
static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = {
1134
                /* find out the current status */
1135
                { mk_mii_read(MII_REG_SR), mii_parse_sr },
1136
                /* we only need to read ISR to acknowledge */
1137
                { mk_mii_read(MII_KS8721BL_ICSR), NULL },
1138
                { mk_mii_end, }
1139
        };
1140
static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */
1141
                { mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
1142
                { mk_mii_end, }
1143
        };
1144
static phy_info_t const phy_info_ks8721bl = {
1145
        .id = 0x00022161,
1146
        .name = "KS8721BL",
1147
        .config = phy_cmd_ks8721bl_config,
1148
        .startup = phy_cmd_ks8721bl_startup,
1149
        .ack_int = phy_cmd_ks8721bl_ack_int,
1150
        .shutdown = phy_cmd_ks8721bl_shutdown
1151
};
1152
 
1153
/* ------------------------------------------------------------------------- */
1154
/* register definitions for the DP83848 */
1155
 
1156
#define MII_DP8384X_PHYSTST    16  /* PHY Status Register */
1157
 
1158
static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev)
1159
{
1160
        struct fec_enet_private *fep = dev->priv;
1161
        volatile uint *s = &(fep->phy_status);
1162
 
1163
        *s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
1164
 
1165
        /* Link up */
1166
        if (mii_reg & 0x0001) {
1167
                fep->link = 1;
1168
                *s |= PHY_STAT_LINK;
1169
        } else
1170
                fep->link = 0;
1171
        /* Status of link */
1172
        if (mii_reg & 0x0010)   /* Autonegotioation complete */
1173
                *s |= PHY_STAT_ANC;
1174
        if (mii_reg & 0x0002) {   /* 10MBps? */
1175
                if (mii_reg & 0x0004)   /* Full Duplex? */
1176
                        *s |= PHY_STAT_10FDX;
1177
                else
1178
                        *s |= PHY_STAT_10HDX;
1179
        } else {                  /* 100 Mbps? */
1180
                if (mii_reg & 0x0004)   /* Full Duplex? */
1181
                        *s |= PHY_STAT_100FDX;
1182
                else
1183
                        *s |= PHY_STAT_100HDX;
1184
        }
1185
        if (mii_reg & 0x0008)
1186
                *s |= PHY_STAT_FAULT;
1187
}
1188
 
1189
static phy_info_t phy_info_dp83848= {
1190
        0x020005c9,
1191
        "DP83848",
1192
 
1193
        (const phy_cmd_t []) {  /* config */
1194
                { mk_mii_read(MII_REG_CR), mii_parse_cr },
1195
                { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1196
                { mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 },
1197
                { mk_mii_end, }
1198
        },
1199
        (const phy_cmd_t []) {  /* startup - enable interrupts */
1200
                { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1201
                { mk_mii_read(MII_REG_SR), mii_parse_sr },
1202
                { mk_mii_end, }
1203
        },
1204
        (const phy_cmd_t []) { /* ack_int - never happens, no interrupt */
1205
                { mk_mii_end, }
1206
        },
1207
        (const phy_cmd_t []) {  /* shutdown */
1208
                { mk_mii_end, }
1209
        },
1210
};
1211
 
1212
/* ------------------------------------------------------------------------- */
1213
 
1214
static phy_info_t const * const phy_info[] = {
1215
        &phy_info_lxt970,
1216
        &phy_info_lxt971,
1217
        &phy_info_qs6612,
1218
        &phy_info_am79c874,
1219
        &phy_info_ks8721bl,
1220
        &phy_info_dp83848,
1221
        NULL
1222
};
1223
 
1224
/* ------------------------------------------------------------------------- */
1225
#if !defined(CONFIG_M532x)
1226
#ifdef CONFIG_RPXCLASSIC
1227
static void
1228
mii_link_interrupt(void *dev_id);
1229
#else
1230
static irqreturn_t
1231
mii_link_interrupt(int irq, void * dev_id);
1232
#endif
1233
#endif
1234
 
1235
#if defined(CONFIG_M5272)
1236
/*
1237
 *      Code specific to Coldfire 5272 setup.
1238
 */
1239
static void __inline__ fec_request_intrs(struct net_device *dev)
1240
{
1241
        volatile unsigned long *icrp;
1242
        static const struct idesc {
1243
                char *name;
1244
                unsigned short irq;
1245
                irq_handler_t handler;
1246
        } *idp, id[] = {
1247
                { "fec(RX)", 86, fec_enet_interrupt },
1248
                { "fec(TX)", 87, fec_enet_interrupt },
1249
                { "fec(OTHER)", 88, fec_enet_interrupt },
1250
                { "fec(MII)", 66, mii_link_interrupt },
1251
                { NULL },
1252
        };
1253
 
1254
        /* Setup interrupt handlers. */
1255
        for (idp = id; idp->name; idp++) {
1256
                if (request_irq(idp->irq, idp->handler, 0, idp->name, dev) != 0)
1257
                        printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, idp->irq);
1258
        }
1259
 
1260
        /* Unmask interrupt at ColdFire 5272 SIM */
1261
        icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR3);
1262
        *icrp = 0x00000ddd;
1263
        icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1264
        *icrp = 0x0d000000;
1265
}
1266
 
1267
static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1268
{
1269
        volatile fec_t *fecp;
1270
 
1271
        fecp = fep->hwp;
1272
        fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1273
        fecp->fec_x_cntrl = 0x00;
1274
 
1275
        /*
1276
         * Set MII speed to 2.5 MHz
1277
         * See 5272 manual section 11.5.8: MSCR
1278
         */
1279
        fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2;
1280
        fecp->fec_mii_speed = fep->phy_speed;
1281
 
1282
        fec_restart(dev, 0);
1283
}
1284
 
1285
static void __inline__ fec_get_mac(struct net_device *dev)
1286
{
1287
        struct fec_enet_private *fep = netdev_priv(dev);
1288
        volatile fec_t *fecp;
1289
        unsigned char *iap, tmpaddr[ETH_ALEN];
1290
 
1291
        fecp = fep->hwp;
1292
 
1293
        if (FEC_FLASHMAC) {
1294
                /*
1295
                 * Get MAC address from FLASH.
1296
                 * If it is all 1's or 0's, use the default.
1297
                 */
1298
                iap = (unsigned char *)FEC_FLASHMAC;
1299
                if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1300
                    (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1301
                        iap = fec_mac_default;
1302
                if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1303
                    (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1304
                        iap = fec_mac_default;
1305
        } else {
1306
                *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1307
                *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1308
                iap = &tmpaddr[0];
1309
        }
1310
 
1311
        memcpy(dev->dev_addr, iap, ETH_ALEN);
1312
 
1313
        /* Adjust MAC if using default MAC address */
1314
        if (iap == fec_mac_default)
1315
                 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1316
}
1317
 
1318
static void __inline__ fec_enable_phy_intr(void)
1319
{
1320
}
1321
 
1322
static void __inline__ fec_disable_phy_intr(void)
1323
{
1324
        volatile unsigned long *icrp;
1325
        icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1326
        *icrp = 0x08000000;
1327
}
1328
 
1329
static void __inline__ fec_phy_ack_intr(void)
1330
{
1331
        volatile unsigned long *icrp;
1332
        /* Acknowledge the interrupt */
1333
        icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1334
        *icrp = 0x0d000000;
1335
}
1336
 
1337
static void __inline__ fec_localhw_setup(void)
1338
{
1339
}
1340
 
1341
/*
1342
 *      Do not need to make region uncached on 5272.
1343
 */
1344
static void __inline__ fec_uncache(unsigned long addr)
1345
{
1346
}
1347
 
1348
/* ------------------------------------------------------------------------- */
1349
 
1350
#elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
1351
 
1352
/*
1353
 *      Code specific to Coldfire 5230/5231/5232/5234/5235,
1354
 *      the 5270/5271/5274/5275 and 5280/5282 setups.
1355
 */
1356
static void __inline__ fec_request_intrs(struct net_device *dev)
1357
{
1358
        struct fec_enet_private *fep;
1359
        int b;
1360
        static const struct idesc {
1361
                char *name;
1362
                unsigned short irq;
1363
        } *idp, id[] = {
1364
                { "fec(TXF)", 23 },
1365
                { "fec(TXB)", 24 },
1366
                { "fec(TXFIFO)", 25 },
1367
                { "fec(TXCR)", 26 },
1368
                { "fec(RXF)", 27 },
1369
                { "fec(RXB)", 28 },
1370
                { "fec(MII)", 29 },
1371
                { "fec(LC)", 30 },
1372
                { "fec(HBERR)", 31 },
1373
                { "fec(GRA)", 32 },
1374
                { "fec(EBERR)", 33 },
1375
                { "fec(BABT)", 34 },
1376
                { "fec(BABR)", 35 },
1377
                { NULL },
1378
        };
1379
 
1380
        fep = netdev_priv(dev);
1381
        b = (fep->index) ? 128 : 64;
1382
 
1383
        /* Setup interrupt handlers. */
1384
        for (idp = id; idp->name; idp++) {
1385
                if (request_irq(b+idp->irq, fec_enet_interrupt, 0, idp->name, dev) != 0)
1386
                        printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
1387
        }
1388
 
1389
        /* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
1390
        {
1391
                volatile unsigned char  *icrp;
1392
                volatile unsigned long  *imrp;
1393
                int i, ilip;
1394
 
1395
                b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0;
1396
                icrp = (volatile unsigned char *) (MCF_IPSBAR + b +
1397
                        MCFINTC_ICR0);
1398
                for (i = 23, ilip = 0x28; (i < 36); i++)
1399
                        icrp[i] = ilip--;
1400
 
1401
                imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1402
                        MCFINTC_IMRH);
1403
                *imrp &= ~0x0000000f;
1404
                imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1405
                        MCFINTC_IMRL);
1406
                *imrp &= ~0xff800001;
1407
        }
1408
 
1409
#if defined(CONFIG_M528x)
1410
        /* Set up gpio outputs for MII lines */
1411
        {
1412
                volatile u16 *gpio_paspar;
1413
                volatile u8 *gpio_pehlpar;
1414
 
1415
                gpio_paspar = (volatile u16 *) (MCF_IPSBAR + 0x100056);
1416
                gpio_pehlpar = (volatile u16 *) (MCF_IPSBAR + 0x100058);
1417
                *gpio_paspar |= 0x0f00;
1418
                *gpio_pehlpar = 0xc0;
1419
        }
1420
#endif
1421
 
1422
#if defined(CONFIG_M527x)
1423
        /* Set up gpio outputs for MII lines */
1424
        {
1425
                volatile u8 *gpio_par_fec;
1426
                volatile u16 *gpio_par_feci2c;
1427
 
1428
                gpio_par_feci2c = (volatile u16 *)(MCF_IPSBAR + 0x100082);
1429
                /* Set up gpio outputs for FEC0 MII lines */
1430
                gpio_par_fec = (volatile u8 *)(MCF_IPSBAR + 0x100078);
1431
 
1432
                *gpio_par_feci2c |= 0x0f00;
1433
                *gpio_par_fec |= 0xc0;
1434
 
1435
#if defined(CONFIG_FEC2)
1436
                /* Set up gpio outputs for FEC1 MII lines */
1437
                gpio_par_fec = (volatile u8 *)(MCF_IPSBAR + 0x100079);
1438
 
1439
                *gpio_par_feci2c |= 0x00a0;
1440
                *gpio_par_fec |= 0xc0;
1441
#endif /* CONFIG_FEC2 */
1442
        }
1443
#endif /* CONFIG_M527x */
1444
}
1445
 
1446
static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1447
{
1448
        volatile fec_t *fecp;
1449
 
1450
        fecp = fep->hwp;
1451
        fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1452
        fecp->fec_x_cntrl = 0x00;
1453
 
1454
        /*
1455
         * Set MII speed to 2.5 MHz
1456
         * See 5282 manual section 17.5.4.7: MSCR
1457
         */
1458
        fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1459
        fecp->fec_mii_speed = fep->phy_speed;
1460
 
1461
        fec_restart(dev, 0);
1462
}
1463
 
1464
static void __inline__ fec_get_mac(struct net_device *dev)
1465
{
1466
        struct fec_enet_private *fep = netdev_priv(dev);
1467
        volatile fec_t *fecp;
1468
        unsigned char *iap, tmpaddr[ETH_ALEN];
1469
 
1470
        fecp = fep->hwp;
1471
 
1472
        if (FEC_FLASHMAC) {
1473
                /*
1474
                 * Get MAC address from FLASH.
1475
                 * If it is all 1's or 0's, use the default.
1476
                 */
1477
                iap = FEC_FLASHMAC;
1478
                if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1479
                    (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1480
                        iap = fec_mac_default;
1481
                if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1482
                    (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1483
                        iap = fec_mac_default;
1484
        } else {
1485
                *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1486
                *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1487
                iap = &tmpaddr[0];
1488
        }
1489
 
1490
        memcpy(dev->dev_addr, iap, ETH_ALEN);
1491
 
1492
        /* Adjust MAC if using default MAC address */
1493
        if (iap == fec_mac_default)
1494
                dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1495
}
1496
 
1497
static void __inline__ fec_enable_phy_intr(void)
1498
{
1499
}
1500
 
1501
static void __inline__ fec_disable_phy_intr(void)
1502
{
1503
}
1504
 
1505
static void __inline__ fec_phy_ack_intr(void)
1506
{
1507
}
1508
 
1509
static void __inline__ fec_localhw_setup(void)
1510
{
1511
}
1512
 
1513
/*
1514
 *      Do not need to make region uncached on 5272.
1515
 */
1516
static void __inline__ fec_uncache(unsigned long addr)
1517
{
1518
}
1519
 
1520
/* ------------------------------------------------------------------------- */
1521
 
1522
#elif defined(CONFIG_M520x)
1523
 
1524
/*
1525
 *      Code specific to Coldfire 520x
1526
 */
1527
static void __inline__ fec_request_intrs(struct net_device *dev)
1528
{
1529
        struct fec_enet_private *fep;
1530
        int b;
1531
        static const struct idesc {
1532
                char *name;
1533
                unsigned short irq;
1534
        } *idp, id[] = {
1535
                { "fec(TXF)", 23 },
1536
                { "fec(TXB)", 24 },
1537
                { "fec(TXFIFO)", 25 },
1538
                { "fec(TXCR)", 26 },
1539
                { "fec(RXF)", 27 },
1540
                { "fec(RXB)", 28 },
1541
                { "fec(MII)", 29 },
1542
                { "fec(LC)", 30 },
1543
                { "fec(HBERR)", 31 },
1544
                { "fec(GRA)", 32 },
1545
                { "fec(EBERR)", 33 },
1546
                { "fec(BABT)", 34 },
1547
                { "fec(BABR)", 35 },
1548
                { NULL },
1549
        };
1550
 
1551
        fep = netdev_priv(dev);
1552
        b = 64 + 13;
1553
 
1554
        /* Setup interrupt handlers. */
1555
        for (idp = id; idp->name; idp++) {
1556
                if (request_irq(b+idp->irq,fec_enet_interrupt,0,idp->name,dev)!=0)
1557
                        printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
1558
        }
1559
 
1560
        /* Unmask interrupts at ColdFire interrupt controller */
1561
        {
1562
                volatile unsigned char  *icrp;
1563
                volatile unsigned long  *imrp;
1564
 
1565
                icrp = (volatile unsigned char *) (MCF_IPSBAR + MCFICM_INTC0 +
1566
                        MCFINTC_ICR0);
1567
                for (b = 36; (b < 49); b++)
1568
                        icrp[b] = 0x04;
1569
                imrp = (volatile unsigned long *) (MCF_IPSBAR + MCFICM_INTC0 +
1570
                        MCFINTC_IMRH);
1571
                *imrp &= ~0x0001FFF0;
1572
        }
1573
        *(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FEC) |= 0xf0;
1574
        *(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FECI2C) |= 0x0f;
1575
}
1576
 
1577
static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1578
{
1579
        volatile fec_t *fecp;
1580
 
1581
        fecp = fep->hwp;
1582
        fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1583
        fecp->fec_x_cntrl = 0x00;
1584
 
1585
        /*
1586
         * Set MII speed to 2.5 MHz
1587
         * See 5282 manual section 17.5.4.7: MSCR
1588
         */
1589
        fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1590
        fecp->fec_mii_speed = fep->phy_speed;
1591
 
1592
        fec_restart(dev, 0);
1593
}
1594
 
1595
static void __inline__ fec_get_mac(struct net_device *dev)
1596
{
1597
        struct fec_enet_private *fep = netdev_priv(dev);
1598
        volatile fec_t *fecp;
1599
        unsigned char *iap, tmpaddr[ETH_ALEN];
1600
 
1601
        fecp = fep->hwp;
1602
 
1603
        if (FEC_FLASHMAC) {
1604
                /*
1605
                 * Get MAC address from FLASH.
1606
                 * If it is all 1's or 0's, use the default.
1607
                 */
1608
                iap = FEC_FLASHMAC;
1609
                if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1610
                   (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1611
                        iap = fec_mac_default;
1612
                if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1613
                   (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1614
                        iap = fec_mac_default;
1615
        } else {
1616
                *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1617
                *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1618
                iap = &tmpaddr[0];
1619
        }
1620
 
1621
        memcpy(dev->dev_addr, iap, ETH_ALEN);
1622
 
1623
        /* Adjust MAC if using default MAC address */
1624
        if (iap == fec_mac_default)
1625
                dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1626
}
1627
 
1628
static void __inline__ fec_enable_phy_intr(void)
1629
{
1630
}
1631
 
1632
static void __inline__ fec_disable_phy_intr(void)
1633
{
1634
}
1635
 
1636
static void __inline__ fec_phy_ack_intr(void)
1637
{
1638
}
1639
 
1640
static void __inline__ fec_localhw_setup(void)
1641
{
1642
}
1643
 
1644
static void __inline__ fec_uncache(unsigned long addr)
1645
{
1646
}
1647
 
1648
/* ------------------------------------------------------------------------- */
1649
 
1650
#elif defined(CONFIG_M532x)
1651
/*
1652
 * Code specific for M532x
1653
 */
1654
static void __inline__ fec_request_intrs(struct net_device *dev)
1655
{
1656
        struct fec_enet_private *fep;
1657
        int b;
1658
        static const struct idesc {
1659
                char *name;
1660
                unsigned short irq;
1661
        } *idp, id[] = {
1662
            { "fec(TXF)", 36 },
1663
            { "fec(TXB)", 37 },
1664
            { "fec(TXFIFO)", 38 },
1665
            { "fec(TXCR)", 39 },
1666
            { "fec(RXF)", 40 },
1667
            { "fec(RXB)", 41 },
1668
            { "fec(MII)", 42 },
1669
            { "fec(LC)", 43 },
1670
            { "fec(HBERR)", 44 },
1671
            { "fec(GRA)", 45 },
1672
            { "fec(EBERR)", 46 },
1673
            { "fec(BABT)", 47 },
1674
            { "fec(BABR)", 48 },
1675
            { NULL },
1676
        };
1677
 
1678
        fep = netdev_priv(dev);
1679
        b = (fep->index) ? 128 : 64;
1680
 
1681
        /* Setup interrupt handlers. */
1682
        for (idp = id; idp->name; idp++) {
1683
                if (request_irq(b+idp->irq,fec_enet_interrupt,0,idp->name,dev)!=0)
1684
                        printk("FEC: Could not allocate %s IRQ(%d)!\n",
1685
                                idp->name, b+idp->irq);
1686
        }
1687
 
1688
        /* Unmask interrupts */
1689
        MCF_INTC0_ICR36 = 0x2;
1690
        MCF_INTC0_ICR37 = 0x2;
1691
        MCF_INTC0_ICR38 = 0x2;
1692
        MCF_INTC0_ICR39 = 0x2;
1693
        MCF_INTC0_ICR40 = 0x2;
1694
        MCF_INTC0_ICR41 = 0x2;
1695
        MCF_INTC0_ICR42 = 0x2;
1696
        MCF_INTC0_ICR43 = 0x2;
1697
        MCF_INTC0_ICR44 = 0x2;
1698
        MCF_INTC0_ICR45 = 0x2;
1699
        MCF_INTC0_ICR46 = 0x2;
1700
        MCF_INTC0_ICR47 = 0x2;
1701
        MCF_INTC0_ICR48 = 0x2;
1702
 
1703
        MCF_INTC0_IMRH &= ~(
1704
                MCF_INTC_IMRH_INT_MASK36 |
1705
                MCF_INTC_IMRH_INT_MASK37 |
1706
                MCF_INTC_IMRH_INT_MASK38 |
1707
                MCF_INTC_IMRH_INT_MASK39 |
1708
                MCF_INTC_IMRH_INT_MASK40 |
1709
                MCF_INTC_IMRH_INT_MASK41 |
1710
                MCF_INTC_IMRH_INT_MASK42 |
1711
                MCF_INTC_IMRH_INT_MASK43 |
1712
                MCF_INTC_IMRH_INT_MASK44 |
1713
                MCF_INTC_IMRH_INT_MASK45 |
1714
                MCF_INTC_IMRH_INT_MASK46 |
1715
                MCF_INTC_IMRH_INT_MASK47 |
1716
                MCF_INTC_IMRH_INT_MASK48 );
1717
 
1718
        /* Set up gpio outputs for MII lines */
1719
        MCF_GPIO_PAR_FECI2C |= (0 |
1720
                MCF_GPIO_PAR_FECI2C_PAR_MDC_EMDC |
1721
                MCF_GPIO_PAR_FECI2C_PAR_MDIO_EMDIO);
1722
        MCF_GPIO_PAR_FEC = (0 |
1723
                MCF_GPIO_PAR_FEC_PAR_FEC_7W_FEC |
1724
                MCF_GPIO_PAR_FEC_PAR_FEC_MII_FEC);
1725
}
1726
 
1727
static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1728
{
1729
        volatile fec_t *fecp;
1730
 
1731
        fecp = fep->hwp;
1732
        fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1733
        fecp->fec_x_cntrl = 0x00;
1734
 
1735
        /*
1736
         * Set MII speed to 2.5 MHz
1737
         */
1738
        fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1739
        fecp->fec_mii_speed = fep->phy_speed;
1740
 
1741
        fec_restart(dev, 0);
1742
}
1743
 
1744
static void __inline__ fec_get_mac(struct net_device *dev)
1745
{
1746
        struct fec_enet_private *fep = netdev_priv(dev);
1747
        volatile fec_t *fecp;
1748
        unsigned char *iap, tmpaddr[ETH_ALEN];
1749
 
1750
        fecp = fep->hwp;
1751
 
1752
        if (FEC_FLASHMAC) {
1753
                /*
1754
                 * Get MAC address from FLASH.
1755
                 * If it is all 1's or 0's, use the default.
1756
                 */
1757
                iap = FEC_FLASHMAC;
1758
                if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1759
                    (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1760
                        iap = fec_mac_default;
1761
                if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1762
                    (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1763
                        iap = fec_mac_default;
1764
        } else {
1765
                *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1766
                *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1767
                iap = &tmpaddr[0];
1768
        }
1769
 
1770
        memcpy(dev->dev_addr, iap, ETH_ALEN);
1771
 
1772
        /* Adjust MAC if using default MAC address */
1773
        if (iap == fec_mac_default)
1774
                dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1775
}
1776
 
1777
static void __inline__ fec_enable_phy_intr(void)
1778
{
1779
}
1780
 
1781
static void __inline__ fec_disable_phy_intr(void)
1782
{
1783
}
1784
 
1785
static void __inline__ fec_phy_ack_intr(void)
1786
{
1787
}
1788
 
1789
static void __inline__ fec_localhw_setup(void)
1790
{
1791
}
1792
 
1793
/*
1794
 *      Do not need to make region uncached on 532x.
1795
 */
1796
static void __inline__ fec_uncache(unsigned long addr)
1797
{
1798
}
1799
 
1800
/* ------------------------------------------------------------------------- */
1801
 
1802
 
1803
#else
1804
 
1805
/*
1806
 *      Code specific to the MPC860T setup.
1807
 */
1808
static void __inline__ fec_request_intrs(struct net_device *dev)
1809
{
1810
        volatile immap_t *immap;
1811
 
1812
        immap = (immap_t *)IMAP_ADDR;   /* pointer to internal registers */
1813
 
1814
        if (request_8xxirq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0)
1815
                panic("Could not allocate FEC IRQ!");
1816
 
1817
#ifdef CONFIG_RPXCLASSIC
1818
        /* Make Port C, bit 15 an input that causes interrupts.
1819
        */
1820
        immap->im_ioport.iop_pcpar &= ~0x0001;
1821
        immap->im_ioport.iop_pcdir &= ~0x0001;
1822
        immap->im_ioport.iop_pcso &= ~0x0001;
1823
        immap->im_ioport.iop_pcint |= 0x0001;
1824
        cpm_install_handler(CPMVEC_PIO_PC15, mii_link_interrupt, dev);
1825
 
1826
        /* Make LEDS reflect Link status.
1827
        */
1828
        *((uint *) RPX_CSR_ADDR) &= ~BCSR2_FETHLEDMODE;
1829
#endif
1830
#ifdef CONFIG_FADS
1831
        if (request_8xxirq(SIU_IRQ2, mii_link_interrupt, 0, "mii", dev) != 0)
1832
                panic("Could not allocate MII IRQ!");
1833
#endif
1834
}
1835
 
1836
static void __inline__ fec_get_mac(struct net_device *dev)
1837
{
1838
        bd_t *bd;
1839
 
1840
        bd = (bd_t *)__res;
1841
        memcpy(dev->dev_addr, bd->bi_enetaddr, ETH_ALEN);
1842
 
1843
#ifdef CONFIG_RPXCLASSIC
1844
        /* The Embedded Planet boards have only one MAC address in
1845
         * the EEPROM, but can have two Ethernet ports.  For the
1846
         * FEC port, we create another address by setting one of
1847
         * the address bits above something that would have (up to
1848
         * now) been allocated.
1849
         */
1850
        dev->dev_adrd[3] |= 0x80;
1851
#endif
1852
}
1853
 
1854
static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1855
{
1856
        extern uint _get_IMMR(void);
1857
        volatile immap_t *immap;
1858
        volatile fec_t *fecp;
1859
 
1860
        fecp = fep->hwp;
1861
        immap = (immap_t *)IMAP_ADDR;   /* pointer to internal registers */
1862
 
1863
        /* Configure all of port D for MII.
1864
        */
1865
        immap->im_ioport.iop_pdpar = 0x1fff;
1866
 
1867
        /* Bits moved from Rev. D onward.
1868
        */
1869
        if ((_get_IMMR() & 0xffff) < 0x0501)
1870
                immap->im_ioport.iop_pddir = 0x1c58;    /* Pre rev. D */
1871
        else
1872
                immap->im_ioport.iop_pddir = 0x1fff;    /* Rev. D and later */
1873
 
1874
        /* Set MII speed to 2.5 MHz
1875
        */
1876
        fecp->fec_mii_speed = fep->phy_speed =
1877
                ((bd->bi_busfreq * 1000000) / 2500000) & 0x7e;
1878
}
1879
 
1880
static void __inline__ fec_enable_phy_intr(void)
1881
{
1882
        volatile fec_t *fecp;
1883
 
1884
        fecp = fep->hwp;
1885
 
1886
        /* Enable MII command finished interrupt
1887
        */
1888
        fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
1889
}
1890
 
1891
static void __inline__ fec_disable_phy_intr(void)
1892
{
1893
}
1894
 
1895
static void __inline__ fec_phy_ack_intr(void)
1896
{
1897
}
1898
 
1899
static void __inline__ fec_localhw_setup(void)
1900
{
1901
        volatile fec_t *fecp;
1902
 
1903
        fecp = fep->hwp;
1904
        fecp->fec_r_hash = PKT_MAXBUF_SIZE;
1905
        /* Enable big endian and don't care about SDMA FC.
1906
        */
1907
        fecp->fec_fun_code = 0x78000000;
1908
}
1909
 
1910
static void __inline__ fec_uncache(unsigned long addr)
1911
{
1912
        pte_t *pte;
1913
        pte = va_to_pte(mem_addr);
1914
        pte_val(*pte) |= _PAGE_NO_CACHE;
1915
        flush_tlb_page(init_mm.mmap, mem_addr);
1916
}
1917
 
1918
#endif
1919
 
1920
/* ------------------------------------------------------------------------- */
1921
 
1922
static void mii_display_status(struct net_device *dev)
1923
{
1924
        struct fec_enet_private *fep = netdev_priv(dev);
1925
        volatile uint *s = &(fep->phy_status);
1926
 
1927
        if (!fep->link && !fep->old_link) {
1928
                /* Link is still down - don't print anything */
1929
                return;
1930
        }
1931
 
1932
        printk("%s: status: ", dev->name);
1933
 
1934
        if (!fep->link) {
1935
                printk("link down");
1936
        } else {
1937
                printk("link up");
1938
 
1939
                switch(*s & PHY_STAT_SPMASK) {
1940
                case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
1941
                case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
1942
                case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
1943
                case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
1944
                default:
1945
                        printk(", Unknown speed/duplex");
1946
                }
1947
 
1948
                if (*s & PHY_STAT_ANC)
1949
                        printk(", auto-negotiation complete");
1950
        }
1951
 
1952
        if (*s & PHY_STAT_FAULT)
1953
                printk(", remote fault");
1954
 
1955
        printk(".\n");
1956
}
1957
 
1958
static void mii_display_config(struct work_struct *work)
1959
{
1960
        struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
1961
        struct net_device *dev = fep->netdev;
1962
        uint status = fep->phy_status;
1963
 
1964
        /*
1965
        ** When we get here, phy_task is already removed from
1966
        ** the workqueue.  It is thus safe to allow to reuse it.
1967
        */
1968
        fep->mii_phy_task_queued = 0;
1969
        printk("%s: config: auto-negotiation ", dev->name);
1970
 
1971
        if (status & PHY_CONF_ANE)
1972
                printk("on");
1973
        else
1974
                printk("off");
1975
 
1976
        if (status & PHY_CONF_100FDX)
1977
                printk(", 100FDX");
1978
        if (status & PHY_CONF_100HDX)
1979
                printk(", 100HDX");
1980
        if (status & PHY_CONF_10FDX)
1981
                printk(", 10FDX");
1982
        if (status & PHY_CONF_10HDX)
1983
                printk(", 10HDX");
1984
        if (!(status & PHY_CONF_SPMASK))
1985
                printk(", No speed/duplex selected?");
1986
 
1987
        if (status & PHY_CONF_LOOP)
1988
                printk(", loopback enabled");
1989
 
1990
        printk(".\n");
1991
 
1992
        fep->sequence_done = 1;
1993
}
1994
 
1995
static void mii_relink(struct work_struct *work)
1996
{
1997
        struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
1998
        struct net_device *dev = fep->netdev;
1999
        int duplex;
2000
 
2001
        /*
2002
        ** When we get here, phy_task is already removed from
2003
        ** the workqueue.  It is thus safe to allow to reuse it.
2004
        */
2005
        fep->mii_phy_task_queued = 0;
2006
        fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
2007
        mii_display_status(dev);
2008
        fep->old_link = fep->link;
2009
 
2010
        if (fep->link) {
2011
                duplex = 0;
2012
                if (fep->phy_status
2013
                    & (PHY_STAT_100FDX | PHY_STAT_10FDX))
2014
                        duplex = 1;
2015
                fec_restart(dev, duplex);
2016
        } else
2017
                fec_stop(dev);
2018
 
2019
#if 0
2020
        enable_irq(fep->mii_irq);
2021
#endif
2022
 
2023
}
2024
 
2025
/* mii_queue_relink is called in interrupt context from mii_link_interrupt */
2026
static void mii_queue_relink(uint mii_reg, struct net_device *dev)
2027
{
2028
        struct fec_enet_private *fep = netdev_priv(dev);
2029
 
2030
        /*
2031
        ** We cannot queue phy_task twice in the workqueue.  It
2032
        ** would cause an endless loop in the workqueue.
2033
        ** Fortunately, if the last mii_relink entry has not yet been
2034
        ** executed now, it will do the job for the current interrupt,
2035
        ** which is just what we want.
2036
        */
2037
        if (fep->mii_phy_task_queued)
2038
                return;
2039
 
2040
        fep->mii_phy_task_queued = 1;
2041
        INIT_WORK(&fep->phy_task, mii_relink);
2042
        schedule_work(&fep->phy_task);
2043
}
2044
 
2045
/* mii_queue_config is called in interrupt context from fec_enet_mii */
2046
static void mii_queue_config(uint mii_reg, struct net_device *dev)
2047
{
2048
        struct fec_enet_private *fep = netdev_priv(dev);
2049
 
2050
        if (fep->mii_phy_task_queued)
2051
                return;
2052
 
2053
        fep->mii_phy_task_queued = 1;
2054
        INIT_WORK(&fep->phy_task, mii_display_config);
2055
        schedule_work(&fep->phy_task);
2056
}
2057
 
2058
phy_cmd_t const phy_cmd_relink[] = {
2059
        { mk_mii_read(MII_REG_CR), mii_queue_relink },
2060
        { mk_mii_end, }
2061
        };
2062
phy_cmd_t const phy_cmd_config[] = {
2063
        { mk_mii_read(MII_REG_CR), mii_queue_config },
2064
        { mk_mii_end, }
2065
        };
2066
 
2067
/* Read remainder of PHY ID.
2068
*/
2069
static void
2070
mii_discover_phy3(uint mii_reg, struct net_device *dev)
2071
{
2072
        struct fec_enet_private *fep;
2073
        int i;
2074
 
2075
        fep = netdev_priv(dev);
2076
        fep->phy_id |= (mii_reg & 0xffff);
2077
        printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);
2078
 
2079
        for(i = 0; phy_info[i]; i++) {
2080
                if(phy_info[i]->id == (fep->phy_id >> 4))
2081
                        break;
2082
        }
2083
 
2084
        if (phy_info[i])
2085
                printk(" -- %s\n", phy_info[i]->name);
2086
        else
2087
                printk(" -- unknown PHY!\n");
2088
 
2089
        fep->phy = phy_info[i];
2090
        fep->phy_id_done = 1;
2091
}
2092
 
2093
/* Scan all of the MII PHY addresses looking for someone to respond
2094
 * with a valid ID.  This usually happens quickly.
2095
 */
2096
static void
2097
mii_discover_phy(uint mii_reg, struct net_device *dev)
2098
{
2099
        struct fec_enet_private *fep;
2100
        volatile fec_t *fecp;
2101
        uint phytype;
2102
 
2103
        fep = netdev_priv(dev);
2104
        fecp = fep->hwp;
2105
 
2106
        if (fep->phy_addr < 32) {
2107
                if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
2108
 
2109
                        /* Got first part of ID, now get remainder.
2110
                        */
2111
                        fep->phy_id = phytype << 16;
2112
                        mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
2113
                                                        mii_discover_phy3);
2114
                } else {
2115
                        fep->phy_addr++;
2116
                        mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
2117
                                                        mii_discover_phy);
2118
                }
2119
        } else {
2120
                printk("FEC: No PHY device found.\n");
2121
                /* Disable external MII interface */
2122
                fecp->fec_mii_speed = fep->phy_speed = 0;
2123
                fec_disable_phy_intr();
2124
        }
2125
}
2126
 
2127
/* This interrupt occurs when the PHY detects a link change.
2128
*/
2129
#ifdef CONFIG_RPXCLASSIC
2130
static void
2131
mii_link_interrupt(void *dev_id)
2132
#else
2133
static irqreturn_t
2134
mii_link_interrupt(int irq, void * dev_id)
2135
#endif
2136
{
2137
        struct  net_device *dev = dev_id;
2138
        struct fec_enet_private *fep = netdev_priv(dev);
2139
 
2140
        fec_phy_ack_intr();
2141
 
2142
#if 0
2143
        disable_irq(fep->mii_irq);  /* disable now, enable later */
2144
#endif
2145
 
2146
        mii_do_cmd(dev, fep->phy->ack_int);
2147
        mii_do_cmd(dev, phy_cmd_relink);  /* restart and display status */
2148
 
2149
        return IRQ_HANDLED;
2150
}
2151
 
2152
static int
2153
fec_enet_open(struct net_device *dev)
2154
{
2155
        struct fec_enet_private *fep = netdev_priv(dev);
2156
 
2157
        /* I should reset the ring buffers here, but I don't yet know
2158
         * a simple way to do that.
2159
         */
2160
        fec_set_mac_address(dev);
2161
 
2162
        fep->sequence_done = 0;
2163
        fep->link = 0;
2164
 
2165
        if (fep->phy) {
2166
                mii_do_cmd(dev, fep->phy->ack_int);
2167
                mii_do_cmd(dev, fep->phy->config);
2168
                mii_do_cmd(dev, phy_cmd_config);  /* display configuration */
2169
 
2170
                /* Poll until the PHY tells us its configuration
2171
                 * (not link state).
2172
                 * Request is initiated by mii_do_cmd above, but answer
2173
                 * comes by interrupt.
2174
                 * This should take about 25 usec per register at 2.5 MHz,
2175
                 * and we read approximately 5 registers.
2176
                 */
2177
                while(!fep->sequence_done)
2178
                        schedule();
2179
 
2180
                mii_do_cmd(dev, fep->phy->startup);
2181
 
2182
                /* Set the initial link state to true. A lot of hardware
2183
                 * based on this device does not implement a PHY interrupt,
2184
                 * so we are never notified of link change.
2185
                 */
2186
                fep->link = 1;
2187
        } else {
2188
                fep->link = 1; /* lets just try it and see */
2189
                /* no phy,  go full duplex,  it's most likely a hub chip */
2190
                fec_restart(dev, 1);
2191
        }
2192
 
2193
        netif_start_queue(dev);
2194
        fep->opened = 1;
2195
        return 0;                /* Success */
2196
}
2197
 
2198
static int
2199
fec_enet_close(struct net_device *dev)
2200
{
2201
        struct fec_enet_private *fep = netdev_priv(dev);
2202
 
2203
        /* Don't know what to do yet.
2204
        */
2205
        fep->opened = 0;
2206
        netif_stop_queue(dev);
2207
        fec_stop(dev);
2208
 
2209
        return 0;
2210
}
2211
 
2212
/* Set or clear the multicast filter for this adaptor.
2213
 * Skeleton taken from sunlance driver.
2214
 * The CPM Ethernet implementation allows Multicast as well as individual
2215
 * MAC address filtering.  Some of the drivers check to make sure it is
2216
 * a group multicast address, and discard those that are not.  I guess I
2217
 * will do the same for now, but just remove the test if you want
2218
 * individual filtering as well (do the upper net layers want or support
2219
 * this kind of feature?).
2220
 */
2221
 
2222
#define HASH_BITS       6               /* #bits in hash */
2223
#define CRC32_POLY      0xEDB88320
2224
 
2225
static void set_multicast_list(struct net_device *dev)
2226
{
2227
        struct fec_enet_private *fep;
2228
        volatile fec_t *ep;
2229
        struct dev_mc_list *dmi;
2230
        unsigned int i, j, bit, data, crc;
2231
        unsigned char hash;
2232
 
2233
        fep = netdev_priv(dev);
2234
        ep = fep->hwp;
2235
 
2236
        if (dev->flags&IFF_PROMISC) {
2237
                ep->fec_r_cntrl |= 0x0008;
2238
        } else {
2239
 
2240
                ep->fec_r_cntrl &= ~0x0008;
2241
 
2242
                if (dev->flags & IFF_ALLMULTI) {
2243
                        /* Catch all multicast addresses, so set the
2244
                         * filter to all 1's.
2245
                         */
2246
                        ep->fec_hash_table_high = 0xffffffff;
2247
                        ep->fec_hash_table_low = 0xffffffff;
2248
                } else {
2249
                        /* Clear filter and add the addresses in hash register.
2250
                        */
2251
                        ep->fec_hash_table_high = 0;
2252
                        ep->fec_hash_table_low = 0;
2253
 
2254
                        dmi = dev->mc_list;
2255
 
2256
                        for (j = 0; j < dev->mc_count; j++, dmi = dmi->next)
2257
                        {
2258
                                /* Only support group multicast for now.
2259
                                */
2260
                                if (!(dmi->dmi_addr[0] & 1))
2261
                                        continue;
2262
 
2263
                                /* calculate crc32 value of mac address
2264
                                */
2265
                                crc = 0xffffffff;
2266
 
2267
                                for (i = 0; i < dmi->dmi_addrlen; i++)
2268
                                {
2269
                                        data = dmi->dmi_addr[i];
2270
                                        for (bit = 0; bit < 8; bit++, data >>= 1)
2271
                                        {
2272
                                                crc = (crc >> 1) ^
2273
                                                (((crc ^ data) & 1) ? CRC32_POLY : 0);
2274
                                        }
2275
                                }
2276
 
2277
                                /* only upper 6 bits (HASH_BITS) are used
2278
                                   which point to specific bit in he hash registers
2279
                                */
2280
                                hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2281
 
2282
                                if (hash > 31)
2283
                                        ep->fec_hash_table_high |= 1 << (hash - 32);
2284
                                else
2285
                                        ep->fec_hash_table_low |= 1 << hash;
2286
                        }
2287
                }
2288
        }
2289
}
2290
 
2291
/* Set a MAC change in hardware.
2292
 */
2293
static void
2294
fec_set_mac_address(struct net_device *dev)
2295
{
2296
        volatile fec_t *fecp;
2297
 
2298
        fecp = ((struct fec_enet_private *)netdev_priv(dev))->hwp;
2299
 
2300
        /* Set station address. */
2301
        fecp->fec_addr_low = dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
2302
                (dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24);
2303
        fecp->fec_addr_high = (dev->dev_addr[5] << 16) |
2304
                (dev->dev_addr[4] << 24);
2305
 
2306
}
2307
 
2308
/* Initialize the FEC Ethernet on 860T (or ColdFire 5272).
2309
 */
2310
 /*
2311
  * XXX:  We need to clean up on failure exits here.
2312
  */
2313
int __init fec_enet_init(struct net_device *dev)
2314
{
2315
        struct fec_enet_private *fep = netdev_priv(dev);
2316
        unsigned long   mem_addr;
2317
        volatile cbd_t  *bdp;
2318
        cbd_t           *cbd_base;
2319
        volatile fec_t  *fecp;
2320
        int             i, j;
2321
        static int      index = 0;
2322
 
2323
        /* Only allow us to be probed once. */
2324
        if (index >= FEC_MAX_PORTS)
2325
                return -ENXIO;
2326
 
2327
        /* Allocate memory for buffer descriptors.
2328
        */
2329
        mem_addr = __get_free_page(GFP_KERNEL);
2330
        if (mem_addr == 0) {
2331
                printk("FEC: allocate descriptor memory failed?\n");
2332
                return -ENOMEM;
2333
        }
2334
 
2335
        /* Create an Ethernet device instance.
2336
        */
2337
        fecp = (volatile fec_t *) fec_hw[index];
2338
 
2339
        fep->index = index;
2340
        fep->hwp = fecp;
2341
        fep->netdev = dev;
2342
 
2343
        /* Whack a reset.  We should wait for this.
2344
        */
2345
        fecp->fec_ecntrl = 1;
2346
        udelay(10);
2347
 
2348
        /* Set the Ethernet address.  If using multiple Enets on the 8xx,
2349
         * this needs some work to get unique addresses.
2350
         *
2351
         * This is our default MAC address unless the user changes
2352
         * it via eth_mac_addr (our dev->set_mac_addr handler).
2353
         */
2354
        fec_get_mac(dev);
2355
 
2356
        cbd_base = (cbd_t *)mem_addr;
2357
        /* XXX: missing check for allocation failure */
2358
 
2359
        fec_uncache(mem_addr);
2360
 
2361
        /* Set receive and transmit descriptor base.
2362
        */
2363
        fep->rx_bd_base = cbd_base;
2364
        fep->tx_bd_base = cbd_base + RX_RING_SIZE;
2365
 
2366
        fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2367
        fep->cur_rx = fep->rx_bd_base;
2368
 
2369
        fep->skb_cur = fep->skb_dirty = 0;
2370
 
2371
        /* Initialize the receive buffer descriptors.
2372
        */
2373
        bdp = fep->rx_bd_base;
2374
        for (i=0; i<FEC_ENET_RX_PAGES; i++) {
2375
 
2376
                /* Allocate a page.
2377
                */
2378
                mem_addr = __get_free_page(GFP_KERNEL);
2379
                /* XXX: missing check for allocation failure */
2380
 
2381
                fec_uncache(mem_addr);
2382
 
2383
                /* Initialize the BD for every fragment in the page.
2384
                */
2385
                for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
2386
                        bdp->cbd_sc = BD_ENET_RX_EMPTY;
2387
                        bdp->cbd_bufaddr = __pa(mem_addr);
2388
                        mem_addr += FEC_ENET_RX_FRSIZE;
2389
                        bdp++;
2390
                }
2391
        }
2392
 
2393
        /* Set the last buffer to wrap.
2394
        */
2395
        bdp--;
2396
        bdp->cbd_sc |= BD_SC_WRAP;
2397
 
2398
        /* ...and the same for transmmit.
2399
        */
2400
        bdp = fep->tx_bd_base;
2401
        for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
2402
                if (j >= FEC_ENET_TX_FRPPG) {
2403
                        mem_addr = __get_free_page(GFP_KERNEL);
2404
                        j = 1;
2405
                } else {
2406
                        mem_addr += FEC_ENET_TX_FRSIZE;
2407
                        j++;
2408
                }
2409
                fep->tx_bounce[i] = (unsigned char *) mem_addr;
2410
 
2411
                /* Initialize the BD for every fragment in the page.
2412
                */
2413
                bdp->cbd_sc = 0;
2414
                bdp->cbd_bufaddr = 0;
2415
                bdp++;
2416
        }
2417
 
2418
        /* Set the last buffer to wrap.
2419
        */
2420
        bdp--;
2421
        bdp->cbd_sc |= BD_SC_WRAP;
2422
 
2423
        /* Set receive and transmit descriptor base.
2424
        */
2425
        fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
2426
        fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
2427
 
2428
        /* Install our interrupt handlers. This varies depending on
2429
         * the architecture.
2430
        */
2431
        fec_request_intrs(dev);
2432
 
2433
        fecp->fec_hash_table_high = 0;
2434
        fecp->fec_hash_table_low = 0;
2435
        fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
2436
        fecp->fec_ecntrl = 2;
2437
        fecp->fec_r_des_active = 0;
2438
 
2439
        dev->base_addr = (unsigned long)fecp;
2440
 
2441
        /* The FEC Ethernet specific entries in the device structure. */
2442
        dev->open = fec_enet_open;
2443
        dev->hard_start_xmit = fec_enet_start_xmit;
2444
        dev->tx_timeout = fec_timeout;
2445
        dev->watchdog_timeo = TX_TIMEOUT;
2446
        dev->stop = fec_enet_close;
2447
        dev->set_multicast_list = set_multicast_list;
2448
 
2449
        for (i=0; i<NMII-1; i++)
2450
                mii_cmds[i].mii_next = &mii_cmds[i+1];
2451
        mii_free = mii_cmds;
2452
 
2453
        /* setup MII interface */
2454
        fec_set_mii(dev, fep);
2455
 
2456
        /* Clear and enable interrupts */
2457
        fecp->fec_ievent = 0xffc00000;
2458
        fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
2459
                FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
2460
 
2461
        /* Queue up command to detect the PHY and initialize the
2462
         * remainder of the interface.
2463
         */
2464
        fep->phy_id_done = 0;
2465
        fep->phy_addr = 0;
2466
        mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
2467
 
2468
        index++;
2469
        return 0;
2470
}
2471
 
2472
/* This function is called to start or restart the FEC during a link
2473
 * change.  This only happens when switching between half and full
2474
 * duplex.
2475
 */
2476
static void
2477
fec_restart(struct net_device *dev, int duplex)
2478
{
2479
        struct fec_enet_private *fep;
2480
        volatile cbd_t *bdp;
2481
        volatile fec_t *fecp;
2482
        int i;
2483
 
2484
        fep = netdev_priv(dev);
2485
        fecp = fep->hwp;
2486
 
2487
        /* Whack a reset.  We should wait for this.
2488
        */
2489
        fecp->fec_ecntrl = 1;
2490
        udelay(10);
2491
 
2492
        /* Clear any outstanding interrupt.
2493
        */
2494
        fecp->fec_ievent = 0xffc00000;
2495
        fec_enable_phy_intr();
2496
 
2497
        /* Set station address.
2498
        */
2499
        fec_set_mac_address(dev);
2500
 
2501
        /* Reset all multicast.
2502
        */
2503
        fecp->fec_hash_table_high = 0;
2504
        fecp->fec_hash_table_low = 0;
2505
 
2506
        /* Set maximum receive buffer size.
2507
        */
2508
        fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
2509
 
2510
        fec_localhw_setup();
2511
 
2512
        /* Set receive and transmit descriptor base.
2513
        */
2514
        fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
2515
        fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
2516
 
2517
        fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2518
        fep->cur_rx = fep->rx_bd_base;
2519
 
2520
        /* Reset SKB transmit buffers.
2521
        */
2522
        fep->skb_cur = fep->skb_dirty = 0;
2523
        for (i=0; i<=TX_RING_MOD_MASK; i++) {
2524
                if (fep->tx_skbuff[i] != NULL) {
2525
                        dev_kfree_skb_any(fep->tx_skbuff[i]);
2526
                        fep->tx_skbuff[i] = NULL;
2527
                }
2528
        }
2529
 
2530
        /* Initialize the receive buffer descriptors.
2531
        */
2532
        bdp = fep->rx_bd_base;
2533
        for (i=0; i<RX_RING_SIZE; i++) {
2534
 
2535
                /* Initialize the BD for every fragment in the page.
2536
                */
2537
                bdp->cbd_sc = BD_ENET_RX_EMPTY;
2538
                bdp++;
2539
        }
2540
 
2541
        /* Set the last buffer to wrap.
2542
        */
2543
        bdp--;
2544
        bdp->cbd_sc |= BD_SC_WRAP;
2545
 
2546
        /* ...and the same for transmmit.
2547
        */
2548
        bdp = fep->tx_bd_base;
2549
        for (i=0; i<TX_RING_SIZE; i++) {
2550
 
2551
                /* Initialize the BD for every fragment in the page.
2552
                */
2553
                bdp->cbd_sc = 0;
2554
                bdp->cbd_bufaddr = 0;
2555
                bdp++;
2556
        }
2557
 
2558
        /* Set the last buffer to wrap.
2559
        */
2560
        bdp--;
2561
        bdp->cbd_sc |= BD_SC_WRAP;
2562
 
2563
        /* Enable MII mode.
2564
        */
2565
        if (duplex) {
2566
                fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */
2567
                fecp->fec_x_cntrl = 0x04;                 /* FD enable */
2568
        } else {
2569
                /* MII enable|No Rcv on Xmit */
2570
                fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06;
2571
                fecp->fec_x_cntrl = 0x00;
2572
        }
2573
        fep->full_duplex = duplex;
2574
 
2575
        /* Set MII speed.
2576
        */
2577
        fecp->fec_mii_speed = fep->phy_speed;
2578
 
2579
        /* And last, enable the transmit and receive processing.
2580
        */
2581
        fecp->fec_ecntrl = 2;
2582
        fecp->fec_r_des_active = 0;
2583
 
2584
        /* Enable interrupts we wish to service.
2585
        */
2586
        fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
2587
                FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
2588
}
2589
 
2590
static void
2591
fec_stop(struct net_device *dev)
2592
{
2593
        volatile fec_t *fecp;
2594
        struct fec_enet_private *fep;
2595
 
2596
        fep = netdev_priv(dev);
2597
        fecp = fep->hwp;
2598
 
2599
        /*
2600
        ** We cannot expect a graceful transmit stop without link !!!
2601
        */
2602
        if (fep->link)
2603
                {
2604
                fecp->fec_x_cntrl = 0x01;       /* Graceful transmit stop */
2605
                udelay(10);
2606
                if (!(fecp->fec_ievent & FEC_ENET_GRA))
2607
                        printk("fec_stop : Graceful transmit stop did not complete !\n");
2608
                }
2609
 
2610
        /* Whack a reset.  We should wait for this.
2611
        */
2612
        fecp->fec_ecntrl = 1;
2613
        udelay(10);
2614
 
2615
        /* Clear outstanding MII command interrupts.
2616
        */
2617
        fecp->fec_ievent = FEC_ENET_MII;
2618
        fec_enable_phy_intr();
2619
 
2620
        fecp->fec_imask = FEC_ENET_MII;
2621
        fecp->fec_mii_speed = fep->phy_speed;
2622
}
2623
 
2624
static int __init fec_enet_module_init(void)
2625
{
2626
        struct net_device *dev;
2627
        int i, j, err;
2628
        DECLARE_MAC_BUF(mac);
2629
 
2630
        printk("FEC ENET Version 0.2\n");
2631
 
2632
        for (i = 0; (i < FEC_MAX_PORTS); i++) {
2633
                dev = alloc_etherdev(sizeof(struct fec_enet_private));
2634
                if (!dev)
2635
                        return -ENOMEM;
2636
                err = fec_enet_init(dev);
2637
                if (err) {
2638
                        free_netdev(dev);
2639
                        continue;
2640
                }
2641
                if (register_netdev(dev) != 0) {
2642
                        /* XXX: missing cleanup here */
2643
                        free_netdev(dev);
2644
                        return -EIO;
2645
                }
2646
 
2647
                printk("%s: ethernet %s\n",
2648
                       dev->name, print_mac(mac, dev->dev_addr));
2649
        }
2650
        return 0;
2651
}
2652
 
2653
module_init(fec_enet_module_init);
2654
 
2655
MODULE_LICENSE("GPL");

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.