OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [drivers/] [net/] [ipg.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter
3
 *
4
 * Copyright (C) 2003, 2007  IC Plus Corp
5
 *
6
 * Original Author:
7
 *
8
 *   Craig Rich
9
 *   Sundance Technology, Inc.
10
 *   www.sundanceti.com
11
 *   craig_rich@sundanceti.com
12
 *
13
 * Current Maintainer:
14
 *
15
 *   Sorbica Shieh.
16
 *   http://www.icplus.com.tw
17
 *   sorbica@icplus.com.tw
18
 *
19
 *   Jesse Huang
20
 *   http://www.icplus.com.tw
21
 *   jesse@icplus.com.tw
22
 */
23
#include <linux/crc32.h>
24
#include <linux/ethtool.h>
25
#include <linux/mii.h>
26
#include <linux/mutex.h>
27
 
28
#include <asm/div64.h>
29
 
30
#define IPG_RX_RING_BYTES       (sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH)
31
#define IPG_TX_RING_BYTES       (sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH)
32
#define IPG_RESET_MASK \
33
        (IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \
34
         IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \
35
         IPG_AC_AUTO_INIT)
36
 
37
#define ipg_w32(val32,reg)      iowrite32((val32), ioaddr + (reg))
38
#define ipg_w16(val16,reg)      iowrite16((val16), ioaddr + (reg))
39
#define ipg_w8(val8,reg)        iowrite8((val8), ioaddr + (reg))
40
 
41
#define ipg_r32(reg)            ioread32(ioaddr + (reg))
42
#define ipg_r16(reg)            ioread16(ioaddr + (reg))
43
#define ipg_r8(reg)             ioread8(ioaddr + (reg))
44
 
45
#define JUMBO_FRAME_4k_ONLY
46
enum {
47
        netdev_io_size = 128
48
};
49
 
50
#include "ipg.h"
51
#define DRV_NAME        "ipg"
52
 
53
MODULE_AUTHOR("IC Plus Corp. 2003");
54
MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver "
55
                   DrvVer);
56
MODULE_LICENSE("GPL");
57
 
58
//variable record -- index by leading revision/length
59
//Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN
60
static unsigned short DefaultPhyParam[] = {
61
        // 11/12/03 IP1000A v1-3 rev=0x40
62
        /*--------------------------------------------------------------------------
63
        (0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2,
64
                                 27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6,
65
                                 31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7,  9, 0x0700,
66
          --------------------------------------------------------------------------*/
67
        // 12/17/03 IP1000A v1-4 rev=0x40
68
        (0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
69
            0x0000,
70
        30, 0x005e, 9, 0x0700,
71
        // 01/09/04 IP1000A v1-5 rev=0x41
72
        (0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
73
            0x0000,
74
        30, 0x005e, 9, 0x0700,
75
        0x0000
76
};
77
 
78
static const char *ipg_brand_name[] = {
79
        "IC PLUS IP1000 1000/100/10 based NIC",
80
        "Sundance Technology ST2021 based NIC",
81
        "Tamarack Microelectronics TC9020/9021 based NIC",
82
        "Tamarack Microelectronics TC9020/9021 based NIC",
83
        "D-Link NIC",
84
        "D-Link NIC IP1000A"
85
};
86
 
87
static struct pci_device_id ipg_pci_tbl[] __devinitdata = {
88
        { PCI_VDEVICE(SUNDANCE, 0x1023), 0 },
89
        { PCI_VDEVICE(SUNDANCE, 0x2021), 1 },
90
        { PCI_VDEVICE(SUNDANCE, 0x1021), 2 },
91
        { PCI_VDEVICE(DLINK,    0x9021), 3 },
92
        { PCI_VDEVICE(DLINK,    0x4000), 4 },
93
        { PCI_VDEVICE(DLINK,    0x4020), 5 },
94
        { 0, }
95
};
96
 
97
MODULE_DEVICE_TABLE(pci, ipg_pci_tbl);
98
 
99
static inline void __iomem *ipg_ioaddr(struct net_device *dev)
100
{
101
        struct ipg_nic_private *sp = netdev_priv(dev);
102
        return sp->ioaddr;
103
}
104
 
105
#ifdef IPG_DEBUG
106
static void ipg_dump_rfdlist(struct net_device *dev)
107
{
108
        struct ipg_nic_private *sp = netdev_priv(dev);
109
        void __iomem *ioaddr = sp->ioaddr;
110
        unsigned int i;
111
        u32 offset;
112
 
113
        IPG_DEBUG_MSG("_dump_rfdlist\n");
114
 
115
        printk(KERN_INFO "rx_current = %2.2x\n", sp->rx_current);
116
        printk(KERN_INFO "rx_dirty   = %2.2x\n", sp->rx_dirty);
117
        printk(KERN_INFO "RFDList start address = %16.16lx\n",
118
               (unsigned long) sp->rxd_map);
119
        printk(KERN_INFO "RFDListPtr register   = %8.8x%8.8x\n",
120
               ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0));
121
 
122
        for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
123
                offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd;
124
                printk(KERN_INFO "%2.2x %4.4x RFDNextPtr = %16.16lx\n", i,
125
                       offset, (unsigned long) sp->rxd[i].next_desc);
126
                offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd;
127
                printk(KERN_INFO "%2.2x %4.4x RFS        = %16.16lx\n", i,
128
                       offset, (unsigned long) sp->rxd[i].rfs);
129
                offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd;
130
                printk(KERN_INFO "%2.2x %4.4x frag_info   = %16.16lx\n", i,
131
                       offset, (unsigned long) sp->rxd[i].frag_info);
132
        }
133
}
134
 
135
static void ipg_dump_tfdlist(struct net_device *dev)
136
{
137
        struct ipg_nic_private *sp = netdev_priv(dev);
138
        void __iomem *ioaddr = sp->ioaddr;
139
        unsigned int i;
140
        u32 offset;
141
 
142
        IPG_DEBUG_MSG("_dump_tfdlist\n");
143
 
144
        printk(KERN_INFO "tx_current         = %2.2x\n", sp->tx_current);
145
        printk(KERN_INFO "tx_dirty = %2.2x\n", sp->tx_dirty);
146
        printk(KERN_INFO "TFDList start address = %16.16lx\n",
147
               (unsigned long) sp->txd_map);
148
        printk(KERN_INFO "TFDListPtr register   = %8.8x%8.8x\n",
149
               ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0));
150
 
151
        for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
152
                offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd;
153
                printk(KERN_INFO "%2.2x %4.4x TFDNextPtr = %16.16lx\n", i,
154
                       offset, (unsigned long) sp->txd[i].next_desc);
155
 
156
                offset = (u32) &sp->txd[i].tfc - (u32) sp->txd;
157
                printk(KERN_INFO "%2.2x %4.4x TFC        = %16.16lx\n", i,
158
                       offset, (unsigned long) sp->txd[i].tfc);
159
                offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd;
160
                printk(KERN_INFO "%2.2x %4.4x frag_info   = %16.16lx\n", i,
161
                       offset, (unsigned long) sp->txd[i].frag_info);
162
        }
163
}
164
#endif
165
 
166
static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data)
167
{
168
        ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL);
169
        ndelay(IPG_PC_PHYCTRLWAIT_NS);
170
}
171
 
172
static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data)
173
{
174
        ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data);
175
        ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data);
176
}
177
 
178
static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity)
179
{
180
        phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR;
181
 
182
        ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity);
183
}
184
 
185
static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity)
186
{
187
        ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR |
188
                phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL);
189
}
190
 
191
static u16 read_phy_bit(void __iomem * ioaddr, u8 phyctrlpolarity)
192
{
193
        u16 bit_data;
194
 
195
        ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity);
196
 
197
        bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1;
198
 
199
        ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity);
200
 
201
        return bit_data;
202
}
203
 
204
/*
205
 * Read a register from the Physical Layer device located
206
 * on the IPG NIC, using the IPG PHYCTRL register.
207
 */
208
static int mdio_read(struct net_device * dev, int phy_id, int phy_reg)
209
{
210
        void __iomem *ioaddr = ipg_ioaddr(dev);
211
        /*
212
         * The GMII mangement frame structure for a read is as follows:
213
         *
214
         * |Preamble|st|op|phyad|regad|ta|      data      |idle|
215
         * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   |
216
         *
217
         * <32 1s> = 32 consecutive logic 1 values
218
         * A = bit of Physical Layer device address (MSB first)
219
         * R = bit of register address (MSB first)
220
         * z = High impedance state
221
         * D = bit of read data (MSB first)
222
         *
223
         * Transmission order is 'Preamble' field first, bits transmitted
224
         * left to right (first to last).
225
         */
226
        struct {
227
                u32 field;
228
                unsigned int len;
229
        } p[] = {
230
                { GMII_PREAMBLE,        32 },   /* Preamble */
231
                { GMII_ST,              2  },   /* ST */
232
                { GMII_READ,            2  },   /* OP */
233
                { phy_id,               5  },   /* PHYAD */
234
                { phy_reg,              5  },   /* REGAD */
235
                { 0x0000,               2  },   /* TA */
236
                { 0x0000,               16 },   /* DATA */
237
                { 0x0000,               1  }    /* IDLE */
238
        };
239
        unsigned int i, j;
240
        u8 polarity, data;
241
 
242
        polarity  = ipg_r8(PHY_CTRL);
243
        polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
244
 
245
        /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
246
        for (j = 0; j < 5; j++) {
247
                for (i = 0; i < p[j].len; i++) {
248
                        /* For each variable length field, the MSB must be
249
                         * transmitted first. Rotate through the field bits,
250
                         * starting with the MSB, and move each bit into the
251
                         * the 1st (2^1) bit position (this is the bit position
252
                         * corresponding to the MgmtData bit of the PhyCtrl
253
                         * register for the IPG).
254
                         *
255
                         * Example: ST = 01;
256
                         *
257
                         *          First write a '0' to bit 1 of the PhyCtrl
258
                         *          register, then write a '1' to bit 1 of the
259
                         *          PhyCtrl register.
260
                         *
261
                         * To do this, right shift the MSB of ST by the value:
262
                         * [field length - 1 - #ST bits already written]
263
                         * then left shift this result by 1.
264
                         */
265
                        data  = (p[j].field >> (p[j].len - 1 - i)) << 1;
266
                        data &= IPG_PC_MGMTDATA;
267
                        data |= polarity | IPG_PC_MGMTDIR;
268
 
269
                        ipg_drive_phy_ctl_low_high(ioaddr, data);
270
                }
271
        }
272
 
273
        send_three_state(ioaddr, polarity);
274
 
275
        read_phy_bit(ioaddr, polarity);
276
 
277
        /*
278
         * For a read cycle, the bits for the next two fields (TA and
279
         * DATA) are driven by the PHY (the IPG reads these bits).
280
         */
281
        for (i = 0; i < p[6].len; i++) {
282
                p[6].field |=
283
                    (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i));
284
        }
285
 
286
        send_three_state(ioaddr, polarity);
287
        send_three_state(ioaddr, polarity);
288
        send_three_state(ioaddr, polarity);
289
        send_end(ioaddr, polarity);
290
 
291
        /* Return the value of the DATA field. */
292
        return p[6].field;
293
}
294
 
295
/*
296
 * Write to a register from the Physical Layer device located
297
 * on the IPG NIC, using the IPG PHYCTRL register.
298
 */
299
static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val)
300
{
301
        void __iomem *ioaddr = ipg_ioaddr(dev);
302
        /*
303
         * The GMII mangement frame structure for a read is as follows:
304
         *
305
         * |Preamble|st|op|phyad|regad|ta|      data      |idle|
306
         * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   |
307
         *
308
         * <32 1s> = 32 consecutive logic 1 values
309
         * A = bit of Physical Layer device address (MSB first)
310
         * R = bit of register address (MSB first)
311
         * z = High impedance state
312
         * D = bit of write data (MSB first)
313
         *
314
         * Transmission order is 'Preamble' field first, bits transmitted
315
         * left to right (first to last).
316
         */
317
        struct {
318
                u32 field;
319
                unsigned int len;
320
        } p[] = {
321
                { GMII_PREAMBLE,        32 },   /* Preamble */
322
                { GMII_ST,              2  },   /* ST */
323
                { GMII_WRITE,           2  },   /* OP */
324
                { phy_id,               5  },   /* PHYAD */
325
                { phy_reg,              5  },   /* REGAD */
326
                { 0x0002,               2  },   /* TA */
327
                { val & 0xffff,         16 },   /* DATA */
328
                { 0x0000,               1  }    /* IDLE */
329
        };
330
        unsigned int i, j;
331
        u8 polarity, data;
332
 
333
        polarity  = ipg_r8(PHY_CTRL);
334
        polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
335
 
336
        /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
337
        for (j = 0; j < 7; j++) {
338
                for (i = 0; i < p[j].len; i++) {
339
                        /* For each variable length field, the MSB must be
340
                         * transmitted first. Rotate through the field bits,
341
                         * starting with the MSB, and move each bit into the
342
                         * the 1st (2^1) bit position (this is the bit position
343
                         * corresponding to the MgmtData bit of the PhyCtrl
344
                         * register for the IPG).
345
                         *
346
                         * Example: ST = 01;
347
                         *
348
                         *          First write a '0' to bit 1 of the PhyCtrl
349
                         *          register, then write a '1' to bit 1 of the
350
                         *          PhyCtrl register.
351
                         *
352
                         * To do this, right shift the MSB of ST by the value:
353
                         * [field length - 1 - #ST bits already written]
354
                         * then left shift this result by 1.
355
                         */
356
                        data  = (p[j].field >> (p[j].len - 1 - i)) << 1;
357
                        data &= IPG_PC_MGMTDATA;
358
                        data |= polarity | IPG_PC_MGMTDIR;
359
 
360
                        ipg_drive_phy_ctl_low_high(ioaddr, data);
361
                }
362
        }
363
 
364
        /* The last cycle is a tri-state, so read from the PHY. */
365
        for (j = 7; j < 8; j++) {
366
                for (i = 0; i < p[j].len; i++) {
367
                        ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity);
368
 
369
                        p[j].field |= ((ipg_r8(PHY_CTRL) &
370
                                IPG_PC_MGMTDATA) >> 1) << (p[j].len - 1 - i);
371
 
372
                        ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity);
373
                }
374
        }
375
}
376
 
377
/* Set LED_Mode JES20040127EEPROM */
378
static void ipg_set_led_mode(struct net_device *dev)
379
{
380
        struct ipg_nic_private *sp = netdev_priv(dev);
381
        void __iomem *ioaddr = sp->ioaddr;
382
        u32 mode;
383
 
384
        mode = ipg_r32(ASIC_CTRL);
385
        mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
386
 
387
        if ((sp->LED_Mode & 0x03) > 1)
388
                mode |= IPG_AC_LED_MODE_BIT_1;  /* Write Asic Control Bit 29 */
389
 
390
        if ((sp->LED_Mode & 0x01) == 1)
391
                mode |= IPG_AC_LED_MODE;        /* Write Asic Control Bit 14 */
392
 
393
        if ((sp->LED_Mode & 0x08) == 8)
394
                mode |= IPG_AC_LED_SPEED;       /* Write Asic Control Bit 27 */
395
 
396
        ipg_w32(mode, ASIC_CTRL);
397
}
398
 
399
/* Set PHYSet JES20040127EEPROM */
400
static void ipg_set_phy_set(struct net_device *dev)
401
{
402
        struct ipg_nic_private *sp = netdev_priv(dev);
403
        void __iomem *ioaddr = sp->ioaddr;
404
        int physet;
405
 
406
        physet = ipg_r8(PHY_SET);
407
        physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET);
408
        physet |= ((sp->LED_Mode & 0x70) >> 4);
409
        ipg_w8(physet, PHY_SET);
410
}
411
 
412
static int ipg_reset(struct net_device *dev, u32 resetflags)
413
{
414
        /* Assert functional resets via the IPG AsicCtrl
415
         * register as specified by the 'resetflags' input
416
         * parameter.
417
         */
418
        void __iomem *ioaddr = ipg_ioaddr(dev); //JES20040127EEPROM:
419
        unsigned int timeout_count = 0;
420
 
421
        IPG_DEBUG_MSG("_reset\n");
422
 
423
        ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL);
424
 
425
        /* Delay added to account for problem with 10Mbps reset. */
426
        mdelay(IPG_AC_RESETWAIT);
427
 
428
        while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) {
429
                mdelay(IPG_AC_RESETWAIT);
430
                if (++timeout_count > IPG_AC_RESET_TIMEOUT)
431
                        return -ETIME;
432
        }
433
        /* Set LED Mode in Asic Control JES20040127EEPROM */
434
        ipg_set_led_mode(dev);
435
 
436
        /* Set PHYSet Register Value JES20040127EEPROM */
437
        ipg_set_phy_set(dev);
438
        return 0;
439
}
440
 
441
/* Find the GMII PHY address. */
442
static int ipg_find_phyaddr(struct net_device *dev)
443
{
444
        unsigned int phyaddr, i;
445
 
446
        for (i = 0; i < 32; i++) {
447
                u32 status;
448
 
449
                /* Search for the correct PHY address among 32 possible. */
450
                phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32;
451
 
452
                /* 10/22/03 Grace change verify from GMII_PHY_STATUS to
453
                   GMII_PHY_ID1
454
                 */
455
 
456
                status = mdio_read(dev, phyaddr, MII_BMSR);
457
 
458
                if ((status != 0xFFFF) && (status != 0))
459
                        return phyaddr;
460
        }
461
 
462
        return 0x1f;
463
}
464
 
465
/*
466
 * Configure IPG based on result of IEEE 802.3 PHY
467
 * auto-negotiation.
468
 */
469
static int ipg_config_autoneg(struct net_device *dev)
470
{
471
        struct ipg_nic_private *sp = netdev_priv(dev);
472
        void __iomem *ioaddr = sp->ioaddr;
473
        unsigned int txflowcontrol;
474
        unsigned int rxflowcontrol;
475
        unsigned int fullduplex;
476
        unsigned int gig;
477
        u32 mac_ctrl_val;
478
        u32 asicctrl;
479
        u8 phyctrl;
480
 
481
        IPG_DEBUG_MSG("_config_autoneg\n");
482
 
483
        asicctrl = ipg_r32(ASIC_CTRL);
484
        phyctrl = ipg_r8(PHY_CTRL);
485
        mac_ctrl_val = ipg_r32(MAC_CTRL);
486
 
487
        /* Set flags for use in resolving auto-negotation, assuming
488
         * non-1000Mbps, half duplex, no flow control.
489
         */
490
        fullduplex = 0;
491
        txflowcontrol = 0;
492
        rxflowcontrol = 0;
493
        gig = 0;
494
 
495
        /* To accomodate a problem in 10Mbps operation,
496
         * set a global flag if PHY running in 10Mbps mode.
497
         */
498
        sp->tenmbpsmode = 0;
499
 
500
        printk(KERN_INFO "%s: Link speed = ", dev->name);
501
 
502
        /* Determine actual speed of operation. */
503
        switch (phyctrl & IPG_PC_LINK_SPEED) {
504
        case IPG_PC_LINK_SPEED_10MBPS:
505
                printk("10Mbps.\n");
506
                printk(KERN_INFO "%s: 10Mbps operational mode enabled.\n",
507
                       dev->name);
508
                sp->tenmbpsmode = 1;
509
                break;
510
        case IPG_PC_LINK_SPEED_100MBPS:
511
                printk("100Mbps.\n");
512
                break;
513
        case IPG_PC_LINK_SPEED_1000MBPS:
514
                printk("1000Mbps.\n");
515
                gig = 1;
516
                break;
517
        default:
518
                printk("undefined!\n");
519
                return 0;
520
        }
521
 
522
        if (phyctrl & IPG_PC_DUPLEX_STATUS) {
523
                fullduplex = 1;
524
                txflowcontrol = 1;
525
                rxflowcontrol = 1;
526
        }
527
 
528
        /* Configure full duplex, and flow control. */
529
        if (fullduplex == 1) {
530
                /* Configure IPG for full duplex operation. */
531
                printk(KERN_INFO "%s: setting full duplex, ", dev->name);
532
 
533
                mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD;
534
 
535
                if (txflowcontrol == 1) {
536
                        printk("TX flow control");
537
                        mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE;
538
                } else {
539
                        printk("no TX flow control");
540
                        mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE;
541
                }
542
 
543
                if (rxflowcontrol == 1) {
544
                        printk(", RX flow control.");
545
                        mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE;
546
                } else {
547
                        printk(", no RX flow control.");
548
                        mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
549
                }
550
 
551
                printk("\n");
552
        } else {
553
                /* Configure IPG for half duplex operation. */
554
                printk(KERN_INFO "%s: setting half duplex, "
555
                       "no TX flow control, no RX flow control.\n", dev->name);
556
 
557
                mac_ctrl_val &= ~IPG_MC_DUPLEX_SELECT_FD &
558
                        ~IPG_MC_TX_FLOW_CONTROL_ENABLE &
559
                        ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
560
        }
561
        ipg_w32(mac_ctrl_val, MAC_CTRL);
562
        return 0;
563
}
564
 
565
/* Determine and configure multicast operation and set
566
 * receive mode for IPG.
567
 */
568
static void ipg_nic_set_multicast_list(struct net_device *dev)
569
{
570
        void __iomem *ioaddr = ipg_ioaddr(dev);
571
        struct dev_mc_list *mc_list_ptr;
572
        unsigned int hashindex;
573
        u32 hashtable[2];
574
        u8 receivemode;
575
 
576
        IPG_DEBUG_MSG("_nic_set_multicast_list\n");
577
 
578
        receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST;
579
 
580
        if (dev->flags & IFF_PROMISC) {
581
                /* NIC to be configured in promiscuous mode. */
582
                receivemode = IPG_RM_RECEIVEALLFRAMES;
583
        } else if ((dev->flags & IFF_ALLMULTI) ||
584
                   (dev->flags & IFF_MULTICAST &
585
                    (dev->mc_count > IPG_MULTICAST_HASHTABLE_SIZE))) {
586
                /* NIC to be configured to receive all multicast
587
                 * frames. */
588
                receivemode |= IPG_RM_RECEIVEMULTICAST;
589
        } else if (dev->flags & IFF_MULTICAST & (dev->mc_count > 0)) {
590
                /* NIC to be configured to receive selected
591
                 * multicast addresses. */
592
                receivemode |= IPG_RM_RECEIVEMULTICASTHASH;
593
        }
594
 
595
        /* Calculate the bits to set for the 64 bit, IPG HASHTABLE.
596
         * The IPG applies a cyclic-redundancy-check (the same CRC
597
         * used to calculate the frame data FCS) to the destination
598
         * address all incoming multicast frames whose destination
599
         * address has the multicast bit set. The least significant
600
         * 6 bits of the CRC result are used as an addressing index
601
         * into the hash table. If the value of the bit addressed by
602
         * this index is a 1, the frame is passed to the host system.
603
         */
604
 
605
        /* Clear hashtable. */
606
        hashtable[0] = 0x00000000;
607
        hashtable[1] = 0x00000000;
608
 
609
        /* Cycle through all multicast addresses to filter. */
610
        for (mc_list_ptr = dev->mc_list;
611
             mc_list_ptr != NULL; mc_list_ptr = mc_list_ptr->next) {
612
                /* Calculate CRC result for each multicast address. */
613
                hashindex = crc32_le(0xffffffff, mc_list_ptr->dmi_addr,
614
                                     ETH_ALEN);
615
 
616
                /* Use only the least significant 6 bits. */
617
                hashindex = hashindex & 0x3F;
618
 
619
                /* Within "hashtable", set bit number "hashindex"
620
                 * to a logic 1.
621
                 */
622
                set_bit(hashindex, (void *)hashtable);
623
        }
624
 
625
        /* Write the value of the hashtable, to the 4, 16 bit
626
         * HASHTABLE IPG registers.
627
         */
628
        ipg_w32(hashtable[0], HASHTABLE_0);
629
        ipg_w32(hashtable[1], HASHTABLE_1);
630
 
631
        ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE);
632
 
633
        IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE));
634
}
635
 
636
static int ipg_io_config(struct net_device *dev)
637
{
638
        void __iomem *ioaddr = ipg_ioaddr(dev);
639
        u32 origmacctrl;
640
        u32 restoremacctrl;
641
 
642
        IPG_DEBUG_MSG("_io_config\n");
643
 
644
        origmacctrl = ipg_r32(MAC_CTRL);
645
 
646
        restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE;
647
 
648
        /* Based on compilation option, determine if FCS is to be
649
         * stripped on receive frames by IPG.
650
         */
651
        if (!IPG_STRIP_FCS_ON_RX)
652
                restoremacctrl |= IPG_MC_RCV_FCS;
653
 
654
        /* Determine if transmitter and/or receiver are
655
         * enabled so we may restore MACCTRL correctly.
656
         */
657
        if (origmacctrl & IPG_MC_TX_ENABLED)
658
                restoremacctrl |= IPG_MC_TX_ENABLE;
659
 
660
        if (origmacctrl & IPG_MC_RX_ENABLED)
661
                restoremacctrl |= IPG_MC_RX_ENABLE;
662
 
663
        /* Transmitter and receiver must be disabled before setting
664
         * IFSSelect.
665
         */
666
        ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) &
667
                IPG_MC_RSVD_MASK, MAC_CTRL);
668
 
669
        /* Now that transmitter and receiver are disabled, write
670
         * to IFSSelect.
671
         */
672
        ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL);
673
 
674
        /* Set RECEIVEMODE register. */
675
        ipg_nic_set_multicast_list(dev);
676
 
677
        ipg_w16(IPG_MAX_RXFRAME_SIZE, MAX_FRAME_SIZE);
678
 
679
        ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE,   RX_DMA_POLL_PERIOD);
680
        ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH);
681
        ipg_w8(IPG_RXDMABURSTTHRESH_VALUE,  RX_DMA_BURST_THRESH);
682
        ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE,   TX_DMA_POLL_PERIOD);
683
        ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH);
684
        ipg_w8(IPG_TXDMABURSTTHRESH_VALUE,  TX_DMA_BURST_THRESH);
685
        ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE |
686
                 IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED |
687
                 IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT |
688
                 IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE);
689
        ipg_w16(IPG_FLOWONTHRESH_VALUE,  FLOW_ON_THRESH);
690
        ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH);
691
 
692
        /* IPG multi-frag frame bug workaround.
693
         * Per silicon revision B3 eratta.
694
         */
695
        ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL);
696
 
697
        /* IPG TX poll now bug workaround.
698
         * Per silicon revision B3 eratta.
699
         */
700
        ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL);
701
 
702
        /* IPG RX poll now bug workaround.
703
         * Per silicon revision B3 eratta.
704
         */
705
        ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL);
706
 
707
        /* Now restore MACCTRL to original setting. */
708
        ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL);
709
 
710
        /* Disable unused RMON statistics. */
711
        ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK);
712
 
713
        /* Disable unused MIB statistics. */
714
        ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD |
715
                IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES |
716
                IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES |
717
                IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK |
718
                IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS |
719
                IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK);
720
 
721
        return 0;
722
}
723
 
724
/*
725
 * Create a receive buffer within system memory and update
726
 * NIC private structure appropriately.
727
 */
728
static int ipg_get_rxbuff(struct net_device *dev, int entry)
729
{
730
        struct ipg_nic_private *sp = netdev_priv(dev);
731
        struct ipg_rx *rxfd = sp->rxd + entry;
732
        struct sk_buff *skb;
733
        u64 rxfragsize;
734
 
735
        IPG_DEBUG_MSG("_get_rxbuff\n");
736
 
737
        skb = netdev_alloc_skb(dev, IPG_RXSUPPORT_SIZE + NET_IP_ALIGN);
738
        if (!skb) {
739
                sp->RxBuff[entry] = NULL;
740
                return -ENOMEM;
741
        }
742
 
743
        /* Adjust the data start location within the buffer to
744
         * align IP address field to a 16 byte boundary.
745
         */
746
        skb_reserve(skb, NET_IP_ALIGN);
747
 
748
        /* Associate the receive buffer with the IPG NIC. */
749
        skb->dev = dev;
750
 
751
        /* Save the address of the sk_buff structure. */
752
        sp->RxBuff[entry] = skb;
753
 
754
        rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
755
                sp->rx_buf_sz, PCI_DMA_FROMDEVICE));
756
 
757
        /* Set the RFD fragment length. */
758
        rxfragsize = IPG_RXFRAG_SIZE;
759
        rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN);
760
 
761
        return 0;
762
}
763
 
764
static int init_rfdlist(struct net_device *dev)
765
{
766
        struct ipg_nic_private *sp = netdev_priv(dev);
767
        void __iomem *ioaddr = sp->ioaddr;
768
        unsigned int i;
769
 
770
        IPG_DEBUG_MSG("_init_rfdlist\n");
771
 
772
        for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
773
                struct ipg_rx *rxfd = sp->rxd + i;
774
 
775
                if (sp->RxBuff[i]) {
776
                        pci_unmap_single(sp->pdev,
777
                                le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
778
                                sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
779
                        IPG_DEV_KFREE_SKB(sp->RxBuff[i]);
780
                        sp->RxBuff[i] = NULL;
781
                }
782
 
783
                /* Clear out the RFS field. */
784
                rxfd->rfs = 0x0000000000000000;
785
 
786
                if (ipg_get_rxbuff(dev, i) < 0) {
787
                        /*
788
                         * A receive buffer was not ready, break the
789
                         * RFD list here.
790
                         */
791
                        IPG_DEBUG_MSG("Cannot allocate Rx buffer.\n");
792
 
793
                        /* Just in case we cannot allocate a single RFD.
794
                         * Should not occur.
795
                         */
796
                        if (i == 0) {
797
                                printk(KERN_ERR "%s: No memory available"
798
                                        " for RFD list.\n", dev->name);
799
                                return -ENOMEM;
800
                        }
801
                }
802
 
803
                rxfd->next_desc = cpu_to_le64(sp->rxd_map +
804
                        sizeof(struct ipg_rx)*(i + 1));
805
        }
806
        sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map);
807
 
808
        sp->rx_current = 0;
809
        sp->rx_dirty = 0;
810
 
811
        /* Write the location of the RFDList to the IPG. */
812
        ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0);
813
        ipg_w32(0x00000000, RFD_LIST_PTR_1);
814
 
815
        return 0;
816
}
817
 
818
static void init_tfdlist(struct net_device *dev)
819
{
820
        struct ipg_nic_private *sp = netdev_priv(dev);
821
        void __iomem *ioaddr = sp->ioaddr;
822
        unsigned int i;
823
 
824
        IPG_DEBUG_MSG("_init_tfdlist\n");
825
 
826
        for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
827
                struct ipg_tx *txfd = sp->txd + i;
828
 
829
                txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
830
 
831
                if (sp->TxBuff[i]) {
832
                        IPG_DEV_KFREE_SKB(sp->TxBuff[i]);
833
                        sp->TxBuff[i] = NULL;
834
                }
835
 
836
                txfd->next_desc = cpu_to_le64(sp->txd_map +
837
                        sizeof(struct ipg_tx)*(i + 1));
838
        }
839
        sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map);
840
 
841
        sp->tx_current = 0;
842
        sp->tx_dirty = 0;
843
 
844
        /* Write the location of the TFDList to the IPG. */
845
        IPG_DDEBUG_MSG("Starting TFDListPtr = %8.8x\n",
846
                       (u32) sp->txd_map);
847
        ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0);
848
        ipg_w32(0x00000000, TFD_LIST_PTR_1);
849
 
850
        sp->ResetCurrentTFD = 1;
851
}
852
 
853
/*
854
 * Free all transmit buffers which have already been transfered
855
 * via DMA to the IPG.
856
 */
857
static void ipg_nic_txfree(struct net_device *dev)
858
{
859
        struct ipg_nic_private *sp = netdev_priv(dev);
860
        unsigned int released, pending, dirty;
861
 
862
        IPG_DEBUG_MSG("_nic_txfree\n");
863
 
864
        pending = sp->tx_current - sp->tx_dirty;
865
        dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH;
866
 
867
        for (released = 0; released < pending; released++) {
868
                struct sk_buff *skb = sp->TxBuff[dirty];
869
                struct ipg_tx *txfd = sp->txd + dirty;
870
 
871
                IPG_DEBUG_MSG("TFC = %16.16lx\n", (unsigned long) txfd->tfc);
872
 
873
                /* Look at each TFD's TFC field beginning
874
                 * at the last freed TFD up to the current TFD.
875
                 * If the TFDDone bit is set, free the associated
876
                 * buffer.
877
                 */
878
                if (!(txfd->tfc & cpu_to_le64(IPG_TFC_TFDDONE)))
879
                        break;
880
 
881
                /* Free the transmit buffer. */
882
                if (skb) {
883
                        pci_unmap_single(sp->pdev,
884
                                le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
885
                                skb->len, PCI_DMA_TODEVICE);
886
 
887
                        IPG_DEV_KFREE_SKB(skb);
888
 
889
                        sp->TxBuff[dirty] = NULL;
890
                }
891
                dirty = (dirty + 1) % IPG_TFDLIST_LENGTH;
892
        }
893
 
894
        sp->tx_dirty += released;
895
 
896
        if (netif_queue_stopped(dev) &&
897
            (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) {
898
                netif_wake_queue(dev);
899
        }
900
}
901
 
902
static void ipg_tx_timeout(struct net_device *dev)
903
{
904
        struct ipg_nic_private *sp = netdev_priv(dev);
905
        void __iomem *ioaddr = sp->ioaddr;
906
 
907
        ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK |
908
                  IPG_AC_FIFO);
909
 
910
        spin_lock_irq(&sp->lock);
911
 
912
        /* Re-configure after DMA reset. */
913
        if (ipg_io_config(dev) < 0) {
914
                printk(KERN_INFO "%s: Error during re-configuration.\n",
915
                       dev->name);
916
        }
917
 
918
        init_tfdlist(dev);
919
 
920
        spin_unlock_irq(&sp->lock);
921
 
922
        ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK,
923
                MAC_CTRL);
924
}
925
 
926
/*
927
 * For TxComplete interrupts, free all transmit
928
 * buffers which have already been transfered via DMA
929
 * to the IPG.
930
 */
931
static void ipg_nic_txcleanup(struct net_device *dev)
932
{
933
        struct ipg_nic_private *sp = netdev_priv(dev);
934
        void __iomem *ioaddr = sp->ioaddr;
935
        unsigned int i;
936
 
937
        IPG_DEBUG_MSG("_nic_txcleanup\n");
938
 
939
        for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
940
                /* Reading the TXSTATUS register clears the
941
                 * TX_COMPLETE interrupt.
942
                 */
943
                u32 txstatusdword = ipg_r32(TX_STATUS);
944
 
945
                IPG_DEBUG_MSG("TxStatus = %8.8x\n", txstatusdword);
946
 
947
                /* Check for Transmit errors. Error bits only valid if
948
                 * TX_COMPLETE bit in the TXSTATUS register is a 1.
949
                 */
950
                if (!(txstatusdword & IPG_TS_TX_COMPLETE))
951
                        break;
952
 
953
                /* If in 10Mbps mode, indicate transmit is ready. */
954
                if (sp->tenmbpsmode) {
955
                        netif_wake_queue(dev);
956
                }
957
 
958
                /* Transmit error, increment stat counters. */
959
                if (txstatusdword & IPG_TS_TX_ERROR) {
960
                        IPG_DEBUG_MSG("Transmit error.\n");
961
                        sp->stats.tx_errors++;
962
                }
963
 
964
                /* Late collision, re-enable transmitter. */
965
                if (txstatusdword & IPG_TS_LATE_COLLISION) {
966
                        IPG_DEBUG_MSG("Late collision on transmit.\n");
967
                        ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
968
                                IPG_MC_RSVD_MASK, MAC_CTRL);
969
                }
970
 
971
                /* Maximum collisions, re-enable transmitter. */
972
                if (txstatusdword & IPG_TS_TX_MAX_COLL) {
973
                        IPG_DEBUG_MSG("Maximum collisions on transmit.\n");
974
                        ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
975
                                IPG_MC_RSVD_MASK, MAC_CTRL);
976
                }
977
 
978
                /* Transmit underrun, reset and re-enable
979
                 * transmitter.
980
                 */
981
                if (txstatusdword & IPG_TS_TX_UNDERRUN) {
982
                        IPG_DEBUG_MSG("Transmitter underrun.\n");
983
                        sp->stats.tx_fifo_errors++;
984
                        ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA |
985
                                  IPG_AC_NETWORK | IPG_AC_FIFO);
986
 
987
                        /* Re-configure after DMA reset. */
988
                        if (ipg_io_config(dev) < 0) {
989
                                printk(KERN_INFO
990
                                       "%s: Error during re-configuration.\n",
991
                                       dev->name);
992
                        }
993
                        init_tfdlist(dev);
994
 
995
                        ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
996
                                IPG_MC_RSVD_MASK, MAC_CTRL);
997
                }
998
        }
999
 
1000
        ipg_nic_txfree(dev);
1001
}
1002
 
1003
/* Provides statistical information about the IPG NIC. */
1004
static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev)
1005
{
1006
        struct ipg_nic_private *sp = netdev_priv(dev);
1007
        void __iomem *ioaddr = sp->ioaddr;
1008
        u16 temp1;
1009
        u16 temp2;
1010
 
1011
        IPG_DEBUG_MSG("_nic_get_stats\n");
1012
 
1013
        /* Check to see if the NIC has been initialized via nic_open,
1014
         * before trying to read statistic registers.
1015
         */
1016
        if (!test_bit(__LINK_STATE_START, &dev->state))
1017
                return &sp->stats;
1018
 
1019
        sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK);
1020
        sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK);
1021
        sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK);
1022
        sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK);
1023
        temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS);
1024
        sp->stats.rx_errors += temp1;
1025
        sp->stats.rx_missed_errors += temp1;
1026
        temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) +
1027
                ipg_r32(IPG_LATECOLLISIONS);
1028
        temp2 = ipg_r16(IPG_CARRIERSENSEERRORS);
1029
        sp->stats.collisions += temp1;
1030
        sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS);
1031
        sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) +
1032
                ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2;
1033
        sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK);
1034
 
1035
        /* detailed tx_errors */
1036
        sp->stats.tx_carrier_errors += temp2;
1037
 
1038
        /* detailed rx_errors */
1039
        sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) +
1040
                ipg_r16(IPG_FRAMETOOLONGERRRORS);
1041
        sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS);
1042
 
1043
        /* Unutilized IPG statistic registers. */
1044
        ipg_r32(IPG_MCSTFRAMESRCVDOK);
1045
 
1046
        return &sp->stats;
1047
}
1048
 
1049
/* Restore used receive buffers. */
1050
static int ipg_nic_rxrestore(struct net_device *dev)
1051
{
1052
        struct ipg_nic_private *sp = netdev_priv(dev);
1053
        const unsigned int curr = sp->rx_current;
1054
        unsigned int dirty = sp->rx_dirty;
1055
 
1056
        IPG_DEBUG_MSG("_nic_rxrestore\n");
1057
 
1058
        for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) {
1059
                unsigned int entry = dirty % IPG_RFDLIST_LENGTH;
1060
 
1061
                /* rx_copybreak may poke hole here and there. */
1062
                if (sp->RxBuff[entry])
1063
                        continue;
1064
 
1065
                /* Generate a new receive buffer to replace the
1066
                 * current buffer (which will be released by the
1067
                 * Linux system).
1068
                 */
1069
                if (ipg_get_rxbuff(dev, entry) < 0) {
1070
                        IPG_DEBUG_MSG("Cannot allocate new Rx buffer.\n");
1071
 
1072
                        break;
1073
                }
1074
 
1075
                /* Reset the RFS field. */
1076
                sp->rxd[entry].rfs = 0x0000000000000000;
1077
        }
1078
        sp->rx_dirty = dirty;
1079
 
1080
        return 0;
1081
}
1082
 
1083
#ifdef JUMBO_FRAME
1084
 
1085
/* use jumboindex and jumbosize to control jumbo frame status
1086
   initial status is jumboindex=-1 and jumbosize=0
1087
   1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done.
1088
   2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving
1089
   3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump
1090
                previous receiving and need to continue dumping the current one
1091
*/
1092
enum {
1093
        NormalPacket,
1094
        ErrorPacket
1095
};
1096
 
1097
enum {
1098
        Frame_NoStart_NoEnd     = 0,
1099
        Frame_WithStart         = 1,
1100
        Frame_WithEnd           = 10,
1101
        Frame_WithStart_WithEnd = 11
1102
};
1103
 
1104
inline void ipg_nic_rx_free_skb(struct net_device *dev)
1105
{
1106
        struct ipg_nic_private *sp = netdev_priv(dev);
1107
        unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1108
 
1109
        if (sp->RxBuff[entry]) {
1110
                struct ipg_rx *rxfd = sp->rxd + entry;
1111
 
1112
                pci_unmap_single(sp->pdev,
1113
                        le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
1114
                        sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1115
                IPG_DEV_KFREE_SKB(sp->RxBuff[entry]);
1116
                sp->RxBuff[entry] = NULL;
1117
        }
1118
}
1119
 
1120
inline int ipg_nic_rx_check_frame_type(struct net_device *dev)
1121
{
1122
        struct ipg_nic_private *sp = netdev_priv(dev);
1123
        struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH);
1124
        int type = Frame_NoStart_NoEnd;
1125
 
1126
        if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART)
1127
                type += Frame_WithStart;
1128
        if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND)
1129
                type += Frame_WithEnd;
1130
        return type;
1131
}
1132
 
1133
inline int ipg_nic_rx_check_error(struct net_device *dev)
1134
{
1135
        struct ipg_nic_private *sp = netdev_priv(dev);
1136
        unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1137
        struct ipg_rx *rxfd = sp->rxd + entry;
1138
 
1139
        if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1140
             (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1141
              IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1142
              IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) {
1143
                IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
1144
                              (unsigned long) rxfd->rfs);
1145
 
1146
                /* Increment general receive error statistic. */
1147
                sp->stats.rx_errors++;
1148
 
1149
                /* Increment detailed receive error statistics. */
1150
                if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1151
                        IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
1152
 
1153
                        sp->stats.rx_fifo_errors++;
1154
                }
1155
 
1156
                if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1157
                        IPG_DEBUG_MSG("RX runt occured.\n");
1158
                        sp->stats.rx_length_errors++;
1159
                }
1160
 
1161
                /* Do nothing for IPG_RFS_RXOVERSIZEDFRAME,
1162
                 * error count handled by a IPG statistic register.
1163
                 */
1164
 
1165
                if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1166
                        IPG_DEBUG_MSG("RX alignment error occured.\n");
1167
                        sp->stats.rx_frame_errors++;
1168
                }
1169
 
1170
                /* Do nothing for IPG_RFS_RXFCSERROR, error count
1171
                 * handled by a IPG statistic register.
1172
                 */
1173
 
1174
                /* Free the memory associated with the RX
1175
                 * buffer since it is erroneous and we will
1176
                 * not pass it to higher layer processes.
1177
                 */
1178
                if (sp->RxBuff[entry]) {
1179
                        pci_unmap_single(sp->pdev,
1180
                                le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
1181
                                sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1182
 
1183
                        IPG_DEV_KFREE_SKB(sp->RxBuff[entry]);
1184
                        sp->RxBuff[entry] = NULL;
1185
                }
1186
                return ErrorPacket;
1187
        }
1188
        return NormalPacket;
1189
}
1190
 
1191
static void ipg_nic_rx_with_start_and_end(struct net_device *dev,
1192
                                          struct ipg_nic_private *sp,
1193
                                          struct ipg_rx *rxfd, unsigned entry)
1194
{
1195
        struct SJumbo *jumbo = &sp->Jumbo;
1196
        struct sk_buff *skb;
1197
        int framelen;
1198
 
1199
        if (jumbo->FoundStart) {
1200
                IPG_DEV_KFREE_SKB(jumbo->skb);
1201
                jumbo->FoundStart = 0;
1202
                jumbo->CurrentSize = 0;
1203
                jumbo->skb = NULL;
1204
        }
1205
 
1206
        // 1: found error, 0 no error
1207
        if (ipg_nic_rx_check_error(dev) != NormalPacket)
1208
                return;
1209
 
1210
        skb = sp->RxBuff[entry];
1211
        if (!skb)
1212
                return;
1213
 
1214
        // accept this frame and send to upper layer
1215
        framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1216
        if (framelen > IPG_RXFRAG_SIZE)
1217
                framelen = IPG_RXFRAG_SIZE;
1218
 
1219
        skb_put(skb, framelen);
1220
        skb->protocol = eth_type_trans(skb, dev);
1221
        skb->ip_summed = CHECKSUM_NONE;
1222
        netif_rx(skb);
1223
        dev->last_rx = jiffies;
1224
        sp->RxBuff[entry] = NULL;
1225
}
1226
 
1227
static void ipg_nic_rx_with_start(struct net_device *dev,
1228
                                  struct ipg_nic_private *sp,
1229
                                  struct ipg_rx *rxfd, unsigned entry)
1230
{
1231
        struct SJumbo *jumbo = &sp->Jumbo;
1232
        struct pci_dev *pdev = sp->pdev;
1233
        struct sk_buff *skb;
1234
 
1235
        // 1: found error, 0 no error
1236
        if (ipg_nic_rx_check_error(dev) != NormalPacket)
1237
                return;
1238
 
1239
        // accept this frame and send to upper layer
1240
        skb = sp->RxBuff[entry];
1241
        if (!skb)
1242
                return;
1243
 
1244
        if (jumbo->FoundStart)
1245
                IPG_DEV_KFREE_SKB(jumbo->skb);
1246
 
1247
        pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
1248
                         sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1249
 
1250
        skb_put(skb, IPG_RXFRAG_SIZE);
1251
 
1252
        jumbo->FoundStart = 1;
1253
        jumbo->CurrentSize = IPG_RXFRAG_SIZE;
1254
        jumbo->skb = skb;
1255
 
1256
        sp->RxBuff[entry] = NULL;
1257
        dev->last_rx = jiffies;
1258
}
1259
 
1260
static void ipg_nic_rx_with_end(struct net_device *dev,
1261
                                struct ipg_nic_private *sp,
1262
                                struct ipg_rx *rxfd, unsigned entry)
1263
{
1264
        struct SJumbo *jumbo = &sp->Jumbo;
1265
 
1266
        //1: found error, 0 no error
1267
        if (ipg_nic_rx_check_error(dev) == NormalPacket) {
1268
                struct sk_buff *skb = sp->RxBuff[entry];
1269
 
1270
                if (!skb)
1271
                        return;
1272
 
1273
                if (jumbo->FoundStart) {
1274
                        int framelen, endframelen;
1275
 
1276
                        framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1277
 
1278
                        endframeLen = framelen - jumbo->CurrentSize;
1279
                        /*
1280
                        if (framelen > IPG_RXFRAG_SIZE)
1281
                                framelen=IPG_RXFRAG_SIZE;
1282
                         */
1283
                        if (framelen > IPG_RXSUPPORT_SIZE)
1284
                                IPG_DEV_KFREE_SKB(jumbo->skb);
1285
                        else {
1286
                                memcpy(skb_put(jumbo->skb, endframeLen),
1287
                                       skb->data, endframeLen);
1288
 
1289
                                jumbo->skb->protocol =
1290
                                    eth_type_trans(jumbo->skb, dev);
1291
 
1292
                                jumbo->skb->ip_summed = CHECKSUM_NONE;
1293
                                netif_rx(jumbo->skb);
1294
                        }
1295
                }
1296
 
1297
                dev->last_rx = jiffies;
1298
                jumbo->FoundStart = 0;
1299
                jumbo->CurrentSize = 0;
1300
                jumbo->skb = NULL;
1301
 
1302
                ipg_nic_rx_free_skb(dev);
1303
        } else {
1304
                IPG_DEV_KFREE_SKB(jumbo->skb);
1305
                jumbo->FoundStart = 0;
1306
                jumbo->CurrentSize = 0;
1307
                jumbo->skb = NULL;
1308
        }
1309
}
1310
 
1311
static void ipg_nic_rx_no_start_no_end(struct net_device *dev,
1312
                                       struct ipg_nic_private *sp,
1313
                                       struct ipg_rx *rxfd, unsigned entry)
1314
{
1315
        struct SJumbo *jumbo = &sp->Jumbo;
1316
 
1317
        //1: found error, 0 no error
1318
        if (ipg_nic_rx_check_error(dev) == NormalPacket) {
1319
                struct sk_buff *skb = sp->RxBuff[entry];
1320
 
1321
                if (skb) {
1322
                        if (jumbo->FoundStart) {
1323
                                jumbo->CurrentSize += IPG_RXFRAG_SIZE;
1324
                                if (jumbo->CurrentSize <= IPG_RXSUPPORT_SIZE) {
1325
                                        memcpy(skb_put(jumbo->skb,
1326
                                                       IPG_RXFRAG_SIZE),
1327
                                               skb->data, IPG_RXFRAG_SIZE);
1328
                                }
1329
                        }
1330
                        dev->last_rx = jiffies;
1331
                        ipg_nic_rx_free_skb(dev);
1332
                }
1333
        } else {
1334
                IPG_DEV_KFREE_SKB(jumbo->skb);
1335
                jumbo->FoundStart = 0;
1336
                jumbo->CurrentSize = 0;
1337
                jumbo->skb = NULL;
1338
        }
1339
}
1340
 
1341
static int ipg_nic_rx(struct net_device *dev)
1342
{
1343
        struct ipg_nic_private *sp = netdev_priv(dev);
1344
        unsigned int curr = sp->rx_current;
1345
        void __iomem *ioaddr = sp->ioaddr;
1346
        unsigned int i;
1347
 
1348
        IPG_DEBUG_MSG("_nic_rx\n");
1349
 
1350
        for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1351
                unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1352
                struct ipg_rx *rxfd = sp->rxd + entry;
1353
 
1354
                if (!(rxfd->rfs & le64_to_cpu(IPG_RFS_RFDDONE)))
1355
                        break;
1356
 
1357
                switch (ipg_nic_rx_check_frame_type(dev)) {
1358
                case Frame_WithStart_WithEnd:
1359
                        ipg_nic_rx_with_start_and_end(dev, tp, rxfd, entry);
1360
                        break;
1361
                case Frame_WithStart:
1362
                        ipg_nic_rx_with_start(dev, tp, rxfd, entry);
1363
                        break;
1364
                case Frame_WithEnd:
1365
                        ipg_nic_rx_with_end(dev, tp, rxfd, entry);
1366
                        break;
1367
                case Frame_NoStart_NoEnd:
1368
                        ipg_nic_rx_no_start_no_end(dev, tp, rxfd, entry);
1369
                        break;
1370
                }
1371
        }
1372
 
1373
        sp->rx_current = curr;
1374
 
1375
        if (i == IPG_MAXRFDPROCESS_COUNT) {
1376
                /* There are more RFDs to process, however the
1377
                 * allocated amount of RFD processing time has
1378
                 * expired. Assert Interrupt Requested to make
1379
                 * sure we come back to process the remaining RFDs.
1380
                 */
1381
                ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1382
        }
1383
 
1384
        ipg_nic_rxrestore(dev);
1385
 
1386
        return 0;
1387
}
1388
 
1389
#else
1390
static int ipg_nic_rx(struct net_device *dev)
1391
{
1392
        /* Transfer received Ethernet frames to higher network layers. */
1393
        struct ipg_nic_private *sp = netdev_priv(dev);
1394
        unsigned int curr = sp->rx_current;
1395
        void __iomem *ioaddr = sp->ioaddr;
1396
        struct ipg_rx *rxfd;
1397
        unsigned int i;
1398
 
1399
        IPG_DEBUG_MSG("_nic_rx\n");
1400
 
1401
#define __RFS_MASK \
1402
        cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND)
1403
 
1404
        for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1405
                unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1406
                struct sk_buff *skb = sp->RxBuff[entry];
1407
                unsigned int framelen;
1408
 
1409
                rxfd = sp->rxd + entry;
1410
 
1411
                if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb)
1412
                        break;
1413
 
1414
                /* Get received frame length. */
1415
                framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1416
 
1417
                /* Check for jumbo frame arrival with too small
1418
                 * RXFRAG_SIZE.
1419
                 */
1420
                if (framelen > IPG_RXFRAG_SIZE) {
1421
                        IPG_DEBUG_MSG
1422
                            ("RFS FrameLen > allocated fragment size.\n");
1423
 
1424
                        framelen = IPG_RXFRAG_SIZE;
1425
                }
1426
 
1427
                if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1428
                       (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1429
                        IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1430
                        IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) {
1431
 
1432
                        IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
1433
                                      (unsigned long int) rxfd->rfs);
1434
 
1435
                        /* Increment general receive error statistic. */
1436
                        sp->stats.rx_errors++;
1437
 
1438
                        /* Increment detailed receive error statistics. */
1439
                        if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1440
                                IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
1441
                                sp->stats.rx_fifo_errors++;
1442
                        }
1443
 
1444
                        if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1445
                                IPG_DEBUG_MSG("RX runt occured.\n");
1446
                                sp->stats.rx_length_errors++;
1447
                        }
1448
 
1449
                        if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ;
1450
                        /* Do nothing, error count handled by a IPG
1451
                         * statistic register.
1452
                         */
1453
 
1454
                        if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1455
                                IPG_DEBUG_MSG("RX alignment error occured.\n");
1456
                                sp->stats.rx_frame_errors++;
1457
                        }
1458
 
1459
                        if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ;
1460
                        /* Do nothing, error count handled by a IPG
1461
                         * statistic register.
1462
                         */
1463
 
1464
                        /* Free the memory associated with the RX
1465
                         * buffer since it is erroneous and we will
1466
                         * not pass it to higher layer processes.
1467
                         */
1468
                        if (skb) {
1469
                                __le64 info = rxfd->frag_info;
1470
 
1471
                                pci_unmap_single(sp->pdev,
1472
                                        le64_to_cpu(info) & ~IPG_RFI_FRAGLEN,
1473
                                        sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1474
 
1475
                                IPG_DEV_KFREE_SKB(skb);
1476
                        }
1477
                } else {
1478
 
1479
                        /* Adjust the new buffer length to accomodate the size
1480
                         * of the received frame.
1481
                         */
1482
                        skb_put(skb, framelen);
1483
 
1484
                        /* Set the buffer's protocol field to Ethernet. */
1485
                        skb->protocol = eth_type_trans(skb, dev);
1486
 
1487
                        /* If the frame contains an IP/TCP/UDP frame,
1488
                         * determine if upper layer must check IP/TCP/UDP
1489
                         * checksums.
1490
                         *
1491
                         * NOTE: DO NOT RELY ON THE TCP/UDP CHECKSUM
1492
                         *       VERIFICATION FOR SILICON REVISIONS B3
1493
                         *       AND EARLIER!
1494
                         *
1495
                         if ((le64_to_cpu(rxfd->rfs &
1496
                             (IPG_RFS_TCPDETECTED | IPG_RFS_UDPDETECTED |
1497
                              IPG_RFS_IPDETECTED))) &&
1498
                            !(le64_to_cpu(rxfd->rfs &
1499
                              (IPG_RFS_TCPERROR | IPG_RFS_UDPERROR |
1500
                               IPG_RFS_IPERROR)))) {
1501
                                 * Indicate IP checksums were performed
1502
                                 * by the IPG.
1503
                                 *
1504
                                skb->ip_summed = CHECKSUM_UNNECESSARY;
1505
                         } else
1506
                         */
1507
                         {
1508
                                /* The IPG encountered an error with (or
1509
                                 * there were no) IP/TCP/UDP checksums.
1510
                                 * This may or may not indicate an invalid
1511
                                 * IP/TCP/UDP frame was received. Let the
1512
                                 * upper layer decide.
1513
                                 */
1514
                                skb->ip_summed = CHECKSUM_NONE;
1515
                        }
1516
 
1517
                        /* Hand off frame for higher layer processing.
1518
                         * The function netif_rx() releases the sk_buff
1519
                         * when processing completes.
1520
                         */
1521
                        netif_rx(skb);
1522
 
1523
                        /* Record frame receive time (jiffies = Linux
1524
                         * kernel current time stamp).
1525
                         */
1526
                        dev->last_rx = jiffies;
1527
                }
1528
 
1529
                /* Assure RX buffer is not reused by IPG. */
1530
                sp->RxBuff[entry] = NULL;
1531
        }
1532
 
1533
        /*
1534
         * If there are more RFDs to proces and the allocated amount of RFD
1535
         * processing time has expired, assert Interrupt Requested to make
1536
         * sure we come back to process the remaining RFDs.
1537
         */
1538
        if (i == IPG_MAXRFDPROCESS_COUNT)
1539
                ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1540
 
1541
#ifdef IPG_DEBUG
1542
        /* Check if the RFD list contained no receive frame data. */
1543
        if (!i)
1544
                sp->EmptyRFDListCount++;
1545
#endif
1546
        while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) &&
1547
               !((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) &&
1548
                 (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) {
1549
                unsigned int entry = curr++ % IPG_RFDLIST_LENGTH;
1550
 
1551
                rxfd = sp->rxd + entry;
1552
 
1553
                IPG_DEBUG_MSG("Frame requires multiple RFDs.\n");
1554
 
1555
                /* An unexpected event, additional code needed to handle
1556
                 * properly. So for the time being, just disregard the
1557
                 * frame.
1558
                 */
1559
 
1560
                /* Free the memory associated with the RX
1561
                 * buffer since it is erroneous and we will
1562
                 * not pass it to higher layer processes.
1563
                 */
1564
                if (sp->RxBuff[entry]) {
1565
                        pci_unmap_single(sp->pdev,
1566
                                le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1567
                                sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1568
                        IPG_DEV_KFREE_SKB(sp->RxBuff[entry]);
1569
                }
1570
 
1571
                /* Assure RX buffer is not reused by IPG. */
1572
                sp->RxBuff[entry] = NULL;
1573
        }
1574
 
1575
        sp->rx_current = curr;
1576
 
1577
        /* Check to see if there are a minimum number of used
1578
         * RFDs before restoring any (should improve performance.)
1579
         */
1580
        if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE)
1581
                ipg_nic_rxrestore(dev);
1582
 
1583
        return 0;
1584
}
1585
#endif
1586
 
1587
static void ipg_reset_after_host_error(struct work_struct *work)
1588
{
1589
        struct ipg_nic_private *sp =
1590
                container_of(work, struct ipg_nic_private, task.work);
1591
        struct net_device *dev = sp->dev;
1592
 
1593
        IPG_DDEBUG_MSG("DMACtrl = %8.8x\n", ioread32(sp->ioaddr + IPG_DMACTRL));
1594
 
1595
        /*
1596
         * Acknowledge HostError interrupt by resetting
1597
         * IPG DMA and HOST.
1598
         */
1599
        ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1600
 
1601
        init_rfdlist(dev);
1602
        init_tfdlist(dev);
1603
 
1604
        if (ipg_io_config(dev) < 0) {
1605
                printk(KERN_INFO "%s: Cannot recover from PCI error.\n",
1606
                       dev->name);
1607
                schedule_delayed_work(&sp->task, HZ);
1608
        }
1609
}
1610
 
1611
static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst)
1612
{
1613
        struct net_device *dev = dev_inst;
1614
        struct ipg_nic_private *sp = netdev_priv(dev);
1615
        void __iomem *ioaddr = sp->ioaddr;
1616
        unsigned int handled = 0;
1617
        u16 status;
1618
 
1619
        IPG_DEBUG_MSG("_interrupt_handler\n");
1620
 
1621
#ifdef JUMBO_FRAME
1622
        ipg_nic_rxrestore(dev);
1623
#endif
1624
        spin_lock(&sp->lock);
1625
 
1626
        /* Get interrupt source information, and acknowledge
1627
         * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly,
1628
         * IntRequested, MacControlFrame, LinkEvent) interrupts
1629
         * if issued. Also, all IPG interrupts are disabled by
1630
         * reading IntStatusAck.
1631
         */
1632
        status = ipg_r16(INT_STATUS_ACK);
1633
 
1634
        IPG_DEBUG_MSG("IntStatusAck = %4.4x\n", status);
1635
 
1636
        /* Shared IRQ of remove event. */
1637
        if (!(status & IPG_IS_RSVD_MASK))
1638
                goto out_enable;
1639
 
1640
        handled = 1;
1641
 
1642
        if (unlikely(!netif_running(dev)))
1643
                goto out_unlock;
1644
 
1645
        /* If RFDListEnd interrupt, restore all used RFDs. */
1646
        if (status & IPG_IS_RFD_LIST_END) {
1647
                IPG_DEBUG_MSG("RFDListEnd Interrupt.\n");
1648
 
1649
                /* The RFD list end indicates an RFD was encountered
1650
                 * with a 0 NextPtr, or with an RFDDone bit set to 1
1651
                 * (indicating the RFD is not read for use by the
1652
                 * IPG.) Try to restore all RFDs.
1653
                 */
1654
                ipg_nic_rxrestore(dev);
1655
 
1656
#ifdef IPG_DEBUG
1657
                /* Increment the RFDlistendCount counter. */
1658
                sp->RFDlistendCount++;
1659
#endif
1660
        }
1661
 
1662
        /* If RFDListEnd, RxDMAPriority, RxDMAComplete, or
1663
         * IntRequested interrupt, process received frames. */
1664
        if ((status & IPG_IS_RX_DMA_PRIORITY) ||
1665
            (status & IPG_IS_RFD_LIST_END) ||
1666
            (status & IPG_IS_RX_DMA_COMPLETE) ||
1667
            (status & IPG_IS_INT_REQUESTED)) {
1668
#ifdef IPG_DEBUG
1669
                /* Increment the RFD list checked counter if interrupted
1670
                 * only to check the RFD list. */
1671
                if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END |
1672
                                IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) &
1673
                               (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE |
1674
                                IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE |
1675
                                IPG_IS_UPDATE_STATS)))
1676
                        sp->RFDListCheckedCount++;
1677
#endif
1678
 
1679
                ipg_nic_rx(dev);
1680
        }
1681
 
1682
        /* If TxDMAComplete interrupt, free used TFDs. */
1683
        if (status & IPG_IS_TX_DMA_COMPLETE)
1684
                ipg_nic_txfree(dev);
1685
 
1686
        /* TxComplete interrupts indicate one of numerous actions.
1687
         * Determine what action to take based on TXSTATUS register.
1688
         */
1689
        if (status & IPG_IS_TX_COMPLETE)
1690
                ipg_nic_txcleanup(dev);
1691
 
1692
        /* If UpdateStats interrupt, update Linux Ethernet statistics */
1693
        if (status & IPG_IS_UPDATE_STATS)
1694
                ipg_nic_get_stats(dev);
1695
 
1696
        /* If HostError interrupt, reset IPG. */
1697
        if (status & IPG_IS_HOST_ERROR) {
1698
                IPG_DDEBUG_MSG("HostError Interrupt\n");
1699
 
1700
                schedule_delayed_work(&sp->task, 0);
1701
        }
1702
 
1703
        /* If LinkEvent interrupt, resolve autonegotiation. */
1704
        if (status & IPG_IS_LINK_EVENT) {
1705
                if (ipg_config_autoneg(dev) < 0)
1706
                        printk(KERN_INFO "%s: Auto-negotiation error.\n",
1707
                               dev->name);
1708
        }
1709
 
1710
        /* If MACCtrlFrame interrupt, do nothing. */
1711
        if (status & IPG_IS_MAC_CTRL_FRAME)
1712
                IPG_DEBUG_MSG("MACCtrlFrame interrupt.\n");
1713
 
1714
        /* If RxComplete interrupt, do nothing. */
1715
        if (status & IPG_IS_RX_COMPLETE)
1716
                IPG_DEBUG_MSG("RxComplete interrupt.\n");
1717
 
1718
        /* If RxEarly interrupt, do nothing. */
1719
        if (status & IPG_IS_RX_EARLY)
1720
                IPG_DEBUG_MSG("RxEarly interrupt.\n");
1721
 
1722
out_enable:
1723
        /* Re-enable IPG interrupts. */
1724
        ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE |
1725
                IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE |
1726
                IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE);
1727
out_unlock:
1728
        spin_unlock(&sp->lock);
1729
 
1730
        return IRQ_RETVAL(handled);
1731
}
1732
 
1733
static void ipg_rx_clear(struct ipg_nic_private *sp)
1734
{
1735
        unsigned int i;
1736
 
1737
        for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
1738
                if (sp->RxBuff[i]) {
1739
                        struct ipg_rx *rxfd = sp->rxd + i;
1740
 
1741
                        IPG_DEV_KFREE_SKB(sp->RxBuff[i]);
1742
                        sp->RxBuff[i] = NULL;
1743
                        pci_unmap_single(sp->pdev,
1744
                                le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1745
                                sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1746
                }
1747
        }
1748
}
1749
 
1750
static void ipg_tx_clear(struct ipg_nic_private *sp)
1751
{
1752
        unsigned int i;
1753
 
1754
        for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
1755
                if (sp->TxBuff[i]) {
1756
                        struct ipg_tx *txfd = sp->txd + i;
1757
 
1758
                        pci_unmap_single(sp->pdev,
1759
                                le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
1760
                                sp->TxBuff[i]->len, PCI_DMA_TODEVICE);
1761
 
1762
                        IPG_DEV_KFREE_SKB(sp->TxBuff[i]);
1763
 
1764
                        sp->TxBuff[i] = NULL;
1765
                }
1766
        }
1767
}
1768
 
1769
static int ipg_nic_open(struct net_device *dev)
1770
{
1771
        struct ipg_nic_private *sp = netdev_priv(dev);
1772
        void __iomem *ioaddr = sp->ioaddr;
1773
        struct pci_dev *pdev = sp->pdev;
1774
        int rc;
1775
 
1776
        IPG_DEBUG_MSG("_nic_open\n");
1777
 
1778
        sp->rx_buf_sz = IPG_RXSUPPORT_SIZE;
1779
 
1780
        /* Check for interrupt line conflicts, and request interrupt
1781
         * line for IPG.
1782
         *
1783
         * IMPORTANT: Disable IPG interrupts prior to registering
1784
         *            IRQ.
1785
         */
1786
        ipg_w16(0x0000, INT_ENABLE);
1787
 
1788
        /* Register the interrupt line to be used by the IPG within
1789
         * the Linux system.
1790
         */
1791
        rc = request_irq(pdev->irq, &ipg_interrupt_handler, IRQF_SHARED,
1792
                         dev->name, dev);
1793
        if (rc < 0) {
1794
                printk(KERN_INFO "%s: Error when requesting interrupt.\n",
1795
                       dev->name);
1796
                goto out;
1797
        }
1798
 
1799
        dev->irq = pdev->irq;
1800
 
1801
        rc = -ENOMEM;
1802
 
1803
        sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES,
1804
                                     &sp->rxd_map, GFP_KERNEL);
1805
        if (!sp->rxd)
1806
                goto err_free_irq_0;
1807
 
1808
        sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES,
1809
                                     &sp->txd_map, GFP_KERNEL);
1810
        if (!sp->txd)
1811
                goto err_free_rx_1;
1812
 
1813
        rc = init_rfdlist(dev);
1814
        if (rc < 0) {
1815
                printk(KERN_INFO "%s: Error during configuration.\n",
1816
                       dev->name);
1817
                goto err_free_tx_2;
1818
        }
1819
 
1820
        init_tfdlist(dev);
1821
 
1822
        rc = ipg_io_config(dev);
1823
        if (rc < 0) {
1824
                printk(KERN_INFO "%s: Error during configuration.\n",
1825
                       dev->name);
1826
                goto err_release_tfdlist_3;
1827
        }
1828
 
1829
        /* Resolve autonegotiation. */
1830
        if (ipg_config_autoneg(dev) < 0)
1831
                printk(KERN_INFO "%s: Auto-negotiation error.\n", dev->name);
1832
 
1833
#ifdef JUMBO_FRAME
1834
        /* initialize JUMBO Frame control variable */
1835
        sp->Jumbo.FoundStart = 0;
1836
        sp->Jumbo.CurrentSize = 0;
1837
        sp->Jumbo.skb = 0;
1838
        dev->mtu = IPG_TXFRAG_SIZE;
1839
#endif
1840
 
1841
        /* Enable transmit and receive operation of the IPG. */
1842
        ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) &
1843
                 IPG_MC_RSVD_MASK, MAC_CTRL);
1844
 
1845
        netif_start_queue(dev);
1846
out:
1847
        return rc;
1848
 
1849
err_release_tfdlist_3:
1850
        ipg_tx_clear(sp);
1851
        ipg_rx_clear(sp);
1852
err_free_tx_2:
1853
        dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1854
err_free_rx_1:
1855
        dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1856
err_free_irq_0:
1857
        free_irq(pdev->irq, dev);
1858
        goto out;
1859
}
1860
 
1861
static int ipg_nic_stop(struct net_device *dev)
1862
{
1863
        struct ipg_nic_private *sp = netdev_priv(dev);
1864
        void __iomem *ioaddr = sp->ioaddr;
1865
        struct pci_dev *pdev = sp->pdev;
1866
 
1867
        IPG_DEBUG_MSG("_nic_stop\n");
1868
 
1869
        netif_stop_queue(dev);
1870
 
1871
        IPG_DDEBUG_MSG("RFDlistendCount = %i\n", sp->RFDlistendCount);
1872
        IPG_DDEBUG_MSG("RFDListCheckedCount = %i\n", sp->rxdCheckedCount);
1873
        IPG_DDEBUG_MSG("EmptyRFDListCount = %i\n", sp->EmptyRFDListCount);
1874
        IPG_DUMPTFDLIST(dev);
1875
 
1876
        do {
1877
                (void) ipg_r16(INT_STATUS_ACK);
1878
 
1879
                ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1880
 
1881
                synchronize_irq(pdev->irq);
1882
        } while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK);
1883
 
1884
        ipg_rx_clear(sp);
1885
 
1886
        ipg_tx_clear(sp);
1887
 
1888
        pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1889
        pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1890
 
1891
        free_irq(pdev->irq, dev);
1892
 
1893
        return 0;
1894
}
1895
 
1896
static int ipg_nic_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1897
{
1898
        struct ipg_nic_private *sp = netdev_priv(dev);
1899
        void __iomem *ioaddr = sp->ioaddr;
1900
        unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH;
1901
        unsigned long flags;
1902
        struct ipg_tx *txfd;
1903
 
1904
        IPG_DDEBUG_MSG("_nic_hard_start_xmit\n");
1905
 
1906
        /* If in 10Mbps mode, stop the transmit queue so
1907
         * no more transmit frames are accepted.
1908
         */
1909
        if (sp->tenmbpsmode)
1910
                netif_stop_queue(dev);
1911
 
1912
        if (sp->ResetCurrentTFD) {
1913
                sp->ResetCurrentTFD = 0;
1914
                entry = 0;
1915
        }
1916
 
1917
        txfd = sp->txd + entry;
1918
 
1919
        sp->TxBuff[entry] = skb;
1920
 
1921
        /* Clear all TFC fields, except TFDDONE. */
1922
        txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
1923
 
1924
        /* Specify the TFC field within the TFD. */
1925
        txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED |
1926
                (IPG_TFC_FRAMEID & cpu_to_le64(sp->tx_current)) |
1927
                (IPG_TFC_FRAGCOUNT & (1 << 24)));
1928
 
1929
        /* Request TxComplete interrupts at an interval defined
1930
         * by the constant IPG_FRAMESBETWEENTXCOMPLETES.
1931
         * Request TxComplete interrupt for every frame
1932
         * if in 10Mbps mode to accomodate problem with 10Mbps
1933
         * processing.
1934
         */
1935
        if (sp->tenmbpsmode)
1936
                txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE);
1937
        txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE);
1938
        /* Based on compilation option, determine if FCS is to be
1939
         * appended to transmit frame by IPG.
1940
         */
1941
        if (!(IPG_APPEND_FCS_ON_TX))
1942
                txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE);
1943
 
1944
        /* Based on compilation option, determine if IP, TCP and/or
1945
         * UDP checksums are to be added to transmit frame by IPG.
1946
         */
1947
        if (IPG_ADD_IPCHECKSUM_ON_TX)
1948
                txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE);
1949
 
1950
        if (IPG_ADD_TCPCHECKSUM_ON_TX)
1951
                txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE);
1952
 
1953
        if (IPG_ADD_UDPCHECKSUM_ON_TX)
1954
                txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE);
1955
 
1956
        /* Based on compilation option, determine if VLAN tag info is to be
1957
         * inserted into transmit frame by IPG.
1958
         */
1959
        if (IPG_INSERT_MANUAL_VLAN_TAG) {
1960
                txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT |
1961
                        ((u64) IPG_MANUAL_VLAN_VID << 32) |
1962
                        ((u64) IPG_MANUAL_VLAN_CFI << 44) |
1963
                        ((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45));
1964
        }
1965
 
1966
        /* The fragment start location within system memory is defined
1967
         * by the sk_buff structure's data field. The physical address
1968
         * of this location within the system's virtual memory space
1969
         * is determined using the IPG_HOST2BUS_MAP function.
1970
         */
1971
        txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
1972
                skb->len, PCI_DMA_TODEVICE));
1973
 
1974
        /* The length of the fragment within system memory is defined by
1975
         * the sk_buff structure's len field.
1976
         */
1977
        txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN &
1978
                ((u64) (skb->len & 0xffff) << 48));
1979
 
1980
        /* Clear the TFDDone bit last to indicate the TFD is ready
1981
         * for transfer to the IPG.
1982
         */
1983
        txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE);
1984
 
1985
        spin_lock_irqsave(&sp->lock, flags);
1986
 
1987
        sp->tx_current++;
1988
 
1989
        mmiowb();
1990
 
1991
        ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL);
1992
 
1993
        if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH))
1994
                netif_stop_queue(dev);
1995
 
1996
        spin_unlock_irqrestore(&sp->lock, flags);
1997
 
1998
        return NETDEV_TX_OK;
1999
}
2000
 
2001
static void ipg_set_phy_default_param(unsigned char rev,
2002
                                      struct net_device *dev, int phy_address)
2003
{
2004
        unsigned short length;
2005
        unsigned char revision;
2006
        unsigned short *phy_param;
2007
        unsigned short address, value;
2008
 
2009
        phy_param = &DefaultPhyParam[0];
2010
        length = *phy_param & 0x00FF;
2011
        revision = (unsigned char)((*phy_param) >> 8);
2012
        phy_param++;
2013
        while (length != 0) {
2014
                if (rev == revision) {
2015
                        while (length > 1) {
2016
                                address = *phy_param;
2017
                                value = *(phy_param + 1);
2018
                                phy_param += 2;
2019
                                mdio_write(dev, phy_address, address, value);
2020
                                length -= 4;
2021
                        }
2022
                        break;
2023
                } else {
2024
                        phy_param += length / 2;
2025
                        length = *phy_param & 0x00FF;
2026
                        revision = (unsigned char)((*phy_param) >> 8);
2027
                        phy_param++;
2028
                }
2029
        }
2030
}
2031
 
2032
/* JES20040127EEPROM */
2033
static int read_eeprom(struct net_device *dev, int eep_addr)
2034
{
2035
        void __iomem *ioaddr = ipg_ioaddr(dev);
2036
        unsigned int i;
2037
        int ret = 0;
2038
        u16 value;
2039
 
2040
        value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff);
2041
        ipg_w16(value, EEPROM_CTRL);
2042
 
2043
        for (i = 0; i < 1000; i++) {
2044
                u16 data;
2045
 
2046
                mdelay(10);
2047
                data = ipg_r16(EEPROM_CTRL);
2048
                if (!(data & IPG_EC_EEPROM_BUSY)) {
2049
                        ret = ipg_r16(EEPROM_DATA);
2050
                        break;
2051
                }
2052
        }
2053
        return ret;
2054
}
2055
 
2056
static void ipg_init_mii(struct net_device *dev)
2057
{
2058
        struct ipg_nic_private *sp = netdev_priv(dev);
2059
        struct mii_if_info *mii_if = &sp->mii_if;
2060
        int phyaddr;
2061
 
2062
        mii_if->dev          = dev;
2063
        mii_if->mdio_read    = mdio_read;
2064
        mii_if->mdio_write   = mdio_write;
2065
        mii_if->phy_id_mask  = 0x1f;
2066
        mii_if->reg_num_mask = 0x1f;
2067
 
2068
        mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev);
2069
 
2070
        if (phyaddr != 0x1f) {
2071
                u16 mii_phyctrl, mii_1000cr;
2072
                u8 revisionid = 0;
2073
 
2074
                mii_1000cr  = mdio_read(dev, phyaddr, MII_CTRL1000);
2075
                mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF |
2076
                        GMII_PHY_1000BASETCONTROL_PreferMaster;
2077
                mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr);
2078
 
2079
                mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR);
2080
 
2081
                /* Set default phyparam */
2082
                pci_read_config_byte(sp->pdev, PCI_REVISION_ID, &revisionid);
2083
                ipg_set_phy_default_param(revisionid, dev, phyaddr);
2084
 
2085
                /* Reset PHY */
2086
                mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART;
2087
                mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl);
2088
 
2089
        }
2090
}
2091
 
2092
static int ipg_hw_init(struct net_device *dev)
2093
{
2094
        struct ipg_nic_private *sp = netdev_priv(dev);
2095
        void __iomem *ioaddr = sp->ioaddr;
2096
        unsigned int i;
2097
        int rc;
2098
 
2099
        /* Read/Write and Reset EEPROM Value Jesse20040128EEPROM_VALUE */
2100
        /* Read LED Mode Configuration from EEPROM */
2101
        sp->LED_Mode = read_eeprom(dev, 6);
2102
 
2103
        /* Reset all functions within the IPG. Do not assert
2104
         * RST_OUT as not compatible with some PHYs.
2105
         */
2106
        rc = ipg_reset(dev, IPG_RESET_MASK);
2107
        if (rc < 0)
2108
                goto out;
2109
 
2110
        ipg_init_mii(dev);
2111
 
2112
        /* Read MAC Address from EEPROM */
2113
        for (i = 0; i < 3; i++)
2114
                sp->station_addr[i] = read_eeprom(dev, 16 + i);
2115
 
2116
        for (i = 0; i < 3; i++)
2117
                ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i);
2118
 
2119
        /* Set station address in ethernet_device structure. */
2120
        dev->dev_addr[0] =  ipg_r16(STATION_ADDRESS_0) & 0x00ff;
2121
        dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8;
2122
        dev->dev_addr[2] =  ipg_r16(STATION_ADDRESS_1) & 0x00ff;
2123
        dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8;
2124
        dev->dev_addr[4] =  ipg_r16(STATION_ADDRESS_2) & 0x00ff;
2125
        dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8;
2126
out:
2127
        return rc;
2128
}
2129
 
2130
static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2131
{
2132
        struct ipg_nic_private *sp = netdev_priv(dev);
2133
        int rc;
2134
 
2135
        mutex_lock(&sp->mii_mutex);
2136
        rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL);
2137
        mutex_unlock(&sp->mii_mutex);
2138
 
2139
        return rc;
2140
}
2141
 
2142
static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu)
2143
{
2144
        /* Function to accomodate changes to Maximum Transfer Unit
2145
         * (or MTU) of IPG NIC. Cannot use default function since
2146
         * the default will not allow for MTU > 1500 bytes.
2147
         */
2148
 
2149
        IPG_DEBUG_MSG("_nic_change_mtu\n");
2150
 
2151
        /* Check that the new MTU value is between 68 (14 byte header, 46
2152
         * byte payload, 4 byte FCS) and IPG_MAX_RXFRAME_SIZE, which
2153
         * corresponds to the MAXFRAMESIZE register in the IPG.
2154
         */
2155
        if ((new_mtu < 68) || (new_mtu > IPG_MAX_RXFRAME_SIZE))
2156
                return -EINVAL;
2157
 
2158
        dev->mtu = new_mtu;
2159
 
2160
        return 0;
2161
}
2162
 
2163
static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2164
{
2165
        struct ipg_nic_private *sp = netdev_priv(dev);
2166
        int rc;
2167
 
2168
        mutex_lock(&sp->mii_mutex);
2169
        rc = mii_ethtool_gset(&sp->mii_if, cmd);
2170
        mutex_unlock(&sp->mii_mutex);
2171
 
2172
        return rc;
2173
}
2174
 
2175
static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2176
{
2177
        struct ipg_nic_private *sp = netdev_priv(dev);
2178
        int rc;
2179
 
2180
        mutex_lock(&sp->mii_mutex);
2181
        rc = mii_ethtool_sset(&sp->mii_if, cmd);
2182
        mutex_unlock(&sp->mii_mutex);
2183
 
2184
        return rc;
2185
}
2186
 
2187
static int ipg_nway_reset(struct net_device *dev)
2188
{
2189
        struct ipg_nic_private *sp = netdev_priv(dev);
2190
        int rc;
2191
 
2192
        mutex_lock(&sp->mii_mutex);
2193
        rc = mii_nway_restart(&sp->mii_if);
2194
        mutex_unlock(&sp->mii_mutex);
2195
 
2196
        return rc;
2197
}
2198
 
2199
static struct ethtool_ops ipg_ethtool_ops = {
2200
        .get_settings = ipg_get_settings,
2201
        .set_settings = ipg_set_settings,
2202
        .nway_reset   = ipg_nway_reset,
2203
};
2204
 
2205
static void ipg_remove(struct pci_dev *pdev)
2206
{
2207
        struct net_device *dev = pci_get_drvdata(pdev);
2208
        struct ipg_nic_private *sp = netdev_priv(dev);
2209
 
2210
        IPG_DEBUG_MSG("_remove\n");
2211
 
2212
        /* Un-register Ethernet device. */
2213
        unregister_netdev(dev);
2214
 
2215
        pci_iounmap(pdev, sp->ioaddr);
2216
 
2217
        pci_release_regions(pdev);
2218
 
2219
        free_netdev(dev);
2220
        pci_disable_device(pdev);
2221
        pci_set_drvdata(pdev, NULL);
2222
}
2223
 
2224
static int __devinit ipg_probe(struct pci_dev *pdev,
2225
                               const struct pci_device_id *id)
2226
{
2227
        unsigned int i = id->driver_data;
2228
        struct ipg_nic_private *sp;
2229
        struct net_device *dev;
2230
        void __iomem *ioaddr;
2231
        int rc;
2232
 
2233
        rc = pci_enable_device(pdev);
2234
        if (rc < 0)
2235
                goto out;
2236
 
2237
        printk(KERN_INFO "%s: %s\n", pci_name(pdev), ipg_brand_name[i]);
2238
 
2239
        pci_set_master(pdev);
2240
 
2241
        rc = pci_set_dma_mask(pdev, DMA_40BIT_MASK);
2242
        if (rc < 0) {
2243
                rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2244
                if (rc < 0) {
2245
                        printk(KERN_ERR "%s: DMA config failed.\n",
2246
                               pci_name(pdev));
2247
                        goto err_disable_0;
2248
                }
2249
        }
2250
 
2251
        /*
2252
         * Initialize net device.
2253
         */
2254
        dev = alloc_etherdev(sizeof(struct ipg_nic_private));
2255
        if (!dev) {
2256
                printk(KERN_ERR "%s: alloc_etherdev failed\n", pci_name(pdev));
2257
                rc = -ENOMEM;
2258
                goto err_disable_0;
2259
        }
2260
 
2261
        sp = netdev_priv(dev);
2262
        spin_lock_init(&sp->lock);
2263
        mutex_init(&sp->mii_mutex);
2264
 
2265
        /* Declare IPG NIC functions for Ethernet device methods.
2266
         */
2267
        dev->open = &ipg_nic_open;
2268
        dev->stop = &ipg_nic_stop;
2269
        dev->hard_start_xmit = &ipg_nic_hard_start_xmit;
2270
        dev->get_stats = &ipg_nic_get_stats;
2271
        dev->set_multicast_list = &ipg_nic_set_multicast_list;
2272
        dev->do_ioctl = ipg_ioctl;
2273
        dev->tx_timeout = ipg_tx_timeout;
2274
        dev->change_mtu = &ipg_nic_change_mtu;
2275
 
2276
        SET_NETDEV_DEV(dev, &pdev->dev);
2277
        SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops);
2278
 
2279
        rc = pci_request_regions(pdev, DRV_NAME);
2280
        if (rc)
2281
                goto err_free_dev_1;
2282
 
2283
        ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1));
2284
        if (!ioaddr) {
2285
                printk(KERN_ERR "%s cannot map MMIO\n", pci_name(pdev));
2286
                rc = -EIO;
2287
                goto err_release_regions_2;
2288
        }
2289
 
2290
        /* Save the pointer to the PCI device information. */
2291
        sp->ioaddr = ioaddr;
2292
        sp->pdev = pdev;
2293
        sp->dev = dev;
2294
 
2295
        INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error);
2296
 
2297
        pci_set_drvdata(pdev, dev);
2298
 
2299
        rc = ipg_hw_init(dev);
2300
        if (rc < 0)
2301
                goto err_unmap_3;
2302
 
2303
        rc = register_netdev(dev);
2304
        if (rc < 0)
2305
                goto err_unmap_3;
2306
 
2307
        printk(KERN_INFO "Ethernet device registered as: %s\n", dev->name);
2308
out:
2309
        return rc;
2310
 
2311
err_unmap_3:
2312
        pci_iounmap(pdev, ioaddr);
2313
err_release_regions_2:
2314
        pci_release_regions(pdev);
2315
err_free_dev_1:
2316
        free_netdev(dev);
2317
err_disable_0:
2318
        pci_disable_device(pdev);
2319
        goto out;
2320
}
2321
 
2322
static struct pci_driver ipg_pci_driver = {
2323
        .name           = IPG_DRIVER_NAME,
2324
        .id_table       = ipg_pci_tbl,
2325
        .probe          = ipg_probe,
2326
        .remove         = __devexit_p(ipg_remove),
2327
};
2328
 
2329
static int __init ipg_init_module(void)
2330
{
2331
        return pci_register_driver(&ipg_pci_driver);
2332
}
2333
 
2334
static void __exit ipg_exit_module(void)
2335
{
2336
        pci_unregister_driver(&ipg_pci_driver);
2337
}
2338
 
2339
module_init(ipg_init_module);
2340
module_exit(ipg_exit_module);

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.