OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [drivers/] [net/] [irda/] [au1k_ir.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 * Alchemy Semi Au1000 IrDA driver
3
 *
4
 * Copyright 2001 MontaVista Software Inc.
5
 * Author: MontaVista Software, Inc.
6
 *              ppopov@mvista.com or source@mvista.com
7
 *
8
 *  This program is free software; you can distribute it and/or modify it
9
 *  under the terms of the GNU General Public License (Version 2) as
10
 *  published by the Free Software Foundation.
11
 *
12
 *  This program is distributed in the hope it will be useful, but WITHOUT
13
 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14
 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15
 *  for more details.
16
 *
17
 *  You should have received a copy of the GNU General Public License along
18
 *  with this program; if not, write to the Free Software Foundation, Inc.,
19
 *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
20
 */
21
#include <linux/module.h>
22
#include <linux/types.h>
23
#include <linux/init.h>
24
#include <linux/errno.h>
25
#include <linux/netdevice.h>
26
#include <linux/slab.h>
27
#include <linux/rtnetlink.h>
28
#include <linux/interrupt.h>
29
#include <linux/pm.h>
30
#include <linux/bitops.h>
31
 
32
#include <asm/irq.h>
33
#include <asm/io.h>
34
#include <asm/au1000.h>
35
#if defined(CONFIG_MIPS_PB1000) || defined(CONFIG_MIPS_PB1100)
36
#include <asm/pb1000.h>
37
#elif defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
38
#include <asm/db1x00.h>
39
#else 
40
#error au1k_ir: unsupported board
41
#endif
42
 
43
#include <net/irda/irda.h>
44
#include <net/irda/irmod.h>
45
#include <net/irda/wrapper.h>
46
#include <net/irda/irda_device.h>
47
#include "au1000_ircc.h"
48
 
49
static int au1k_irda_net_init(struct net_device *);
50
static int au1k_irda_start(struct net_device *);
51
static int au1k_irda_stop(struct net_device *dev);
52
static int au1k_irda_hard_xmit(struct sk_buff *, struct net_device *);
53
static int au1k_irda_rx(struct net_device *);
54
static void au1k_irda_interrupt(int, void *);
55
static void au1k_tx_timeout(struct net_device *);
56
static struct net_device_stats *au1k_irda_stats(struct net_device *);
57
static int au1k_irda_ioctl(struct net_device *, struct ifreq *, int);
58
static int au1k_irda_set_speed(struct net_device *dev, int speed);
59
 
60
static void *dma_alloc(size_t, dma_addr_t *);
61
static void dma_free(void *, size_t);
62
 
63
static int qos_mtt_bits = 0x07;  /* 1 ms or more */
64
static struct net_device *ir_devs[NUM_IR_IFF];
65
static char version[] __devinitdata =
66
    "au1k_ircc:1.2 ppopov@mvista.com\n";
67
 
68
#define RUN_AT(x) (jiffies + (x))
69
 
70
#if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
71
static BCSR * const bcsr = (BCSR *)0xAE000000;
72
#endif
73
 
74
static DEFINE_SPINLOCK(ir_lock);
75
 
76
/*
77
 * IrDA peripheral bug. You have to read the register
78
 * twice to get the right value.
79
 */
80
u32 read_ir_reg(u32 addr)
81
{
82
        readl(addr);
83
        return readl(addr);
84
}
85
 
86
 
87
/*
88
 * Buffer allocation/deallocation routines. The buffer descriptor returned
89
 * has the virtual and dma address of a buffer suitable for
90
 * both, receive and transmit operations.
91
 */
92
static db_dest_t *GetFreeDB(struct au1k_private *aup)
93
{
94
        db_dest_t *pDB;
95
        pDB = aup->pDBfree;
96
 
97
        if (pDB) {
98
                aup->pDBfree = pDB->pnext;
99
        }
100
        return pDB;
101
}
102
 
103
static void ReleaseDB(struct au1k_private *aup, db_dest_t *pDB)
104
{
105
        db_dest_t *pDBfree = aup->pDBfree;
106
        if (pDBfree)
107
                pDBfree->pnext = pDB;
108
        aup->pDBfree = pDB;
109
}
110
 
111
 
112
/*
113
  DMA memory allocation, derived from pci_alloc_consistent.
114
  However, the Au1000 data cache is coherent (when programmed
115
  so), therefore we return KSEG0 address, not KSEG1.
116
*/
117
static void *dma_alloc(size_t size, dma_addr_t * dma_handle)
118
{
119
        void *ret;
120
        int gfp = GFP_ATOMIC | GFP_DMA;
121
 
122
        ret = (void *) __get_free_pages(gfp, get_order(size));
123
 
124
        if (ret != NULL) {
125
                memset(ret, 0, size);
126
                *dma_handle = virt_to_bus(ret);
127
                ret = (void *)KSEG0ADDR(ret);
128
        }
129
        return ret;
130
}
131
 
132
 
133
static void dma_free(void *vaddr, size_t size)
134
{
135
        vaddr = (void *)KSEG0ADDR(vaddr);
136
        free_pages((unsigned long) vaddr, get_order(size));
137
}
138
 
139
 
140
static void
141
setup_hw_rings(struct au1k_private *aup, u32 rx_base, u32 tx_base)
142
{
143
        int i;
144
        for (i=0; i<NUM_IR_DESC; i++) {
145
                aup->rx_ring[i] = (volatile ring_dest_t *)
146
                        (rx_base + sizeof(ring_dest_t)*i);
147
        }
148
        for (i=0; i<NUM_IR_DESC; i++) {
149
                aup->tx_ring[i] = (volatile ring_dest_t *)
150
                        (tx_base + sizeof(ring_dest_t)*i);
151
        }
152
}
153
 
154
static int au1k_irda_init(void)
155
{
156
        static unsigned version_printed = 0;
157
        struct au1k_private *aup;
158
        struct net_device *dev;
159
        int err;
160
 
161
        if (version_printed++ == 0) printk(version);
162
 
163
        dev = alloc_irdadev(sizeof(struct au1k_private));
164
        if (!dev)
165
                return -ENOMEM;
166
 
167
        dev->irq = AU1000_IRDA_RX_INT; /* TX has its own interrupt */
168
        err = au1k_irda_net_init(dev);
169
        if (err)
170
                goto out;
171
        err = register_netdev(dev);
172
        if (err)
173
                goto out1;
174
        ir_devs[0] = dev;
175
        printk(KERN_INFO "IrDA: Registered device %s\n", dev->name);
176
        return 0;
177
 
178
out1:
179
        aup = netdev_priv(dev);
180
        dma_free((void *)aup->db[0].vaddr,
181
                MAX_BUF_SIZE * 2*NUM_IR_DESC);
182
        dma_free((void *)aup->rx_ring[0],
183
                2 * MAX_NUM_IR_DESC*(sizeof(ring_dest_t)));
184
        kfree(aup->rx_buff.head);
185
out:
186
        free_netdev(dev);
187
        return err;
188
}
189
 
190
static int au1k_irda_init_iobuf(iobuff_t *io, int size)
191
{
192
        io->head = kmalloc(size, GFP_KERNEL);
193
        if (io->head != NULL) {
194
                io->truesize = size;
195
                io->in_frame = FALSE;
196
                io->state    = OUTSIDE_FRAME;
197
                io->data     = io->head;
198
        }
199
        return io->head ? 0 : -ENOMEM;
200
}
201
 
202
static int au1k_irda_net_init(struct net_device *dev)
203
{
204
        struct au1k_private *aup = netdev_priv(dev);
205
        int i, retval = 0, err;
206
        db_dest_t *pDB, *pDBfree;
207
        dma_addr_t temp;
208
 
209
        err = au1k_irda_init_iobuf(&aup->rx_buff, 14384);
210
        if (err)
211
                goto out1;
212
 
213
        dev->open = au1k_irda_start;
214
        dev->hard_start_xmit = au1k_irda_hard_xmit;
215
        dev->stop = au1k_irda_stop;
216
        dev->get_stats = au1k_irda_stats;
217
        dev->do_ioctl = au1k_irda_ioctl;
218
        dev->tx_timeout = au1k_tx_timeout;
219
 
220
        irda_init_max_qos_capabilies(&aup->qos);
221
 
222
        /* The only value we must override it the baudrate */
223
        aup->qos.baud_rate.bits = IR_9600|IR_19200|IR_38400|IR_57600|
224
                IR_115200|IR_576000 |(IR_4000000 << 8);
225
 
226
        aup->qos.min_turn_time.bits = qos_mtt_bits;
227
        irda_qos_bits_to_value(&aup->qos);
228
 
229
        retval = -ENOMEM;
230
 
231
        /* Tx ring follows rx ring + 512 bytes */
232
        /* we need a 1k aligned buffer */
233
        aup->rx_ring[0] = (ring_dest_t *)
234
                dma_alloc(2*MAX_NUM_IR_DESC*(sizeof(ring_dest_t)), &temp);
235
        if (!aup->rx_ring[0])
236
                goto out2;
237
 
238
        /* allocate the data buffers */
239
        aup->db[0].vaddr =
240
                (void *)dma_alloc(MAX_BUF_SIZE * 2*NUM_IR_DESC, &temp);
241
        if (!aup->db[0].vaddr)
242
                goto out3;
243
 
244
        setup_hw_rings(aup, (u32)aup->rx_ring[0], (u32)aup->rx_ring[0] + 512);
245
 
246
        pDBfree = NULL;
247
        pDB = aup->db;
248
        for (i=0; i<(2*NUM_IR_DESC); i++) {
249
                pDB->pnext = pDBfree;
250
                pDBfree = pDB;
251
                pDB->vaddr =
252
                        (u32 *)((unsigned)aup->db[0].vaddr + MAX_BUF_SIZE*i);
253
                pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
254
                pDB++;
255
        }
256
        aup->pDBfree = pDBfree;
257
 
258
        /* attach a data buffer to each descriptor */
259
        for (i=0; i<NUM_IR_DESC; i++) {
260
                pDB = GetFreeDB(aup);
261
                if (!pDB) goto out;
262
                aup->rx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
263
                aup->rx_ring[i]->addr_1 = (u8)((pDB->dma_addr>>8) & 0xff);
264
                aup->rx_ring[i]->addr_2 = (u8)((pDB->dma_addr>>16) & 0xff);
265
                aup->rx_ring[i]->addr_3 = (u8)((pDB->dma_addr>>24) & 0xff);
266
                aup->rx_db_inuse[i] = pDB;
267
        }
268
        for (i=0; i<NUM_IR_DESC; i++) {
269
                pDB = GetFreeDB(aup);
270
                if (!pDB) goto out;
271
                aup->tx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
272
                aup->tx_ring[i]->addr_1 = (u8)((pDB->dma_addr>>8) & 0xff);
273
                aup->tx_ring[i]->addr_2 = (u8)((pDB->dma_addr>>16) & 0xff);
274
                aup->tx_ring[i]->addr_3 = (u8)((pDB->dma_addr>>24) & 0xff);
275
                aup->tx_ring[i]->count_0 = 0;
276
                aup->tx_ring[i]->count_1 = 0;
277
                aup->tx_ring[i]->flags = 0;
278
                aup->tx_db_inuse[i] = pDB;
279
        }
280
 
281
#if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
282
        /* power on */
283
        bcsr->resets &= ~BCSR_RESETS_IRDA_MODE_MASK;
284
        bcsr->resets |= BCSR_RESETS_IRDA_MODE_FULL;
285
        au_sync();
286
#endif
287
 
288
        return 0;
289
 
290
out3:
291
        dma_free((void *)aup->rx_ring[0],
292
                2 * MAX_NUM_IR_DESC*(sizeof(ring_dest_t)));
293
out2:
294
        kfree(aup->rx_buff.head);
295
out1:
296
        printk(KERN_ERR "au1k_init_module failed.  Returns %d\n", retval);
297
        return retval;
298
}
299
 
300
 
301
static int au1k_init(struct net_device *dev)
302
{
303
        struct au1k_private *aup = netdev_priv(dev);
304
        int i;
305
        u32 control;
306
        u32 ring_address;
307
 
308
        /* bring the device out of reset */
309
        control = 0xe; /* coherent, clock enable, one half system clock */
310
 
311
#ifndef CONFIG_CPU_LITTLE_ENDIAN
312
        control |= 1;
313
#endif
314
        aup->tx_head = 0;
315
        aup->tx_tail = 0;
316
        aup->rx_head = 0;
317
 
318
        for (i=0; i<NUM_IR_DESC; i++) {
319
                aup->rx_ring[i]->flags = AU_OWN;
320
        }
321
 
322
        writel(control, IR_INTERFACE_CONFIG);
323
        au_sync_delay(10);
324
 
325
        writel(read_ir_reg(IR_ENABLE) & ~0x8000, IR_ENABLE); /* disable PHY */
326
        au_sync_delay(1);
327
 
328
        writel(MAX_BUF_SIZE, IR_MAX_PKT_LEN);
329
 
330
        ring_address = (u32)virt_to_phys((void *)aup->rx_ring[0]);
331
        writel(ring_address >> 26, IR_RING_BASE_ADDR_H);
332
        writel((ring_address >> 10) & 0xffff, IR_RING_BASE_ADDR_L);
333
 
334
        writel(RING_SIZE_64<<8 | RING_SIZE_64<<12, IR_RING_SIZE);
335
 
336
        writel(1<<2 | IR_ONE_PIN, IR_CONFIG_2); /* 48MHz */
337
        writel(0, IR_RING_ADDR_CMPR);
338
 
339
        au1k_irda_set_speed(dev, 9600);
340
        return 0;
341
}
342
 
343
static int au1k_irda_start(struct net_device *dev)
344
{
345
        int retval;
346
        char hwname[32];
347
        struct au1k_private *aup = netdev_priv(dev);
348
 
349
        if ((retval = au1k_init(dev))) {
350
                printk(KERN_ERR "%s: error in au1k_init\n", dev->name);
351
                return retval;
352
        }
353
 
354
        if ((retval = request_irq(AU1000_IRDA_TX_INT, &au1k_irda_interrupt,
355
                                        0, dev->name, dev))) {
356
                printk(KERN_ERR "%s: unable to get IRQ %d\n",
357
                                dev->name, dev->irq);
358
                return retval;
359
        }
360
        if ((retval = request_irq(AU1000_IRDA_RX_INT, &au1k_irda_interrupt,
361
                                        0, dev->name, dev))) {
362
                free_irq(AU1000_IRDA_TX_INT, dev);
363
                printk(KERN_ERR "%s: unable to get IRQ %d\n",
364
                                dev->name, dev->irq);
365
                return retval;
366
        }
367
 
368
        /* Give self a hardware name */
369
        sprintf(hwname, "Au1000 SIR/FIR");
370
        aup->irlap = irlap_open(dev, &aup->qos, hwname);
371
        netif_start_queue(dev);
372
 
373
        writel(read_ir_reg(IR_CONFIG_2) | 1<<8, IR_CONFIG_2); /* int enable */
374
 
375
        aup->timer.expires = RUN_AT((3*HZ));
376
        aup->timer.data = (unsigned long)dev;
377
        return 0;
378
}
379
 
380
static int au1k_irda_stop(struct net_device *dev)
381
{
382
        struct au1k_private *aup = netdev_priv(dev);
383
 
384
        /* disable interrupts */
385
        writel(read_ir_reg(IR_CONFIG_2) & ~(1<<8), IR_CONFIG_2);
386
        writel(0, IR_CONFIG_1);
387
        writel(0, IR_INTERFACE_CONFIG); /* disable clock */
388
        au_sync();
389
 
390
        if (aup->irlap) {
391
                irlap_close(aup->irlap);
392
                aup->irlap = NULL;
393
        }
394
 
395
        netif_stop_queue(dev);
396
        del_timer(&aup->timer);
397
 
398
        /* disable the interrupt */
399
        free_irq(AU1000_IRDA_TX_INT, dev);
400
        free_irq(AU1000_IRDA_RX_INT, dev);
401
        return 0;
402
}
403
 
404
static void __exit au1k_irda_exit(void)
405
{
406
        struct net_device *dev = ir_devs[0];
407
        struct au1k_private *aup = netdev_priv(dev);
408
 
409
        unregister_netdev(dev);
410
 
411
        dma_free((void *)aup->db[0].vaddr,
412
                MAX_BUF_SIZE * 2*NUM_IR_DESC);
413
        dma_free((void *)aup->rx_ring[0],
414
                2 * MAX_NUM_IR_DESC*(sizeof(ring_dest_t)));
415
        kfree(aup->rx_buff.head);
416
        free_netdev(dev);
417
}
418
 
419
 
420
static inline void
421
update_tx_stats(struct net_device *dev, u32 status, u32 pkt_len)
422
{
423
        struct au1k_private *aup = netdev_priv(dev);
424
        struct net_device_stats *ps = &aup->stats;
425
 
426
        ps->tx_packets++;
427
        ps->tx_bytes += pkt_len;
428
 
429
        if (status & IR_TX_ERROR) {
430
                ps->tx_errors++;
431
                ps->tx_aborted_errors++;
432
        }
433
}
434
 
435
 
436
static void au1k_tx_ack(struct net_device *dev)
437
{
438
        struct au1k_private *aup = netdev_priv(dev);
439
        volatile ring_dest_t *ptxd;
440
 
441
        ptxd = aup->tx_ring[aup->tx_tail];
442
        while (!(ptxd->flags & AU_OWN) && (aup->tx_tail != aup->tx_head)) {
443
                update_tx_stats(dev, ptxd->flags,
444
                                ptxd->count_1<<8 | ptxd->count_0);
445
                ptxd->count_0 = 0;
446
                ptxd->count_1 = 0;
447
                au_sync();
448
 
449
                aup->tx_tail = (aup->tx_tail + 1) & (NUM_IR_DESC - 1);
450
                ptxd = aup->tx_ring[aup->tx_tail];
451
 
452
                if (aup->tx_full) {
453
                        aup->tx_full = 0;
454
                        netif_wake_queue(dev);
455
                }
456
        }
457
 
458
        if (aup->tx_tail == aup->tx_head) {
459
                if (aup->newspeed) {
460
                        au1k_irda_set_speed(dev, aup->newspeed);
461
                        aup->newspeed = 0;
462
                }
463
                else {
464
                        writel(read_ir_reg(IR_CONFIG_1) & ~IR_TX_ENABLE,
465
                                        IR_CONFIG_1);
466
                        au_sync();
467
                        writel(read_ir_reg(IR_CONFIG_1) | IR_RX_ENABLE,
468
                                        IR_CONFIG_1);
469
                        writel(0, IR_RING_PROMPT);
470
                        au_sync();
471
                }
472
        }
473
}
474
 
475
 
476
/*
477
 * Au1000 transmit routine.
478
 */
479
static int au1k_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
480
{
481
        struct au1k_private *aup = netdev_priv(dev);
482
        int speed = irda_get_next_speed(skb);
483
        volatile ring_dest_t *ptxd;
484
        u32 len;
485
 
486
        u32 flags;
487
        db_dest_t *pDB;
488
 
489
        if (speed != aup->speed && speed != -1) {
490
                aup->newspeed = speed;
491
        }
492
 
493
        if ((skb->len == 0) && (aup->newspeed)) {
494
                if (aup->tx_tail == aup->tx_head) {
495
                        au1k_irda_set_speed(dev, speed);
496
                        aup->newspeed = 0;
497
                }
498
                dev_kfree_skb(skb);
499
                return 0;
500
        }
501
 
502
        ptxd = aup->tx_ring[aup->tx_head];
503
        flags = ptxd->flags;
504
 
505
        if (flags & AU_OWN) {
506
                printk(KERN_DEBUG "%s: tx_full\n", dev->name);
507
                netif_stop_queue(dev);
508
                aup->tx_full = 1;
509
                return 1;
510
        }
511
        else if (((aup->tx_head + 1) & (NUM_IR_DESC - 1)) == aup->tx_tail) {
512
                printk(KERN_DEBUG "%s: tx_full\n", dev->name);
513
                netif_stop_queue(dev);
514
                aup->tx_full = 1;
515
                return 1;
516
        }
517
 
518
        pDB = aup->tx_db_inuse[aup->tx_head];
519
 
520
#if 0
521
        if (read_ir_reg(IR_RX_BYTE_CNT) != 0) {
522
                printk("tx warning: rx byte cnt %x\n",
523
                                read_ir_reg(IR_RX_BYTE_CNT));
524
        }
525
#endif
526
 
527
        if (aup->speed == 4000000) {
528
                /* FIR */
529
                skb_copy_from_linear_data(skb, pDB->vaddr, skb->len);
530
                ptxd->count_0 = skb->len & 0xff;
531
                ptxd->count_1 = (skb->len >> 8) & 0xff;
532
 
533
        }
534
        else {
535
                /* SIR */
536
                len = async_wrap_skb(skb, (u8 *)pDB->vaddr, MAX_BUF_SIZE);
537
                ptxd->count_0 = len & 0xff;
538
                ptxd->count_1 = (len >> 8) & 0xff;
539
                ptxd->flags |= IR_DIS_CRC;
540
                au_writel(au_readl(0xae00000c) & ~(1<<13), 0xae00000c);
541
        }
542
        ptxd->flags |= AU_OWN;
543
        au_sync();
544
 
545
        writel(read_ir_reg(IR_CONFIG_1) | IR_TX_ENABLE, IR_CONFIG_1);
546
        writel(0, IR_RING_PROMPT);
547
        au_sync();
548
 
549
        dev_kfree_skb(skb);
550
        aup->tx_head = (aup->tx_head + 1) & (NUM_IR_DESC - 1);
551
        dev->trans_start = jiffies;
552
        return 0;
553
}
554
 
555
 
556
static inline void
557
update_rx_stats(struct net_device *dev, u32 status, u32 count)
558
{
559
        struct au1k_private *aup = netdev_priv(dev);
560
        struct net_device_stats *ps = &aup->stats;
561
 
562
        ps->rx_packets++;
563
 
564
        if (status & IR_RX_ERROR) {
565
                ps->rx_errors++;
566
                if (status & (IR_PHY_ERROR|IR_FIFO_OVER))
567
                        ps->rx_missed_errors++;
568
                if (status & IR_MAX_LEN)
569
                        ps->rx_length_errors++;
570
                if (status & IR_CRC_ERROR)
571
                        ps->rx_crc_errors++;
572
        }
573
        else
574
                ps->rx_bytes += count;
575
}
576
 
577
/*
578
 * Au1000 receive routine.
579
 */
580
static int au1k_irda_rx(struct net_device *dev)
581
{
582
        struct au1k_private *aup = netdev_priv(dev);
583
        struct sk_buff *skb;
584
        volatile ring_dest_t *prxd;
585
        u32 flags, count;
586
        db_dest_t *pDB;
587
 
588
        prxd = aup->rx_ring[aup->rx_head];
589
        flags = prxd->flags;
590
 
591
        while (!(flags & AU_OWN))  {
592
                pDB = aup->rx_db_inuse[aup->rx_head];
593
                count = prxd->count_1<<8 | prxd->count_0;
594
                if (!(flags & IR_RX_ERROR))  {
595
                        /* good frame */
596
                        update_rx_stats(dev, flags, count);
597
                        skb=alloc_skb(count+1,GFP_ATOMIC);
598
                        if (skb == NULL) {
599
                                aup->stats.rx_dropped++;
600
                                continue;
601
                        }
602
                        skb_reserve(skb, 1);
603
                        if (aup->speed == 4000000)
604
                                skb_put(skb, count);
605
                        else
606
                                skb_put(skb, count-2);
607
                        skb_copy_to_linear_data(skb, pDB->vaddr, count - 2);
608
                        skb->dev = dev;
609
                        skb_reset_mac_header(skb);
610
                        skb->protocol = htons(ETH_P_IRDA);
611
                        netif_rx(skb);
612
                        prxd->count_0 = 0;
613
                        prxd->count_1 = 0;
614
                }
615
                prxd->flags |= AU_OWN;
616
                aup->rx_head = (aup->rx_head + 1) & (NUM_IR_DESC - 1);
617
                writel(0, IR_RING_PROMPT);
618
                au_sync();
619
 
620
                /* next descriptor */
621
                prxd = aup->rx_ring[aup->rx_head];
622
                flags = prxd->flags;
623
                dev->last_rx = jiffies;
624
 
625
        }
626
        return 0;
627
}
628
 
629
 
630
static irqreturn_t au1k_irda_interrupt(int dummy, void *dev_id)
631
{
632
        struct net_device *dev = dev_id;
633
 
634
        writel(0, IR_INT_CLEAR); /* ack irda interrupts */
635
 
636
        au1k_irda_rx(dev);
637
        au1k_tx_ack(dev);
638
 
639
        return IRQ_HANDLED;
640
}
641
 
642
 
643
/*
644
 * The Tx ring has been full longer than the watchdog timeout
645
 * value. The transmitter must be hung?
646
 */
647
static void au1k_tx_timeout(struct net_device *dev)
648
{
649
        u32 speed;
650
        struct au1k_private *aup = netdev_priv(dev);
651
 
652
        printk(KERN_ERR "%s: tx timeout\n", dev->name);
653
        speed = aup->speed;
654
        aup->speed = 0;
655
        au1k_irda_set_speed(dev, speed);
656
        aup->tx_full = 0;
657
        netif_wake_queue(dev);
658
}
659
 
660
 
661
/*
662
 * Set the IrDA communications speed.
663
 */
664
static int
665
au1k_irda_set_speed(struct net_device *dev, int speed)
666
{
667
        unsigned long flags;
668
        struct au1k_private *aup = netdev_priv(dev);
669
        u32 control;
670
        int ret = 0, timeout = 10, i;
671
        volatile ring_dest_t *ptxd;
672
#if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
673
        unsigned long irda_resets;
674
#endif
675
 
676
        if (speed == aup->speed)
677
                return ret;
678
 
679
        spin_lock_irqsave(&ir_lock, flags);
680
 
681
        /* disable PHY first */
682
        writel(read_ir_reg(IR_ENABLE) & ~0x8000, IR_ENABLE);
683
 
684
        /* disable RX/TX */
685
        writel(read_ir_reg(IR_CONFIG_1) & ~(IR_RX_ENABLE|IR_TX_ENABLE),
686
                        IR_CONFIG_1);
687
        au_sync_delay(1);
688
        while (read_ir_reg(IR_ENABLE) & (IR_RX_STATUS | IR_TX_STATUS)) {
689
                mdelay(1);
690
                if (!timeout--) {
691
                        printk(KERN_ERR "%s: rx/tx disable timeout\n",
692
                                        dev->name);
693
                        break;
694
                }
695
        }
696
 
697
        /* disable DMA */
698
        writel(read_ir_reg(IR_CONFIG_1) & ~IR_DMA_ENABLE, IR_CONFIG_1);
699
        au_sync_delay(1);
700
 
701
        /*
702
         *  After we disable tx/rx. the index pointers
703
         * go back to zero.
704
         */
705
        aup->tx_head = aup->tx_tail = aup->rx_head = 0;
706
        for (i=0; i<NUM_IR_DESC; i++) {
707
                ptxd = aup->tx_ring[i];
708
                ptxd->flags = 0;
709
                ptxd->count_0 = 0;
710
                ptxd->count_1 = 0;
711
        }
712
 
713
        for (i=0; i<NUM_IR_DESC; i++) {
714
                ptxd = aup->rx_ring[i];
715
                ptxd->count_0 = 0;
716
                ptxd->count_1 = 0;
717
                ptxd->flags = AU_OWN;
718
        }
719
 
720
        if (speed == 4000000) {
721
#if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
722
                bcsr->resets |= BCSR_RESETS_FIR_SEL;
723
#else /* Pb1000 and Pb1100 */
724
                writel(1<<13, CPLD_AUX1);
725
#endif
726
        }
727
        else {
728
#if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
729
                bcsr->resets &= ~BCSR_RESETS_FIR_SEL;
730
#else /* Pb1000 and Pb1100 */
731
                writel(readl(CPLD_AUX1) & ~(1<<13), CPLD_AUX1);
732
#endif
733
        }
734
 
735
        switch (speed) {
736
        case 9600:
737
                writel(11<<10 | 12<<5, IR_WRITE_PHY_CONFIG);
738
                writel(IR_SIR_MODE, IR_CONFIG_1);
739
                break;
740
        case 19200:
741
                writel(5<<10 | 12<<5, IR_WRITE_PHY_CONFIG);
742
                writel(IR_SIR_MODE, IR_CONFIG_1);
743
                break;
744
        case 38400:
745
                writel(2<<10 | 12<<5, IR_WRITE_PHY_CONFIG);
746
                writel(IR_SIR_MODE, IR_CONFIG_1);
747
                break;
748
        case 57600:
749
                writel(1<<10 | 12<<5, IR_WRITE_PHY_CONFIG);
750
                writel(IR_SIR_MODE, IR_CONFIG_1);
751
                break;
752
        case 115200:
753
                writel(12<<5, IR_WRITE_PHY_CONFIG);
754
                writel(IR_SIR_MODE, IR_CONFIG_1);
755
                break;
756
        case 4000000:
757
                writel(0xF, IR_WRITE_PHY_CONFIG);
758
                writel(IR_FIR|IR_DMA_ENABLE|IR_RX_ENABLE, IR_CONFIG_1);
759
                break;
760
        default:
761
                printk(KERN_ERR "%s unsupported speed %x\n", dev->name, speed);
762
                ret = -EINVAL;
763
                break;
764
        }
765
 
766
        aup->speed = speed;
767
        writel(read_ir_reg(IR_ENABLE) | 0x8000, IR_ENABLE);
768
        au_sync();
769
 
770
        control = read_ir_reg(IR_ENABLE);
771
        writel(0, IR_RING_PROMPT);
772
        au_sync();
773
 
774
        if (control & (1<<14)) {
775
                printk(KERN_ERR "%s: configuration error\n", dev->name);
776
        }
777
        else {
778
                if (control & (1<<11))
779
                        printk(KERN_DEBUG "%s Valid SIR config\n", dev->name);
780
                if (control & (1<<12))
781
                        printk(KERN_DEBUG "%s Valid MIR config\n", dev->name);
782
                if (control & (1<<13))
783
                        printk(KERN_DEBUG "%s Valid FIR config\n", dev->name);
784
                if (control & (1<<10))
785
                        printk(KERN_DEBUG "%s TX enabled\n", dev->name);
786
                if (control & (1<<9))
787
                        printk(KERN_DEBUG "%s RX enabled\n", dev->name);
788
        }
789
 
790
        spin_unlock_irqrestore(&ir_lock, flags);
791
        return ret;
792
}
793
 
794
static int
795
au1k_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
796
{
797
        struct if_irda_req *rq = (struct if_irda_req *)ifreq;
798
        struct au1k_private *aup = netdev_priv(dev);
799
        int ret = -EOPNOTSUPP;
800
 
801
        switch (cmd) {
802
        case SIOCSBANDWIDTH:
803
                if (capable(CAP_NET_ADMIN)) {
804
                        /*
805
                         * We are unable to set the speed if the
806
                         * device is not running.
807
                         */
808
                        if (aup->open)
809
                                ret = au1k_irda_set_speed(dev,
810
                                                rq->ifr_baudrate);
811
                        else {
812
                                printk(KERN_ERR "%s ioctl: !netif_running\n",
813
                                                dev->name);
814
                                ret = 0;
815
                        }
816
                }
817
                break;
818
 
819
        case SIOCSMEDIABUSY:
820
                ret = -EPERM;
821
                if (capable(CAP_NET_ADMIN)) {
822
                        irda_device_set_media_busy(dev, TRUE);
823
                        ret = 0;
824
                }
825
                break;
826
 
827
        case SIOCGRECEIVING:
828
                rq->ifr_receiving = 0;
829
                break;
830
        default:
831
                break;
832
        }
833
        return ret;
834
}
835
 
836
 
837
static struct net_device_stats *au1k_irda_stats(struct net_device *dev)
838
{
839
        struct au1k_private *aup = netdev_priv(dev);
840
        return &aup->stats;
841
}
842
 
843
MODULE_AUTHOR("Pete Popov <ppopov@mvista.com>");
844
MODULE_DESCRIPTION("Au1000 IrDA Device Driver");
845
 
846
module_init(au1k_irda_init);
847
module_exit(au1k_irda_exit);

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.