OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [drivers/] [net/] [irda/] [sa1100_ir.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 *  linux/drivers/net/irda/sa1100_ir.c
3
 *
4
 *  Copyright (C) 2000-2001 Russell King
5
 *
6
 * This program is free software; you can redistribute it and/or modify
7
 * it under the terms of the GNU General Public License version 2 as
8
 * published by the Free Software Foundation.
9
 *
10
 *  Infra-red driver for the StrongARM SA1100 embedded microprocessor
11
 *
12
 *  Note that we don't have to worry about the SA1111's DMA bugs in here,
13
 *  so we use the straight forward dma_map_* functions with a null pointer.
14
 *
15
 *  This driver takes one kernel command line parameter, sa1100ir=, with
16
 *  the following options:
17
 *      max_rate:baudrate       - set the maximum baud rate
18
 *      power_leve:level        - set the transmitter power level
19
 *      tx_lpm:0|1              - set transmit low power mode
20
 */
21
#include <linux/module.h>
22
#include <linux/moduleparam.h>
23
#include <linux/types.h>
24
#include <linux/init.h>
25
#include <linux/errno.h>
26
#include <linux/netdevice.h>
27
#include <linux/slab.h>
28
#include <linux/rtnetlink.h>
29
#include <linux/interrupt.h>
30
#include <linux/delay.h>
31
#include <linux/platform_device.h>
32
#include <linux/dma-mapping.h>
33
 
34
#include <net/irda/irda.h>
35
#include <net/irda/wrapper.h>
36
#include <net/irda/irda_device.h>
37
 
38
#include <asm/irq.h>
39
#include <asm/dma.h>
40
#include <asm/hardware.h>
41
#include <asm/mach/irda.h>
42
 
43
static int power_level = 3;
44
static int tx_lpm;
45
static int max_rate = 4000000;
46
 
47
struct sa1100_irda {
48
        unsigned char           hscr0;
49
        unsigned char           utcr4;
50
        unsigned char           power;
51
        unsigned char           open;
52
 
53
        int                     speed;
54
        int                     newspeed;
55
 
56
        struct sk_buff          *txskb;
57
        struct sk_buff          *rxskb;
58
        dma_addr_t              txbuf_dma;
59
        dma_addr_t              rxbuf_dma;
60
        dma_regs_t              *txdma;
61
        dma_regs_t              *rxdma;
62
 
63
        struct net_device_stats stats;
64
        struct device           *dev;
65
        struct irda_platform_data *pdata;
66
        struct irlap_cb         *irlap;
67
        struct qos_info         qos;
68
 
69
        iobuff_t                tx_buff;
70
        iobuff_t                rx_buff;
71
};
72
 
73
#define IS_FIR(si)              ((si)->speed >= 4000000)
74
 
75
#define HPSIR_MAX_RXLEN         2047
76
 
77
/*
78
 * Allocate and map the receive buffer, unless it is already allocated.
79
 */
80
static int sa1100_irda_rx_alloc(struct sa1100_irda *si)
81
{
82
        if (si->rxskb)
83
                return 0;
84
 
85
        si->rxskb = alloc_skb(HPSIR_MAX_RXLEN + 1, GFP_ATOMIC);
86
 
87
        if (!si->rxskb) {
88
                printk(KERN_ERR "sa1100_ir: out of memory for RX SKB\n");
89
                return -ENOMEM;
90
        }
91
 
92
        /*
93
         * Align any IP headers that may be contained
94
         * within the frame.
95
         */
96
        skb_reserve(si->rxskb, 1);
97
 
98
        si->rxbuf_dma = dma_map_single(si->dev, si->rxskb->data,
99
                                        HPSIR_MAX_RXLEN,
100
                                        DMA_FROM_DEVICE);
101
        return 0;
102
}
103
 
104
/*
105
 * We want to get here as soon as possible, and get the receiver setup.
106
 * We use the existing buffer.
107
 */
108
static void sa1100_irda_rx_dma_start(struct sa1100_irda *si)
109
{
110
        if (!si->rxskb) {
111
                printk(KERN_ERR "sa1100_ir: rx buffer went missing\n");
112
                return;
113
        }
114
 
115
        /*
116
         * First empty receive FIFO
117
         */
118
        Ser2HSCR0 = si->hscr0 | HSCR0_HSSP;
119
 
120
        /*
121
         * Enable the DMA, receiver and receive interrupt.
122
         */
123
        sa1100_clear_dma(si->rxdma);
124
        sa1100_start_dma(si->rxdma, si->rxbuf_dma, HPSIR_MAX_RXLEN);
125
        Ser2HSCR0 = si->hscr0 | HSCR0_HSSP | HSCR0_RXE;
126
}
127
 
128
/*
129
 * Set the IrDA communications speed.
130
 */
131
static int sa1100_irda_set_speed(struct sa1100_irda *si, int speed)
132
{
133
        unsigned long flags;
134
        int brd, ret = -EINVAL;
135
 
136
        switch (speed) {
137
        case 9600:      case 19200:     case 38400:
138
        case 57600:     case 115200:
139
                brd = 3686400 / (16 * speed) - 1;
140
 
141
                /*
142
                 * Stop the receive DMA.
143
                 */
144
                if (IS_FIR(si))
145
                        sa1100_stop_dma(si->rxdma);
146
 
147
                local_irq_save(flags);
148
 
149
                Ser2UTCR3 = 0;
150
                Ser2HSCR0 = HSCR0_UART;
151
 
152
                Ser2UTCR1 = brd >> 8;
153
                Ser2UTCR2 = brd;
154
 
155
                /*
156
                 * Clear status register
157
                 */
158
                Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
159
                Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE;
160
 
161
                if (si->pdata->set_speed)
162
                        si->pdata->set_speed(si->dev, speed);
163
 
164
                si->speed = speed;
165
 
166
                local_irq_restore(flags);
167
                ret = 0;
168
                break;
169
 
170
        case 4000000:
171
                local_irq_save(flags);
172
 
173
                si->hscr0 = 0;
174
 
175
                Ser2HSSR0 = 0xff;
176
                Ser2HSCR0 = si->hscr0 | HSCR0_HSSP;
177
                Ser2UTCR3 = 0;
178
 
179
                si->speed = speed;
180
 
181
                if (si->pdata->set_speed)
182
                        si->pdata->set_speed(si->dev, speed);
183
 
184
                sa1100_irda_rx_alloc(si);
185
                sa1100_irda_rx_dma_start(si);
186
 
187
                local_irq_restore(flags);
188
 
189
                break;
190
 
191
        default:
192
                break;
193
        }
194
 
195
        return ret;
196
}
197
 
198
/*
199
 * Control the power state of the IrDA transmitter.
200
 * State:
201
 *  0 - off
202
 *  1 - short range, lowest power
203
 *  2 - medium range, medium power
204
 *  3 - maximum range, high power
205
 *
206
 * Currently, only assabet is known to support this.
207
 */
208
static int
209
__sa1100_irda_set_power(struct sa1100_irda *si, unsigned int state)
210
{
211
        int ret = 0;
212
        if (si->pdata->set_power)
213
                ret = si->pdata->set_power(si->dev, state);
214
        return ret;
215
}
216
 
217
static inline int
218
sa1100_set_power(struct sa1100_irda *si, unsigned int state)
219
{
220
        int ret;
221
 
222
        ret = __sa1100_irda_set_power(si, state);
223
        if (ret == 0)
224
                si->power = state;
225
 
226
        return ret;
227
}
228
 
229
static int sa1100_irda_startup(struct sa1100_irda *si)
230
{
231
        int ret;
232
 
233
        /*
234
         * Ensure that the ports for this device are setup correctly.
235
         */
236
        if (si->pdata->startup)
237
                si->pdata->startup(si->dev);
238
 
239
        /*
240
         * Configure PPC for IRDA - we want to drive TXD2 low.
241
         * We also want to drive this pin low during sleep.
242
         */
243
        PPSR &= ~PPC_TXD2;
244
        PSDR &= ~PPC_TXD2;
245
        PPDR |= PPC_TXD2;
246
 
247
        /*
248
         * Enable HP-SIR modulation, and ensure that the port is disabled.
249
         */
250
        Ser2UTCR3 = 0;
251
        Ser2HSCR0 = HSCR0_UART;
252
        Ser2UTCR4 = si->utcr4;
253
        Ser2UTCR0 = UTCR0_8BitData;
254
        Ser2HSCR2 = HSCR2_TrDataH | HSCR2_RcDataL;
255
 
256
        /*
257
         * Clear status register
258
         */
259
        Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
260
 
261
        ret = sa1100_irda_set_speed(si, si->speed = 9600);
262
        if (ret) {
263
                Ser2UTCR3 = 0;
264
                Ser2HSCR0 = 0;
265
 
266
                if (si->pdata->shutdown)
267
                        si->pdata->shutdown(si->dev);
268
        }
269
 
270
        return ret;
271
}
272
 
273
static void sa1100_irda_shutdown(struct sa1100_irda *si)
274
{
275
        /*
276
         * Stop all DMA activity.
277
         */
278
        sa1100_stop_dma(si->rxdma);
279
        sa1100_stop_dma(si->txdma);
280
 
281
        /* Disable the port. */
282
        Ser2UTCR3 = 0;
283
        Ser2HSCR0 = 0;
284
 
285
        if (si->pdata->shutdown)
286
                si->pdata->shutdown(si->dev);
287
}
288
 
289
#ifdef CONFIG_PM
290
/*
291
 * Suspend the IrDA interface.
292
 */
293
static int sa1100_irda_suspend(struct platform_device *pdev, pm_message_t state)
294
{
295
        struct net_device *dev = platform_get_drvdata(pdev);
296
        struct sa1100_irda *si;
297
 
298
        if (!dev)
299
                return 0;
300
 
301
        si = dev->priv;
302
        if (si->open) {
303
                /*
304
                 * Stop the transmit queue
305
                 */
306
                netif_device_detach(dev);
307
                disable_irq(dev->irq);
308
                sa1100_irda_shutdown(si);
309
                __sa1100_irda_set_power(si, 0);
310
        }
311
 
312
        return 0;
313
}
314
 
315
/*
316
 * Resume the IrDA interface.
317
 */
318
static int sa1100_irda_resume(struct platform_device *pdev)
319
{
320
        struct net_device *dev = platform_get_drvdata(pdev);
321
        struct sa1100_irda *si;
322
 
323
        if (!dev)
324
                return 0;
325
 
326
        si = dev->priv;
327
        if (si->open) {
328
                /*
329
                 * If we missed a speed change, initialise at the new speed
330
                 * directly.  It is debatable whether this is actually
331
                 * required, but in the interests of continuing from where
332
                 * we left off it is desireable.  The converse argument is
333
                 * that we should re-negotiate at 9600 baud again.
334
                 */
335
                if (si->newspeed) {
336
                        si->speed = si->newspeed;
337
                        si->newspeed = 0;
338
                }
339
 
340
                sa1100_irda_startup(si);
341
                __sa1100_irda_set_power(si, si->power);
342
                enable_irq(dev->irq);
343
 
344
                /*
345
                 * This automatically wakes up the queue
346
                 */
347
                netif_device_attach(dev);
348
        }
349
 
350
        return 0;
351
}
352
#else
353
#define sa1100_irda_suspend     NULL
354
#define sa1100_irda_resume      NULL
355
#endif
356
 
357
/*
358
 * HP-SIR format interrupt service routines.
359
 */
360
static void sa1100_irda_hpsir_irq(struct net_device *dev)
361
{
362
        struct sa1100_irda *si = dev->priv;
363
        int status;
364
 
365
        status = Ser2UTSR0;
366
 
367
        /*
368
         * Deal with any receive errors first.  The bytes in error may be
369
         * the only bytes in the receive FIFO, so we do this first.
370
         */
371
        while (status & UTSR0_EIF) {
372
                int stat, data;
373
 
374
                stat = Ser2UTSR1;
375
                data = Ser2UTDR;
376
 
377
                if (stat & (UTSR1_FRE | UTSR1_ROR)) {
378
                        si->stats.rx_errors++;
379
                        if (stat & UTSR1_FRE)
380
                                si->stats.rx_frame_errors++;
381
                        if (stat & UTSR1_ROR)
382
                                si->stats.rx_fifo_errors++;
383
                } else
384
                        async_unwrap_char(dev, &si->stats, &si->rx_buff, data);
385
 
386
                status = Ser2UTSR0;
387
        }
388
 
389
        /*
390
         * We must clear certain bits.
391
         */
392
        Ser2UTSR0 = status & (UTSR0_RID | UTSR0_RBB | UTSR0_REB);
393
 
394
        if (status & UTSR0_RFS) {
395
                /*
396
                 * There are at least 4 bytes in the FIFO.  Read 3 bytes
397
                 * and leave the rest to the block below.
398
                 */
399
                async_unwrap_char(dev, &si->stats, &si->rx_buff, Ser2UTDR);
400
                async_unwrap_char(dev, &si->stats, &si->rx_buff, Ser2UTDR);
401
                async_unwrap_char(dev, &si->stats, &si->rx_buff, Ser2UTDR);
402
        }
403
 
404
        if (status & (UTSR0_RFS | UTSR0_RID)) {
405
                /*
406
                 * Fifo contains more than 1 character.
407
                 */
408
                do {
409
                        async_unwrap_char(dev, &si->stats, &si->rx_buff,
410
                                          Ser2UTDR);
411
                } while (Ser2UTSR1 & UTSR1_RNE);
412
 
413
                dev->last_rx = jiffies;
414
        }
415
 
416
        if (status & UTSR0_TFS && si->tx_buff.len) {
417
                /*
418
                 * Transmitter FIFO is not full
419
                 */
420
                do {
421
                        Ser2UTDR = *si->tx_buff.data++;
422
                        si->tx_buff.len -= 1;
423
                } while (Ser2UTSR1 & UTSR1_TNF && si->tx_buff.len);
424
 
425
                if (si->tx_buff.len == 0) {
426
                        si->stats.tx_packets++;
427
                        si->stats.tx_bytes += si->tx_buff.data -
428
                                              si->tx_buff.head;
429
 
430
                        /*
431
                         * We need to ensure that the transmitter has
432
                         * finished.
433
                         */
434
                        do
435
                                rmb();
436
                        while (Ser2UTSR1 & UTSR1_TBY);
437
 
438
                        /*
439
                         * Ok, we've finished transmitting.  Now enable
440
                         * the receiver.  Sometimes we get a receive IRQ
441
                         * immediately after a transmit...
442
                         */
443
                        Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
444
                        Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE;
445
 
446
                        if (si->newspeed) {
447
                                sa1100_irda_set_speed(si, si->newspeed);
448
                                si->newspeed = 0;
449
                        }
450
 
451
                        /* I'm hungry! */
452
                        netif_wake_queue(dev);
453
                }
454
        }
455
}
456
 
457
static void sa1100_irda_fir_error(struct sa1100_irda *si, struct net_device *dev)
458
{
459
        struct sk_buff *skb = si->rxskb;
460
        dma_addr_t dma_addr;
461
        unsigned int len, stat, data;
462
 
463
        if (!skb) {
464
                printk(KERN_ERR "sa1100_ir: SKB is NULL!\n");
465
                return;
466
        }
467
 
468
        /*
469
         * Get the current data position.
470
         */
471
        dma_addr = sa1100_get_dma_pos(si->rxdma);
472
        len = dma_addr - si->rxbuf_dma;
473
        if (len > HPSIR_MAX_RXLEN)
474
                len = HPSIR_MAX_RXLEN;
475
        dma_unmap_single(si->dev, si->rxbuf_dma, len, DMA_FROM_DEVICE);
476
 
477
        do {
478
                /*
479
                 * Read Status, and then Data.
480
                 */
481
                stat = Ser2HSSR1;
482
                rmb();
483
                data = Ser2HSDR;
484
 
485
                if (stat & (HSSR1_CRE | HSSR1_ROR)) {
486
                        si->stats.rx_errors++;
487
                        if (stat & HSSR1_CRE)
488
                                si->stats.rx_crc_errors++;
489
                        if (stat & HSSR1_ROR)
490
                                si->stats.rx_frame_errors++;
491
                } else
492
                        skb->data[len++] = data;
493
 
494
                /*
495
                 * If we hit the end of frame, there's
496
                 * no point in continuing.
497
                 */
498
                if (stat & HSSR1_EOF)
499
                        break;
500
        } while (Ser2HSSR0 & HSSR0_EIF);
501
 
502
        if (stat & HSSR1_EOF) {
503
                si->rxskb = NULL;
504
 
505
                skb_put(skb, len);
506
                skb->dev = dev;
507
                skb_reset_mac_header(skb);
508
                skb->protocol = htons(ETH_P_IRDA);
509
                si->stats.rx_packets++;
510
                si->stats.rx_bytes += len;
511
 
512
                /*
513
                 * Before we pass the buffer up, allocate a new one.
514
                 */
515
                sa1100_irda_rx_alloc(si);
516
 
517
                netif_rx(skb);
518
                dev->last_rx = jiffies;
519
        } else {
520
                /*
521
                 * Remap the buffer.
522
                 */
523
                si->rxbuf_dma = dma_map_single(si->dev, si->rxskb->data,
524
                                                HPSIR_MAX_RXLEN,
525
                                                DMA_FROM_DEVICE);
526
        }
527
}
528
 
529
/*
530
 * FIR format interrupt service routine.  We only have to
531
 * handle RX events; transmit events go via the TX DMA handler.
532
 *
533
 * No matter what, we disable RX, process, and the restart RX.
534
 */
535
static void sa1100_irda_fir_irq(struct net_device *dev)
536
{
537
        struct sa1100_irda *si = dev->priv;
538
 
539
        /*
540
         * Stop RX DMA
541
         */
542
        sa1100_stop_dma(si->rxdma);
543
 
544
        /*
545
         * Framing error - we throw away the packet completely.
546
         * Clearing RXE flushes the error conditions and data
547
         * from the fifo.
548
         */
549
        if (Ser2HSSR0 & (HSSR0_FRE | HSSR0_RAB)) {
550
                si->stats.rx_errors++;
551
 
552
                if (Ser2HSSR0 & HSSR0_FRE)
553
                        si->stats.rx_frame_errors++;
554
 
555
                /*
556
                 * Clear out the DMA...
557
                 */
558
                Ser2HSCR0 = si->hscr0 | HSCR0_HSSP;
559
 
560
                /*
561
                 * Clear selected status bits now, so we
562
                 * don't miss them next time around.
563
                 */
564
                Ser2HSSR0 = HSSR0_FRE | HSSR0_RAB;
565
        }
566
 
567
        /*
568
         * Deal with any receive errors.  The any of the lowest
569
         * 8 bytes in the FIFO may contain an error.  We must read
570
         * them one by one.  The "error" could even be the end of
571
         * packet!
572
         */
573
        if (Ser2HSSR0 & HSSR0_EIF)
574
                sa1100_irda_fir_error(si, dev);
575
 
576
        /*
577
         * No matter what happens, we must restart reception.
578
         */
579
        sa1100_irda_rx_dma_start(si);
580
}
581
 
582
static irqreturn_t sa1100_irda_irq(int irq, void *dev_id)
583
{
584
        struct net_device *dev = dev_id;
585
        if (IS_FIR(((struct sa1100_irda *)dev->priv)))
586
                sa1100_irda_fir_irq(dev);
587
        else
588
                sa1100_irda_hpsir_irq(dev);
589
        return IRQ_HANDLED;
590
}
591
 
592
/*
593
 * TX DMA completion handler.
594
 */
595
static void sa1100_irda_txdma_irq(void *id)
596
{
597
        struct net_device *dev = id;
598
        struct sa1100_irda *si = dev->priv;
599
        struct sk_buff *skb = si->txskb;
600
 
601
        si->txskb = NULL;
602
 
603
        /*
604
         * Wait for the transmission to complete.  Unfortunately,
605
         * the hardware doesn't give us an interrupt to indicate
606
         * "end of frame".
607
         */
608
        do
609
                rmb();
610
        while (!(Ser2HSSR0 & HSSR0_TUR) || Ser2HSSR1 & HSSR1_TBY);
611
 
612
        /*
613
         * Clear the transmit underrun bit.
614
         */
615
        Ser2HSSR0 = HSSR0_TUR;
616
 
617
        /*
618
         * Do we need to change speed?  Note that we're lazy
619
         * here - we don't free the old rxskb.  We don't need
620
         * to allocate a buffer either.
621
         */
622
        if (si->newspeed) {
623
                sa1100_irda_set_speed(si, si->newspeed);
624
                si->newspeed = 0;
625
        }
626
 
627
        /*
628
         * Start reception.  This disables the transmitter for
629
         * us.  This will be using the existing RX buffer.
630
         */
631
        sa1100_irda_rx_dma_start(si);
632
 
633
        /*
634
         * Account and free the packet.
635
         */
636
        if (skb) {
637
                dma_unmap_single(si->dev, si->txbuf_dma, skb->len, DMA_TO_DEVICE);
638
                si->stats.tx_packets ++;
639
                si->stats.tx_bytes += skb->len;
640
                dev_kfree_skb_irq(skb);
641
        }
642
 
643
        /*
644
         * Make sure that the TX queue is available for sending
645
         * (for retries).  TX has priority over RX at all times.
646
         */
647
        netif_wake_queue(dev);
648
}
649
 
650
static int sa1100_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
651
{
652
        struct sa1100_irda *si = dev->priv;
653
        int speed = irda_get_next_speed(skb);
654
 
655
        /*
656
         * Does this packet contain a request to change the interface
657
         * speed?  If so, remember it until we complete the transmission
658
         * of this frame.
659
         */
660
        if (speed != si->speed && speed != -1)
661
                si->newspeed = speed;
662
 
663
        /*
664
         * If this is an empty frame, we can bypass a lot.
665
         */
666
        if (skb->len == 0) {
667
                if (si->newspeed) {
668
                        si->newspeed = 0;
669
                        sa1100_irda_set_speed(si, speed);
670
                }
671
                dev_kfree_skb(skb);
672
                return 0;
673
        }
674
 
675
        if (!IS_FIR(si)) {
676
                netif_stop_queue(dev);
677
 
678
                si->tx_buff.data = si->tx_buff.head;
679
                si->tx_buff.len  = async_wrap_skb(skb, si->tx_buff.data,
680
                                                  si->tx_buff.truesize);
681
 
682
                /*
683
                 * Set the transmit interrupt enable.  This will fire
684
                 * off an interrupt immediately.  Note that we disable
685
                 * the receiver so we won't get spurious characteres
686
                 * received.
687
                 */
688
                Ser2UTCR3 = UTCR3_TIE | UTCR3_TXE;
689
 
690
                dev_kfree_skb(skb);
691
        } else {
692
                int mtt = irda_get_mtt(skb);
693
 
694
                /*
695
                 * We must not be transmitting...
696
                 */
697
                BUG_ON(si->txskb);
698
 
699
                netif_stop_queue(dev);
700
 
701
                si->txskb = skb;
702
                si->txbuf_dma = dma_map_single(si->dev, skb->data,
703
                                         skb->len, DMA_TO_DEVICE);
704
 
705
                sa1100_start_dma(si->txdma, si->txbuf_dma, skb->len);
706
 
707
                /*
708
                 * If we have a mean turn-around time, impose the specified
709
                 * specified delay.  We could shorten this by timing from
710
                 * the point we received the packet.
711
                 */
712
                if (mtt)
713
                        udelay(mtt);
714
 
715
                Ser2HSCR0 = si->hscr0 | HSCR0_HSSP | HSCR0_TXE;
716
        }
717
 
718
        dev->trans_start = jiffies;
719
 
720
        return 0;
721
}
722
 
723
static int
724
sa1100_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
725
{
726
        struct if_irda_req *rq = (struct if_irda_req *)ifreq;
727
        struct sa1100_irda *si = dev->priv;
728
        int ret = -EOPNOTSUPP;
729
 
730
        switch (cmd) {
731
        case SIOCSBANDWIDTH:
732
                if (capable(CAP_NET_ADMIN)) {
733
                        /*
734
                         * We are unable to set the speed if the
735
                         * device is not running.
736
                         */
737
                        if (si->open) {
738
                                ret = sa1100_irda_set_speed(si,
739
                                                rq->ifr_baudrate);
740
                        } else {
741
                                printk("sa1100_irda_ioctl: SIOCSBANDWIDTH: !netif_running\n");
742
                                ret = 0;
743
                        }
744
                }
745
                break;
746
 
747
        case SIOCSMEDIABUSY:
748
                ret = -EPERM;
749
                if (capable(CAP_NET_ADMIN)) {
750
                        irda_device_set_media_busy(dev, TRUE);
751
                        ret = 0;
752
                }
753
                break;
754
 
755
        case SIOCGRECEIVING:
756
                rq->ifr_receiving = IS_FIR(si) ? 0
757
                                        : si->rx_buff.state != OUTSIDE_FRAME;
758
                break;
759
 
760
        default:
761
                break;
762
        }
763
 
764
        return ret;
765
}
766
 
767
static struct net_device_stats *sa1100_irda_stats(struct net_device *dev)
768
{
769
        struct sa1100_irda *si = dev->priv;
770
        return &si->stats;
771
}
772
 
773
static int sa1100_irda_start(struct net_device *dev)
774
{
775
        struct sa1100_irda *si = dev->priv;
776
        int err;
777
 
778
        si->speed = 9600;
779
 
780
        err = request_irq(dev->irq, sa1100_irda_irq, 0, dev->name, dev);
781
        if (err)
782
                goto err_irq;
783
 
784
        err = sa1100_request_dma(DMA_Ser2HSSPRd, "IrDA receive",
785
                                 NULL, NULL, &si->rxdma);
786
        if (err)
787
                goto err_rx_dma;
788
 
789
        err = sa1100_request_dma(DMA_Ser2HSSPWr, "IrDA transmit",
790
                                 sa1100_irda_txdma_irq, dev, &si->txdma);
791
        if (err)
792
                goto err_tx_dma;
793
 
794
        /*
795
         * The interrupt must remain disabled for now.
796
         */
797
        disable_irq(dev->irq);
798
 
799
        /*
800
         * Setup the serial port for the specified speed.
801
         */
802
        err = sa1100_irda_startup(si);
803
        if (err)
804
                goto err_startup;
805
 
806
        /*
807
         * Open a new IrLAP layer instance.
808
         */
809
        si->irlap = irlap_open(dev, &si->qos, "sa1100");
810
        err = -ENOMEM;
811
        if (!si->irlap)
812
                goto err_irlap;
813
 
814
        /*
815
         * Now enable the interrupt and start the queue
816
         */
817
        si->open = 1;
818
        sa1100_set_power(si, power_level); /* low power mode */
819
        enable_irq(dev->irq);
820
        netif_start_queue(dev);
821
        return 0;
822
 
823
err_irlap:
824
        si->open = 0;
825
        sa1100_irda_shutdown(si);
826
err_startup:
827
        sa1100_free_dma(si->txdma);
828
err_tx_dma:
829
        sa1100_free_dma(si->rxdma);
830
err_rx_dma:
831
        free_irq(dev->irq, dev);
832
err_irq:
833
        return err;
834
}
835
 
836
static int sa1100_irda_stop(struct net_device *dev)
837
{
838
        struct sa1100_irda *si = dev->priv;
839
 
840
        disable_irq(dev->irq);
841
        sa1100_irda_shutdown(si);
842
 
843
        /*
844
         * If we have been doing DMA receive, make sure we
845
         * tidy that up cleanly.
846
         */
847
        if (si->rxskb) {
848
                dma_unmap_single(si->dev, si->rxbuf_dma, HPSIR_MAX_RXLEN,
849
                                 DMA_FROM_DEVICE);
850
                dev_kfree_skb(si->rxskb);
851
                si->rxskb = NULL;
852
        }
853
 
854
        /* Stop IrLAP */
855
        if (si->irlap) {
856
                irlap_close(si->irlap);
857
                si->irlap = NULL;
858
        }
859
 
860
        netif_stop_queue(dev);
861
        si->open = 0;
862
 
863
        /*
864
         * Free resources
865
         */
866
        sa1100_free_dma(si->txdma);
867
        sa1100_free_dma(si->rxdma);
868
        free_irq(dev->irq, dev);
869
 
870
        sa1100_set_power(si, 0);
871
 
872
        return 0;
873
}
874
 
875
static int sa1100_irda_init_iobuf(iobuff_t *io, int size)
876
{
877
        io->head = kmalloc(size, GFP_KERNEL | GFP_DMA);
878
        if (io->head != NULL) {
879
                io->truesize = size;
880
                io->in_frame = FALSE;
881
                io->state    = OUTSIDE_FRAME;
882
                io->data     = io->head;
883
        }
884
        return io->head ? 0 : -ENOMEM;
885
}
886
 
887
static int sa1100_irda_probe(struct platform_device *pdev)
888
{
889
        struct net_device *dev;
890
        struct sa1100_irda *si;
891
        unsigned int baudrate_mask;
892
        int err;
893
 
894
        if (!pdev->dev.platform_data)
895
                return -EINVAL;
896
 
897
        err = request_mem_region(__PREG(Ser2UTCR0), 0x24, "IrDA") ? 0 : -EBUSY;
898
        if (err)
899
                goto err_mem_1;
900
        err = request_mem_region(__PREG(Ser2HSCR0), 0x1c, "IrDA") ? 0 : -EBUSY;
901
        if (err)
902
                goto err_mem_2;
903
        err = request_mem_region(__PREG(Ser2HSCR2), 0x04, "IrDA") ? 0 : -EBUSY;
904
        if (err)
905
                goto err_mem_3;
906
 
907
        dev = alloc_irdadev(sizeof(struct sa1100_irda));
908
        if (!dev)
909
                goto err_mem_4;
910
 
911
        si = dev->priv;
912
        si->dev = &pdev->dev;
913
        si->pdata = pdev->dev.platform_data;
914
 
915
        /*
916
         * Initialise the HP-SIR buffers
917
         */
918
        err = sa1100_irda_init_iobuf(&si->rx_buff, 14384);
919
        if (err)
920
                goto err_mem_5;
921
        err = sa1100_irda_init_iobuf(&si->tx_buff, 4000);
922
        if (err)
923
                goto err_mem_5;
924
 
925
        dev->hard_start_xmit    = sa1100_irda_hard_xmit;
926
        dev->open               = sa1100_irda_start;
927
        dev->stop               = sa1100_irda_stop;
928
        dev->do_ioctl           = sa1100_irda_ioctl;
929
        dev->get_stats          = sa1100_irda_stats;
930
        dev->irq                = IRQ_Ser2ICP;
931
 
932
        irda_init_max_qos_capabilies(&si->qos);
933
 
934
        /*
935
         * We support original IRDA up to 115k2. (we don't currently
936
         * support 4Mbps).  Min Turn Time set to 1ms or greater.
937
         */
938
        baudrate_mask = IR_9600;
939
 
940
        switch (max_rate) {
941
        case 4000000:           baudrate_mask |= IR_4000000 << 8;
942
        case 115200:            baudrate_mask |= IR_115200;
943
        case 57600:             baudrate_mask |= IR_57600;
944
        case 38400:             baudrate_mask |= IR_38400;
945
        case 19200:             baudrate_mask |= IR_19200;
946
        }
947
 
948
        si->qos.baud_rate.bits &= baudrate_mask;
949
        si->qos.min_turn_time.bits = 7;
950
 
951
        irda_qos_bits_to_value(&si->qos);
952
 
953
        si->utcr4 = UTCR4_HPSIR;
954
        if (tx_lpm)
955
                si->utcr4 |= UTCR4_Z1_6us;
956
 
957
        /*
958
         * Initially enable HP-SIR modulation, and ensure that the port
959
         * is disabled.
960
         */
961
        Ser2UTCR3 = 0;
962
        Ser2UTCR4 = si->utcr4;
963
        Ser2HSCR0 = HSCR0_UART;
964
 
965
        err = register_netdev(dev);
966
        if (err == 0)
967
                platform_set_drvdata(pdev, dev);
968
 
969
        if (err) {
970
 err_mem_5:
971
                kfree(si->tx_buff.head);
972
                kfree(si->rx_buff.head);
973
                free_netdev(dev);
974
 err_mem_4:
975
                release_mem_region(__PREG(Ser2HSCR2), 0x04);
976
 err_mem_3:
977
                release_mem_region(__PREG(Ser2HSCR0), 0x1c);
978
 err_mem_2:
979
                release_mem_region(__PREG(Ser2UTCR0), 0x24);
980
        }
981
 err_mem_1:
982
        return err;
983
}
984
 
985
static int sa1100_irda_remove(struct platform_device *pdev)
986
{
987
        struct net_device *dev = platform_get_drvdata(pdev);
988
 
989
        if (dev) {
990
                struct sa1100_irda *si = dev->priv;
991
                unregister_netdev(dev);
992
                kfree(si->tx_buff.head);
993
                kfree(si->rx_buff.head);
994
                free_netdev(dev);
995
        }
996
 
997
        release_mem_region(__PREG(Ser2HSCR2), 0x04);
998
        release_mem_region(__PREG(Ser2HSCR0), 0x1c);
999
        release_mem_region(__PREG(Ser2UTCR0), 0x24);
1000
 
1001
        return 0;
1002
}
1003
 
1004
static struct platform_driver sa1100ir_driver = {
1005
        .probe          = sa1100_irda_probe,
1006
        .remove         = sa1100_irda_remove,
1007
        .suspend        = sa1100_irda_suspend,
1008
        .resume         = sa1100_irda_resume,
1009
        .driver         = {
1010
                .name   = "sa11x0-ir",
1011
        },
1012
};
1013
 
1014
static int __init sa1100_irda_init(void)
1015
{
1016
        /*
1017
         * Limit power level a sensible range.
1018
         */
1019
        if (power_level < 1)
1020
                power_level = 1;
1021
        if (power_level > 3)
1022
                power_level = 3;
1023
 
1024
        return platform_driver_register(&sa1100ir_driver);
1025
}
1026
 
1027
static void __exit sa1100_irda_exit(void)
1028
{
1029
        platform_driver_unregister(&sa1100ir_driver);
1030
}
1031
 
1032
module_init(sa1100_irda_init);
1033
module_exit(sa1100_irda_exit);
1034
module_param(power_level, int, 0);
1035
module_param(tx_lpm, int, 0);
1036
module_param(max_rate, int, 0);
1037
 
1038
MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>");
1039
MODULE_DESCRIPTION("StrongARM SA1100 IrDA driver");
1040
MODULE_LICENSE("GPL");
1041
MODULE_PARM_DESC(power_level, "IrDA power level, 1 (low) to 3 (high)");
1042
MODULE_PARM_DESC(tx_lpm, "Enable transmitter low power (1.6us) mode");
1043
MODULE_PARM_DESC(max_rate, "Maximum baud rate (4000000, 115200, 57600, 38400, 19200, 9600)");

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.