OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [drivers/] [net/] [ixgbe/] [ixgbe_common.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*******************************************************************************
2
 
3
  Intel 10 Gigabit PCI Express Linux driver
4
  Copyright(c) 1999 - 2007 Intel Corporation.
5
 
6
  This program is free software; you can redistribute it and/or modify it
7
  under the terms and conditions of the GNU General Public License,
8
  version 2, as published by the Free Software Foundation.
9
 
10
  This program is distributed in the hope it will be useful, but WITHOUT
11
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13
  more details.
14
 
15
  You should have received a copy of the GNU General Public License along with
16
  this program; if not, write to the Free Software Foundation, Inc.,
17
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
 
19
  The full GNU General Public License is included in this distribution in
20
  the file called "COPYING".
21
 
22
  Contact Information:
23
  Linux NICS <linux.nics@intel.com>
24
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
 
27
*******************************************************************************/
28
 
29
#include <linux/pci.h>
30
#include <linux/delay.h>
31
#include <linux/sched.h>
32
 
33
#include "ixgbe_common.h"
34
#include "ixgbe_phy.h"
35
 
36
static s32 ixgbe_clear_hw_cntrs(struct ixgbe_hw *hw);
37
 
38
static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw);
39
static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
40
static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
41
static u16 ixgbe_calc_eeprom_checksum(struct ixgbe_hw *hw);
42
 
43
static s32 ixgbe_clear_vfta(struct ixgbe_hw *hw);
44
static s32 ixgbe_init_rx_addrs(struct ixgbe_hw *hw);
45
static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
46
static void ixgbe_add_mc_addr(struct ixgbe_hw *hw, u8 *mc_addr);
47
 
48
/**
49
 *  ixgbe_start_hw - Prepare hardware for TX/RX
50
 *  @hw: pointer to hardware structure
51
 *
52
 *  Starts the hardware by filling the bus info structure and media type, clears
53
 *  all on chip counters, initializes receive address registers, multicast
54
 *  table, VLAN filter table, calls routine to set up link and flow control
55
 *  settings, and leaves transmit and receive units disabled and uninitialized
56
 **/
57
s32 ixgbe_start_hw(struct ixgbe_hw *hw)
58
{
59
        u32 ctrl_ext;
60
 
61
        /* Set the media type */
62
        hw->phy.media_type = hw->mac.ops.get_media_type(hw);
63
 
64
        /* Identify the PHY */
65
        ixgbe_identify_phy(hw);
66
 
67
        /*
68
         * Store MAC address from RAR0, clear receive address registers, and
69
         * clear the multicast table
70
         */
71
        ixgbe_init_rx_addrs(hw);
72
 
73
        /* Clear the VLAN filter table */
74
        ixgbe_clear_vfta(hw);
75
 
76
        /* Set up link */
77
        hw->phy.ops.setup(hw);
78
 
79
        /* Clear statistics registers */
80
        ixgbe_clear_hw_cntrs(hw);
81
 
82
        /* Set No Snoop Disable */
83
        ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
84
        ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
85
        IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
86
 
87
        /* Clear adapter stopped flag */
88
        hw->adapter_stopped = false;
89
 
90
        return 0;
91
}
92
 
93
/**
94
 *  ixgbe_init_hw - Generic hardware initialization
95
 *  @hw: pointer to hardware structure
96
 *
97
 *  Initialize the hardware by reseting the hardware, filling the bus info
98
 *  structure and media type, clears all on chip counters, initializes receive
99
 *  address registers, multicast table, VLAN filter table, calls routine to set
100
 *  up link and flow control settings, and leaves transmit and receive units
101
 *  disabled and uninitialized
102
 **/
103
s32 ixgbe_init_hw(struct ixgbe_hw *hw)
104
{
105
        /* Reset the hardware */
106
        hw->mac.ops.reset(hw);
107
 
108
        /* Start the HW */
109
        ixgbe_start_hw(hw);
110
 
111
        return 0;
112
}
113
 
114
/**
115
 *  ixgbe_clear_hw_cntrs - Generic clear hardware counters
116
 *  @hw: pointer to hardware structure
117
 *
118
 *  Clears all hardware statistics counters by reading them from the hardware
119
 *  Statistics counters are clear on read.
120
 **/
121
static s32 ixgbe_clear_hw_cntrs(struct ixgbe_hw *hw)
122
{
123
        u16 i = 0;
124
 
125
        IXGBE_READ_REG(hw, IXGBE_CRCERRS);
126
        IXGBE_READ_REG(hw, IXGBE_ILLERRC);
127
        IXGBE_READ_REG(hw, IXGBE_ERRBC);
128
        IXGBE_READ_REG(hw, IXGBE_MSPDC);
129
        for (i = 0; i < 8; i++)
130
                IXGBE_READ_REG(hw, IXGBE_MPC(i));
131
 
132
        IXGBE_READ_REG(hw, IXGBE_MLFC);
133
        IXGBE_READ_REG(hw, IXGBE_MRFC);
134
        IXGBE_READ_REG(hw, IXGBE_RLEC);
135
        IXGBE_READ_REG(hw, IXGBE_LXONTXC);
136
        IXGBE_READ_REG(hw, IXGBE_LXONRXC);
137
        IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
138
        IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
139
 
140
        for (i = 0; i < 8; i++) {
141
                IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
142
                IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
143
                IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
144
                IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
145
        }
146
 
147
        IXGBE_READ_REG(hw, IXGBE_PRC64);
148
        IXGBE_READ_REG(hw, IXGBE_PRC127);
149
        IXGBE_READ_REG(hw, IXGBE_PRC255);
150
        IXGBE_READ_REG(hw, IXGBE_PRC511);
151
        IXGBE_READ_REG(hw, IXGBE_PRC1023);
152
        IXGBE_READ_REG(hw, IXGBE_PRC1522);
153
        IXGBE_READ_REG(hw, IXGBE_GPRC);
154
        IXGBE_READ_REG(hw, IXGBE_BPRC);
155
        IXGBE_READ_REG(hw, IXGBE_MPRC);
156
        IXGBE_READ_REG(hw, IXGBE_GPTC);
157
        IXGBE_READ_REG(hw, IXGBE_GORCL);
158
        IXGBE_READ_REG(hw, IXGBE_GORCH);
159
        IXGBE_READ_REG(hw, IXGBE_GOTCL);
160
        IXGBE_READ_REG(hw, IXGBE_GOTCH);
161
        for (i = 0; i < 8; i++)
162
                IXGBE_READ_REG(hw, IXGBE_RNBC(i));
163
        IXGBE_READ_REG(hw, IXGBE_RUC);
164
        IXGBE_READ_REG(hw, IXGBE_RFC);
165
        IXGBE_READ_REG(hw, IXGBE_ROC);
166
        IXGBE_READ_REG(hw, IXGBE_RJC);
167
        IXGBE_READ_REG(hw, IXGBE_MNGPRC);
168
        IXGBE_READ_REG(hw, IXGBE_MNGPDC);
169
        IXGBE_READ_REG(hw, IXGBE_MNGPTC);
170
        IXGBE_READ_REG(hw, IXGBE_TORL);
171
        IXGBE_READ_REG(hw, IXGBE_TORH);
172
        IXGBE_READ_REG(hw, IXGBE_TPR);
173
        IXGBE_READ_REG(hw, IXGBE_TPT);
174
        IXGBE_READ_REG(hw, IXGBE_PTC64);
175
        IXGBE_READ_REG(hw, IXGBE_PTC127);
176
        IXGBE_READ_REG(hw, IXGBE_PTC255);
177
        IXGBE_READ_REG(hw, IXGBE_PTC511);
178
        IXGBE_READ_REG(hw, IXGBE_PTC1023);
179
        IXGBE_READ_REG(hw, IXGBE_PTC1522);
180
        IXGBE_READ_REG(hw, IXGBE_MPTC);
181
        IXGBE_READ_REG(hw, IXGBE_BPTC);
182
        for (i = 0; i < 16; i++) {
183
                IXGBE_READ_REG(hw, IXGBE_QPRC(i));
184
                IXGBE_READ_REG(hw, IXGBE_QBRC(i));
185
                IXGBE_READ_REG(hw, IXGBE_QPTC(i));
186
                IXGBE_READ_REG(hw, IXGBE_QBTC(i));
187
        }
188
 
189
        return 0;
190
}
191
 
192
/**
193
 *  ixgbe_get_mac_addr - Generic get MAC address
194
 *  @hw: pointer to hardware structure
195
 *  @mac_addr: Adapter MAC address
196
 *
197
 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
198
 *  A reset of the adapter must be performed prior to calling this function
199
 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
200
 **/
201
s32 ixgbe_get_mac_addr(struct ixgbe_hw *hw, u8 *mac_addr)
202
{
203
        u32 rar_high;
204
        u32 rar_low;
205
        u16 i;
206
 
207
        rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
208
        rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
209
 
210
        for (i = 0; i < 4; i++)
211
                mac_addr[i] = (u8)(rar_low >> (i*8));
212
 
213
        for (i = 0; i < 2; i++)
214
                mac_addr[i+4] = (u8)(rar_high >> (i*8));
215
 
216
        return 0;
217
}
218
 
219
s32 ixgbe_read_part_num(struct ixgbe_hw *hw, u32 *part_num)
220
{
221
        s32 ret_val;
222
        u16 data;
223
 
224
        ret_val = ixgbe_read_eeprom(hw, IXGBE_PBANUM0_PTR, &data);
225
        if (ret_val) {
226
                hw_dbg(hw, "NVM Read Error\n");
227
                return ret_val;
228
        }
229
        *part_num = (u32)(data << 16);
230
 
231
        ret_val = ixgbe_read_eeprom(hw, IXGBE_PBANUM1_PTR, &data);
232
        if (ret_val) {
233
                hw_dbg(hw, "NVM Read Error\n");
234
                return ret_val;
235
        }
236
        *part_num |= data;
237
 
238
        return 0;
239
}
240
 
241
/**
242
 *  ixgbe_stop_adapter - Generic stop TX/RX units
243
 *  @hw: pointer to hardware structure
244
 *
245
 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
246
 *  disables transmit and receive units. The adapter_stopped flag is used by
247
 *  the shared code and drivers to determine if the adapter is in a stopped
248
 *  state and should not touch the hardware.
249
 **/
250
s32 ixgbe_stop_adapter(struct ixgbe_hw *hw)
251
{
252
        u32 number_of_queues;
253
        u32 reg_val;
254
        u16 i;
255
 
256
        /*
257
         * Set the adapter_stopped flag so other driver functions stop touching
258
         * the hardware
259
         */
260
        hw->adapter_stopped = true;
261
 
262
        /* Disable the receive unit */
263
        reg_val = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
264
        reg_val &= ~(IXGBE_RXCTRL_RXEN);
265
        IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, reg_val);
266
        msleep(2);
267
 
268
        /* Clear interrupt mask to stop from interrupts being generated */
269
        IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
270
 
271
        /* Clear any pending interrupts */
272
        IXGBE_READ_REG(hw, IXGBE_EICR);
273
 
274
        /* Disable the transmit unit.  Each queue must be disabled. */
275
        number_of_queues = hw->mac.num_tx_queues;
276
        for (i = 0; i < number_of_queues; i++) {
277
                reg_val = IXGBE_READ_REG(hw, IXGBE_TXDCTL(i));
278
                if (reg_val & IXGBE_TXDCTL_ENABLE) {
279
                        reg_val &= ~IXGBE_TXDCTL_ENABLE;
280
                        IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), reg_val);
281
                }
282
        }
283
 
284
        return 0;
285
}
286
 
287
/**
288
 *  ixgbe_led_on - Turns on the software controllable LEDs.
289
 *  @hw: pointer to hardware structure
290
 *  @index: led number to turn on
291
 **/
292
s32 ixgbe_led_on(struct ixgbe_hw *hw, u32 index)
293
{
294
        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
295
 
296
        /* To turn on the LED, set mode to ON. */
297
        led_reg &= ~IXGBE_LED_MODE_MASK(index);
298
        led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
299
        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
300
 
301
        return 0;
302
}
303
 
304
/**
305
 *  ixgbe_led_off - Turns off the software controllable LEDs.
306
 *  @hw: pointer to hardware structure
307
 *  @index: led number to turn off
308
 **/
309
s32 ixgbe_led_off(struct ixgbe_hw *hw, u32 index)
310
{
311
        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
312
 
313
        /* To turn off the LED, set mode to OFF. */
314
        led_reg &= ~IXGBE_LED_MODE_MASK(index);
315
        led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
316
        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
317
 
318
        return 0;
319
}
320
 
321
 
322
/**
323
 *  ixgbe_init_eeprom - Initialize EEPROM params
324
 *  @hw: pointer to hardware structure
325
 *
326
 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
327
 *  ixgbe_hw struct in order to set up EEPROM access.
328
 **/
329
s32 ixgbe_init_eeprom(struct ixgbe_hw *hw)
330
{
331
        struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
332
        u32 eec;
333
        u16 eeprom_size;
334
 
335
        if (eeprom->type == ixgbe_eeprom_uninitialized) {
336
                eeprom->type = ixgbe_eeprom_none;
337
 
338
                /*
339
                 * Check for EEPROM present first.
340
                 * If not present leave as none
341
                 */
342
                eec = IXGBE_READ_REG(hw, IXGBE_EEC);
343
                if (eec & IXGBE_EEC_PRES) {
344
                        eeprom->type = ixgbe_eeprom_spi;
345
 
346
                        /*
347
                         * SPI EEPROM is assumed here.  This code would need to
348
                         * change if a future EEPROM is not SPI.
349
                         */
350
                        eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
351
                                            IXGBE_EEC_SIZE_SHIFT);
352
                        eeprom->word_size = 1 << (eeprom_size +
353
                                                  IXGBE_EEPROM_WORD_SIZE_SHIFT);
354
                }
355
 
356
                if (eec & IXGBE_EEC_ADDR_SIZE)
357
                        eeprom->address_bits = 16;
358
                else
359
                        eeprom->address_bits = 8;
360
                hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
361
                          "%d\n", eeprom->type, eeprom->word_size,
362
                          eeprom->address_bits);
363
        }
364
 
365
        return 0;
366
}
367
 
368
/**
369
 *  ixgbe_read_eeprom - Read EEPROM word using EERD
370
 *  @hw: pointer to hardware structure
371
 *  @offset: offset of  word in the EEPROM to read
372
 *  @data: word read from the EEPROM
373
 *
374
 *  Reads a 16 bit word from the EEPROM using the EERD register.
375
 **/
376
s32 ixgbe_read_eeprom(struct ixgbe_hw *hw, u16 offset, u16 *data)
377
{
378
        u32 eerd;
379
        s32 status;
380
 
381
        eerd = (offset << IXGBE_EEPROM_READ_ADDR_SHIFT) +
382
               IXGBE_EEPROM_READ_REG_START;
383
 
384
        IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
385
        status = ixgbe_poll_eeprom_eerd_done(hw);
386
 
387
        if (status == 0)
388
                *data = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
389
                        IXGBE_EEPROM_READ_REG_DATA);
390
        else
391
                hw_dbg(hw, "Eeprom read timed out\n");
392
 
393
        return status;
394
}
395
 
396
/**
397
 *  ixgbe_poll_eeprom_eerd_done - Poll EERD status
398
 *  @hw: pointer to hardware structure
399
 *
400
 *  Polls the status bit (bit 1) of the EERD to determine when the read is done.
401
 **/
402
static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw)
403
{
404
        u32 i;
405
        u32 reg;
406
        s32 status = IXGBE_ERR_EEPROM;
407
 
408
        for (i = 0; i < IXGBE_EERD_ATTEMPTS; i++) {
409
                reg = IXGBE_READ_REG(hw, IXGBE_EERD);
410
                if (reg & IXGBE_EEPROM_READ_REG_DONE) {
411
                        status = 0;
412
                        break;
413
                }
414
                udelay(5);
415
        }
416
        return status;
417
}
418
 
419
/**
420
 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
421
 *  @hw: pointer to hardware structure
422
 *
423
 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
424
 **/
425
static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
426
{
427
        s32 status = IXGBE_ERR_EEPROM;
428
        u32 timeout;
429
        u32 i;
430
        u32 swsm;
431
 
432
        /* Set timeout value based on size of EEPROM */
433
        timeout = hw->eeprom.word_size + 1;
434
 
435
        /* Get SMBI software semaphore between device drivers first */
436
        for (i = 0; i < timeout; i++) {
437
                /*
438
                 * If the SMBI bit is 0 when we read it, then the bit will be
439
                 * set and we have the semaphore
440
                 */
441
                swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
442
                if (!(swsm & IXGBE_SWSM_SMBI)) {
443
                        status = 0;
444
                        break;
445
                }
446
                msleep(1);
447
        }
448
 
449
        /* Now get the semaphore between SW/FW through the SWESMBI bit */
450
        if (status == 0) {
451
                for (i = 0; i < timeout; i++) {
452
                        swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
453
 
454
                        /* Set the SW EEPROM semaphore bit to request access */
455
                        swsm |= IXGBE_SWSM_SWESMBI;
456
                        IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
457
 
458
                        /*
459
                         * If we set the bit successfully then we got the
460
                         * semaphore.
461
                         */
462
                        swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
463
                        if (swsm & IXGBE_SWSM_SWESMBI)
464
                                break;
465
 
466
                        udelay(50);
467
                }
468
 
469
                /*
470
                 * Release semaphores and return error if SW EEPROM semaphore
471
                 * was not granted because we don't have access to the EEPROM
472
                 */
473
                if (i >= timeout) {
474
                        hw_dbg(hw, "Driver can't access the Eeprom - Semaphore "
475
                                 "not granted.\n");
476
                        ixgbe_release_eeprom_semaphore(hw);
477
                        status = IXGBE_ERR_EEPROM;
478
                }
479
        }
480
 
481
        return status;
482
}
483
 
484
/**
485
 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
486
 *  @hw: pointer to hardware structure
487
 *
488
 *  This function clears hardware semaphore bits.
489
 **/
490
static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
491
{
492
        u32 swsm;
493
 
494
        swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
495
 
496
        /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
497
        swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
498
        IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
499
}
500
 
501
/**
502
 *  ixgbe_calc_eeprom_checksum - Calculates and returns the checksum
503
 *  @hw: pointer to hardware structure
504
 **/
505
static u16 ixgbe_calc_eeprom_checksum(struct ixgbe_hw *hw)
506
{
507
        u16 i;
508
        u16 j;
509
        u16 checksum = 0;
510
        u16 length = 0;
511
        u16 pointer = 0;
512
        u16 word = 0;
513
 
514
        /* Include 0x0-0x3F in the checksum */
515
        for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
516
                if (ixgbe_read_eeprom(hw, i, &word) != 0) {
517
                        hw_dbg(hw, "EEPROM read failed\n");
518
                        break;
519
                }
520
                checksum += word;
521
        }
522
 
523
        /* Include all data from pointers except for the fw pointer */
524
        for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
525
                ixgbe_read_eeprom(hw, i, &pointer);
526
 
527
                /* Make sure the pointer seems valid */
528
                if (pointer != 0xFFFF && pointer != 0) {
529
                        ixgbe_read_eeprom(hw, pointer, &length);
530
 
531
                        if (length != 0xFFFF && length != 0) {
532
                                for (j = pointer+1; j <= pointer+length; j++) {
533
                                        ixgbe_read_eeprom(hw, j, &word);
534
                                        checksum += word;
535
                                }
536
                        }
537
                }
538
        }
539
 
540
        checksum = (u16)IXGBE_EEPROM_SUM - checksum;
541
 
542
        return checksum;
543
}
544
 
545
/**
546
 *  ixgbe_validate_eeprom_checksum - Validate EEPROM checksum
547
 *  @hw: pointer to hardware structure
548
 *  @checksum_val: calculated checksum
549
 *
550
 *  Performs checksum calculation and validates the EEPROM checksum.  If the
551
 *  caller does not need checksum_val, the value can be NULL.
552
 **/
553
s32 ixgbe_validate_eeprom_checksum(struct ixgbe_hw *hw, u16 *checksum_val)
554
{
555
        s32 status;
556
        u16 checksum;
557
        u16 read_checksum = 0;
558
 
559
        /*
560
         * Read the first word from the EEPROM. If this times out or fails, do
561
         * not continue or we could be in for a very long wait while every
562
         * EEPROM read fails
563
         */
564
        status = ixgbe_read_eeprom(hw, 0, &checksum);
565
 
566
        if (status == 0) {
567
                checksum = ixgbe_calc_eeprom_checksum(hw);
568
 
569
                ixgbe_read_eeprom(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
570
 
571
                /*
572
                 * Verify read checksum from EEPROM is the same as
573
                 * calculated checksum
574
                 */
575
                if (read_checksum != checksum)
576
                        status = IXGBE_ERR_EEPROM_CHECKSUM;
577
 
578
                /* If the user cares, return the calculated checksum */
579
                if (checksum_val)
580
                        *checksum_val = checksum;
581
        } else {
582
                hw_dbg(hw, "EEPROM read failed\n");
583
        }
584
 
585
        return status;
586
}
587
 
588
/**
589
 *  ixgbe_validate_mac_addr - Validate MAC address
590
 *  @mac_addr: pointer to MAC address.
591
 *
592
 *  Tests a MAC address to ensure it is a valid Individual Address
593
 **/
594
s32 ixgbe_validate_mac_addr(u8 *mac_addr)
595
{
596
        s32 status = 0;
597
 
598
        /* Make sure it is not a multicast address */
599
        if (IXGBE_IS_MULTICAST(mac_addr))
600
                status = IXGBE_ERR_INVALID_MAC_ADDR;
601
        /* Not a broadcast address */
602
        else if (IXGBE_IS_BROADCAST(mac_addr))
603
                status = IXGBE_ERR_INVALID_MAC_ADDR;
604
        /* Reject the zero address */
605
        else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
606
                 mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0)
607
                status = IXGBE_ERR_INVALID_MAC_ADDR;
608
 
609
        return status;
610
}
611
 
612
/**
613
 *  ixgbe_set_rar - Set RX address register
614
 *  @hw: pointer to hardware structure
615
 *  @addr: Address to put into receive address register
616
 *  @index: Receive address register to write
617
 *  @vind: Vind to set RAR to
618
 *  @enable_addr: set flag that address is active
619
 *
620
 *  Puts an ethernet address into a receive address register.
621
 **/
622
s32 ixgbe_set_rar(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vind,
623
                  u32 enable_addr)
624
{
625
        u32 rar_low, rar_high;
626
 
627
        /*
628
         * HW expects these in little endian so we reverse the byte order from
629
         * network order (big endian) to little endian
630
         */
631
        rar_low = ((u32)addr[0] |
632
                   ((u32)addr[1] << 8) |
633
                   ((u32)addr[2] << 16) |
634
                   ((u32)addr[3] << 24));
635
 
636
        rar_high = ((u32)addr[4] |
637
                    ((u32)addr[5] << 8) |
638
                    ((vind << IXGBE_RAH_VIND_SHIFT) & IXGBE_RAH_VIND_MASK));
639
 
640
        if (enable_addr != 0)
641
                rar_high |= IXGBE_RAH_AV;
642
 
643
        IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
644
        IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
645
 
646
        return 0;
647
}
648
 
649
/**
650
 *  ixgbe_init_rx_addrs - Initializes receive address filters.
651
 *  @hw: pointer to hardware structure
652
 *
653
 *  Places the MAC address in receive address register 0 and clears the rest
654
 *  of the receive addresss registers. Clears the multicast table. Assumes
655
 *  the receiver is in reset when the routine is called.
656
 **/
657
static s32 ixgbe_init_rx_addrs(struct ixgbe_hw *hw)
658
{
659
        u32 i;
660
        u32 rar_entries = hw->mac.num_rx_addrs;
661
 
662
        /*
663
         * If the current mac address is valid, assume it is a software override
664
         * to the permanent address.
665
         * Otherwise, use the permanent address from the eeprom.
666
         */
667
        if (ixgbe_validate_mac_addr(hw->mac.addr) ==
668
            IXGBE_ERR_INVALID_MAC_ADDR) {
669
                /* Get the MAC address from the RAR0 for later reference */
670
                ixgbe_get_mac_addr(hw, hw->mac.addr);
671
 
672
                hw_dbg(hw, " Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
673
                          hw->mac.addr[0], hw->mac.addr[1],
674
                          hw->mac.addr[2]);
675
                hw_dbg(hw, "%.2X %.2X %.2X\n", hw->mac.addr[3],
676
                          hw->mac.addr[4], hw->mac.addr[5]);
677
        } else {
678
                /* Setup the receive address. */
679
                hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
680
                hw_dbg(hw, " New MAC Addr =%.2X %.2X %.2X ",
681
                          hw->mac.addr[0], hw->mac.addr[1],
682
                          hw->mac.addr[2]);
683
                hw_dbg(hw, "%.2X %.2X %.2X\n", hw->mac.addr[3],
684
                          hw->mac.addr[4], hw->mac.addr[5]);
685
 
686
                ixgbe_set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
687
        }
688
 
689
        hw->addr_ctrl.rar_used_count = 1;
690
 
691
        /* Zero out the other receive addresses. */
692
        hw_dbg(hw, "Clearing RAR[1-15]\n");
693
        for (i = 1; i < rar_entries; i++) {
694
                IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
695
                IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
696
        }
697
 
698
        /* Clear the MTA */
699
        hw->addr_ctrl.mc_addr_in_rar_count = 0;
700
        hw->addr_ctrl.mta_in_use = 0;
701
        IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
702
 
703
        hw_dbg(hw, " Clearing MTA\n");
704
        for (i = 0; i < IXGBE_MC_TBL_SIZE; i++)
705
                IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
706
 
707
        return 0;
708
}
709
 
710
/**
711
 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
712
 *  @hw: pointer to hardware structure
713
 *  @mc_addr: the multicast address
714
 *
715
 *  Extracts the 12 bits, from a multicast address, to determine which
716
 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
717
 *  incoming rx multicast addresses, to determine the bit-vector to check in
718
 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
719
 *  by the MO field of the MCSTCTRL. The MO field is set during initalization
720
 *  to mc_filter_type.
721
 **/
722
static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
723
{
724
        u32 vector = 0;
725
 
726
        switch (hw->mac.mc_filter_type) {
727
        case 0:    /* use bits [47:36] of the address */
728
                vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
729
                break;
730
        case 1:   /* use bits [46:35] of the address */
731
                vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
732
                break;
733
        case 2:   /* use bits [45:34] of the address */
734
                vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
735
                break;
736
        case 3:   /* use bits [43:32] of the address */
737
                vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
738
                break;
739
        default:         /* Invalid mc_filter_type */
740
                hw_dbg(hw, "MC filter type param set incorrectly\n");
741
                break;
742
        }
743
 
744
        /* vector can only be 12-bits or boundary will be exceeded */
745
        vector &= 0xFFF;
746
        return vector;
747
}
748
 
749
/**
750
 *  ixgbe_set_mta - Set bit-vector in multicast table
751
 *  @hw: pointer to hardware structure
752
 *  @hash_value: Multicast address hash value
753
 *
754
 *  Sets the bit-vector in the multicast table.
755
 **/
756
static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
757
{
758
        u32 vector;
759
        u32 vector_bit;
760
        u32 vector_reg;
761
        u32 mta_reg;
762
 
763
        hw->addr_ctrl.mta_in_use++;
764
 
765
        vector = ixgbe_mta_vector(hw, mc_addr);
766
        hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
767
 
768
        /*
769
         * The MTA is a register array of 128 32-bit registers. It is treated
770
         * like an array of 4096 bits.  We want to set bit
771
         * BitArray[vector_value]. So we figure out what register the bit is
772
         * in, read it, OR in the new bit, then write back the new value.  The
773
         * register is determined by the upper 7 bits of the vector value and
774
         * the bit within that register are determined by the lower 5 bits of
775
         * the value.
776
         */
777
        vector_reg = (vector >> 5) & 0x7F;
778
        vector_bit = vector & 0x1F;
779
        mta_reg = IXGBE_READ_REG(hw, IXGBE_MTA(vector_reg));
780
        mta_reg |= (1 << vector_bit);
781
        IXGBE_WRITE_REG(hw, IXGBE_MTA(vector_reg), mta_reg);
782
}
783
 
784
/**
785
 *  ixgbe_add_mc_addr - Adds a multicast address.
786
 *  @hw: pointer to hardware structure
787
 *  @mc_addr: new multicast address
788
 *
789
 *  Adds it to unused receive address register or to the multicast table.
790
 **/
791
static void ixgbe_add_mc_addr(struct ixgbe_hw *hw, u8 *mc_addr)
792
{
793
        u32 rar_entries = hw->mac.num_rx_addrs;
794
 
795
        hw_dbg(hw, " MC Addr =%.2X %.2X %.2X %.2X %.2X %.2X\n",
796
                  mc_addr[0], mc_addr[1], mc_addr[2],
797
                  mc_addr[3], mc_addr[4], mc_addr[5]);
798
 
799
        /*
800
         * Place this multicast address in the RAR if there is room,
801
         * else put it in the MTA
802
         */
803
        if (hw->addr_ctrl.rar_used_count < rar_entries) {
804
                ixgbe_set_rar(hw, hw->addr_ctrl.rar_used_count,
805
                              mc_addr, 0, IXGBE_RAH_AV);
806
                hw_dbg(hw, "Added a multicast address to RAR[%d]\n",
807
                          hw->addr_ctrl.rar_used_count);
808
                hw->addr_ctrl.rar_used_count++;
809
                hw->addr_ctrl.mc_addr_in_rar_count++;
810
        } else {
811
                ixgbe_set_mta(hw, mc_addr);
812
        }
813
 
814
        hw_dbg(hw, "ixgbe_add_mc_addr Complete\n");
815
}
816
 
817
/**
818
 *  ixgbe_update_mc_addr_list - Updates MAC list of multicast addresses
819
 *  @hw: pointer to hardware structure
820
 *  @mc_addr_list: the list of new multicast addresses
821
 *  @mc_addr_count: number of addresses
822
 *  @pad: number of bytes between addresses in the list
823
 *
824
 *  The given list replaces any existing list. Clears the MC addrs from receive
825
 *  address registers and the multicast table. Uses unsed receive address
826
 *  registers for the first multicast addresses, and hashes the rest into the
827
 *  multicast table.
828
 **/
829
s32 ixgbe_update_mc_addr_list(struct ixgbe_hw *hw, u8 *mc_addr_list,
830
                              u32 mc_addr_count, u32 pad)
831
{
832
        u32 i;
833
        u32 rar_entries = hw->mac.num_rx_addrs;
834
 
835
        /*
836
         * Set the new number of MC addresses that we are being requested to
837
         * use.
838
         */
839
        hw->addr_ctrl.num_mc_addrs = mc_addr_count;
840
        hw->addr_ctrl.rar_used_count -= hw->addr_ctrl.mc_addr_in_rar_count;
841
        hw->addr_ctrl.mc_addr_in_rar_count = 0;
842
        hw->addr_ctrl.mta_in_use = 0;
843
 
844
        /* Zero out the other receive addresses. */
845
        hw_dbg(hw, "Clearing RAR[1-15]\n");
846
        for (i = hw->addr_ctrl.rar_used_count; i < rar_entries; i++) {
847
                IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
848
                IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
849
        }
850
 
851
        /* Clear the MTA */
852
        hw_dbg(hw, " Clearing MTA\n");
853
        for (i = 0; i < IXGBE_MC_TBL_SIZE; i++)
854
                IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
855
 
856
        /* Add the new addresses */
857
        for (i = 0; i < mc_addr_count; i++) {
858
                hw_dbg(hw, " Adding the multicast addresses:\n");
859
                ixgbe_add_mc_addr(hw, mc_addr_list +
860
                                  (i * (IXGBE_ETH_LENGTH_OF_ADDRESS + pad)));
861
        }
862
 
863
        /* Enable mta */
864
        if (hw->addr_ctrl.mta_in_use > 0)
865
                IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
866
                                IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
867
 
868
        hw_dbg(hw, "ixgbe_update_mc_addr_list Complete\n");
869
        return 0;
870
}
871
 
872
/**
873
 *  ixgbe_clear_vfta - Clear VLAN filter table
874
 *  @hw: pointer to hardware structure
875
 *
876
 *  Clears the VLAN filer table, and the VMDq index associated with the filter
877
 **/
878
static s32 ixgbe_clear_vfta(struct ixgbe_hw *hw)
879
{
880
        u32 offset;
881
        u32 vlanbyte;
882
 
883
        for (offset = 0; offset < IXGBE_VLAN_FILTER_TBL_SIZE; offset++)
884
                IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
885
 
886
        for (vlanbyte = 0; vlanbyte < 4; vlanbyte++)
887
                for (offset = 0; offset < IXGBE_VLAN_FILTER_TBL_SIZE; offset++)
888
                        IXGBE_WRITE_REG(hw, IXGBE_VFTAVIND(vlanbyte, offset),
889
                                        0);
890
 
891
        return 0;
892
}
893
 
894
/**
895
 *  ixgbe_set_vfta - Set VLAN filter table
896
 *  @hw: pointer to hardware structure
897
 *  @vlan: VLAN id to write to VLAN filter
898
 *  @vind: VMDq output index that maps queue to VLAN id in VFTA
899
 *  @vlan_on: boolean flag to turn on/off VLAN in VFTA
900
 *
901
 *  Turn on/off specified VLAN in the VLAN filter table.
902
 **/
903
s32 ixgbe_set_vfta(struct ixgbe_hw *hw, u32 vlan, u32 vind,
904
                   bool vlan_on)
905
{
906
        u32 VftaIndex;
907
        u32 BitOffset;
908
        u32 VftaReg;
909
        u32 VftaByte;
910
 
911
        /* Determine 32-bit word position in array */
912
        VftaIndex = (vlan >> 5) & 0x7F;   /* upper seven bits */
913
 
914
        /* Determine the location of the (VMD) queue index */
915
        VftaByte =  ((vlan >> 3) & 0x03); /* bits (4:3) indicating byte array */
916
        BitOffset = (vlan & 0x7) << 2;    /* lower 3 bits indicate nibble */
917
 
918
        /* Set the nibble for VMD queue index */
919
        VftaReg = IXGBE_READ_REG(hw, IXGBE_VFTAVIND(VftaByte, VftaIndex));
920
        VftaReg &= (~(0x0F << BitOffset));
921
        VftaReg |= (vind << BitOffset);
922
        IXGBE_WRITE_REG(hw, IXGBE_VFTAVIND(VftaByte, VftaIndex), VftaReg);
923
 
924
        /* Determine the location of the bit for this VLAN id */
925
        BitOffset = vlan & 0x1F;           /* lower five bits */
926
 
927
        VftaReg = IXGBE_READ_REG(hw, IXGBE_VFTA(VftaIndex));
928
        if (vlan_on)
929
                /* Turn on this VLAN id */
930
                VftaReg |= (1 << BitOffset);
931
        else
932
                /* Turn off this VLAN id */
933
                VftaReg &= ~(1 << BitOffset);
934
        IXGBE_WRITE_REG(hw, IXGBE_VFTA(VftaIndex), VftaReg);
935
 
936
        return 0;
937
}
938
 
939
/**
940
 *  ixgbe_setup_fc - Configure flow control settings
941
 *  @hw: pointer to hardware structure
942
 *  @packetbuf_num: packet buffer number (0-7)
943
 *
944
 *  Configures the flow control settings based on SW configuration.
945
 *  This function is used for 802.3x flow control configuration only.
946
 **/
947
s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num)
948
{
949
        u32 frctl_reg;
950
        u32 rmcs_reg;
951
 
952
        if (packetbuf_num < 0 || packetbuf_num > 7)
953
                hw_dbg(hw, "Invalid packet buffer number [%d], expected range"
954
                       "is 0-7\n", packetbuf_num);
955
 
956
        frctl_reg = IXGBE_READ_REG(hw, IXGBE_FCTRL);
957
        frctl_reg &= ~(IXGBE_FCTRL_RFCE | IXGBE_FCTRL_RPFCE);
958
 
959
        rmcs_reg = IXGBE_READ_REG(hw, IXGBE_RMCS);
960
        rmcs_reg &= ~(IXGBE_RMCS_TFCE_PRIORITY | IXGBE_RMCS_TFCE_802_3X);
961
 
962
        /*
963
         * We want to save off the original Flow Control configuration just in
964
         * case we get disconnected and then reconnected into a different hub
965
         * or switch with different Flow Control capabilities.
966
         */
967
        hw->fc.type = hw->fc.original_type;
968
 
969
        /*
970
         * The possible values of the "flow_control" parameter are:
971
         * 0: Flow control is completely disabled
972
         * 1: Rx flow control is enabled (we can receive pause frames but not
973
         *    send pause frames).
974
         * 2: Tx flow control is enabled (we can send pause frames but we do not
975
         *    support receiving pause frames)
976
         * 3: Both Rx and TX flow control (symmetric) are enabled.
977
         * other: Invalid.
978
         */
979
        switch (hw->fc.type) {
980
        case ixgbe_fc_none:
981
                break;
982
        case ixgbe_fc_rx_pause:
983
                /*
984
                 * RX Flow control is enabled,
985
                 * and TX Flow control is disabled.
986
                 */
987
                frctl_reg |= IXGBE_FCTRL_RFCE;
988
                break;
989
        case ixgbe_fc_tx_pause:
990
                /*
991
                 * TX Flow control is enabled, and RX Flow control is disabled,
992
                 * by a software over-ride.
993
                 */
994
                rmcs_reg |= IXGBE_RMCS_TFCE_802_3X;
995
                break;
996
        case ixgbe_fc_full:
997
                /*
998
                 * Flow control (both RX and TX) is enabled by a software
999
                 * over-ride.
1000
                 */
1001
                frctl_reg |= IXGBE_FCTRL_RFCE;
1002
                rmcs_reg |= IXGBE_RMCS_TFCE_802_3X;
1003
                break;
1004
        default:
1005
                /* We should never get here.  The value should be 0-3. */
1006
                hw_dbg(hw, "Flow control param set incorrectly\n");
1007
                break;
1008
        }
1009
 
1010
        /* Enable 802.3x based flow control settings. */
1011
        IXGBE_WRITE_REG(hw, IXGBE_FCTRL, frctl_reg);
1012
        IXGBE_WRITE_REG(hw, IXGBE_RMCS, rmcs_reg);
1013
 
1014
        /*
1015
         * We need to set up the Receive Threshold high and low water
1016
         * marks as well as (optionally) enabling the transmission of
1017
         * XON frames.
1018
         */
1019
        if (hw->fc.type & ixgbe_fc_tx_pause) {
1020
                if (hw->fc.send_xon) {
1021
                        IXGBE_WRITE_REG(hw, IXGBE_FCRTL(packetbuf_num),
1022
                                        (hw->fc.low_water | IXGBE_FCRTL_XONE));
1023
                } else {
1024
                        IXGBE_WRITE_REG(hw, IXGBE_FCRTL(packetbuf_num),
1025
                                        hw->fc.low_water);
1026
                }
1027
                IXGBE_WRITE_REG(hw, IXGBE_FCRTH(packetbuf_num),
1028
                                (hw->fc.high_water)|IXGBE_FCRTH_FCEN);
1029
        }
1030
 
1031
        IXGBE_WRITE_REG(hw, IXGBE_FCTTV(0), hw->fc.pause_time);
1032
        IXGBE_WRITE_REG(hw, IXGBE_FCRTV, (hw->fc.pause_time >> 1));
1033
 
1034
        return 0;
1035
}
1036
 
1037
/**
1038
 *  ixgbe_disable_pcie_master - Disable PCI-express master access
1039
 *  @hw: pointer to hardware structure
1040
 *
1041
 *  Disables PCI-Express master access and verifies there are no pending
1042
 *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
1043
 *  bit hasn't caused the master requests to be disabled, else 0
1044
 *  is returned signifying master requests disabled.
1045
 **/
1046
s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
1047
{
1048
        u32 ctrl;
1049
        s32 i;
1050
        s32 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
1051
 
1052
        ctrl = IXGBE_READ_REG(hw, IXGBE_CTRL);
1053
        ctrl |= IXGBE_CTRL_GIO_DIS;
1054
        IXGBE_WRITE_REG(hw, IXGBE_CTRL, ctrl);
1055
 
1056
        for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
1057
                if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO)) {
1058
                        status = 0;
1059
                        break;
1060
                }
1061
                udelay(100);
1062
        }
1063
 
1064
        return status;
1065
}
1066
 
1067
 
1068
/**
1069
 *  ixgbe_acquire_swfw_sync - Aquire SWFW semaphore
1070
 *  @hw: pointer to hardware structure
1071
 *  @mask: Mask to specify wich semaphore to acquire
1072
 *
1073
 *  Aquires the SWFW semaphore throught the GSSR register for the specified
1074
 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
1075
 **/
1076
s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
1077
{
1078
        u32 gssr;
1079
        u32 swmask = mask;
1080
        u32 fwmask = mask << 5;
1081
        s32 timeout = 200;
1082
 
1083
        while (timeout) {
1084
                if (ixgbe_get_eeprom_semaphore(hw))
1085
                        return -IXGBE_ERR_SWFW_SYNC;
1086
 
1087
                gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
1088
                if (!(gssr & (fwmask | swmask)))
1089
                        break;
1090
 
1091
                /*
1092
                 * Firmware currently using resource (fwmask) or other software
1093
                 * thread currently using resource (swmask)
1094
                 */
1095
                ixgbe_release_eeprom_semaphore(hw);
1096
                msleep(5);
1097
                timeout--;
1098
        }
1099
 
1100
        if (!timeout) {
1101
                hw_dbg(hw, "Driver can't access resource, GSSR timeout.\n");
1102
                return -IXGBE_ERR_SWFW_SYNC;
1103
        }
1104
 
1105
        gssr |= swmask;
1106
        IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
1107
 
1108
        ixgbe_release_eeprom_semaphore(hw);
1109
        return 0;
1110
}
1111
 
1112
/**
1113
 *  ixgbe_release_swfw_sync - Release SWFW semaphore
1114
 *  @hw: pointer to hardware structure
1115
 *  @mask: Mask to specify wich semaphore to release
1116
 *
1117
 *  Releases the SWFW semaphore throught the GSSR register for the specified
1118
 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
1119
 **/
1120
void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
1121
{
1122
        u32 gssr;
1123
        u32 swmask = mask;
1124
 
1125
        ixgbe_get_eeprom_semaphore(hw);
1126
 
1127
        gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
1128
        gssr &= ~swmask;
1129
        IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
1130
 
1131
        ixgbe_release_eeprom_semaphore(hw);
1132
}
1133
 
1134
/**
1135
 *  ixgbe_read_analog_reg8- Reads 8 bit 82598 Atlas analog register
1136
 *  @hw: pointer to hardware structure
1137
 *  @reg: analog register to read
1138
 *  @val: read value
1139
 *
1140
 *  Performs write operation to analog register specified.
1141
 **/
1142
s32 ixgbe_read_analog_reg8(struct ixgbe_hw *hw, u32 reg, u8 *val)
1143
{
1144
        u32  atlas_ctl;
1145
 
1146
        IXGBE_WRITE_REG(hw, IXGBE_ATLASCTL,
1147
                        IXGBE_ATLASCTL_WRITE_CMD | (reg << 8));
1148
        IXGBE_WRITE_FLUSH(hw);
1149
        udelay(10);
1150
        atlas_ctl = IXGBE_READ_REG(hw, IXGBE_ATLASCTL);
1151
        *val = (u8)atlas_ctl;
1152
 
1153
        return 0;
1154
}
1155
 
1156
/**
1157
 *  ixgbe_write_analog_reg8- Writes 8 bit Atlas analog register
1158
 *  @hw: pointer to hardware structure
1159
 *  @reg: atlas register to write
1160
 *  @val: value to write
1161
 *
1162
 *  Performs write operation to Atlas analog register specified.
1163
 **/
1164
s32 ixgbe_write_analog_reg8(struct ixgbe_hw *hw, u32 reg, u8 val)
1165
{
1166
        u32  atlas_ctl;
1167
 
1168
        atlas_ctl = (reg << 8) | val;
1169
        IXGBE_WRITE_REG(hw, IXGBE_ATLASCTL, atlas_ctl);
1170
        IXGBE_WRITE_FLUSH(hw);
1171
        udelay(10);
1172
 
1173
        return 0;
1174
}
1175
 

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.