OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [drivers/] [net/] [rrunner.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
3
 *
4
 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
5
 *
6
 * Thanks to Essential Communication for providing us with hardware
7
 * and very comprehensive documentation without which I would not have
8
 * been able to write this driver. A special thank you to John Gibbon
9
 * for sorting out the legal issues, with the NDA, allowing the code to
10
 * be released under the GPL.
11
 *
12
 * This program is free software; you can redistribute it and/or modify
13
 * it under the terms of the GNU General Public License as published by
14
 * the Free Software Foundation; either version 2 of the License, or
15
 * (at your option) any later version.
16
 *
17
 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
18
 * stupid bugs in my code.
19
 *
20
 * Softnet support and various other patches from Val Henson of
21
 * ODS/Essential.
22
 *
23
 * PCI DMA mapping code partly based on work by Francois Romieu.
24
 */
25
 
26
 
27
#define DEBUG 1
28
#define RX_DMA_SKBUFF 1
29
#define PKT_COPY_THRESHOLD 512
30
 
31
#include <linux/module.h>
32
#include <linux/types.h>
33
#include <linux/errno.h>
34
#include <linux/ioport.h>
35
#include <linux/pci.h>
36
#include <linux/kernel.h>
37
#include <linux/netdevice.h>
38
#include <linux/hippidevice.h>
39
#include <linux/skbuff.h>
40
#include <linux/init.h>
41
#include <linux/delay.h>
42
#include <linux/mm.h>
43
#include <net/sock.h>
44
 
45
#include <asm/system.h>
46
#include <asm/cache.h>
47
#include <asm/byteorder.h>
48
#include <asm/io.h>
49
#include <asm/irq.h>
50
#include <asm/uaccess.h>
51
 
52
#define rr_if_busy(dev)     netif_queue_stopped(dev)
53
#define rr_if_running(dev)  netif_running(dev)
54
 
55
#include "rrunner.h"
56
 
57
#define RUN_AT(x) (jiffies + (x))
58
 
59
 
60
MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
61
MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
62
MODULE_LICENSE("GPL");
63
 
64
static char version[] __devinitdata = "rrunner.c: v0.50 11/11/2002  Jes Sorensen (jes@wildopensource.com)\n";
65
 
66
/*
67
 * Implementation notes:
68
 *
69
 * The DMA engine only allows for DMA within physical 64KB chunks of
70
 * memory. The current approach of the driver (and stack) is to use
71
 * linear blocks of memory for the skbuffs. However, as the data block
72
 * is always the first part of the skb and skbs are 2^n aligned so we
73
 * are guarantted to get the whole block within one 64KB align 64KB
74
 * chunk.
75
 *
76
 * On the long term, relying on being able to allocate 64KB linear
77
 * chunks of memory is not feasible and the skb handling code and the
78
 * stack will need to know about I/O vectors or something similar.
79
 */
80
 
81
static int __devinit rr_init_one(struct pci_dev *pdev,
82
        const struct pci_device_id *ent)
83
{
84
        struct net_device *dev;
85
        static int version_disp;
86
        u8 pci_latency;
87
        struct rr_private *rrpriv;
88
        void *tmpptr;
89
        dma_addr_t ring_dma;
90
        int ret = -ENOMEM;
91
 
92
        dev = alloc_hippi_dev(sizeof(struct rr_private));
93
        if (!dev)
94
                goto out3;
95
 
96
        ret = pci_enable_device(pdev);
97
        if (ret) {
98
                ret = -ENODEV;
99
                goto out2;
100
        }
101
 
102
        rrpriv = netdev_priv(dev);
103
 
104
        SET_NETDEV_DEV(dev, &pdev->dev);
105
 
106
        if (pci_request_regions(pdev, "rrunner")) {
107
                ret = -EIO;
108
                goto out;
109
        }
110
 
111
        pci_set_drvdata(pdev, dev);
112
 
113
        rrpriv->pci_dev = pdev;
114
 
115
        spin_lock_init(&rrpriv->lock);
116
 
117
        dev->irq = pdev->irq;
118
        dev->open = &rr_open;
119
        dev->hard_start_xmit = &rr_start_xmit;
120
        dev->stop = &rr_close;
121
        dev->do_ioctl = &rr_ioctl;
122
 
123
        dev->base_addr = pci_resource_start(pdev, 0);
124
 
125
        /* display version info if adapter is found */
126
        if (!version_disp) {
127
                /* set display flag to TRUE so that */
128
                /* we only display this string ONCE */
129
                version_disp = 1;
130
                printk(version);
131
        }
132
 
133
        pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
134
        if (pci_latency <= 0x58){
135
                pci_latency = 0x58;
136
                pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
137
        }
138
 
139
        pci_set_master(pdev);
140
 
141
        printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
142
               "at 0x%08lx, irq %i, PCI latency %i\n", dev->name,
143
               dev->base_addr, dev->irq, pci_latency);
144
 
145
        /*
146
         * Remap the regs into kernel space.
147
         */
148
 
149
        rrpriv->regs = ioremap(dev->base_addr, 0x1000);
150
 
151
        if (!rrpriv->regs){
152
                printk(KERN_ERR "%s:  Unable to map I/O register, "
153
                        "RoadRunner will be disabled.\n", dev->name);
154
                ret = -EIO;
155
                goto out;
156
        }
157
 
158
        tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
159
        rrpriv->tx_ring = tmpptr;
160
        rrpriv->tx_ring_dma = ring_dma;
161
 
162
        if (!tmpptr) {
163
                ret = -ENOMEM;
164
                goto out;
165
        }
166
 
167
        tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
168
        rrpriv->rx_ring = tmpptr;
169
        rrpriv->rx_ring_dma = ring_dma;
170
 
171
        if (!tmpptr) {
172
                ret = -ENOMEM;
173
                goto out;
174
        }
175
 
176
        tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
177
        rrpriv->evt_ring = tmpptr;
178
        rrpriv->evt_ring_dma = ring_dma;
179
 
180
        if (!tmpptr) {
181
                ret = -ENOMEM;
182
                goto out;
183
        }
184
 
185
        /*
186
         * Don't access any register before this point!
187
         */
188
#ifdef __BIG_ENDIAN
189
        writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
190
                &rrpriv->regs->HostCtrl);
191
#endif
192
        /*
193
         * Need to add a case for little-endian 64-bit hosts here.
194
         */
195
 
196
        rr_init(dev);
197
 
198
        dev->base_addr = 0;
199
 
200
        ret = register_netdev(dev);
201
        if (ret)
202
                goto out;
203
        return 0;
204
 
205
 out:
206
        if (rrpriv->rx_ring)
207
                pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
208
                                    rrpriv->rx_ring_dma);
209
        if (rrpriv->tx_ring)
210
                pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
211
                                    rrpriv->tx_ring_dma);
212
        if (rrpriv->regs)
213
                iounmap(rrpriv->regs);
214
        if (pdev) {
215
                pci_release_regions(pdev);
216
                pci_set_drvdata(pdev, NULL);
217
        }
218
 out2:
219
        free_netdev(dev);
220
 out3:
221
        return ret;
222
}
223
 
224
static void __devexit rr_remove_one (struct pci_dev *pdev)
225
{
226
        struct net_device *dev = pci_get_drvdata(pdev);
227
 
228
        if (dev) {
229
                struct rr_private *rr = netdev_priv(dev);
230
 
231
                if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)){
232
                        printk(KERN_ERR "%s: trying to unload running NIC\n",
233
                               dev->name);
234
                        writel(HALT_NIC, &rr->regs->HostCtrl);
235
                }
236
 
237
                pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
238
                                    rr->evt_ring_dma);
239
                pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
240
                                    rr->rx_ring_dma);
241
                pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
242
                                    rr->tx_ring_dma);
243
                unregister_netdev(dev);
244
                iounmap(rr->regs);
245
                free_netdev(dev);
246
                pci_release_regions(pdev);
247
                pci_disable_device(pdev);
248
                pci_set_drvdata(pdev, NULL);
249
        }
250
}
251
 
252
 
253
/*
254
 * Commands are considered to be slow, thus there is no reason to
255
 * inline this.
256
 */
257
static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
258
{
259
        struct rr_regs __iomem *regs;
260
        u32 idx;
261
 
262
        regs = rrpriv->regs;
263
        /*
264
         * This is temporary - it will go away in the final version.
265
         * We probably also want to make this function inline.
266
         */
267
        if (readl(&regs->HostCtrl) & NIC_HALTED){
268
                printk("issuing command for halted NIC, code 0x%x, "
269
                       "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
270
                if (readl(&regs->Mode) & FATAL_ERR)
271
                        printk("error codes Fail1 %02x, Fail2 %02x\n",
272
                               readl(&regs->Fail1), readl(&regs->Fail2));
273
        }
274
 
275
        idx = rrpriv->info->cmd_ctrl.pi;
276
 
277
        writel(*(u32*)(cmd), &regs->CmdRing[idx]);
278
        wmb();
279
 
280
        idx = (idx - 1) % CMD_RING_ENTRIES;
281
        rrpriv->info->cmd_ctrl.pi = idx;
282
        wmb();
283
 
284
        if (readl(&regs->Mode) & FATAL_ERR)
285
                printk("error code %02x\n", readl(&regs->Fail1));
286
}
287
 
288
 
289
/*
290
 * Reset the board in a sensible manner. The NIC is already halted
291
 * when we get here and a spin-lock is held.
292
 */
293
static int rr_reset(struct net_device *dev)
294
{
295
        struct rr_private *rrpriv;
296
        struct rr_regs __iomem *regs;
297
        u32 start_pc;
298
        int i;
299
 
300
        rrpriv = netdev_priv(dev);
301
        regs = rrpriv->regs;
302
 
303
        rr_load_firmware(dev);
304
 
305
        writel(0x01000000, &regs->TX_state);
306
        writel(0xff800000, &regs->RX_state);
307
        writel(0, &regs->AssistState);
308
        writel(CLEAR_INTA, &regs->LocalCtrl);
309
        writel(0x01, &regs->BrkPt);
310
        writel(0, &regs->Timer);
311
        writel(0, &regs->TimerRef);
312
        writel(RESET_DMA, &regs->DmaReadState);
313
        writel(RESET_DMA, &regs->DmaWriteState);
314
        writel(0, &regs->DmaWriteHostHi);
315
        writel(0, &regs->DmaWriteHostLo);
316
        writel(0, &regs->DmaReadHostHi);
317
        writel(0, &regs->DmaReadHostLo);
318
        writel(0, &regs->DmaReadLen);
319
        writel(0, &regs->DmaWriteLen);
320
        writel(0, &regs->DmaWriteLcl);
321
        writel(0, &regs->DmaWriteIPchecksum);
322
        writel(0, &regs->DmaReadLcl);
323
        writel(0, &regs->DmaReadIPchecksum);
324
        writel(0, &regs->PciState);
325
#if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
326
        writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
327
#elif (BITS_PER_LONG == 64)
328
        writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
329
#else
330
        writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
331
#endif
332
 
333
#if 0
334
        /*
335
         * Don't worry, this is just black magic.
336
         */
337
        writel(0xdf000, &regs->RxBase);
338
        writel(0xdf000, &regs->RxPrd);
339
        writel(0xdf000, &regs->RxCon);
340
        writel(0xce000, &regs->TxBase);
341
        writel(0xce000, &regs->TxPrd);
342
        writel(0xce000, &regs->TxCon);
343
        writel(0, &regs->RxIndPro);
344
        writel(0, &regs->RxIndCon);
345
        writel(0, &regs->RxIndRef);
346
        writel(0, &regs->TxIndPro);
347
        writel(0, &regs->TxIndCon);
348
        writel(0, &regs->TxIndRef);
349
        writel(0xcc000, &regs->pad10[0]);
350
        writel(0, &regs->DrCmndPro);
351
        writel(0, &regs->DrCmndCon);
352
        writel(0, &regs->DwCmndPro);
353
        writel(0, &regs->DwCmndCon);
354
        writel(0, &regs->DwCmndRef);
355
        writel(0, &regs->DrDataPro);
356
        writel(0, &regs->DrDataCon);
357
        writel(0, &regs->DrDataRef);
358
        writel(0, &regs->DwDataPro);
359
        writel(0, &regs->DwDataCon);
360
        writel(0, &regs->DwDataRef);
361
#endif
362
 
363
        writel(0xffffffff, &regs->MbEvent);
364
        writel(0, &regs->Event);
365
 
366
        writel(0, &regs->TxPi);
367
        writel(0, &regs->IpRxPi);
368
 
369
        writel(0, &regs->EvtCon);
370
        writel(0, &regs->EvtPrd);
371
 
372
        rrpriv->info->evt_ctrl.pi = 0;
373
 
374
        for (i = 0; i < CMD_RING_ENTRIES; i++)
375
                writel(0, &regs->CmdRing[i]);
376
 
377
/*
378
 * Why 32 ? is this not cache line size dependent?
379
 */
380
        writel(RBURST_64|WBURST_64, &regs->PciState);
381
        wmb();
382
 
383
        start_pc = rr_read_eeprom_word(rrpriv,
384
                        offsetof(struct eeprom, rncd_info.FwStart));
385
 
386
#if (DEBUG > 1)
387
        printk("%s: Executing firmware at address 0x%06x\n",
388
               dev->name, start_pc);
389
#endif
390
 
391
        writel(start_pc + 0x800, &regs->Pc);
392
        wmb();
393
        udelay(5);
394
 
395
        writel(start_pc, &regs->Pc);
396
        wmb();
397
 
398
        return 0;
399
}
400
 
401
 
402
/*
403
 * Read a string from the EEPROM.
404
 */
405
static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
406
                                unsigned long offset,
407
                                unsigned char *buf,
408
                                unsigned long length)
409
{
410
        struct rr_regs __iomem *regs = rrpriv->regs;
411
        u32 misc, io, host, i;
412
 
413
        io = readl(&regs->ExtIo);
414
        writel(0, &regs->ExtIo);
415
        misc = readl(&regs->LocalCtrl);
416
        writel(0, &regs->LocalCtrl);
417
        host = readl(&regs->HostCtrl);
418
        writel(host | HALT_NIC, &regs->HostCtrl);
419
        mb();
420
 
421
        for (i = 0; i < length; i++){
422
                writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
423
                mb();
424
                buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
425
                mb();
426
        }
427
 
428
        writel(host, &regs->HostCtrl);
429
        writel(misc, &regs->LocalCtrl);
430
        writel(io, &regs->ExtIo);
431
        mb();
432
        return i;
433
}
434
 
435
 
436
/*
437
 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
438
 * it to our CPU byte-order.
439
 */
440
static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
441
                            size_t offset)
442
{
443
        __be32 word;
444
 
445
        if ((rr_read_eeprom(rrpriv, offset,
446
                            (unsigned char *)&word, 4) == 4))
447
                return be32_to_cpu(word);
448
        return 0;
449
}
450
 
451
 
452
/*
453
 * Write a string to the EEPROM.
454
 *
455
 * This is only called when the firmware is not running.
456
 */
457
static unsigned int write_eeprom(struct rr_private *rrpriv,
458
                                 unsigned long offset,
459
                                 unsigned char *buf,
460
                                 unsigned long length)
461
{
462
        struct rr_regs __iomem *regs = rrpriv->regs;
463
        u32 misc, io, data, i, j, ready, error = 0;
464
 
465
        io = readl(&regs->ExtIo);
466
        writel(0, &regs->ExtIo);
467
        misc = readl(&regs->LocalCtrl);
468
        writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
469
        mb();
470
 
471
        for (i = 0; i < length; i++){
472
                writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
473
                mb();
474
                data = buf[i] << 24;
475
                /*
476
                 * Only try to write the data if it is not the same
477
                 * value already.
478
                 */
479
                if ((readl(&regs->WinData) & 0xff000000) != data){
480
                        writel(data, &regs->WinData);
481
                        ready = 0;
482
                        j = 0;
483
                        mb();
484
                        while(!ready){
485
                                udelay(20);
486
                                if ((readl(&regs->WinData) & 0xff000000) ==
487
                                    data)
488
                                        ready = 1;
489
                                mb();
490
                                if (j++ > 5000){
491
                                        printk("data mismatch: %08x, "
492
                                               "WinData %08x\n", data,
493
                                               readl(&regs->WinData));
494
                                        ready = 1;
495
                                        error = 1;
496
                                }
497
                        }
498
                }
499
        }
500
 
501
        writel(misc, &regs->LocalCtrl);
502
        writel(io, &regs->ExtIo);
503
        mb();
504
 
505
        return error;
506
}
507
 
508
 
509
static int __devinit rr_init(struct net_device *dev)
510
{
511
        struct rr_private *rrpriv;
512
        struct rr_regs __iomem *regs;
513
        u32 sram_size, rev;
514
        DECLARE_MAC_BUF(mac);
515
 
516
        rrpriv = netdev_priv(dev);
517
        regs = rrpriv->regs;
518
 
519
        rev = readl(&regs->FwRev);
520
        rrpriv->fw_rev = rev;
521
        if (rev > 0x00020024)
522
                printk("  Firmware revision: %i.%i.%i\n", (rev >> 16),
523
                       ((rev >> 8) & 0xff), (rev & 0xff));
524
        else if (rev >= 0x00020000) {
525
                printk("  Firmware revision: %i.%i.%i (2.0.37 or "
526
                       "later is recommended)\n", (rev >> 16),
527
                       ((rev >> 8) & 0xff), (rev & 0xff));
528
        }else{
529
                printk("  Firmware revision too old: %i.%i.%i, please "
530
                       "upgrade to 2.0.37 or later.\n",
531
                       (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
532
        }
533
 
534
#if (DEBUG > 2)
535
        printk("  Maximum receive rings %i\n", readl(&regs->MaxRxRng));
536
#endif
537
 
538
        /*
539
         * Read the hardware address from the eeprom.  The HW address
540
         * is not really necessary for HIPPI but awfully convenient.
541
         * The pointer arithmetic to put it in dev_addr is ugly, but
542
         * Donald Becker does it this way for the GigE version of this
543
         * card and it's shorter and more portable than any
544
         * other method I've seen.  -VAL
545
         */
546
 
547
        *(__be16 *)(dev->dev_addr) =
548
          htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
549
        *(__be32 *)(dev->dev_addr+2) =
550
          htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
551
 
552
        printk("  MAC: %s\n", print_mac(mac, dev->dev_addr));
553
 
554
        sram_size = rr_read_eeprom_word(rrpriv, 8);
555
        printk("  SRAM size 0x%06x\n", sram_size);
556
 
557
        return 0;
558
}
559
 
560
 
561
static int rr_init1(struct net_device *dev)
562
{
563
        struct rr_private *rrpriv;
564
        struct rr_regs __iomem *regs;
565
        unsigned long myjif, flags;
566
        struct cmd cmd;
567
        u32 hostctrl;
568
        int ecode = 0;
569
        short i;
570
 
571
        rrpriv = netdev_priv(dev);
572
        regs = rrpriv->regs;
573
 
574
        spin_lock_irqsave(&rrpriv->lock, flags);
575
 
576
        hostctrl = readl(&regs->HostCtrl);
577
        writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
578
        wmb();
579
 
580
        if (hostctrl & PARITY_ERR){
581
                printk("%s: Parity error halting NIC - this is serious!\n",
582
                       dev->name);
583
                spin_unlock_irqrestore(&rrpriv->lock, flags);
584
                ecode = -EFAULT;
585
                goto error;
586
        }
587
 
588
        set_rxaddr(regs, rrpriv->rx_ctrl_dma);
589
        set_infoaddr(regs, rrpriv->info_dma);
590
 
591
        rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
592
        rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
593
        rrpriv->info->evt_ctrl.mode = 0;
594
        rrpriv->info->evt_ctrl.pi = 0;
595
        set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
596
 
597
        rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
598
        rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
599
        rrpriv->info->cmd_ctrl.mode = 0;
600
        rrpriv->info->cmd_ctrl.pi = 15;
601
 
602
        for (i = 0; i < CMD_RING_ENTRIES; i++) {
603
                writel(0, &regs->CmdRing[i]);
604
        }
605
 
606
        for (i = 0; i < TX_RING_ENTRIES; i++) {
607
                rrpriv->tx_ring[i].size = 0;
608
                set_rraddr(&rrpriv->tx_ring[i].addr, 0);
609
                rrpriv->tx_skbuff[i] = NULL;
610
        }
611
        rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
612
        rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
613
        rrpriv->info->tx_ctrl.mode = 0;
614
        rrpriv->info->tx_ctrl.pi = 0;
615
        set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
616
 
617
        /*
618
         * Set dirty_tx before we start receiving interrupts, otherwise
619
         * the interrupt handler might think it is supposed to process
620
         * tx ints before we are up and running, which may cause a null
621
         * pointer access in the int handler.
622
         */
623
        rrpriv->tx_full = 0;
624
        rrpriv->cur_rx = 0;
625
        rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
626
 
627
        rr_reset(dev);
628
 
629
        /* Tuning values */
630
        writel(0x5000, &regs->ConRetry);
631
        writel(0x100, &regs->ConRetryTmr);
632
        writel(0x500000, &regs->ConTmout);
633
        writel(0x60, &regs->IntrTmr);
634
        writel(0x500000, &regs->TxDataMvTimeout);
635
        writel(0x200000, &regs->RxDataMvTimeout);
636
        writel(0x80, &regs->WriteDmaThresh);
637
        writel(0x80, &regs->ReadDmaThresh);
638
 
639
        rrpriv->fw_running = 0;
640
        wmb();
641
 
642
        hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
643
        writel(hostctrl, &regs->HostCtrl);
644
        wmb();
645
 
646
        spin_unlock_irqrestore(&rrpriv->lock, flags);
647
 
648
        for (i = 0; i < RX_RING_ENTRIES; i++) {
649
                struct sk_buff *skb;
650
                dma_addr_t addr;
651
 
652
                rrpriv->rx_ring[i].mode = 0;
653
                skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
654
                if (!skb) {
655
                        printk(KERN_WARNING "%s: Unable to allocate memory "
656
                               "for receive ring - halting NIC\n", dev->name);
657
                        ecode = -ENOMEM;
658
                        goto error;
659
                }
660
                rrpriv->rx_skbuff[i] = skb;
661
                addr = pci_map_single(rrpriv->pci_dev, skb->data,
662
                        dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
663
                /*
664
                 * Sanity test to see if we conflict with the DMA
665
                 * limitations of the Roadrunner.
666
                 */
667
                if ((((unsigned long)skb->data) & 0xfff) > ~65320)
668
                        printk("skb alloc error\n");
669
 
670
                set_rraddr(&rrpriv->rx_ring[i].addr, addr);
671
                rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
672
        }
673
 
674
        rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
675
        rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
676
        rrpriv->rx_ctrl[4].mode = 8;
677
        rrpriv->rx_ctrl[4].pi = 0;
678
        wmb();
679
        set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
680
 
681
        udelay(1000);
682
 
683
        /*
684
         * Now start the FirmWare.
685
         */
686
        cmd.code = C_START_FW;
687
        cmd.ring = 0;
688
        cmd.index = 0;
689
 
690
        rr_issue_cmd(rrpriv, &cmd);
691
 
692
        /*
693
         * Give the FirmWare time to chew on the `get running' command.
694
         */
695
        myjif = jiffies + 5 * HZ;
696
        while (time_before(jiffies, myjif) && !rrpriv->fw_running)
697
                cpu_relax();
698
 
699
        netif_start_queue(dev);
700
 
701
        return ecode;
702
 
703
 error:
704
        /*
705
         * We might have gotten here because we are out of memory,
706
         * make sure we release everything we allocated before failing
707
         */
708
        for (i = 0; i < RX_RING_ENTRIES; i++) {
709
                struct sk_buff *skb = rrpriv->rx_skbuff[i];
710
 
711
                if (skb) {
712
                        pci_unmap_single(rrpriv->pci_dev,
713
                                         rrpriv->rx_ring[i].addr.addrlo,
714
                                         dev->mtu + HIPPI_HLEN,
715
                                         PCI_DMA_FROMDEVICE);
716
                        rrpriv->rx_ring[i].size = 0;
717
                        set_rraddr(&rrpriv->rx_ring[i].addr, 0);
718
                        dev_kfree_skb(skb);
719
                        rrpriv->rx_skbuff[i] = NULL;
720
                }
721
        }
722
        return ecode;
723
}
724
 
725
 
726
/*
727
 * All events are considered to be slow (RX/TX ints do not generate
728
 * events) and are handled here, outside the main interrupt handler,
729
 * to reduce the size of the handler.
730
 */
731
static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
732
{
733
        struct rr_private *rrpriv;
734
        struct rr_regs __iomem *regs;
735
        u32 tmp;
736
 
737
        rrpriv = netdev_priv(dev);
738
        regs = rrpriv->regs;
739
 
740
        while (prodidx != eidx){
741
                switch (rrpriv->evt_ring[eidx].code){
742
                case E_NIC_UP:
743
                        tmp = readl(&regs->FwRev);
744
                        printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
745
                               "up and running\n", dev->name,
746
                               (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
747
                        rrpriv->fw_running = 1;
748
                        writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
749
                        wmb();
750
                        break;
751
                case E_LINK_ON:
752
                        printk(KERN_INFO "%s: Optical link ON\n", dev->name);
753
                        break;
754
                case E_LINK_OFF:
755
                        printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
756
                        break;
757
                case E_RX_IDLE:
758
                        printk(KERN_WARNING "%s: RX data not moving\n",
759
                               dev->name);
760
                        goto drop;
761
                case E_WATCHDOG:
762
                        printk(KERN_INFO "%s: The watchdog is here to see "
763
                               "us\n", dev->name);
764
                        break;
765
                case E_INTERN_ERR:
766
                        printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
767
                               dev->name);
768
                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
769
                               &regs->HostCtrl);
770
                        wmb();
771
                        break;
772
                case E_HOST_ERR:
773
                        printk(KERN_ERR "%s: Host software error\n",
774
                               dev->name);
775
                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
776
                               &regs->HostCtrl);
777
                        wmb();
778
                        break;
779
                /*
780
                 * TX events.
781
                 */
782
                case E_CON_REJ:
783
                        printk(KERN_WARNING "%s: Connection rejected\n",
784
                               dev->name);
785
                        dev->stats.tx_aborted_errors++;
786
                        break;
787
                case E_CON_TMOUT:
788
                        printk(KERN_WARNING "%s: Connection timeout\n",
789
                               dev->name);
790
                        break;
791
                case E_DISC_ERR:
792
                        printk(KERN_WARNING "%s: HIPPI disconnect error\n",
793
                               dev->name);
794
                        dev->stats.tx_aborted_errors++;
795
                        break;
796
                case E_INT_PRTY:
797
                        printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
798
                               dev->name);
799
                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
800
                               &regs->HostCtrl);
801
                        wmb();
802
                        break;
803
                case E_TX_IDLE:
804
                        printk(KERN_WARNING "%s: Transmitter idle\n",
805
                               dev->name);
806
                        break;
807
                case E_TX_LINK_DROP:
808
                        printk(KERN_WARNING "%s: Link lost during transmit\n",
809
                               dev->name);
810
                        dev->stats.tx_aborted_errors++;
811
                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
812
                               &regs->HostCtrl);
813
                        wmb();
814
                        break;
815
                case E_TX_INV_RNG:
816
                        printk(KERN_ERR "%s: Invalid send ring block\n",
817
                               dev->name);
818
                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
819
                               &regs->HostCtrl);
820
                        wmb();
821
                        break;
822
                case E_TX_INV_BUF:
823
                        printk(KERN_ERR "%s: Invalid send buffer address\n",
824
                               dev->name);
825
                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
826
                               &regs->HostCtrl);
827
                        wmb();
828
                        break;
829
                case E_TX_INV_DSC:
830
                        printk(KERN_ERR "%s: Invalid descriptor address\n",
831
                               dev->name);
832
                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
833
                               &regs->HostCtrl);
834
                        wmb();
835
                        break;
836
                /*
837
                 * RX events.
838
                 */
839
                case E_RX_RNG_OUT:
840
                        printk(KERN_INFO "%s: Receive ring full\n", dev->name);
841
                        break;
842
 
843
                case E_RX_PAR_ERR:
844
                        printk(KERN_WARNING "%s: Receive parity error\n",
845
                               dev->name);
846
                        goto drop;
847
                case E_RX_LLRC_ERR:
848
                        printk(KERN_WARNING "%s: Receive LLRC error\n",
849
                               dev->name);
850
                        goto drop;
851
                case E_PKT_LN_ERR:
852
                        printk(KERN_WARNING "%s: Receive packet length "
853
                               "error\n", dev->name);
854
                        goto drop;
855
                case E_DTA_CKSM_ERR:
856
                        printk(KERN_WARNING "%s: Data checksum error\n",
857
                               dev->name);
858
                        goto drop;
859
                case E_SHT_BST:
860
                        printk(KERN_WARNING "%s: Unexpected short burst "
861
                               "error\n", dev->name);
862
                        goto drop;
863
                case E_STATE_ERR:
864
                        printk(KERN_WARNING "%s: Recv. state transition"
865
                               " error\n", dev->name);
866
                        goto drop;
867
                case E_UNEXP_DATA:
868
                        printk(KERN_WARNING "%s: Unexpected data error\n",
869
                               dev->name);
870
                        goto drop;
871
                case E_LST_LNK_ERR:
872
                        printk(KERN_WARNING "%s: Link lost error\n",
873
                               dev->name);
874
                        goto drop;
875
                case E_FRM_ERR:
876
                        printk(KERN_WARNING "%s: Framming Error\n",
877
                               dev->name);
878
                        goto drop;
879
                case E_FLG_SYN_ERR:
880
                        printk(KERN_WARNING "%s: Flag sync. lost during"
881
                               "packet\n", dev->name);
882
                        goto drop;
883
                case E_RX_INV_BUF:
884
                        printk(KERN_ERR "%s: Invalid receive buffer "
885
                               "address\n", dev->name);
886
                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
887
                               &regs->HostCtrl);
888
                        wmb();
889
                        break;
890
                case E_RX_INV_DSC:
891
                        printk(KERN_ERR "%s: Invalid receive descriptor "
892
                               "address\n", dev->name);
893
                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
894
                               &regs->HostCtrl);
895
                        wmb();
896
                        break;
897
                case E_RNG_BLK:
898
                        printk(KERN_ERR "%s: Invalid ring block\n",
899
                               dev->name);
900
                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
901
                               &regs->HostCtrl);
902
                        wmb();
903
                        break;
904
                drop:
905
                        /* Label packet to be dropped.
906
                         * Actual dropping occurs in rx
907
                         * handling.
908
                         *
909
                         * The index of packet we get to drop is
910
                         * the index of the packet following
911
                         * the bad packet. -kbf
912
                         */
913
                        {
914
                                u16 index = rrpriv->evt_ring[eidx].index;
915
                                index = (index + (RX_RING_ENTRIES - 1)) %
916
                                        RX_RING_ENTRIES;
917
                                rrpriv->rx_ring[index].mode |=
918
                                        (PACKET_BAD | PACKET_END);
919
                        }
920
                        break;
921
                default:
922
                        printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
923
                               dev->name, rrpriv->evt_ring[eidx].code);
924
                }
925
                eidx = (eidx + 1) % EVT_RING_ENTRIES;
926
        }
927
 
928
        rrpriv->info->evt_ctrl.pi = eidx;
929
        wmb();
930
        return eidx;
931
}
932
 
933
 
934
static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
935
{
936
        struct rr_private *rrpriv = netdev_priv(dev);
937
        struct rr_regs __iomem *regs = rrpriv->regs;
938
 
939
        do {
940
                struct rx_desc *desc;
941
                u32 pkt_len;
942
 
943
                desc = &(rrpriv->rx_ring[index]);
944
                pkt_len = desc->size;
945
#if (DEBUG > 2)
946
                printk("index %i, rxlimit %i\n", index, rxlimit);
947
                printk("len %x, mode %x\n", pkt_len, desc->mode);
948
#endif
949
                if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
950
                        dev->stats.rx_dropped++;
951
                        goto defer;
952
                }
953
 
954
                if (pkt_len > 0){
955
                        struct sk_buff *skb, *rx_skb;
956
 
957
                        rx_skb = rrpriv->rx_skbuff[index];
958
 
959
                        if (pkt_len < PKT_COPY_THRESHOLD) {
960
                                skb = alloc_skb(pkt_len, GFP_ATOMIC);
961
                                if (skb == NULL){
962
                                        printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
963
                                        dev->stats.rx_dropped++;
964
                                        goto defer;
965
                                } else {
966
                                        pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
967
                                                                    desc->addr.addrlo,
968
                                                                    pkt_len,
969
                                                                    PCI_DMA_FROMDEVICE);
970
 
971
                                        memcpy(skb_put(skb, pkt_len),
972
                                               rx_skb->data, pkt_len);
973
 
974
                                        pci_dma_sync_single_for_device(rrpriv->pci_dev,
975
                                                                       desc->addr.addrlo,
976
                                                                       pkt_len,
977
                                                                       PCI_DMA_FROMDEVICE);
978
                                }
979
                        }else{
980
                                struct sk_buff *newskb;
981
 
982
                                newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
983
                                        GFP_ATOMIC);
984
                                if (newskb){
985
                                        dma_addr_t addr;
986
 
987
                                        pci_unmap_single(rrpriv->pci_dev,
988
                                                desc->addr.addrlo, dev->mtu +
989
                                                HIPPI_HLEN, PCI_DMA_FROMDEVICE);
990
                                        skb = rx_skb;
991
                                        skb_put(skb, pkt_len);
992
                                        rrpriv->rx_skbuff[index] = newskb;
993
                                        addr = pci_map_single(rrpriv->pci_dev,
994
                                                newskb->data,
995
                                                dev->mtu + HIPPI_HLEN,
996
                                                PCI_DMA_FROMDEVICE);
997
                                        set_rraddr(&desc->addr, addr);
998
                                } else {
999
                                        printk("%s: Out of memory, deferring "
1000
                                               "packet\n", dev->name);
1001
                                        dev->stats.rx_dropped++;
1002
                                        goto defer;
1003
                                }
1004
                        }
1005
                        skb->protocol = hippi_type_trans(skb, dev);
1006
 
1007
                        netif_rx(skb);          /* send it up */
1008
 
1009
                        dev->last_rx = jiffies;
1010
                        dev->stats.rx_packets++;
1011
                        dev->stats.rx_bytes += pkt_len;
1012
                }
1013
        defer:
1014
                desc->mode = 0;
1015
                desc->size = dev->mtu + HIPPI_HLEN;
1016
 
1017
                if ((index & 7) == 7)
1018
                        writel(index, &regs->IpRxPi);
1019
 
1020
                index = (index + 1) % RX_RING_ENTRIES;
1021
        } while(index != rxlimit);
1022
 
1023
        rrpriv->cur_rx = index;
1024
        wmb();
1025
}
1026
 
1027
 
1028
static irqreturn_t rr_interrupt(int irq, void *dev_id)
1029
{
1030
        struct rr_private *rrpriv;
1031
        struct rr_regs __iomem *regs;
1032
        struct net_device *dev = (struct net_device *)dev_id;
1033
        u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1034
 
1035
        rrpriv = netdev_priv(dev);
1036
        regs = rrpriv->regs;
1037
 
1038
        if (!(readl(&regs->HostCtrl) & RR_INT))
1039
                return IRQ_NONE;
1040
 
1041
        spin_lock(&rrpriv->lock);
1042
 
1043
        prodidx = readl(&regs->EvtPrd);
1044
        txcsmr = (prodidx >> 8) & 0xff;
1045
        rxlimit = (prodidx >> 16) & 0xff;
1046
        prodidx &= 0xff;
1047
 
1048
#if (DEBUG > 2)
1049
        printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1050
               prodidx, rrpriv->info->evt_ctrl.pi);
1051
#endif
1052
        /*
1053
         * Order here is important.  We must handle events
1054
         * before doing anything else in order to catch
1055
         * such things as LLRC errors, etc -kbf
1056
         */
1057
 
1058
        eidx = rrpriv->info->evt_ctrl.pi;
1059
        if (prodidx != eidx)
1060
                eidx = rr_handle_event(dev, prodidx, eidx);
1061
 
1062
        rxindex = rrpriv->cur_rx;
1063
        if (rxindex != rxlimit)
1064
                rx_int(dev, rxlimit, rxindex);
1065
 
1066
        txcon = rrpriv->dirty_tx;
1067
        if (txcsmr != txcon) {
1068
                do {
1069
                        /* Due to occational firmware TX producer/consumer out
1070
                         * of sync. error need to check entry in ring -kbf
1071
                         */
1072
                        if(rrpriv->tx_skbuff[txcon]){
1073
                                struct tx_desc *desc;
1074
                                struct sk_buff *skb;
1075
 
1076
                                desc = &(rrpriv->tx_ring[txcon]);
1077
                                skb = rrpriv->tx_skbuff[txcon];
1078
 
1079
                                dev->stats.tx_packets++;
1080
                                dev->stats.tx_bytes += skb->len;
1081
 
1082
                                pci_unmap_single(rrpriv->pci_dev,
1083
                                                 desc->addr.addrlo, skb->len,
1084
                                                 PCI_DMA_TODEVICE);
1085
                                dev_kfree_skb_irq(skb);
1086
 
1087
                                rrpriv->tx_skbuff[txcon] = NULL;
1088
                                desc->size = 0;
1089
                                set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1090
                                desc->mode = 0;
1091
                        }
1092
                        txcon = (txcon + 1) % TX_RING_ENTRIES;
1093
                } while (txcsmr != txcon);
1094
                wmb();
1095
 
1096
                rrpriv->dirty_tx = txcon;
1097
                if (rrpriv->tx_full && rr_if_busy(dev) &&
1098
                    (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1099
                     != rrpriv->dirty_tx)){
1100
                        rrpriv->tx_full = 0;
1101
                        netif_wake_queue(dev);
1102
                }
1103
        }
1104
 
1105
        eidx |= ((txcsmr << 8) | (rxlimit << 16));
1106
        writel(eidx, &regs->EvtCon);
1107
        wmb();
1108
 
1109
        spin_unlock(&rrpriv->lock);
1110
        return IRQ_HANDLED;
1111
}
1112
 
1113
static inline void rr_raz_tx(struct rr_private *rrpriv,
1114
                             struct net_device *dev)
1115
{
1116
        int i;
1117
 
1118
        for (i = 0; i < TX_RING_ENTRIES; i++) {
1119
                struct sk_buff *skb = rrpriv->tx_skbuff[i];
1120
 
1121
                if (skb) {
1122
                        struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1123
 
1124
                        pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1125
                                skb->len, PCI_DMA_TODEVICE);
1126
                        desc->size = 0;
1127
                        set_rraddr(&desc->addr, 0);
1128
                        dev_kfree_skb(skb);
1129
                        rrpriv->tx_skbuff[i] = NULL;
1130
                }
1131
        }
1132
}
1133
 
1134
 
1135
static inline void rr_raz_rx(struct rr_private *rrpriv,
1136
                             struct net_device *dev)
1137
{
1138
        int i;
1139
 
1140
        for (i = 0; i < RX_RING_ENTRIES; i++) {
1141
                struct sk_buff *skb = rrpriv->rx_skbuff[i];
1142
 
1143
                if (skb) {
1144
                        struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1145
 
1146
                        pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1147
                                dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1148
                        desc->size = 0;
1149
                        set_rraddr(&desc->addr, 0);
1150
                        dev_kfree_skb(skb);
1151
                        rrpriv->rx_skbuff[i] = NULL;
1152
                }
1153
        }
1154
}
1155
 
1156
static void rr_timer(unsigned long data)
1157
{
1158
        struct net_device *dev = (struct net_device *)data;
1159
        struct rr_private *rrpriv = netdev_priv(dev);
1160
        struct rr_regs __iomem *regs = rrpriv->regs;
1161
        unsigned long flags;
1162
 
1163
        if (readl(&regs->HostCtrl) & NIC_HALTED){
1164
                printk("%s: Restarting nic\n", dev->name);
1165
                memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1166
                memset(rrpriv->info, 0, sizeof(struct rr_info));
1167
                wmb();
1168
 
1169
                rr_raz_tx(rrpriv, dev);
1170
                rr_raz_rx(rrpriv, dev);
1171
 
1172
                if (rr_init1(dev)) {
1173
                        spin_lock_irqsave(&rrpriv->lock, flags);
1174
                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1175
                               &regs->HostCtrl);
1176
                        spin_unlock_irqrestore(&rrpriv->lock, flags);
1177
                }
1178
        }
1179
        rrpriv->timer.expires = RUN_AT(5*HZ);
1180
        add_timer(&rrpriv->timer);
1181
}
1182
 
1183
 
1184
static int rr_open(struct net_device *dev)
1185
{
1186
        struct rr_private *rrpriv = netdev_priv(dev);
1187
        struct pci_dev *pdev = rrpriv->pci_dev;
1188
        struct rr_regs __iomem *regs;
1189
        int ecode = 0;
1190
        unsigned long flags;
1191
        dma_addr_t dma_addr;
1192
 
1193
        regs = rrpriv->regs;
1194
 
1195
        if (rrpriv->fw_rev < 0x00020000) {
1196
                printk(KERN_WARNING "%s: trying to configure device with "
1197
                       "obsolete firmware\n", dev->name);
1198
                ecode = -EBUSY;
1199
                goto error;
1200
        }
1201
 
1202
        rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1203
                                               256 * sizeof(struct ring_ctrl),
1204
                                               &dma_addr);
1205
        if (!rrpriv->rx_ctrl) {
1206
                ecode = -ENOMEM;
1207
                goto error;
1208
        }
1209
        rrpriv->rx_ctrl_dma = dma_addr;
1210
        memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1211
 
1212
        rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1213
                                            &dma_addr);
1214
        if (!rrpriv->info) {
1215
                ecode = -ENOMEM;
1216
                goto error;
1217
        }
1218
        rrpriv->info_dma = dma_addr;
1219
        memset(rrpriv->info, 0, sizeof(struct rr_info));
1220
        wmb();
1221
 
1222
        spin_lock_irqsave(&rrpriv->lock, flags);
1223
        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1224
        readl(&regs->HostCtrl);
1225
        spin_unlock_irqrestore(&rrpriv->lock, flags);
1226
 
1227
        if (request_irq(dev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1228
                printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1229
                       dev->name, dev->irq);
1230
                ecode = -EAGAIN;
1231
                goto error;
1232
        }
1233
 
1234
        if ((ecode = rr_init1(dev)))
1235
                goto error;
1236
 
1237
        /* Set the timer to switch to check for link beat and perhaps switch
1238
           to an alternate media type. */
1239
        init_timer(&rrpriv->timer);
1240
        rrpriv->timer.expires = RUN_AT(5*HZ);           /* 5 sec. watchdog */
1241
        rrpriv->timer.data = (unsigned long)dev;
1242
        rrpriv->timer.function = &rr_timer;               /* timer handler */
1243
        add_timer(&rrpriv->timer);
1244
 
1245
        netif_start_queue(dev);
1246
 
1247
        return ecode;
1248
 
1249
 error:
1250
        spin_lock_irqsave(&rrpriv->lock, flags);
1251
        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1252
        spin_unlock_irqrestore(&rrpriv->lock, flags);
1253
 
1254
        if (rrpriv->info) {
1255
                pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1256
                                    rrpriv->info_dma);
1257
                rrpriv->info = NULL;
1258
        }
1259
        if (rrpriv->rx_ctrl) {
1260
                pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1261
                                    rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1262
                rrpriv->rx_ctrl = NULL;
1263
        }
1264
 
1265
        netif_stop_queue(dev);
1266
 
1267
        return ecode;
1268
}
1269
 
1270
 
1271
static void rr_dump(struct net_device *dev)
1272
{
1273
        struct rr_private *rrpriv;
1274
        struct rr_regs __iomem *regs;
1275
        u32 index, cons;
1276
        short i;
1277
        int len;
1278
 
1279
        rrpriv = netdev_priv(dev);
1280
        regs = rrpriv->regs;
1281
 
1282
        printk("%s: dumping NIC TX rings\n", dev->name);
1283
 
1284
        printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1285
               readl(&regs->RxPrd), readl(&regs->TxPrd),
1286
               readl(&regs->EvtPrd), readl(&regs->TxPi),
1287
               rrpriv->info->tx_ctrl.pi);
1288
 
1289
        printk("Error code 0x%x\n", readl(&regs->Fail1));
1290
 
1291
        index = (((readl(&regs->EvtPrd) >> 8) & 0xff ) - 1) % EVT_RING_ENTRIES;
1292
        cons = rrpriv->dirty_tx;
1293
        printk("TX ring index %i, TX consumer %i\n",
1294
               index, cons);
1295
 
1296
        if (rrpriv->tx_skbuff[index]){
1297
                len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1298
                printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1299
                for (i = 0; i < len; i++){
1300
                        if (!(i & 7))
1301
                                printk("\n");
1302
                        printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1303
                }
1304
                printk("\n");
1305
        }
1306
 
1307
        if (rrpriv->tx_skbuff[cons]){
1308
                len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1309
                printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1310
                printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1311
                       rrpriv->tx_ring[cons].mode,
1312
                       rrpriv->tx_ring[cons].size,
1313
                       (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1314
                       (unsigned long)rrpriv->tx_skbuff[cons]->data,
1315
                       (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1316
                for (i = 0; i < len; i++){
1317
                        if (!(i & 7))
1318
                                printk("\n");
1319
                        printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1320
                }
1321
                printk("\n");
1322
        }
1323
 
1324
        printk("dumping TX ring info:\n");
1325
        for (i = 0; i < TX_RING_ENTRIES; i++)
1326
                printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1327
                       rrpriv->tx_ring[i].mode,
1328
                       rrpriv->tx_ring[i].size,
1329
                       (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1330
 
1331
}
1332
 
1333
 
1334
static int rr_close(struct net_device *dev)
1335
{
1336
        struct rr_private *rrpriv;
1337
        struct rr_regs __iomem *regs;
1338
        unsigned long flags;
1339
        u32 tmp;
1340
        short i;
1341
 
1342
        netif_stop_queue(dev);
1343
 
1344
        rrpriv = netdev_priv(dev);
1345
        regs = rrpriv->regs;
1346
 
1347
        /*
1348
         * Lock to make sure we are not cleaning up while another CPU
1349
         * is handling interrupts.
1350
         */
1351
        spin_lock_irqsave(&rrpriv->lock, flags);
1352
 
1353
        tmp = readl(&regs->HostCtrl);
1354
        if (tmp & NIC_HALTED){
1355
                printk("%s: NIC already halted\n", dev->name);
1356
                rr_dump(dev);
1357
        }else{
1358
                tmp |= HALT_NIC | RR_CLEAR_INT;
1359
                writel(tmp, &regs->HostCtrl);
1360
                readl(&regs->HostCtrl);
1361
        }
1362
 
1363
        rrpriv->fw_running = 0;
1364
 
1365
        del_timer_sync(&rrpriv->timer);
1366
 
1367
        writel(0, &regs->TxPi);
1368
        writel(0, &regs->IpRxPi);
1369
 
1370
        writel(0, &regs->EvtCon);
1371
        writel(0, &regs->EvtPrd);
1372
 
1373
        for (i = 0; i < CMD_RING_ENTRIES; i++)
1374
                writel(0, &regs->CmdRing[i]);
1375
 
1376
        rrpriv->info->tx_ctrl.entries = 0;
1377
        rrpriv->info->cmd_ctrl.pi = 0;
1378
        rrpriv->info->evt_ctrl.pi = 0;
1379
        rrpriv->rx_ctrl[4].entries = 0;
1380
 
1381
        rr_raz_tx(rrpriv, dev);
1382
        rr_raz_rx(rrpriv, dev);
1383
 
1384
        pci_free_consistent(rrpriv->pci_dev, 256 * sizeof(struct ring_ctrl),
1385
                            rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1386
        rrpriv->rx_ctrl = NULL;
1387
 
1388
        pci_free_consistent(rrpriv->pci_dev, sizeof(struct rr_info),
1389
                            rrpriv->info, rrpriv->info_dma);
1390
        rrpriv->info = NULL;
1391
 
1392
        free_irq(dev->irq, dev);
1393
        spin_unlock_irqrestore(&rrpriv->lock, flags);
1394
 
1395
        return 0;
1396
}
1397
 
1398
 
1399
static int rr_start_xmit(struct sk_buff *skb, struct net_device *dev)
1400
{
1401
        struct rr_private *rrpriv = netdev_priv(dev);
1402
        struct rr_regs __iomem *regs = rrpriv->regs;
1403
        struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1404
        struct ring_ctrl *txctrl;
1405
        unsigned long flags;
1406
        u32 index, len = skb->len;
1407
        u32 *ifield;
1408
        struct sk_buff *new_skb;
1409
 
1410
        if (readl(&regs->Mode) & FATAL_ERR)
1411
                printk("error codes Fail1 %02x, Fail2 %02x\n",
1412
                       readl(&regs->Fail1), readl(&regs->Fail2));
1413
 
1414
        /*
1415
         * We probably need to deal with tbusy here to prevent overruns.
1416
         */
1417
 
1418
        if (skb_headroom(skb) < 8){
1419
                printk("incoming skb too small - reallocating\n");
1420
                if (!(new_skb = dev_alloc_skb(len + 8))) {
1421
                        dev_kfree_skb(skb);
1422
                        netif_wake_queue(dev);
1423
                        return -EBUSY;
1424
                }
1425
                skb_reserve(new_skb, 8);
1426
                skb_put(new_skb, len);
1427
                skb_copy_from_linear_data(skb, new_skb->data, len);
1428
                dev_kfree_skb(skb);
1429
                skb = new_skb;
1430
        }
1431
 
1432
        ifield = (u32 *)skb_push(skb, 8);
1433
 
1434
        ifield[0] = 0;
1435
        ifield[1] = hcb->ifield;
1436
 
1437
        /*
1438
         * We don't need the lock before we are actually going to start
1439
         * fiddling with the control blocks.
1440
         */
1441
        spin_lock_irqsave(&rrpriv->lock, flags);
1442
 
1443
        txctrl = &rrpriv->info->tx_ctrl;
1444
 
1445
        index = txctrl->pi;
1446
 
1447
        rrpriv->tx_skbuff[index] = skb;
1448
        set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1449
                rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1450
        rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1451
        rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1452
        txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1453
        wmb();
1454
        writel(txctrl->pi, &regs->TxPi);
1455
 
1456
        if (txctrl->pi == rrpriv->dirty_tx){
1457
                rrpriv->tx_full = 1;
1458
                netif_stop_queue(dev);
1459
        }
1460
 
1461
        spin_unlock_irqrestore(&rrpriv->lock, flags);
1462
 
1463
        dev->trans_start = jiffies;
1464
        return 0;
1465
}
1466
 
1467
 
1468
/*
1469
 * Read the firmware out of the EEPROM and put it into the SRAM
1470
 * (or from user space - later)
1471
 *
1472
 * This operation requires the NIC to be halted and is performed with
1473
 * interrupts disabled and with the spinlock hold.
1474
 */
1475
static int rr_load_firmware(struct net_device *dev)
1476
{
1477
        struct rr_private *rrpriv;
1478
        struct rr_regs __iomem *regs;
1479
        size_t eptr, segptr;
1480
        int i, j;
1481
        u32 localctrl, sptr, len, tmp;
1482
        u32 p2len, p2size, nr_seg, revision, io, sram_size;
1483
 
1484
        rrpriv = netdev_priv(dev);
1485
        regs = rrpriv->regs;
1486
 
1487
        if (dev->flags & IFF_UP)
1488
                return -EBUSY;
1489
 
1490
        if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1491
                printk("%s: Trying to load firmware to a running NIC.\n",
1492
                       dev->name);
1493
                return -EBUSY;
1494
        }
1495
 
1496
        localctrl = readl(&regs->LocalCtrl);
1497
        writel(0, &regs->LocalCtrl);
1498
 
1499
        writel(0, &regs->EvtPrd);
1500
        writel(0, &regs->RxPrd);
1501
        writel(0, &regs->TxPrd);
1502
 
1503
        /*
1504
         * First wipe the entire SRAM, otherwise we might run into all
1505
         * kinds of trouble ... sigh, this took almost all afternoon
1506
         * to track down ;-(
1507
         */
1508
        io = readl(&regs->ExtIo);
1509
        writel(0, &regs->ExtIo);
1510
        sram_size = rr_read_eeprom_word(rrpriv, 8);
1511
 
1512
        for (i = 200; i < sram_size / 4; i++){
1513
                writel(i * 4, &regs->WinBase);
1514
                mb();
1515
                writel(0, &regs->WinData);
1516
                mb();
1517
        }
1518
        writel(io, &regs->ExtIo);
1519
        mb();
1520
 
1521
        eptr = rr_read_eeprom_word(rrpriv,
1522
                       offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1523
        eptr = ((eptr & 0x1fffff) >> 3);
1524
 
1525
        p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1526
        p2len = (p2len << 2);
1527
        p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1528
        p2size = ((p2size & 0x1fffff) >> 3);
1529
 
1530
        if ((eptr < p2size) || (eptr > (p2size + p2len))){
1531
                printk("%s: eptr is invalid\n", dev->name);
1532
                goto out;
1533
        }
1534
 
1535
        revision = rr_read_eeprom_word(rrpriv,
1536
                        offsetof(struct eeprom, manf.HeaderFmt));
1537
 
1538
        if (revision != 1){
1539
                printk("%s: invalid firmware format (%i)\n",
1540
                       dev->name, revision);
1541
                goto out;
1542
        }
1543
 
1544
        nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1545
        eptr +=4;
1546
#if (DEBUG > 1)
1547
        printk("%s: nr_seg %i\n", dev->name, nr_seg);
1548
#endif
1549
 
1550
        for (i = 0; i < nr_seg; i++){
1551
                sptr = rr_read_eeprom_word(rrpriv, eptr);
1552
                eptr += 4;
1553
                len = rr_read_eeprom_word(rrpriv, eptr);
1554
                eptr += 4;
1555
                segptr = rr_read_eeprom_word(rrpriv, eptr);
1556
                segptr = ((segptr & 0x1fffff) >> 3);
1557
                eptr += 4;
1558
#if (DEBUG > 1)
1559
                printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1560
                       dev->name, i, sptr, len, segptr);
1561
#endif
1562
                for (j = 0; j < len; j++){
1563
                        tmp = rr_read_eeprom_word(rrpriv, segptr);
1564
                        writel(sptr, &regs->WinBase);
1565
                        mb();
1566
                        writel(tmp, &regs->WinData);
1567
                        mb();
1568
                        segptr += 4;
1569
                        sptr += 4;
1570
                }
1571
        }
1572
 
1573
out:
1574
        writel(localctrl, &regs->LocalCtrl);
1575
        mb();
1576
        return 0;
1577
}
1578
 
1579
 
1580
static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1581
{
1582
        struct rr_private *rrpriv;
1583
        unsigned char *image, *oldimage;
1584
        unsigned long flags;
1585
        unsigned int i;
1586
        int error = -EOPNOTSUPP;
1587
 
1588
        rrpriv = netdev_priv(dev);
1589
 
1590
        switch(cmd){
1591
        case SIOCRRGFW:
1592
                if (!capable(CAP_SYS_RAWIO)){
1593
                        return -EPERM;
1594
                }
1595
 
1596
                image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1597
                if (!image){
1598
                        printk(KERN_ERR "%s: Unable to allocate memory "
1599
                               "for EEPROM image\n", dev->name);
1600
                        return -ENOMEM;
1601
                }
1602
 
1603
 
1604
                if (rrpriv->fw_running){
1605
                        printk("%s: Firmware already running\n", dev->name);
1606
                        error = -EPERM;
1607
                        goto gf_out;
1608
                }
1609
 
1610
                spin_lock_irqsave(&rrpriv->lock, flags);
1611
                i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1612
                spin_unlock_irqrestore(&rrpriv->lock, flags);
1613
                if (i != EEPROM_BYTES){
1614
                        printk(KERN_ERR "%s: Error reading EEPROM\n",
1615
                               dev->name);
1616
                        error = -EFAULT;
1617
                        goto gf_out;
1618
                }
1619
                error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1620
                if (error)
1621
                        error = -EFAULT;
1622
        gf_out:
1623
                kfree(image);
1624
                return error;
1625
 
1626
        case SIOCRRPFW:
1627
                if (!capable(CAP_SYS_RAWIO)){
1628
                        return -EPERM;
1629
                }
1630
 
1631
                image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1632
                oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1633
                if (!image || !oldimage) {
1634
                        printk(KERN_ERR "%s: Unable to allocate memory "
1635
                               "for EEPROM image\n", dev->name);
1636
                        error = -ENOMEM;
1637
                        goto wf_out;
1638
                }
1639
 
1640
                error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
1641
                if (error) {
1642
                        error = -EFAULT;
1643
                        goto wf_out;
1644
                }
1645
 
1646
                if (rrpriv->fw_running){
1647
                        printk("%s: Firmware already running\n", dev->name);
1648
                        error = -EPERM;
1649
                        goto wf_out;
1650
                }
1651
 
1652
                printk("%s: Updating EEPROM firmware\n", dev->name);
1653
 
1654
                spin_lock_irqsave(&rrpriv->lock, flags);
1655
                error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1656
                if (error)
1657
                        printk(KERN_ERR "%s: Error writing EEPROM\n",
1658
                               dev->name);
1659
 
1660
                i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1661
                spin_unlock_irqrestore(&rrpriv->lock, flags);
1662
 
1663
                if (i != EEPROM_BYTES)
1664
                        printk(KERN_ERR "%s: Error reading back EEPROM "
1665
                               "image\n", dev->name);
1666
 
1667
                error = memcmp(image, oldimage, EEPROM_BYTES);
1668
                if (error){
1669
                        printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1670
                               dev->name);
1671
                        error = -EFAULT;
1672
                }
1673
        wf_out:
1674
                kfree(oldimage);
1675
                kfree(image);
1676
                return error;
1677
 
1678
        case SIOCRRID:
1679
                return put_user(0x52523032, (int __user *)rq->ifr_data);
1680
        default:
1681
                return error;
1682
        }
1683
}
1684
 
1685
static struct pci_device_id rr_pci_tbl[] = {
1686
        { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1687
                PCI_ANY_ID, PCI_ANY_ID, },
1688
        { 0,}
1689
};
1690
MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1691
 
1692
static struct pci_driver rr_driver = {
1693
        .name           = "rrunner",
1694
        .id_table       = rr_pci_tbl,
1695
        .probe          = rr_init_one,
1696
        .remove         = __devexit_p(rr_remove_one),
1697
};
1698
 
1699
static int __init rr_init_module(void)
1700
{
1701
        return pci_register_driver(&rr_driver);
1702
}
1703
 
1704
static void __exit rr_cleanup_module(void)
1705
{
1706
        pci_unregister_driver(&rr_driver);
1707
}
1708
 
1709
module_init(rr_init_module);
1710
module_exit(rr_cleanup_module);
1711
 
1712
/*
1713
 * Local variables:
1714
 * compile-command: "gcc -D__KERNEL__ -I../../include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -DMODULE -DMODVERSIONS -include ../../include/linux/modversions.h -c rrunner.c"
1715
 * End:
1716
 */

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.