OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [drivers/] [net/] [skfp/] [skfddi.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 * File Name:
3
 *   skfddi.c
4
 *
5
 * Copyright Information:
6
 *   Copyright SysKonnect 1998,1999.
7
 *
8
 * This program is free software; you can redistribute it and/or modify
9
 * it under the terms of the GNU General Public License as published by
10
 * the Free Software Foundation; either version 2 of the License, or
11
 * (at your option) any later version.
12
 *
13
 * The information in this file is provided "AS IS" without warranty.
14
 *
15
 * Abstract:
16
 *   A Linux device driver supporting the SysKonnect FDDI PCI controller
17
 *   familie.
18
 *
19
 * Maintainers:
20
 *   CG    Christoph Goos (cgoos@syskonnect.de)
21
 *
22
 * Contributors:
23
 *   DM    David S. Miller
24
 *
25
 * Address all question to:
26
 *   linux@syskonnect.de
27
 *
28
 * The technical manual for the adapters is available from SysKonnect's
29
 * web pages: www.syskonnect.com
30
 * Goto "Support" and search Knowledge Base for "manual".
31
 *
32
 * Driver Architecture:
33
 *   The driver architecture is based on the DEC FDDI driver by
34
 *   Lawrence V. Stefani and several ethernet drivers.
35
 *   I also used an existing Windows NT miniport driver.
36
 *   All hardware dependent fuctions are handled by the SysKonnect
37
 *   Hardware Module.
38
 *   The only headerfiles that are directly related to this source
39
 *   are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h.
40
 *   The others belong to the SysKonnect FDDI Hardware Module and
41
 *   should better not be changed.
42
 *
43
 * Modification History:
44
 *              Date            Name    Description
45
 *              02-Mar-98       CG      Created.
46
 *
47
 *              10-Mar-99       CG      Support for 2.2.x added.
48
 *              25-Mar-99       CG      Corrected IRQ routing for SMP (APIC)
49
 *              26-Oct-99       CG      Fixed compilation error on 2.2.13
50
 *              12-Nov-99       CG      Source code release
51
 *              22-Nov-99       CG      Included in kernel source.
52
 *              07-May-00       DM      64 bit fixes, new dma interface
53
 *              31-Jul-03       DB      Audit copy_*_user in skfp_ioctl
54
 *                                        Daniele Bellucci <bellucda@tiscali.it>
55
 *              03-Dec-03       SH      Convert to PCI device model
56
 *
57
 * Compilation options (-Dxxx):
58
 *              DRIVERDEBUG     print lots of messages to log file
59
 *              DUMPPACKETS     print received/transmitted packets to logfile
60
 *
61
 * Tested cpu architectures:
62
 *      - i386
63
 *      - sparc64
64
 */
65
 
66
/* Version information string - should be updated prior to */
67
/* each new release!!! */
68
#define VERSION         "2.07"
69
 
70
static const char * const boot_msg =
71
        "SysKonnect FDDI PCI Adapter driver v" VERSION " for\n"
72
        "  SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)";
73
 
74
/* Include files */
75
 
76
#include <linux/module.h>
77
#include <linux/kernel.h>
78
#include <linux/errno.h>
79
#include <linux/ioport.h>
80
#include <linux/slab.h>
81
#include <linux/interrupt.h>
82
#include <linux/pci.h>
83
#include <linux/netdevice.h>
84
#include <linux/fddidevice.h>
85
#include <linux/skbuff.h>
86
#include <linux/bitops.h>
87
 
88
#include <asm/byteorder.h>
89
#include <asm/io.h>
90
#include <asm/uaccess.h>
91
 
92
#include        "h/types.h"
93
#undef ADDR                     // undo Linux definition
94
#include        "h/skfbi.h"
95
#include        "h/fddi.h"
96
#include        "h/smc.h"
97
#include        "h/smtstate.h"
98
 
99
 
100
// Define module-wide (static) routines
101
static int skfp_driver_init(struct net_device *dev);
102
static int skfp_open(struct net_device *dev);
103
static int skfp_close(struct net_device *dev);
104
static irqreturn_t skfp_interrupt(int irq, void *dev_id);
105
static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev);
106
static void skfp_ctl_set_multicast_list(struct net_device *dev);
107
static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev);
108
static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr);
109
static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
110
static int skfp_send_pkt(struct sk_buff *skb, struct net_device *dev);
111
static void send_queued_packets(struct s_smc *smc);
112
static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr);
113
static void ResetAdapter(struct s_smc *smc);
114
 
115
 
116
// Functions needed by the hardware module
117
void *mac_drv_get_space(struct s_smc *smc, u_int size);
118
void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size);
119
unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt);
120
unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag);
121
void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr,
122
                  int flag);
123
void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd);
124
void llc_restart_tx(struct s_smc *smc);
125
void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
126
                         int frag_count, int len);
127
void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
128
                         int frag_count);
129
void mac_drv_fill_rxd(struct s_smc *smc);
130
void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
131
                       int frag_count);
132
int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead,
133
                    int la_len);
134
void dump_data(unsigned char *Data, int length);
135
 
136
// External functions from the hardware module
137
extern u_int mac_drv_check_space(void);
138
extern void read_address(struct s_smc *smc, u_char * mac_addr);
139
extern void card_stop(struct s_smc *smc);
140
extern int mac_drv_init(struct s_smc *smc);
141
extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys,
142
                        int len, int frame_status);
143
extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count,
144
                       int frame_len, int frame_status);
145
extern int init_smt(struct s_smc *smc, u_char * mac_addr);
146
extern void fddi_isr(struct s_smc *smc);
147
extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys,
148
                        int len, int frame_status);
149
extern void mac_drv_rx_mode(struct s_smc *smc, int mode);
150
extern void mac_drv_clear_rx_queue(struct s_smc *smc);
151
extern void enable_tx_irq(struct s_smc *smc, u_short queue);
152
 
153
static struct pci_device_id skfddi_pci_tbl[] = {
154
        { PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP, PCI_ANY_ID, PCI_ANY_ID, },
155
        { }                     /* Terminating entry */
156
};
157
MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl);
158
MODULE_LICENSE("GPL");
159
MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
160
 
161
// Define module-wide (static) variables
162
 
163
static int num_boards;  /* total number of adapters configured */
164
 
165
#ifdef DRIVERDEBUG
166
#define PRINTK(s, args...) printk(s, ## args)
167
#else
168
#define PRINTK(s, args...)
169
#endif                          // DRIVERDEBUG
170
 
171
/*
172
 * =================
173
 * = skfp_init_one =
174
 * =================
175
 *
176
 * Overview:
177
 *   Probes for supported FDDI PCI controllers
178
 *
179
 * Returns:
180
 *   Condition code
181
 *
182
 * Arguments:
183
 *   pdev - pointer to PCI device information
184
 *
185
 * Functional Description:
186
 *   This is now called by PCI driver registration process
187
 *   for each board found.
188
 *
189
 * Return Codes:
190
 *   0           - This device (fddi0, fddi1, etc) configured successfully
191
 *   -ENODEV - No devices present, or no SysKonnect FDDI PCI device
192
 *                         present for this device name
193
 *
194
 *
195
 * Side Effects:
196
 *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
197
 *   initialized and the board resources are read and stored in
198
 *   the device structure.
199
 */
200
static int skfp_init_one(struct pci_dev *pdev,
201
                                const struct pci_device_id *ent)
202
{
203
        struct net_device *dev;
204
        struct s_smc *smc;      /* board pointer */
205
        void __iomem *mem;
206
        int err;
207
 
208
        PRINTK(KERN_INFO "entering skfp_init_one\n");
209
 
210
        if (num_boards == 0)
211
                printk("%s\n", boot_msg);
212
 
213
        err = pci_enable_device(pdev);
214
        if (err)
215
                return err;
216
 
217
        err = pci_request_regions(pdev, "skfddi");
218
        if (err)
219
                goto err_out1;
220
 
221
        pci_set_master(pdev);
222
 
223
#ifdef MEM_MAPPED_IO
224
        if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
225
                printk(KERN_ERR "skfp: region is not an MMIO resource\n");
226
                err = -EIO;
227
                goto err_out2;
228
        }
229
 
230
        mem = ioremap(pci_resource_start(pdev, 0), 0x4000);
231
#else
232
        if (!(pci_resource_flags(pdev, 1) & IO_RESOURCE_IO)) {
233
                printk(KERN_ERR "skfp: region is not PIO resource\n");
234
                err = -EIO;
235
                goto err_out2;
236
        }
237
 
238
        mem = ioport_map(pci_resource_start(pdev, 1), FP_IO_LEN);
239
#endif
240
        if (!mem) {
241
                printk(KERN_ERR "skfp:  Unable to map register, "
242
                                "FDDI adapter will be disabled.\n");
243
                err = -EIO;
244
                goto err_out2;
245
        }
246
 
247
        dev = alloc_fddidev(sizeof(struct s_smc));
248
        if (!dev) {
249
                printk(KERN_ERR "skfp: Unable to allocate fddi device, "
250
                                "FDDI adapter will be disabled.\n");
251
                err = -ENOMEM;
252
                goto err_out3;
253
        }
254
 
255
        dev->irq = pdev->irq;
256
        dev->get_stats = &skfp_ctl_get_stats;
257
        dev->open = &skfp_open;
258
        dev->stop = &skfp_close;
259
        dev->hard_start_xmit = &skfp_send_pkt;
260
        dev->set_multicast_list = &skfp_ctl_set_multicast_list;
261
        dev->set_mac_address = &skfp_ctl_set_mac_address;
262
        dev->do_ioctl = &skfp_ioctl;
263
 
264
        SET_NETDEV_DEV(dev, &pdev->dev);
265
 
266
        /* Initialize board structure with bus-specific info */
267
        smc = netdev_priv(dev);
268
        smc->os.dev = dev;
269
        smc->os.bus_type = SK_BUS_TYPE_PCI;
270
        smc->os.pdev = *pdev;
271
        smc->os.QueueSkb = MAX_TX_QUEUE_LEN;
272
        smc->os.MaxFrameSize = MAX_FRAME_SIZE;
273
        smc->os.dev = dev;
274
        smc->hw.slot = -1;
275
        smc->hw.iop = mem;
276
        smc->os.ResetRequested = FALSE;
277
        skb_queue_head_init(&smc->os.SendSkbQueue);
278
 
279
        dev->base_addr = (unsigned long)mem;
280
 
281
        err = skfp_driver_init(dev);
282
        if (err)
283
                goto err_out4;
284
 
285
        err = register_netdev(dev);
286
        if (err)
287
                goto err_out5;
288
 
289
        ++num_boards;
290
        pci_set_drvdata(pdev, dev);
291
 
292
        if ((pdev->subsystem_device & 0xff00) == 0x5500 ||
293
            (pdev->subsystem_device & 0xff00) == 0x5800)
294
                printk("%s: SysKonnect FDDI PCI adapter"
295
                       " found (SK-%04X)\n", dev->name,
296
                       pdev->subsystem_device);
297
        else
298
                printk("%s: FDDI PCI adapter found\n", dev->name);
299
 
300
        return 0;
301
err_out5:
302
        if (smc->os.SharedMemAddr)
303
                pci_free_consistent(pdev, smc->os.SharedMemSize,
304
                                    smc->os.SharedMemAddr,
305
                                    smc->os.SharedMemDMA);
306
        pci_free_consistent(pdev, MAX_FRAME_SIZE,
307
                            smc->os.LocalRxBuffer, smc->os.LocalRxBufferDMA);
308
err_out4:
309
        free_netdev(dev);
310
err_out3:
311
#ifdef MEM_MAPPED_IO
312
        iounmap(mem);
313
#else
314
        ioport_unmap(mem);
315
#endif
316
err_out2:
317
        pci_release_regions(pdev);
318
err_out1:
319
        pci_disable_device(pdev);
320
        return err;
321
}
322
 
323
/*
324
 * Called for each adapter board from pci_unregister_driver
325
 */
326
static void __devexit skfp_remove_one(struct pci_dev *pdev)
327
{
328
        struct net_device *p = pci_get_drvdata(pdev);
329
        struct s_smc *lp = netdev_priv(p);
330
 
331
        unregister_netdev(p);
332
 
333
        if (lp->os.SharedMemAddr) {
334
                pci_free_consistent(&lp->os.pdev,
335
                                    lp->os.SharedMemSize,
336
                                    lp->os.SharedMemAddr,
337
                                    lp->os.SharedMemDMA);
338
                lp->os.SharedMemAddr = NULL;
339
        }
340
        if (lp->os.LocalRxBuffer) {
341
                pci_free_consistent(&lp->os.pdev,
342
                                    MAX_FRAME_SIZE,
343
                                    lp->os.LocalRxBuffer,
344
                                    lp->os.LocalRxBufferDMA);
345
                lp->os.LocalRxBuffer = NULL;
346
        }
347
#ifdef MEM_MAPPED_IO
348
        iounmap(lp->hw.iop);
349
#else
350
        ioport_unmap(lp->hw.iop);
351
#endif
352
        pci_release_regions(pdev);
353
        free_netdev(p);
354
 
355
        pci_disable_device(pdev);
356
        pci_set_drvdata(pdev, NULL);
357
}
358
 
359
/*
360
 * ====================
361
 * = skfp_driver_init =
362
 * ====================
363
 *
364
 * Overview:
365
 *   Initializes remaining adapter board structure information
366
 *   and makes sure adapter is in a safe state prior to skfp_open().
367
 *
368
 * Returns:
369
 *   Condition code
370
 *
371
 * Arguments:
372
 *   dev - pointer to device information
373
 *
374
 * Functional Description:
375
 *   This function allocates additional resources such as the host memory
376
 *   blocks needed by the adapter.
377
 *   The adapter is also reset. The OS must call skfp_open() to open
378
 *   the adapter and bring it on-line.
379
 *
380
 * Return Codes:
381
 *    0 - initialization succeeded
382
 *   -1 - initialization failed
383
 */
384
static  int skfp_driver_init(struct net_device *dev)
385
{
386
        struct s_smc *smc = netdev_priv(dev);
387
        skfddi_priv *bp = &smc->os;
388
        int err = -EIO;
389
 
390
        PRINTK(KERN_INFO "entering skfp_driver_init\n");
391
 
392
        // set the io address in private structures
393
        bp->base_addr = dev->base_addr;
394
 
395
        // Get the interrupt level from the PCI Configuration Table
396
        smc->hw.irq = dev->irq;
397
 
398
        spin_lock_init(&bp->DriverLock);
399
 
400
        // Allocate invalid frame
401
        bp->LocalRxBuffer = pci_alloc_consistent(&bp->pdev, MAX_FRAME_SIZE, &bp->LocalRxBufferDMA);
402
        if (!bp->LocalRxBuffer) {
403
                printk("could not allocate mem for ");
404
                printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE);
405
                goto fail;
406
        }
407
 
408
        // Determine the required size of the 'shared' memory area.
409
        bp->SharedMemSize = mac_drv_check_space();
410
        PRINTK(KERN_INFO "Memory for HWM: %ld\n", bp->SharedMemSize);
411
        if (bp->SharedMemSize > 0) {
412
                bp->SharedMemSize += 16;        // for descriptor alignment
413
 
414
                bp->SharedMemAddr = pci_alloc_consistent(&bp->pdev,
415
                                                         bp->SharedMemSize,
416
                                                         &bp->SharedMemDMA);
417
                if (!bp->SharedMemSize) {
418
                        printk("could not allocate mem for ");
419
                        printk("hardware module: %ld byte\n",
420
                               bp->SharedMemSize);
421
                        goto fail;
422
                }
423
                bp->SharedMemHeap = 0;   // Nothing used yet.
424
 
425
        } else {
426
                bp->SharedMemAddr = NULL;
427
                bp->SharedMemHeap = 0;
428
        }                       // SharedMemSize > 0
429
 
430
        memset(bp->SharedMemAddr, 0, bp->SharedMemSize);
431
 
432
        card_stop(smc);         // Reset adapter.
433
 
434
        PRINTK(KERN_INFO "mac_drv_init()..\n");
435
        if (mac_drv_init(smc) != 0) {
436
                PRINTK(KERN_INFO "mac_drv_init() failed.\n");
437
                goto fail;
438
        }
439
        read_address(smc, NULL);
440
        PRINTK(KERN_INFO "HW-Addr: %02x %02x %02x %02x %02x %02x\n",
441
               smc->hw.fddi_canon_addr.a[0],
442
               smc->hw.fddi_canon_addr.a[1],
443
               smc->hw.fddi_canon_addr.a[2],
444
               smc->hw.fddi_canon_addr.a[3],
445
               smc->hw.fddi_canon_addr.a[4],
446
               smc->hw.fddi_canon_addr.a[5]);
447
        memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, 6);
448
 
449
        smt_reset_defaults(smc, 0);
450
 
451
        return (0);
452
 
453
fail:
454
        if (bp->SharedMemAddr) {
455
                pci_free_consistent(&bp->pdev,
456
                                    bp->SharedMemSize,
457
                                    bp->SharedMemAddr,
458
                                    bp->SharedMemDMA);
459
                bp->SharedMemAddr = NULL;
460
        }
461
        if (bp->LocalRxBuffer) {
462
                pci_free_consistent(&bp->pdev, MAX_FRAME_SIZE,
463
                                    bp->LocalRxBuffer, bp->LocalRxBufferDMA);
464
                bp->LocalRxBuffer = NULL;
465
        }
466
        return err;
467
}                               // skfp_driver_init
468
 
469
 
470
/*
471
 * =============
472
 * = skfp_open =
473
 * =============
474
 *
475
 * Overview:
476
 *   Opens the adapter
477
 *
478
 * Returns:
479
 *   Condition code
480
 *
481
 * Arguments:
482
 *   dev - pointer to device information
483
 *
484
 * Functional Description:
485
 *   This function brings the adapter to an operational state.
486
 *
487
 * Return Codes:
488
 *   0           - Adapter was successfully opened
489
 *   -EAGAIN - Could not register IRQ
490
 */
491
static int skfp_open(struct net_device *dev)
492
{
493
        struct s_smc *smc = netdev_priv(dev);
494
        int err;
495
 
496
        PRINTK(KERN_INFO "entering skfp_open\n");
497
        /* Register IRQ - support shared interrupts by passing device ptr */
498
        err = request_irq(dev->irq, (void *) skfp_interrupt, IRQF_SHARED,
499
                          dev->name, dev);
500
        if (err)
501
                return err;
502
 
503
        /*
504
         * Set current address to factory MAC address
505
         *
506
         * Note: We've already done this step in skfp_driver_init.
507
         *       However, it's possible that a user has set a node
508
         *               address override, then closed and reopened the
509
         *               adapter.  Unless we reset the device address field
510
         *               now, we'll continue to use the existing modified
511
         *               address.
512
         */
513
        read_address(smc, NULL);
514
        memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, 6);
515
 
516
        init_smt(smc, NULL);
517
        smt_online(smc, 1);
518
        STI_FBI();
519
 
520
        /* Clear local multicast address tables */
521
        mac_clear_multicast(smc);
522
 
523
        /* Disable promiscuous filter settings */
524
        mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
525
 
526
        netif_start_queue(dev);
527
        return (0);
528
}                               // skfp_open
529
 
530
 
531
/*
532
 * ==============
533
 * = skfp_close =
534
 * ==============
535
 *
536
 * Overview:
537
 *   Closes the device/module.
538
 *
539
 * Returns:
540
 *   Condition code
541
 *
542
 * Arguments:
543
 *   dev - pointer to device information
544
 *
545
 * Functional Description:
546
 *   This routine closes the adapter and brings it to a safe state.
547
 *   The interrupt service routine is deregistered with the OS.
548
 *   The adapter can be opened again with another call to skfp_open().
549
 *
550
 * Return Codes:
551
 *   Always return 0.
552
 *
553
 * Assumptions:
554
 *   No further requests for this adapter are made after this routine is
555
 *   called.  skfp_open() can be called to reset and reinitialize the
556
 *   adapter.
557
 */
558
static int skfp_close(struct net_device *dev)
559
{
560
        struct s_smc *smc = netdev_priv(dev);
561
        skfddi_priv *bp = &smc->os;
562
 
563
        CLI_FBI();
564
        smt_reset_defaults(smc, 1);
565
        card_stop(smc);
566
        mac_drv_clear_tx_queue(smc);
567
        mac_drv_clear_rx_queue(smc);
568
 
569
        netif_stop_queue(dev);
570
        /* Deregister (free) IRQ */
571
        free_irq(dev->irq, dev);
572
 
573
        skb_queue_purge(&bp->SendSkbQueue);
574
        bp->QueueSkb = MAX_TX_QUEUE_LEN;
575
 
576
        return (0);
577
}                               // skfp_close
578
 
579
 
580
/*
581
 * ==================
582
 * = skfp_interrupt =
583
 * ==================
584
 *
585
 * Overview:
586
 *   Interrupt processing routine
587
 *
588
 * Returns:
589
 *   None
590
 *
591
 * Arguments:
592
 *   irq        - interrupt vector
593
 *   dev_id     - pointer to device information
594
 *
595
 * Functional Description:
596
 *   This routine calls the interrupt processing routine for this adapter.  It
597
 *   disables and reenables adapter interrupts, as appropriate.  We can support
598
 *   shared interrupts since the incoming dev_id pointer provides our device
599
 *   structure context. All the real work is done in the hardware module.
600
 *
601
 * Return Codes:
602
 *   None
603
 *
604
 * Assumptions:
605
 *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
606
 *   on Intel-based systems) is done by the operating system outside this
607
 *   routine.
608
 *
609
 *       System interrupts are enabled through this call.
610
 *
611
 * Side Effects:
612
 *   Interrupts are disabled, then reenabled at the adapter.
613
 */
614
 
615
irqreturn_t skfp_interrupt(int irq, void *dev_id)
616
{
617
        struct net_device *dev = dev_id;
618
        struct s_smc *smc;      /* private board structure pointer */
619
        skfddi_priv *bp;
620
 
621
        smc = netdev_priv(dev);
622
        bp = &smc->os;
623
 
624
        // IRQs enabled or disabled ?
625
        if (inpd(ADDR(B0_IMSK)) == 0) {
626
                // IRQs are disabled: must be shared interrupt
627
                return IRQ_NONE;
628
        }
629
        // Note: At this point, IRQs are enabled.
630
        if ((inpd(ISR_A) & smc->hw.is_imask) == 0) {     // IRQ?
631
                // Adapter did not issue an IRQ: must be shared interrupt
632
                return IRQ_NONE;
633
        }
634
        CLI_FBI();              // Disable IRQs from our adapter.
635
        spin_lock(&bp->DriverLock);
636
 
637
        // Call interrupt handler in hardware module (HWM).
638
        fddi_isr(smc);
639
 
640
        if (smc->os.ResetRequested) {
641
                ResetAdapter(smc);
642
                smc->os.ResetRequested = FALSE;
643
        }
644
        spin_unlock(&bp->DriverLock);
645
        STI_FBI();              // Enable IRQs from our adapter.
646
 
647
        return IRQ_HANDLED;
648
}                               // skfp_interrupt
649
 
650
 
651
/*
652
 * ======================
653
 * = skfp_ctl_get_stats =
654
 * ======================
655
 *
656
 * Overview:
657
 *   Get statistics for FDDI adapter
658
 *
659
 * Returns:
660
 *   Pointer to FDDI statistics structure
661
 *
662
 * Arguments:
663
 *   dev - pointer to device information
664
 *
665
 * Functional Description:
666
 *   Gets current MIB objects from adapter, then
667
 *   returns FDDI statistics structure as defined
668
 *   in if_fddi.h.
669
 *
670
 *   Note: Since the FDDI statistics structure is
671
 *   still new and the device structure doesn't
672
 *   have an FDDI-specific get statistics handler,
673
 *   we'll return the FDDI statistics structure as
674
 *   a pointer to an Ethernet statistics structure.
675
 *   That way, at least the first part of the statistics
676
 *   structure can be decoded properly.
677
 *   We'll have to pay attention to this routine as the
678
 *   device structure becomes more mature and LAN media
679
 *   independent.
680
 *
681
 */
682
struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev)
683
{
684
        struct s_smc *bp = netdev_priv(dev);
685
 
686
        /* Fill the bp->stats structure with driver-maintained counters */
687
 
688
        bp->os.MacStat.port_bs_flag[0] = 0x1234;
689
        bp->os.MacStat.port_bs_flag[1] = 0x5678;
690
// goos: need to fill out fddi statistic
691
#if 0
692
        /* Get FDDI SMT MIB objects */
693
 
694
/* Fill the bp->stats structure with the SMT MIB object values */
695
 
696
        memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
697
        bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
698
        bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
699
        bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
700
        memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
701
        bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
702
        bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
703
        bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
704
        bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
705
        bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
706
        bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
707
        bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
708
        bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
709
        bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
710
        bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
711
        bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
712
        bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
713
        bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
714
        bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
715
        bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
716
        bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
717
        bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
718
        bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
719
        bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
720
        bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
721
        bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
722
        bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
723
        bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
724
        bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
725
        memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
726
        memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
727
        memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
728
        memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
729
        bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
730
        bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
731
        bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
732
        memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
733
        bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
734
        bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
735
        bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
736
        bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
737
        bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
738
        bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
739
        bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
740
        bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
741
        bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
742
        bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
743
        bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
744
        bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
745
        bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
746
        bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
747
        bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
748
        bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
749
        memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
750
        bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
751
        bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
752
        bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
753
        bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
754
        bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
755
        bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
756
        bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
757
        bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
758
        bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
759
        bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
760
        memcpy(&bp->stats.port_requested_paths[0 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
761
        memcpy(&bp->stats.port_requested_paths[1 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
762
        bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
763
        bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
764
        bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
765
        bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
766
        bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
767
        bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
768
        bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
769
        bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
770
        bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
771
        bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
772
        bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
773
        bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
774
        bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
775
        bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
776
        bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
777
        bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
778
        bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
779
        bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
780
        bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
781
        bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
782
        bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
783
        bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
784
        bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
785
        bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
786
        bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
787
        bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
788
 
789
 
790
        /* Fill the bp->stats structure with the FDDI counter values */
791
 
792
        bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
793
        bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
794
        bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
795
        bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
796
        bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
797
        bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
798
        bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
799
        bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
800
        bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
801
        bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
802
        bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
803
 
804
#endif
805
        return ((struct net_device_stats *) &bp->os.MacStat);
806
}                               // ctl_get_stat
807
 
808
 
809
/*
810
 * ==============================
811
 * = skfp_ctl_set_multicast_list =
812
 * ==============================
813
 *
814
 * Overview:
815
 *   Enable/Disable LLC frame promiscuous mode reception
816
 *   on the adapter and/or update multicast address table.
817
 *
818
 * Returns:
819
 *   None
820
 *
821
 * Arguments:
822
 *   dev - pointer to device information
823
 *
824
 * Functional Description:
825
 *   This function acquires the driver lock and only calls
826
 *   skfp_ctl_set_multicast_list_wo_lock then.
827
 *   This routine follows a fairly simple algorithm for setting the
828
 *   adapter filters and CAM:
829
 *
830
 *      if IFF_PROMISC flag is set
831
 *              enable promiscuous mode
832
 *      else
833
 *              disable promiscuous mode
834
 *              if number of multicast addresses <= max. multicast number
835
 *                      add mc addresses to adapter table
836
 *              else
837
 *                      enable promiscuous mode
838
 *              update adapter filters
839
 *
840
 * Assumptions:
841
 *   Multicast addresses are presented in canonical (LSB) format.
842
 *
843
 * Side Effects:
844
 *   On-board adapter filters are updated.
845
 */
846
static void skfp_ctl_set_multicast_list(struct net_device *dev)
847
{
848
        struct s_smc *smc = netdev_priv(dev);
849
        skfddi_priv *bp = &smc->os;
850
        unsigned long Flags;
851
 
852
        spin_lock_irqsave(&bp->DriverLock, Flags);
853
        skfp_ctl_set_multicast_list_wo_lock(dev);
854
        spin_unlock_irqrestore(&bp->DriverLock, Flags);
855
        return;
856
}                               // skfp_ctl_set_multicast_list
857
 
858
 
859
 
860
static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev)
861
{
862
        struct s_smc *smc = netdev_priv(dev);
863
        struct dev_mc_list *dmi;        /* ptr to multicast addr entry */
864
        int i;
865
 
866
        /* Enable promiscuous mode, if necessary */
867
        if (dev->flags & IFF_PROMISC) {
868
                mac_drv_rx_mode(smc, RX_ENABLE_PROMISC);
869
                PRINTK(KERN_INFO "PROMISCUOUS MODE ENABLED\n");
870
        }
871
        /* Else, update multicast address table */
872
        else {
873
                mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
874
                PRINTK(KERN_INFO "PROMISCUOUS MODE DISABLED\n");
875
 
876
                // Reset all MC addresses
877
                mac_clear_multicast(smc);
878
                mac_drv_rx_mode(smc, RX_DISABLE_ALLMULTI);
879
 
880
                if (dev->flags & IFF_ALLMULTI) {
881
                        mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
882
                        PRINTK(KERN_INFO "ENABLE ALL MC ADDRESSES\n");
883
                } else if (dev->mc_count > 0) {
884
                        if (dev->mc_count <= FPMAX_MULTICAST) {
885
                                /* use exact filtering */
886
 
887
                                // point to first multicast addr
888
                                dmi = dev->mc_list;
889
 
890
                                for (i = 0; i < dev->mc_count; i++) {
891
                                        mac_add_multicast(smc,
892
                                                          (struct fddi_addr *)dmi->dmi_addr,
893
                                                          1);
894
 
895
                                        PRINTK(KERN_INFO "ENABLE MC ADDRESS:");
896
                                        PRINTK(" %02x %02x %02x ",
897
                                               dmi->dmi_addr[0],
898
                                               dmi->dmi_addr[1],
899
                                               dmi->dmi_addr[2]);
900
                                        PRINTK("%02x %02x %02x\n",
901
                                               dmi->dmi_addr[3],
902
                                               dmi->dmi_addr[4],
903
                                               dmi->dmi_addr[5]);
904
                                        dmi = dmi->next;
905
                                }       // for
906
 
907
                        } else {        // more MC addresses than HW supports
908
 
909
                                mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
910
                                PRINTK(KERN_INFO "ENABLE ALL MC ADDRESSES\n");
911
                        }
912
                } else {        // no MC addresses
913
 
914
                        PRINTK(KERN_INFO "DISABLE ALL MC ADDRESSES\n");
915
                }
916
 
917
                /* Update adapter filters */
918
                mac_update_multicast(smc);
919
        }
920
        return;
921
}                               // skfp_ctl_set_multicast_list_wo_lock
922
 
923
 
924
/*
925
 * ===========================
926
 * = skfp_ctl_set_mac_address =
927
 * ===========================
928
 *
929
 * Overview:
930
 *   set new mac address on adapter and update dev_addr field in device table.
931
 *
932
 * Returns:
933
 *   None
934
 *
935
 * Arguments:
936
 *   dev  - pointer to device information
937
 *   addr - pointer to sockaddr structure containing unicast address to set
938
 *
939
 * Assumptions:
940
 *   The address pointed to by addr->sa_data is a valid unicast
941
 *   address and is presented in canonical (LSB) format.
942
 */
943
static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr)
944
{
945
        struct s_smc *smc = netdev_priv(dev);
946
        struct sockaddr *p_sockaddr = (struct sockaddr *) addr;
947
        skfddi_priv *bp = &smc->os;
948
        unsigned long Flags;
949
 
950
 
951
        memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);
952
        spin_lock_irqsave(&bp->DriverLock, Flags);
953
        ResetAdapter(smc);
954
        spin_unlock_irqrestore(&bp->DriverLock, Flags);
955
 
956
        return (0);              /* always return zero */
957
}                               // skfp_ctl_set_mac_address
958
 
959
 
960
/*
961
 * ==============
962
 * = skfp_ioctl =
963
 * ==============
964
 *
965
 * Overview:
966
 *
967
 * Perform IOCTL call functions here. Some are privileged operations and the
968
 * effective uid is checked in those cases.
969
 *
970
 * Returns:
971
 *   status value
972
 *   0 - success
973
 *   other - failure
974
 *
975
 * Arguments:
976
 *   dev  - pointer to device information
977
 *   rq - pointer to ioctl request structure
978
 *   cmd - ?
979
 *
980
 */
981
 
982
 
983
static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
984
{
985
        struct s_smc *smc = netdev_priv(dev);
986
        skfddi_priv *lp = &smc->os;
987
        struct s_skfp_ioctl ioc;
988
        int status = 0;
989
 
990
        if (copy_from_user(&ioc, rq->ifr_data, sizeof(struct s_skfp_ioctl)))
991
                return -EFAULT;
992
 
993
        switch (ioc.cmd) {
994
        case SKFP_GET_STATS:    /* Get the driver statistics */
995
                ioc.len = sizeof(lp->MacStat);
996
                status = copy_to_user(ioc.data, skfp_ctl_get_stats(dev), ioc.len)
997
                                ? -EFAULT : 0;
998
                break;
999
        case SKFP_CLR_STATS:    /* Zero out the driver statistics */
1000
                if (!capable(CAP_NET_ADMIN)) {
1001
                        memset(&lp->MacStat, 0, sizeof(lp->MacStat));
1002
                } else {
1003
                        status = -EPERM;
1004
                }
1005
                break;
1006
        default:
1007
                printk("ioctl for %s: unknow cmd: %04x\n", dev->name, ioc.cmd);
1008
                status = -EOPNOTSUPP;
1009
 
1010
        }                       // switch
1011
 
1012
        return status;
1013
}                               // skfp_ioctl
1014
 
1015
 
1016
/*
1017
 * =====================
1018
 * = skfp_send_pkt     =
1019
 * =====================
1020
 *
1021
 * Overview:
1022
 *   Queues a packet for transmission and try to transmit it.
1023
 *
1024
 * Returns:
1025
 *   Condition code
1026
 *
1027
 * Arguments:
1028
 *   skb - pointer to sk_buff to queue for transmission
1029
 *   dev - pointer to device information
1030
 *
1031
 * Functional Description:
1032
 *   Here we assume that an incoming skb transmit request
1033
 *   is contained in a single physically contiguous buffer
1034
 *   in which the virtual address of the start of packet
1035
 *   (skb->data) can be converted to a physical address
1036
 *   by using pci_map_single().
1037
 *
1038
 *   We have an internal queue for packets we can not send
1039
 *   immediately. Packets in this queue can be given to the
1040
 *   adapter if transmit buffers are freed.
1041
 *
1042
 *   We can't free the skb until after it's been DMA'd
1043
 *   out by the adapter, so we'll keep it in the driver and
1044
 *   return it in mac_drv_tx_complete.
1045
 *
1046
 * Return Codes:
1047
 *   0 - driver has queued and/or sent packet
1048
 *       1 - caller should requeue the sk_buff for later transmission
1049
 *
1050
 * Assumptions:
1051
 *   The entire packet is stored in one physically
1052
 *   contiguous buffer which is not cached and whose
1053
 *   32-bit physical address can be determined.
1054
 *
1055
 *   It's vital that this routine is NOT reentered for the
1056
 *   same board and that the OS is not in another section of
1057
 *   code (eg. skfp_interrupt) for the same board on a
1058
 *   different thread.
1059
 *
1060
 * Side Effects:
1061
 *   None
1062
 */
1063
static int skfp_send_pkt(struct sk_buff *skb, struct net_device *dev)
1064
{
1065
        struct s_smc *smc = netdev_priv(dev);
1066
        skfddi_priv *bp = &smc->os;
1067
 
1068
        PRINTK(KERN_INFO "skfp_send_pkt\n");
1069
 
1070
        /*
1071
         * Verify that incoming transmit request is OK
1072
         *
1073
         * Note: The packet size check is consistent with other
1074
         *               Linux device drivers, although the correct packet
1075
         *               size should be verified before calling the
1076
         *               transmit routine.
1077
         */
1078
 
1079
        if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) {
1080
                bp->MacStat.gen.tx_errors++;    /* bump error counter */
1081
                // dequeue packets from xmt queue and send them
1082
                netif_start_queue(dev);
1083
                dev_kfree_skb(skb);
1084
                return (0);      /* return "success" */
1085
        }
1086
        if (bp->QueueSkb == 0) { // return with tbusy set: queue full
1087
 
1088
                netif_stop_queue(dev);
1089
                return 1;
1090
        }
1091
        bp->QueueSkb--;
1092
        skb_queue_tail(&bp->SendSkbQueue, skb);
1093
        send_queued_packets(netdev_priv(dev));
1094
        if (bp->QueueSkb == 0) {
1095
                netif_stop_queue(dev);
1096
        }
1097
        dev->trans_start = jiffies;
1098
        return 0;
1099
 
1100
}                               // skfp_send_pkt
1101
 
1102
 
1103
/*
1104
 * =======================
1105
 * = send_queued_packets =
1106
 * =======================
1107
 *
1108
 * Overview:
1109
 *   Send packets from the driver queue as long as there are some and
1110
 *   transmit resources are available.
1111
 *
1112
 * Returns:
1113
 *   None
1114
 *
1115
 * Arguments:
1116
 *   smc - pointer to smc (adapter) structure
1117
 *
1118
 * Functional Description:
1119
 *   Take a packet from queue if there is any. If not, then we are done.
1120
 *   Check if there are resources to send the packet. If not, requeue it
1121
 *   and exit.
1122
 *   Set packet descriptor flags and give packet to adapter.
1123
 *   Check if any send resources can be freed (we do not use the
1124
 *   transmit complete interrupt).
1125
 */
1126
static void send_queued_packets(struct s_smc *smc)
1127
{
1128
        skfddi_priv *bp = &smc->os;
1129
        struct sk_buff *skb;
1130
        unsigned char fc;
1131
        int queue;
1132
        struct s_smt_fp_txd *txd;       // Current TxD.
1133
        dma_addr_t dma_address;
1134
        unsigned long Flags;
1135
 
1136
        int frame_status;       // HWM tx frame status.
1137
 
1138
        PRINTK(KERN_INFO "send queued packets\n");
1139
        for (;;) {
1140
                // send first buffer from queue
1141
                skb = skb_dequeue(&bp->SendSkbQueue);
1142
 
1143
                if (!skb) {
1144
                        PRINTK(KERN_INFO "queue empty\n");
1145
                        return;
1146
                }               // queue empty !
1147
 
1148
                spin_lock_irqsave(&bp->DriverLock, Flags);
1149
                fc = skb->data[0];
1150
                queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0;
1151
#ifdef ESS
1152
                // Check if the frame may/must be sent as a synchronous frame.
1153
 
1154
                if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) {
1155
                        // It's an LLC frame.
1156
                        if (!smc->ess.sync_bw_available)
1157
                                fc &= ~FC_SYNC_BIT; // No bandwidth available.
1158
 
1159
                        else {  // Bandwidth is available.
1160
 
1161
                                if (smc->mib.fddiESSSynchTxMode) {
1162
                                        // Send as sync. frame.
1163
                                        fc |= FC_SYNC_BIT;
1164
                                }
1165
                        }
1166
                }
1167
#endif                          // ESS
1168
                frame_status = hwm_tx_init(smc, fc, 1, skb->len, queue);
1169
 
1170
                if ((frame_status & (LOC_TX | LAN_TX)) == 0) {
1171
                        // Unable to send the frame.
1172
 
1173
                        if ((frame_status & RING_DOWN) != 0) {
1174
                                // Ring is down.
1175
                                PRINTK("Tx attempt while ring down.\n");
1176
                        } else if ((frame_status & OUT_OF_TXD) != 0) {
1177
                                PRINTK("%s: out of TXDs.\n", bp->dev->name);
1178
                        } else {
1179
                                PRINTK("%s: out of transmit resources",
1180
                                        bp->dev->name);
1181
                        }
1182
 
1183
                        // Note: We will retry the operation as soon as
1184
                        // transmit resources become available.
1185
                        skb_queue_head(&bp->SendSkbQueue, skb);
1186
                        spin_unlock_irqrestore(&bp->DriverLock, Flags);
1187
                        return; // Packet has been queued.
1188
 
1189
                }               // if (unable to send frame)
1190
 
1191
                bp->QueueSkb++; // one packet less in local queue
1192
 
1193
                // source address in packet ?
1194
                CheckSourceAddress(skb->data, smc->hw.fddi_canon_addr.a);
1195
 
1196
                txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue);
1197
 
1198
                dma_address = pci_map_single(&bp->pdev, skb->data,
1199
                                             skb->len, PCI_DMA_TODEVICE);
1200
                if (frame_status & LAN_TX) {
1201
                        txd->txd_os.skb = skb;                  // save skb
1202
                        txd->txd_os.dma_addr = dma_address;     // save dma mapping
1203
                }
1204
                hwm_tx_frag(smc, skb->data, dma_address, skb->len,
1205
                      frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF);
1206
 
1207
                if (!(frame_status & LAN_TX)) {         // local only frame
1208
                        pci_unmap_single(&bp->pdev, dma_address,
1209
                                         skb->len, PCI_DMA_TODEVICE);
1210
                        dev_kfree_skb_irq(skb);
1211
                }
1212
                spin_unlock_irqrestore(&bp->DriverLock, Flags);
1213
        }                       // for
1214
 
1215
        return;                 // never reached
1216
 
1217
}                               // send_queued_packets
1218
 
1219
 
1220
/************************
1221
 *
1222
 * CheckSourceAddress
1223
 *
1224
 * Verify if the source address is set. Insert it if necessary.
1225
 *
1226
 ************************/
1227
void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr)
1228
{
1229
        unsigned char SRBit;
1230
 
1231
        if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit
1232
 
1233
                return;
1234
        if ((unsigned short) frame[1 + 10] != 0)
1235
                return;
1236
        SRBit = frame[1 + 6] & 0x01;
1237
        memcpy(&frame[1 + 6], hw_addr, 6);
1238
        frame[8] |= SRBit;
1239
}                               // CheckSourceAddress
1240
 
1241
 
1242
/************************
1243
 *
1244
 *      ResetAdapter
1245
 *
1246
 *      Reset the adapter and bring it back to operational mode.
1247
 * Args
1248
 *      smc - A pointer to the SMT context struct.
1249
 * Out
1250
 *      Nothing.
1251
 *
1252
 ************************/
1253
static void ResetAdapter(struct s_smc *smc)
1254
{
1255
 
1256
        PRINTK(KERN_INFO "[fddi: ResetAdapter]\n");
1257
 
1258
        // Stop the adapter.
1259
 
1260
        card_stop(smc);         // Stop all activity.
1261
 
1262
        // Clear the transmit and receive descriptor queues.
1263
        mac_drv_clear_tx_queue(smc);
1264
        mac_drv_clear_rx_queue(smc);
1265
 
1266
        // Restart the adapter.
1267
 
1268
        smt_reset_defaults(smc, 1);     // Initialize the SMT module.
1269
 
1270
        init_smt(smc, (smc->os.dev)->dev_addr); // Initialize the hardware.
1271
 
1272
        smt_online(smc, 1);     // Insert into the ring again.
1273
        STI_FBI();
1274
 
1275
        // Restore original receive mode (multicasts, promiscuous, etc.).
1276
        skfp_ctl_set_multicast_list_wo_lock(smc->os.dev);
1277
}                               // ResetAdapter
1278
 
1279
 
1280
//--------------- functions called by hardware module ----------------
1281
 
1282
/************************
1283
 *
1284
 *      llc_restart_tx
1285
 *
1286
 *      The hardware driver calls this routine when the transmit complete
1287
 *      interrupt bits (end of frame) for the synchronous or asynchronous
1288
 *      queue is set.
1289
 *
1290
 * NOTE The hardware driver calls this function also if no packets are queued.
1291
 *      The routine must be able to handle this case.
1292
 * Args
1293
 *      smc - A pointer to the SMT context struct.
1294
 * Out
1295
 *      Nothing.
1296
 *
1297
 ************************/
1298
void llc_restart_tx(struct s_smc *smc)
1299
{
1300
        skfddi_priv *bp = &smc->os;
1301
 
1302
        PRINTK(KERN_INFO "[llc_restart_tx]\n");
1303
 
1304
        // Try to send queued packets
1305
        spin_unlock(&bp->DriverLock);
1306
        send_queued_packets(smc);
1307
        spin_lock(&bp->DriverLock);
1308
        netif_start_queue(bp->dev);// system may send again if it was blocked
1309
 
1310
}                               // llc_restart_tx
1311
 
1312
 
1313
/************************
1314
 *
1315
 *      mac_drv_get_space
1316
 *
1317
 *      The hardware module calls this function to allocate the memory
1318
 *      for the SMT MBufs if the define MB_OUTSIDE_SMC is specified.
1319
 * Args
1320
 *      smc - A pointer to the SMT context struct.
1321
 *
1322
 *      size - Size of memory in bytes to allocate.
1323
 * Out
1324
 *      != 0    A pointer to the virtual address of the allocated memory.
1325
 *      == 0    Allocation error.
1326
 *
1327
 ************************/
1328
void *mac_drv_get_space(struct s_smc *smc, unsigned int size)
1329
{
1330
        void *virt;
1331
 
1332
        PRINTK(KERN_INFO "mac_drv_get_space (%d bytes), ", size);
1333
        virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap);
1334
 
1335
        if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) {
1336
                printk("Unexpected SMT memory size requested: %d\n", size);
1337
                return (NULL);
1338
        }
1339
        smc->os.SharedMemHeap += size;  // Move heap pointer.
1340
 
1341
        PRINTK(KERN_INFO "mac_drv_get_space end\n");
1342
        PRINTK(KERN_INFO "virt addr: %lx\n", (ulong) virt);
1343
        PRINTK(KERN_INFO "bus  addr: %lx\n", (ulong)
1344
               (smc->os.SharedMemDMA +
1345
                ((char *) virt - (char *)smc->os.SharedMemAddr)));
1346
        return (virt);
1347
}                               // mac_drv_get_space
1348
 
1349
 
1350
/************************
1351
 *
1352
 *      mac_drv_get_desc_mem
1353
 *
1354
 *      This function is called by the hardware dependent module.
1355
 *      It allocates the memory for the RxD and TxD descriptors.
1356
 *
1357
 *      This memory must be non-cached, non-movable and non-swappable.
1358
 *      This memory should start at a physical page boundary.
1359
 * Args
1360
 *      smc - A pointer to the SMT context struct.
1361
 *
1362
 *      size - Size of memory in bytes to allocate.
1363
 * Out
1364
 *      != 0    A pointer to the virtual address of the allocated memory.
1365
 *      == 0    Allocation error.
1366
 *
1367
 ************************/
1368
void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size)
1369
{
1370
 
1371
        char *virt;
1372
 
1373
        PRINTK(KERN_INFO "mac_drv_get_desc_mem\n");
1374
 
1375
        // Descriptor memory must be aligned on 16-byte boundary.
1376
 
1377
        virt = mac_drv_get_space(smc, size);
1378
 
1379
        size = (u_int) (16 - (((unsigned long) virt) & 15UL));
1380
        size = size % 16;
1381
 
1382
        PRINTK("Allocate %u bytes alignment gap ", size);
1383
        PRINTK("for descriptor memory.\n");
1384
 
1385
        if (!mac_drv_get_space(smc, size)) {
1386
                printk("fddi: Unable to align descriptor memory.\n");
1387
                return (NULL);
1388
        }
1389
        return (virt + size);
1390
}                               // mac_drv_get_desc_mem
1391
 
1392
 
1393
/************************
1394
 *
1395
 *      mac_drv_virt2phys
1396
 *
1397
 *      Get the physical address of a given virtual address.
1398
 * Args
1399
 *      smc - A pointer to the SMT context struct.
1400
 *
1401
 *      virt - A (virtual) pointer into our 'shared' memory area.
1402
 * Out
1403
 *      Physical address of the given virtual address.
1404
 *
1405
 ************************/
1406
unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt)
1407
{
1408
        return (smc->os.SharedMemDMA +
1409
                ((char *) virt - (char *)smc->os.SharedMemAddr));
1410
}                               // mac_drv_virt2phys
1411
 
1412
 
1413
/************************
1414
 *
1415
 *      dma_master
1416
 *
1417
 *      The HWM calls this function, when the driver leads through a DMA
1418
 *      transfer. If the OS-specific module must prepare the system hardware
1419
 *      for the DMA transfer, it should do it in this function.
1420
 *
1421
 *      The hardware module calls this dma_master if it wants to send an SMT
1422
 *      frame.  This means that the virt address passed in here is part of
1423
 *      the 'shared' memory area.
1424
 * Args
1425
 *      smc - A pointer to the SMT context struct.
1426
 *
1427
 *      virt - The virtual address of the data.
1428
 *
1429
 *      len - The length in bytes of the data.
1430
 *
1431
 *      flag - Indicates the transmit direction and the buffer type:
1432
 *              DMA_RD  (0x01)  system RAM ==> adapter buffer memory
1433
 *              DMA_WR  (0x02)  adapter buffer memory ==> system RAM
1434
 *              SMT_BUF (0x80)  SMT buffer
1435
 *
1436
 *      >> NOTE: SMT_BUF and DMA_RD are always set for PCI. <<
1437
 * Out
1438
 *      Returns the pyhsical address for the DMA transfer.
1439
 *
1440
 ************************/
1441
u_long dma_master(struct s_smc * smc, void *virt, int len, int flag)
1442
{
1443
        return (smc->os.SharedMemDMA +
1444
                ((char *) virt - (char *)smc->os.SharedMemAddr));
1445
}                               // dma_master
1446
 
1447
 
1448
/************************
1449
 *
1450
 *      dma_complete
1451
 *
1452
 *      The hardware module calls this routine when it has completed a DMA
1453
 *      transfer. If the operating system dependent module has set up the DMA
1454
 *      channel via dma_master() (e.g. Windows NT or AIX) it should clean up
1455
 *      the DMA channel.
1456
 * Args
1457
 *      smc - A pointer to the SMT context struct.
1458
 *
1459
 *      descr - A pointer to a TxD or RxD, respectively.
1460
 *
1461
 *      flag - Indicates the DMA transfer direction / SMT buffer:
1462
 *              DMA_RD  (0x01)  system RAM ==> adapter buffer memory
1463
 *              DMA_WR  (0x02)  adapter buffer memory ==> system RAM
1464
 *              SMT_BUF (0x80)  SMT buffer (managed by HWM)
1465
 * Out
1466
 *      Nothing.
1467
 *
1468
 ************************/
1469
void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag)
1470
{
1471
        /* For TX buffers, there are two cases.  If it is an SMT transmit
1472
         * buffer, there is nothing to do since we use consistent memory
1473
         * for the 'shared' memory area.  The other case is for normal
1474
         * transmit packets given to us by the networking stack, and in
1475
         * that case we cleanup the PCI DMA mapping in mac_drv_tx_complete
1476
         * below.
1477
         *
1478
         * For RX buffers, we have to unmap dynamic PCI DMA mappings here
1479
         * because the hardware module is about to potentially look at
1480
         * the contents of the buffer.  If we did not call the PCI DMA
1481
         * unmap first, the hardware module could read inconsistent data.
1482
         */
1483
        if (flag & DMA_WR) {
1484
                skfddi_priv *bp = &smc->os;
1485
                volatile struct s_smt_fp_rxd *r = &descr->r;
1486
 
1487
                /* If SKB is NULL, we used the local buffer. */
1488
                if (r->rxd_os.skb && r->rxd_os.dma_addr) {
1489
                        int MaxFrameSize = bp->MaxFrameSize;
1490
 
1491
                        pci_unmap_single(&bp->pdev, r->rxd_os.dma_addr,
1492
                                         MaxFrameSize, PCI_DMA_FROMDEVICE);
1493
                        r->rxd_os.dma_addr = 0;
1494
                }
1495
        }
1496
}                               // dma_complete
1497
 
1498
 
1499
/************************
1500
 *
1501
 *      mac_drv_tx_complete
1502
 *
1503
 *      Transmit of a packet is complete. Release the tx staging buffer.
1504
 *
1505
 * Args
1506
 *      smc - A pointer to the SMT context struct.
1507
 *
1508
 *      txd - A pointer to the last TxD which is used by the frame.
1509
 * Out
1510
 *      Returns nothing.
1511
 *
1512
 ************************/
1513
void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd)
1514
{
1515
        struct sk_buff *skb;
1516
 
1517
        PRINTK(KERN_INFO "entering mac_drv_tx_complete\n");
1518
        // Check if this TxD points to a skb
1519
 
1520
        if (!(skb = txd->txd_os.skb)) {
1521
                PRINTK("TXD with no skb assigned.\n");
1522
                return;
1523
        }
1524
        txd->txd_os.skb = NULL;
1525
 
1526
        // release the DMA mapping
1527
        pci_unmap_single(&smc->os.pdev, txd->txd_os.dma_addr,
1528
                         skb->len, PCI_DMA_TODEVICE);
1529
        txd->txd_os.dma_addr = 0;
1530
 
1531
        smc->os.MacStat.gen.tx_packets++;       // Count transmitted packets.
1532
        smc->os.MacStat.gen.tx_bytes+=skb->len; // Count bytes
1533
 
1534
        // free the skb
1535
        dev_kfree_skb_irq(skb);
1536
 
1537
        PRINTK(KERN_INFO "leaving mac_drv_tx_complete\n");
1538
}                               // mac_drv_tx_complete
1539
 
1540
 
1541
/************************
1542
 *
1543
 * dump packets to logfile
1544
 *
1545
 ************************/
1546
#ifdef DUMPPACKETS
1547
void dump_data(unsigned char *Data, int length)
1548
{
1549
        int i, j;
1550
        unsigned char s[255], sh[10];
1551
        if (length > 64) {
1552
                length = 64;
1553
        }
1554
        printk(KERN_INFO "---Packet start---\n");
1555
        for (i = 0, j = 0; i < length / 8; i++, j += 8)
1556
                printk(KERN_INFO "%02x %02x %02x %02x %02x %02x %02x %02x\n",
1557
                       Data[j + 0], Data[j + 1], Data[j + 2], Data[j + 3],
1558
                       Data[j + 4], Data[j + 5], Data[j + 6], Data[j + 7]);
1559
        strcpy(s, "");
1560
        for (i = 0; i < length % 8; i++) {
1561
                sprintf(sh, "%02x ", Data[j + i]);
1562
                strcat(s, sh);
1563
        }
1564
        printk(KERN_INFO "%s\n", s);
1565
        printk(KERN_INFO "------------------\n");
1566
}                               // dump_data
1567
#else
1568
#define dump_data(data,len)
1569
#endif                          // DUMPPACKETS
1570
 
1571
/************************
1572
 *
1573
 *      mac_drv_rx_complete
1574
 *
1575
 *      The hardware module calls this function if an LLC frame is received
1576
 *      in a receive buffer. Also the SMT, NSA, and directed beacon frames
1577
 *      from the network will be passed to the LLC layer by this function
1578
 *      if passing is enabled.
1579
 *
1580
 *      mac_drv_rx_complete forwards the frame to the LLC layer if it should
1581
 *      be received. It also fills the RxD ring with new receive buffers if
1582
 *      some can be queued.
1583
 * Args
1584
 *      smc - A pointer to the SMT context struct.
1585
 *
1586
 *      rxd - A pointer to the first RxD which is used by the receive frame.
1587
 *
1588
 *      frag_count - Count of RxDs used by the received frame.
1589
 *
1590
 *      len - Frame length.
1591
 * Out
1592
 *      Nothing.
1593
 *
1594
 ************************/
1595
void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1596
                         int frag_count, int len)
1597
{
1598
        skfddi_priv *bp = &smc->os;
1599
        struct sk_buff *skb;
1600
        unsigned char *virt, *cp;
1601
        unsigned short ri;
1602
        u_int RifLength;
1603
 
1604
        PRINTK(KERN_INFO "entering mac_drv_rx_complete (len=%d)\n", len);
1605
        if (frag_count != 1) {  // This is not allowed to happen.
1606
 
1607
                printk("fddi: Multi-fragment receive!\n");
1608
                goto RequeueRxd;        // Re-use the given RXD(s).
1609
 
1610
        }
1611
        skb = rxd->rxd_os.skb;
1612
        if (!skb) {
1613
                PRINTK(KERN_INFO "No skb in rxd\n");
1614
                smc->os.MacStat.gen.rx_errors++;
1615
                goto RequeueRxd;
1616
        }
1617
        virt = skb->data;
1618
 
1619
        // The DMA mapping was released in dma_complete above.
1620
 
1621
        dump_data(skb->data, len);
1622
 
1623
        /*
1624
         * FDDI Frame format:
1625
         * +-------+-------+-------+------------+--------+------------+
1626
         * | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] |
1627
         * +-------+-------+-------+------------+--------+------------+
1628
         *
1629
         * FC = Frame Control
1630
         * DA = Destination Address
1631
         * SA = Source Address
1632
         * RIF = Routing Information Field
1633
         * LLC = Logical Link Control
1634
         */
1635
 
1636
        // Remove Routing Information Field (RIF), if present.
1637
 
1638
        if ((virt[1 + 6] & FDDI_RII) == 0)
1639
                RifLength = 0;
1640
        else {
1641
                int n;
1642
// goos: RIF removal has still to be tested
1643
                PRINTK(KERN_INFO "RIF found\n");
1644
                // Get RIF length from Routing Control (RC) field.
1645
                cp = virt + FDDI_MAC_HDR_LEN;   // Point behind MAC header.
1646
 
1647
                ri = ntohs(*((unsigned short *) cp));
1648
                RifLength = ri & FDDI_RCF_LEN_MASK;
1649
                if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) {
1650
                        printk("fddi: Invalid RIF.\n");
1651
                        goto RequeueRxd;        // Discard the frame.
1652
 
1653
                }
1654
                virt[1 + 6] &= ~FDDI_RII;       // Clear RII bit.
1655
                // regions overlap
1656
 
1657
                virt = cp + RifLength;
1658
                for (n = FDDI_MAC_HDR_LEN; n; n--)
1659
                        *--virt = *--cp;
1660
                // adjust sbd->data pointer
1661
                skb_pull(skb, RifLength);
1662
                len -= RifLength;
1663
                RifLength = 0;
1664
        }
1665
 
1666
        // Count statistics.
1667
        smc->os.MacStat.gen.rx_packets++;       // Count indicated receive
1668
                                                // packets.
1669
        smc->os.MacStat.gen.rx_bytes+=len;      // Count bytes.
1670
 
1671
        // virt points to header again
1672
        if (virt[1] & 0x01) {   // Check group (multicast) bit.
1673
 
1674
                smc->os.MacStat.gen.multicast++;
1675
        }
1676
 
1677
        // deliver frame to system
1678
        rxd->rxd_os.skb = NULL;
1679
        skb_trim(skb, len);
1680
        skb->protocol = fddi_type_trans(skb, bp->dev);
1681
 
1682
        netif_rx(skb);
1683
        bp->dev->last_rx = jiffies;
1684
 
1685
        HWM_RX_CHECK(smc, RX_LOW_WATERMARK);
1686
        return;
1687
 
1688
      RequeueRxd:
1689
        PRINTK(KERN_INFO "Rx: re-queue RXD.\n");
1690
        mac_drv_requeue_rxd(smc, rxd, frag_count);
1691
        smc->os.MacStat.gen.rx_errors++;        // Count receive packets
1692
                                                // not indicated.
1693
 
1694
}                               // mac_drv_rx_complete
1695
 
1696
 
1697
/************************
1698
 *
1699
 *      mac_drv_requeue_rxd
1700
 *
1701
 *      The hardware module calls this function to request the OS-specific
1702
 *      module to queue the receive buffer(s) represented by the pointer
1703
 *      to the RxD and the frag_count into the receive queue again. This
1704
 *      buffer was filled with an invalid frame or an SMT frame.
1705
 * Args
1706
 *      smc - A pointer to the SMT context struct.
1707
 *
1708
 *      rxd - A pointer to the first RxD which is used by the receive frame.
1709
 *
1710
 *      frag_count - Count of RxDs used by the received frame.
1711
 * Out
1712
 *      Nothing.
1713
 *
1714
 ************************/
1715
void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1716
                         int frag_count)
1717
{
1718
        volatile struct s_smt_fp_rxd *next_rxd;
1719
        volatile struct s_smt_fp_rxd *src_rxd;
1720
        struct sk_buff *skb;
1721
        int MaxFrameSize;
1722
        unsigned char *v_addr;
1723
        dma_addr_t b_addr;
1724
 
1725
        if (frag_count != 1)    // This is not allowed to happen.
1726
 
1727
                printk("fddi: Multi-fragment requeue!\n");
1728
 
1729
        MaxFrameSize = smc->os.MaxFrameSize;
1730
        src_rxd = rxd;
1731
        for (; frag_count > 0; frag_count--) {
1732
                next_rxd = src_rxd->rxd_next;
1733
                rxd = HWM_GET_CURR_RXD(smc);
1734
 
1735
                skb = src_rxd->rxd_os.skb;
1736
                if (skb == NULL) {      // this should not happen
1737
 
1738
                        PRINTK("Requeue with no skb in rxd!\n");
1739
                        skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1740
                        if (skb) {
1741
                                // we got a skb
1742
                                rxd->rxd_os.skb = skb;
1743
                                skb_reserve(skb, 3);
1744
                                skb_put(skb, MaxFrameSize);
1745
                                v_addr = skb->data;
1746
                                b_addr = pci_map_single(&smc->os.pdev,
1747
                                                        v_addr,
1748
                                                        MaxFrameSize,
1749
                                                        PCI_DMA_FROMDEVICE);
1750
                                rxd->rxd_os.dma_addr = b_addr;
1751
                        } else {
1752
                                // no skb available, use local buffer
1753
                                PRINTK("Queueing invalid buffer!\n");
1754
                                rxd->rxd_os.skb = NULL;
1755
                                v_addr = smc->os.LocalRxBuffer;
1756
                                b_addr = smc->os.LocalRxBufferDMA;
1757
                        }
1758
                } else {
1759
                        // we use skb from old rxd
1760
                        rxd->rxd_os.skb = skb;
1761
                        v_addr = skb->data;
1762
                        b_addr = pci_map_single(&smc->os.pdev,
1763
                                                v_addr,
1764
                                                MaxFrameSize,
1765
                                                PCI_DMA_FROMDEVICE);
1766
                        rxd->rxd_os.dma_addr = b_addr;
1767
                }
1768
                hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1769
                            FIRST_FRAG | LAST_FRAG);
1770
 
1771
                src_rxd = next_rxd;
1772
        }
1773
}                               // mac_drv_requeue_rxd
1774
 
1775
 
1776
/************************
1777
 *
1778
 *      mac_drv_fill_rxd
1779
 *
1780
 *      The hardware module calls this function at initialization time
1781
 *      to fill the RxD ring with receive buffers. It is also called by
1782
 *      mac_drv_rx_complete if rx_free is large enough to queue some new
1783
 *      receive buffers into the RxD ring. mac_drv_fill_rxd queues new
1784
 *      receive buffers as long as enough RxDs and receive buffers are
1785
 *      available.
1786
 * Args
1787
 *      smc - A pointer to the SMT context struct.
1788
 * Out
1789
 *      Nothing.
1790
 *
1791
 ************************/
1792
void mac_drv_fill_rxd(struct s_smc *smc)
1793
{
1794
        int MaxFrameSize;
1795
        unsigned char *v_addr;
1796
        unsigned long b_addr;
1797
        struct sk_buff *skb;
1798
        volatile struct s_smt_fp_rxd *rxd;
1799
 
1800
        PRINTK(KERN_INFO "entering mac_drv_fill_rxd\n");
1801
 
1802
        // Walk through the list of free receive buffers, passing receive
1803
        // buffers to the HWM as long as RXDs are available.
1804
 
1805
        MaxFrameSize = smc->os.MaxFrameSize;
1806
        // Check if there is any RXD left.
1807
        while (HWM_GET_RX_FREE(smc) > 0) {
1808
                PRINTK(KERN_INFO ".\n");
1809
 
1810
                rxd = HWM_GET_CURR_RXD(smc);
1811
                skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1812
                if (skb) {
1813
                        // we got a skb
1814
                        skb_reserve(skb, 3);
1815
                        skb_put(skb, MaxFrameSize);
1816
                        v_addr = skb->data;
1817
                        b_addr = pci_map_single(&smc->os.pdev,
1818
                                                v_addr,
1819
                                                MaxFrameSize,
1820
                                                PCI_DMA_FROMDEVICE);
1821
                        rxd->rxd_os.dma_addr = b_addr;
1822
                } else {
1823
                        // no skb available, use local buffer
1824
                        // System has run out of buffer memory, but we want to
1825
                        // keep the receiver running in hope of better times.
1826
                        // Multiple descriptors may point to this local buffer,
1827
                        // so data in it must be considered invalid.
1828
                        PRINTK("Queueing invalid buffer!\n");
1829
                        v_addr = smc->os.LocalRxBuffer;
1830
                        b_addr = smc->os.LocalRxBufferDMA;
1831
                }
1832
 
1833
                rxd->rxd_os.skb = skb;
1834
 
1835
                // Pass receive buffer to HWM.
1836
                hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1837
                            FIRST_FRAG | LAST_FRAG);
1838
        }
1839
        PRINTK(KERN_INFO "leaving mac_drv_fill_rxd\n");
1840
}                               // mac_drv_fill_rxd
1841
 
1842
 
1843
/************************
1844
 *
1845
 *      mac_drv_clear_rxd
1846
 *
1847
 *      The hardware module calls this function to release unused
1848
 *      receive buffers.
1849
 * Args
1850
 *      smc - A pointer to the SMT context struct.
1851
 *
1852
 *      rxd - A pointer to the first RxD which is used by the receive buffer.
1853
 *
1854
 *      frag_count - Count of RxDs used by the receive buffer.
1855
 * Out
1856
 *      Nothing.
1857
 *
1858
 ************************/
1859
void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1860
                       int frag_count)
1861
{
1862
 
1863
        struct sk_buff *skb;
1864
 
1865
        PRINTK("entering mac_drv_clear_rxd\n");
1866
 
1867
        if (frag_count != 1)    // This is not allowed to happen.
1868
 
1869
                printk("fddi: Multi-fragment clear!\n");
1870
 
1871
        for (; frag_count > 0; frag_count--) {
1872
                skb = rxd->rxd_os.skb;
1873
                if (skb != NULL) {
1874
                        skfddi_priv *bp = &smc->os;
1875
                        int MaxFrameSize = bp->MaxFrameSize;
1876
 
1877
                        pci_unmap_single(&bp->pdev, rxd->rxd_os.dma_addr,
1878
                                         MaxFrameSize, PCI_DMA_FROMDEVICE);
1879
 
1880
                        dev_kfree_skb(skb);
1881
                        rxd->rxd_os.skb = NULL;
1882
                }
1883
                rxd = rxd->rxd_next;    // Next RXD.
1884
 
1885
        }
1886
}                               // mac_drv_clear_rxd
1887
 
1888
 
1889
/************************
1890
 *
1891
 *      mac_drv_rx_init
1892
 *
1893
 *      The hardware module calls this routine when an SMT or NSA frame of the
1894
 *      local SMT should be delivered to the LLC layer.
1895
 *
1896
 *      It is necessary to have this function, because there is no other way to
1897
 *      copy the contents of SMT MBufs into receive buffers.
1898
 *
1899
 *      mac_drv_rx_init allocates the required target memory for this frame,
1900
 *      and receives the frame fragment by fragment by calling mac_drv_rx_frag.
1901
 * Args
1902
 *      smc - A pointer to the SMT context struct.
1903
 *
1904
 *      len - The length (in bytes) of the received frame (FC, DA, SA, Data).
1905
 *
1906
 *      fc - The Frame Control field of the received frame.
1907
 *
1908
 *      look_ahead - A pointer to the lookahead data buffer (may be NULL).
1909
 *
1910
 *      la_len - The length of the lookahead data stored in the lookahead
1911
 *      buffer (may be zero).
1912
 * Out
1913
 *      Always returns zero (0).
1914
 *
1915
 ************************/
1916
int mac_drv_rx_init(struct s_smc *smc, int len, int fc,
1917
                    char *look_ahead, int la_len)
1918
{
1919
        struct sk_buff *skb;
1920
 
1921
        PRINTK("entering mac_drv_rx_init(len=%d)\n", len);
1922
 
1923
        // "Received" a SMT or NSA frame of the local SMT.
1924
 
1925
        if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) {
1926
                PRINTK("fddi: Discard invalid local SMT frame\n");
1927
                PRINTK("  len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n",
1928
                       len, la_len, (unsigned long) look_ahead);
1929
                return (0);
1930
        }
1931
        skb = alloc_skb(len + 3, GFP_ATOMIC);
1932
        if (!skb) {
1933
                PRINTK("fddi: Local SMT: skb memory exhausted.\n");
1934
                return (0);
1935
        }
1936
        skb_reserve(skb, 3);
1937
        skb_put(skb, len);
1938
        skb_copy_to_linear_data(skb, look_ahead, len);
1939
 
1940
        // deliver frame to system
1941
        skb->protocol = fddi_type_trans(skb, smc->os.dev);
1942
        skb->dev->last_rx = jiffies;
1943
        netif_rx(skb);
1944
 
1945
        return (0);
1946
}                               // mac_drv_rx_init
1947
 
1948
 
1949
/************************
1950
 *
1951
 *      smt_timer_poll
1952
 *
1953
 *      This routine is called periodically by the SMT module to clean up the
1954
 *      driver.
1955
 *
1956
 *      Return any queued frames back to the upper protocol layers if the ring
1957
 *      is down.
1958
 * Args
1959
 *      smc - A pointer to the SMT context struct.
1960
 * Out
1961
 *      Nothing.
1962
 *
1963
 ************************/
1964
void smt_timer_poll(struct s_smc *smc)
1965
{
1966
}                               // smt_timer_poll
1967
 
1968
 
1969
/************************
1970
 *
1971
 *      ring_status_indication
1972
 *
1973
 *      This function indicates a change of the ring state.
1974
 * Args
1975
 *      smc - A pointer to the SMT context struct.
1976
 *
1977
 *      status - The current ring status.
1978
 * Out
1979
 *      Nothing.
1980
 *
1981
 ************************/
1982
void ring_status_indication(struct s_smc *smc, u_long status)
1983
{
1984
        PRINTK("ring_status_indication( ");
1985
        if (status & RS_RES15)
1986
                PRINTK("RS_RES15 ");
1987
        if (status & RS_HARDERROR)
1988
                PRINTK("RS_HARDERROR ");
1989
        if (status & RS_SOFTERROR)
1990
                PRINTK("RS_SOFTERROR ");
1991
        if (status & RS_BEACON)
1992
                PRINTK("RS_BEACON ");
1993
        if (status & RS_PATHTEST)
1994
                PRINTK("RS_PATHTEST ");
1995
        if (status & RS_SELFTEST)
1996
                PRINTK("RS_SELFTEST ");
1997
        if (status & RS_RES9)
1998
                PRINTK("RS_RES9 ");
1999
        if (status & RS_DISCONNECT)
2000
                PRINTK("RS_DISCONNECT ");
2001
        if (status & RS_RES7)
2002
                PRINTK("RS_RES7 ");
2003
        if (status & RS_DUPADDR)
2004
                PRINTK("RS_DUPADDR ");
2005
        if (status & RS_NORINGOP)
2006
                PRINTK("RS_NORINGOP ");
2007
        if (status & RS_VERSION)
2008
                PRINTK("RS_VERSION ");
2009
        if (status & RS_STUCKBYPASSS)
2010
                PRINTK("RS_STUCKBYPASSS ");
2011
        if (status & RS_EVENT)
2012
                PRINTK("RS_EVENT ");
2013
        if (status & RS_RINGOPCHANGE)
2014
                PRINTK("RS_RINGOPCHANGE ");
2015
        if (status & RS_RES0)
2016
                PRINTK("RS_RES0 ");
2017
        PRINTK("]\n");
2018
}                               // ring_status_indication
2019
 
2020
 
2021
/************************
2022
 *
2023
 *      smt_get_time
2024
 *
2025
 *      Gets the current time from the system.
2026
 * Args
2027
 *      None.
2028
 * Out
2029
 *      The current time in TICKS_PER_SECOND.
2030
 *
2031
 *      TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is
2032
 *      defined in "targetos.h". The definition of TICKS_PER_SECOND must comply
2033
 *      to the time returned by smt_get_time().
2034
 *
2035
 ************************/
2036
unsigned long smt_get_time(void)
2037
{
2038
        return jiffies;
2039
}                               // smt_get_time
2040
 
2041
 
2042
/************************
2043
 *
2044
 *      smt_stat_counter
2045
 *
2046
 *      Status counter update (ring_op, fifo full).
2047
 * Args
2048
 *      smc - A pointer to the SMT context struct.
2049
 *
2050
 *      stat -  = 0: A ring operational change occurred.
2051
 *              = 1: The FORMAC FIFO buffer is full / FIFO overflow.
2052
 * Out
2053
 *      Nothing.
2054
 *
2055
 ************************/
2056
void smt_stat_counter(struct s_smc *smc, int stat)
2057
{
2058
//      BOOLEAN RingIsUp ;
2059
 
2060
        PRINTK(KERN_INFO "smt_stat_counter\n");
2061
        switch (stat) {
2062
        case 0:
2063
                PRINTK(KERN_INFO "Ring operational change.\n");
2064
                break;
2065
        case 1:
2066
                PRINTK(KERN_INFO "Receive fifo overflow.\n");
2067
                smc->os.MacStat.gen.rx_errors++;
2068
                break;
2069
        default:
2070
                PRINTK(KERN_INFO "Unknown status (%d).\n", stat);
2071
                break;
2072
        }
2073
}                               // smt_stat_counter
2074
 
2075
 
2076
/************************
2077
 *
2078
 *      cfm_state_change
2079
 *
2080
 *      Sets CFM state in custom statistics.
2081
 * Args
2082
 *      smc - A pointer to the SMT context struct.
2083
 *
2084
 *      c_state - Possible values are:
2085
 *
2086
 *              EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST,
2087
 *              EC5_INSERT, EC6_CHECK, EC7_DEINSERT
2088
 * Out
2089
 *      Nothing.
2090
 *
2091
 ************************/
2092
void cfm_state_change(struct s_smc *smc, int c_state)
2093
{
2094
#ifdef DRIVERDEBUG
2095
        char *s;
2096
 
2097
        switch (c_state) {
2098
        case SC0_ISOLATED:
2099
                s = "SC0_ISOLATED";
2100
                break;
2101
        case SC1_WRAP_A:
2102
                s = "SC1_WRAP_A";
2103
                break;
2104
        case SC2_WRAP_B:
2105
                s = "SC2_WRAP_B";
2106
                break;
2107
        case SC4_THRU_A:
2108
                s = "SC4_THRU_A";
2109
                break;
2110
        case SC5_THRU_B:
2111
                s = "SC5_THRU_B";
2112
                break;
2113
        case SC7_WRAP_S:
2114
                s = "SC7_WRAP_S";
2115
                break;
2116
        case SC9_C_WRAP_A:
2117
                s = "SC9_C_WRAP_A";
2118
                break;
2119
        case SC10_C_WRAP_B:
2120
                s = "SC10_C_WRAP_B";
2121
                break;
2122
        case SC11_C_WRAP_S:
2123
                s = "SC11_C_WRAP_S";
2124
                break;
2125
        default:
2126
                PRINTK(KERN_INFO "cfm_state_change: unknown %d\n", c_state);
2127
                return;
2128
        }
2129
        PRINTK(KERN_INFO "cfm_state_change: %s\n", s);
2130
#endif                          // DRIVERDEBUG
2131
}                               // cfm_state_change
2132
 
2133
 
2134
/************************
2135
 *
2136
 *      ecm_state_change
2137
 *
2138
 *      Sets ECM state in custom statistics.
2139
 * Args
2140
 *      smc - A pointer to the SMT context struct.
2141
 *
2142
 *      e_state - Possible values are:
2143
 *
2144
 *              SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12),
2145
 *              SC5_THRU_B (7), SC7_WRAP_S (8)
2146
 * Out
2147
 *      Nothing.
2148
 *
2149
 ************************/
2150
void ecm_state_change(struct s_smc *smc, int e_state)
2151
{
2152
#ifdef DRIVERDEBUG
2153
        char *s;
2154
 
2155
        switch (e_state) {
2156
        case EC0_OUT:
2157
                s = "EC0_OUT";
2158
                break;
2159
        case EC1_IN:
2160
                s = "EC1_IN";
2161
                break;
2162
        case EC2_TRACE:
2163
                s = "EC2_TRACE";
2164
                break;
2165
        case EC3_LEAVE:
2166
                s = "EC3_LEAVE";
2167
                break;
2168
        case EC4_PATH_TEST:
2169
                s = "EC4_PATH_TEST";
2170
                break;
2171
        case EC5_INSERT:
2172
                s = "EC5_INSERT";
2173
                break;
2174
        case EC6_CHECK:
2175
                s = "EC6_CHECK";
2176
                break;
2177
        case EC7_DEINSERT:
2178
                s = "EC7_DEINSERT";
2179
                break;
2180
        default:
2181
                s = "unknown";
2182
                break;
2183
        }
2184
        PRINTK(KERN_INFO "ecm_state_change: %s\n", s);
2185
#endif                          //DRIVERDEBUG
2186
}                               // ecm_state_change
2187
 
2188
 
2189
/************************
2190
 *
2191
 *      rmt_state_change
2192
 *
2193
 *      Sets RMT state in custom statistics.
2194
 * Args
2195
 *      smc - A pointer to the SMT context struct.
2196
 *
2197
 *      r_state - Possible values are:
2198
 *
2199
 *              RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT,
2200
 *              RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE
2201
 * Out
2202
 *      Nothing.
2203
 *
2204
 ************************/
2205
void rmt_state_change(struct s_smc *smc, int r_state)
2206
{
2207
#ifdef DRIVERDEBUG
2208
        char *s;
2209
 
2210
        switch (r_state) {
2211
        case RM0_ISOLATED:
2212
                s = "RM0_ISOLATED";
2213
                break;
2214
        case RM1_NON_OP:
2215
                s = "RM1_NON_OP - not operational";
2216
                break;
2217
        case RM2_RING_OP:
2218
                s = "RM2_RING_OP - ring operational";
2219
                break;
2220
        case RM3_DETECT:
2221
                s = "RM3_DETECT - detect dupl addresses";
2222
                break;
2223
        case RM4_NON_OP_DUP:
2224
                s = "RM4_NON_OP_DUP - dupl. addr detected";
2225
                break;
2226
        case RM5_RING_OP_DUP:
2227
                s = "RM5_RING_OP_DUP - ring oper. with dupl. addr";
2228
                break;
2229
        case RM6_DIRECTED:
2230
                s = "RM6_DIRECTED - sending directed beacons";
2231
                break;
2232
        case RM7_TRACE:
2233
                s = "RM7_TRACE - trace initiated";
2234
                break;
2235
        default:
2236
                s = "unknown";
2237
                break;
2238
        }
2239
        PRINTK(KERN_INFO "[rmt_state_change: %s]\n", s);
2240
#endif                          // DRIVERDEBUG
2241
}                               // rmt_state_change
2242
 
2243
 
2244
/************************
2245
 *
2246
 *      drv_reset_indication
2247
 *
2248
 *      This function is called by the SMT when it has detected a severe
2249
 *      hardware problem. The driver should perform a reset on the adapter
2250
 *      as soon as possible, but not from within this function.
2251
 * Args
2252
 *      smc - A pointer to the SMT context struct.
2253
 * Out
2254
 *      Nothing.
2255
 *
2256
 ************************/
2257
void drv_reset_indication(struct s_smc *smc)
2258
{
2259
        PRINTK(KERN_INFO "entering drv_reset_indication\n");
2260
 
2261
        smc->os.ResetRequested = TRUE;  // Set flag.
2262
 
2263
}                               // drv_reset_indication
2264
 
2265
static struct pci_driver skfddi_pci_driver = {
2266
        .name           = "skfddi",
2267
        .id_table       = skfddi_pci_tbl,
2268
        .probe          = skfp_init_one,
2269
        .remove         = __devexit_p(skfp_remove_one),
2270
};
2271
 
2272
static int __init skfd_init(void)
2273
{
2274
        return pci_register_driver(&skfddi_pci_driver);
2275
}
2276
 
2277
static void __exit skfd_exit(void)
2278
{
2279
        pci_unregister_driver(&skfddi_pci_driver);
2280
}
2281
 
2282
module_init(skfd_init);
2283
module_exit(skfd_exit);

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.