OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [drivers/] [net/] [wan/] [farsync.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 *      FarSync WAN driver for Linux (2.6.x kernel version)
3
 *
4
 *      Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
5
 *
6
 *      Copyright (C) 2001-2004 FarSite Communications Ltd.
7
 *      www.farsite.co.uk
8
 *
9
 *      This program is free software; you can redistribute it and/or
10
 *      modify it under the terms of the GNU General Public License
11
 *      as published by the Free Software Foundation; either version
12
 *      2 of the License, or (at your option) any later version.
13
 *
14
 *      Author:      R.J.Dunlop    <bob.dunlop@farsite.co.uk>
15
 *      Maintainer:  Kevin Curtis  <kevin.curtis@farsite.co.uk>
16
 */
17
 
18
#include <linux/module.h>
19
#include <linux/kernel.h>
20
#include <linux/version.h>
21
#include <linux/pci.h>
22
#include <linux/ioport.h>
23
#include <linux/init.h>
24
#include <linux/if.h>
25
#include <linux/hdlc.h>
26
#include <asm/io.h>
27
#include <asm/uaccess.h>
28
 
29
#include "farsync.h"
30
 
31
/*
32
 *      Module info
33
 */
34
MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
35
MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
36
MODULE_LICENSE("GPL");
37
 
38
/*      Driver configuration and global parameters
39
 *      ==========================================
40
 */
41
 
42
/*      Number of ports (per card) and cards supported
43
 */
44
#define FST_MAX_PORTS           4
45
#define FST_MAX_CARDS           32
46
 
47
/*      Default parameters for the link
48
 */
49
#define FST_TX_QUEUE_LEN        100     /* At 8Mbps a longer queue length is
50
                                         * useful, the syncppp module forces
51
                                         * this down assuming a slower line I
52
                                         * guess.
53
                                         */
54
#define FST_TXQ_DEPTH           16      /* This one is for the buffering
55
                                         * of frames on the way down to the card
56
                                         * so that we can keep the card busy
57
                                         * and maximise throughput
58
                                         */
59
#define FST_HIGH_WATER_MARK     12      /* Point at which we flow control
60
                                         * network layer */
61
#define FST_LOW_WATER_MARK      8       /* Point at which we remove flow
62
                                         * control from network layer */
63
#define FST_MAX_MTU             8000    /* Huge but possible */
64
#define FST_DEF_MTU             1500    /* Common sane value */
65
 
66
#define FST_TX_TIMEOUT          (2*HZ)
67
 
68
#ifdef ARPHRD_RAWHDLC
69
#define ARPHRD_MYTYPE   ARPHRD_RAWHDLC  /* Raw frames */
70
#else
71
#define ARPHRD_MYTYPE   ARPHRD_HDLC     /* Cisco-HDLC (keepalives etc) */
72
#endif
73
 
74
/*
75
 * Modules parameters and associated varaibles
76
 */
77
static int fst_txq_low = FST_LOW_WATER_MARK;
78
static int fst_txq_high = FST_HIGH_WATER_MARK;
79
static int fst_max_reads = 7;
80
static int fst_excluded_cards = 0;
81
static int fst_excluded_list[FST_MAX_CARDS];
82
 
83
module_param(fst_txq_low, int, 0);
84
module_param(fst_txq_high, int, 0);
85
module_param(fst_max_reads, int, 0);
86
module_param(fst_excluded_cards, int, 0);
87
module_param_array(fst_excluded_list, int, NULL, 0);
88
 
89
/*      Card shared memory layout
90
 *      =========================
91
 */
92
#pragma pack(1)
93
 
94
/*      This information is derived in part from the FarSite FarSync Smc.h
95
 *      file. Unfortunately various name clashes and the non-portability of the
96
 *      bit field declarations in that file have meant that I have chosen to
97
 *      recreate the information here.
98
 *
99
 *      The SMC (Shared Memory Configuration) has a version number that is
100
 *      incremented every time there is a significant change. This number can
101
 *      be used to check that we have not got out of step with the firmware
102
 *      contained in the .CDE files.
103
 */
104
#define SMC_VERSION 24
105
 
106
#define FST_MEMSIZE 0x100000    /* Size of card memory (1Mb) */
107
 
108
#define SMC_BASE 0x00002000L    /* Base offset of the shared memory window main
109
                                 * configuration structure */
110
#define BFM_BASE 0x00010000L    /* Base offset of the shared memory window DMA
111
                                 * buffers */
112
 
113
#define LEN_TX_BUFFER 8192      /* Size of packet buffers */
114
#define LEN_RX_BUFFER 8192
115
 
116
#define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */
117
#define LEN_SMALL_RX_BUFFER 256
118
 
119
#define NUM_TX_BUFFER 2         /* Must be power of 2. Fixed by firmware */
120
#define NUM_RX_BUFFER 8
121
 
122
/* Interrupt retry time in milliseconds */
123
#define INT_RETRY_TIME 2
124
 
125
/*      The Am186CH/CC processors support a SmartDMA mode using circular pools
126
 *      of buffer descriptors. The structure is almost identical to that used
127
 *      in the LANCE Ethernet controllers. Details available as PDF from the
128
 *      AMD web site: http://www.amd.com/products/epd/processors/\
129
 *                    2.16bitcont/3.am186cxfa/a21914/21914.pdf
130
 */
131
struct txdesc {                 /* Transmit descriptor */
132
        volatile u16 ladr;      /* Low order address of packet. This is a
133
                                 * linear address in the Am186 memory space
134
                                 */
135
        volatile u8 hadr;       /* High order address. Low 4 bits only, high 4
136
                                 * bits must be zero
137
                                 */
138
        volatile u8 bits;       /* Status and config */
139
        volatile u16 bcnt;      /* 2s complement of packet size in low 15 bits.
140
                                 * Transmit terminal count interrupt enable in
141
                                 * top bit.
142
                                 */
143
        u16 unused;             /* Not used in Tx */
144
};
145
 
146
struct rxdesc {                 /* Receive descriptor */
147
        volatile u16 ladr;      /* Low order address of packet */
148
        volatile u8 hadr;       /* High order address */
149
        volatile u8 bits;       /* Status and config */
150
        volatile u16 bcnt;      /* 2s complement of buffer size in low 15 bits.
151
                                 * Receive terminal count interrupt enable in
152
                                 * top bit.
153
                                 */
154
        volatile u16 mcnt;      /* Message byte count (15 bits) */
155
};
156
 
157
/* Convert a length into the 15 bit 2's complement */
158
/* #define cnv_bcnt(len)   (( ~(len) + 1 ) & 0x7FFF ) */
159
/* Since we need to set the high bit to enable the completion interrupt this
160
 * can be made a lot simpler
161
 */
162
#define cnv_bcnt(len)   (-(len))
163
 
164
/* Status and config bits for the above */
165
#define DMA_OWN         0x80    /* SmartDMA owns the descriptor */
166
#define TX_STP          0x02    /* Tx: start of packet */
167
#define TX_ENP          0x01    /* Tx: end of packet */
168
#define RX_ERR          0x40    /* Rx: error (OR of next 4 bits) */
169
#define RX_FRAM         0x20    /* Rx: framing error */
170
#define RX_OFLO         0x10    /* Rx: overflow error */
171
#define RX_CRC          0x08    /* Rx: CRC error */
172
#define RX_HBUF         0x04    /* Rx: buffer error */
173
#define RX_STP          0x02    /* Rx: start of packet */
174
#define RX_ENP          0x01    /* Rx: end of packet */
175
 
176
/* Interrupts from the card are caused by various events which are presented
177
 * in a circular buffer as several events may be processed on one physical int
178
 */
179
#define MAX_CIRBUFF     32
180
 
181
struct cirbuff {
182
        u8 rdindex;             /* read, then increment and wrap */
183
        u8 wrindex;             /* write, then increment and wrap */
184
        u8 evntbuff[MAX_CIRBUFF];
185
};
186
 
187
/* Interrupt event codes.
188
 * Where appropriate the two low order bits indicate the port number
189
 */
190
#define CTLA_CHG        0x18    /* Control signal changed */
191
#define CTLB_CHG        0x19
192
#define CTLC_CHG        0x1A
193
#define CTLD_CHG        0x1B
194
 
195
#define INIT_CPLT       0x20    /* Initialisation complete */
196
#define INIT_FAIL       0x21    /* Initialisation failed */
197
 
198
#define ABTA_SENT       0x24    /* Abort sent */
199
#define ABTB_SENT       0x25
200
#define ABTC_SENT       0x26
201
#define ABTD_SENT       0x27
202
 
203
#define TXA_UNDF        0x28    /* Transmission underflow */
204
#define TXB_UNDF        0x29
205
#define TXC_UNDF        0x2A
206
#define TXD_UNDF        0x2B
207
 
208
#define F56_INT         0x2C
209
#define M32_INT         0x2D
210
 
211
#define TE1_ALMA        0x30
212
 
213
/* Port physical configuration. See farsync.h for field values */
214
struct port_cfg {
215
        u16 lineInterface;      /* Physical interface type */
216
        u8 x25op;               /* Unused at present */
217
        u8 internalClock;       /* 1 => internal clock, 0 => external */
218
        u8 transparentMode;     /* 1 => on, 0 => off */
219
        u8 invertClock;         /* 0 => normal, 1 => inverted */
220
        u8 padBytes[6];         /* Padding */
221
        u32 lineSpeed;          /* Speed in bps */
222
};
223
 
224
/* TE1 port physical configuration */
225
struct su_config {
226
        u32 dataRate;
227
        u8 clocking;
228
        u8 framing;
229
        u8 structure;
230
        u8 interface;
231
        u8 coding;
232
        u8 lineBuildOut;
233
        u8 equalizer;
234
        u8 transparentMode;
235
        u8 loopMode;
236
        u8 range;
237
        u8 txBufferMode;
238
        u8 rxBufferMode;
239
        u8 startingSlot;
240
        u8 losThreshold;
241
        u8 enableIdleCode;
242
        u8 idleCode;
243
        u8 spare[44];
244
};
245
 
246
/* TE1 Status */
247
struct su_status {
248
        u32 receiveBufferDelay;
249
        u32 framingErrorCount;
250
        u32 codeViolationCount;
251
        u32 crcErrorCount;
252
        u32 lineAttenuation;
253
        u8 portStarted;
254
        u8 lossOfSignal;
255
        u8 receiveRemoteAlarm;
256
        u8 alarmIndicationSignal;
257
        u8 spare[40];
258
};
259
 
260
/* Finally sling all the above together into the shared memory structure.
261
 * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
262
 * evolving under NT for some time so I guess we're stuck with it.
263
 * The structure starts at offset SMC_BASE.
264
 * See farsync.h for some field values.
265
 */
266
struct fst_shared {
267
        /* DMA descriptor rings */
268
        struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
269
        struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
270
 
271
        /* Obsolete small buffers */
272
        u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER];
273
        u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER];
274
 
275
        u8 taskStatus;          /* 0x00 => initialising, 0x01 => running,
276
                                 * 0xFF => halted
277
                                 */
278
 
279
        u8 interruptHandshake;  /* Set to 0x01 by adapter to signal interrupt,
280
                                 * set to 0xEE by host to acknowledge interrupt
281
                                 */
282
 
283
        u16 smcVersion;         /* Must match SMC_VERSION */
284
 
285
        u32 smcFirmwareVersion; /* 0xIIVVRRBB where II = product ID, VV = major
286
                                 * version, RR = revision and BB = build
287
                                 */
288
 
289
        u16 txa_done;           /* Obsolete completion flags */
290
        u16 rxa_done;
291
        u16 txb_done;
292
        u16 rxb_done;
293
        u16 txc_done;
294
        u16 rxc_done;
295
        u16 txd_done;
296
        u16 rxd_done;
297
 
298
        u16 mailbox[4];         /* Diagnostics mailbox. Not used */
299
 
300
        struct cirbuff interruptEvent;  /* interrupt causes */
301
 
302
        u32 v24IpSts[FST_MAX_PORTS];    /* V.24 control input status */
303
        u32 v24OpSts[FST_MAX_PORTS];    /* V.24 control output status */
304
 
305
        struct port_cfg portConfig[FST_MAX_PORTS];
306
 
307
        u16 clockStatus[FST_MAX_PORTS]; /* lsb: 0=> present, 1=> absent */
308
 
309
        u16 cableStatus;        /* lsb: 0=> present, 1=> absent */
310
 
311
        u16 txDescrIndex[FST_MAX_PORTS];        /* transmit descriptor ring index */
312
        u16 rxDescrIndex[FST_MAX_PORTS];        /* receive descriptor ring index */
313
 
314
        u16 portMailbox[FST_MAX_PORTS][2];      /* command, modifier */
315
        u16 cardMailbox[4];     /* Not used */
316
 
317
        /* Number of times the card thinks the host has
318
         * missed an interrupt by not acknowledging
319
         * within 2mS (I guess NT has problems)
320
         */
321
        u32 interruptRetryCount;
322
 
323
        /* Driver private data used as an ID. We'll not
324
         * use this as I'd rather keep such things
325
         * in main memory rather than on the PCI bus
326
         */
327
        u32 portHandle[FST_MAX_PORTS];
328
 
329
        /* Count of Tx underflows for stats */
330
        u32 transmitBufferUnderflow[FST_MAX_PORTS];
331
 
332
        /* Debounced V.24 control input status */
333
        u32 v24DebouncedSts[FST_MAX_PORTS];
334
 
335
        /* Adapter debounce timers. Don't touch */
336
        u32 ctsTimer[FST_MAX_PORTS];
337
        u32 ctsTimerRun[FST_MAX_PORTS];
338
        u32 dcdTimer[FST_MAX_PORTS];
339
        u32 dcdTimerRun[FST_MAX_PORTS];
340
 
341
        u32 numberOfPorts;      /* Number of ports detected at startup */
342
 
343
        u16 _reserved[64];
344
 
345
        u16 cardMode;           /* Bit-mask to enable features:
346
                                 * Bit 0: 1 enables LED identify mode
347
                                 */
348
 
349
        u16 portScheduleOffset;
350
 
351
        struct su_config suConfig;      /* TE1 Bits */
352
        struct su_status suStatus;
353
 
354
        u32 endOfSmcSignature;  /* endOfSmcSignature MUST be the last member of
355
                                 * the structure and marks the end of shared
356
                                 * memory. Adapter code initializes it as
357
                                 * END_SIG.
358
                                 */
359
};
360
 
361
/* endOfSmcSignature value */
362
#define END_SIG                 0x12345678
363
 
364
/* Mailbox values. (portMailbox) */
365
#define NOP             0       /* No operation */
366
#define ACK             1       /* Positive acknowledgement to PC driver */
367
#define NAK             2       /* Negative acknowledgement to PC driver */
368
#define STARTPORT       3       /* Start an HDLC port */
369
#define STOPPORT        4       /* Stop an HDLC port */
370
#define ABORTTX         5       /* Abort the transmitter for a port */
371
#define SETV24O         6       /* Set V24 outputs */
372
 
373
/* PLX Chip Register Offsets */
374
#define CNTRL_9052      0x50    /* Control Register */
375
#define CNTRL_9054      0x6c    /* Control Register */
376
 
377
#define INTCSR_9052     0x4c    /* Interrupt control/status register */
378
#define INTCSR_9054     0x68    /* Interrupt control/status register */
379
 
380
/* 9054 DMA Registers */
381
/*
382
 * Note that we will be using DMA Channel 0 for copying rx data
383
 * and Channel 1 for copying tx data
384
 */
385
#define DMAMODE0        0x80
386
#define DMAPADR0        0x84
387
#define DMALADR0        0x88
388
#define DMASIZ0         0x8c
389
#define DMADPR0         0x90
390
#define DMAMODE1        0x94
391
#define DMAPADR1        0x98
392
#define DMALADR1        0x9c
393
#define DMASIZ1         0xa0
394
#define DMADPR1         0xa4
395
#define DMACSR0         0xa8
396
#define DMACSR1         0xa9
397
#define DMAARB          0xac
398
#define DMATHR          0xb0
399
#define DMADAC0         0xb4
400
#define DMADAC1         0xb8
401
#define DMAMARBR        0xac
402
 
403
#define FST_MIN_DMA_LEN 64
404
#define FST_RX_DMA_INT  0x01
405
#define FST_TX_DMA_INT  0x02
406
#define FST_CARD_INT    0x04
407
 
408
/* Larger buffers are positioned in memory at offset BFM_BASE */
409
struct buf_window {
410
        u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER];
411
        u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER];
412
};
413
 
414
/* Calculate offset of a buffer object within the shared memory window */
415
#define BUF_OFFSET(X)   (BFM_BASE + offsetof(struct buf_window, X))
416
 
417
#pragma pack()
418
 
419
/*      Device driver private information
420
 *      =================================
421
 */
422
/*      Per port (line or channel) information
423
 */
424
struct fst_port_info {
425
        struct net_device *dev; /* Device struct - must be first */
426
        struct fst_card_info *card;     /* Card we're associated with */
427
        int index;              /* Port index on the card */
428
        int hwif;               /* Line hardware (lineInterface copy) */
429
        int run;                /* Port is running */
430
        int mode;               /* Normal or FarSync raw */
431
        int rxpos;              /* Next Rx buffer to use */
432
        int txpos;              /* Next Tx buffer to use */
433
        int txipos;             /* Next Tx buffer to check for free */
434
        int start;              /* Indication of start/stop to network */
435
        /*
436
         * A sixteen entry transmit queue
437
         */
438
        int txqs;               /* index to get next buffer to tx */
439
        int txqe;               /* index to queue next packet */
440
        struct sk_buff *txq[FST_TXQ_DEPTH];     /* The queue */
441
        int rxqdepth;
442
};
443
 
444
/*      Per card information
445
 */
446
struct fst_card_info {
447
        char __iomem *mem;      /* Card memory mapped to kernel space */
448
        char __iomem *ctlmem;   /* Control memory for PCI cards */
449
        unsigned int phys_mem;  /* Physical memory window address */
450
        unsigned int phys_ctlmem;       /* Physical control memory address */
451
        unsigned int irq;       /* Interrupt request line number */
452
        unsigned int nports;    /* Number of serial ports */
453
        unsigned int type;      /* Type index of card */
454
        unsigned int state;     /* State of card */
455
        spinlock_t card_lock;   /* Lock for SMP access */
456
        unsigned short pci_conf;        /* PCI card config in I/O space */
457
        /* Per port info */
458
        struct fst_port_info ports[FST_MAX_PORTS];
459
        struct pci_dev *device; /* Information about the pci device */
460
        int card_no;            /* Inst of the card on the system */
461
        int family;             /* TxP or TxU */
462
        int dmarx_in_progress;
463
        int dmatx_in_progress;
464
        unsigned long int_count;
465
        unsigned long int_time_ave;
466
        void *rx_dma_handle_host;
467
        dma_addr_t rx_dma_handle_card;
468
        void *tx_dma_handle_host;
469
        dma_addr_t tx_dma_handle_card;
470
        struct sk_buff *dma_skb_rx;
471
        struct fst_port_info *dma_port_rx;
472
        struct fst_port_info *dma_port_tx;
473
        int dma_len_rx;
474
        int dma_len_tx;
475
        int dma_txpos;
476
        int dma_rxpos;
477
};
478
 
479
/* Convert an HDLC device pointer into a port info pointer and similar */
480
#define dev_to_port(D)  (dev_to_hdlc(D)->priv)
481
#define port_to_dev(P)  ((P)->dev)
482
 
483
 
484
/*
485
 *      Shared memory window access macros
486
 *
487
 *      We have a nice memory based structure above, which could be directly
488
 *      mapped on i386 but might not work on other architectures unless we use
489
 *      the readb,w,l and writeb,w,l macros. Unfortunately these macros take
490
 *      physical offsets so we have to convert. The only saving grace is that
491
 *      this should all collapse back to a simple indirection eventually.
492
 */
493
#define WIN_OFFSET(X)   ((long)&(((struct fst_shared *)SMC_BASE)->X))
494
 
495
#define FST_RDB(C,E)    readb ((C)->mem + WIN_OFFSET(E))
496
#define FST_RDW(C,E)    readw ((C)->mem + WIN_OFFSET(E))
497
#define FST_RDL(C,E)    readl ((C)->mem + WIN_OFFSET(E))
498
 
499
#define FST_WRB(C,E,B)  writeb ((B), (C)->mem + WIN_OFFSET(E))
500
#define FST_WRW(C,E,W)  writew ((W), (C)->mem + WIN_OFFSET(E))
501
#define FST_WRL(C,E,L)  writel ((L), (C)->mem + WIN_OFFSET(E))
502
 
503
/*
504
 *      Debug support
505
 */
506
#if FST_DEBUG
507
 
508
static int fst_debug_mask = { FST_DEBUG };
509
 
510
/* Most common debug activity is to print something if the corresponding bit
511
 * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
512
 * support variable numbers of macro parameters. The inverted if prevents us
513
 * eating someone else's else clause.
514
 */
515
#define dbg(F,fmt,A...) if ( ! ( fst_debug_mask & (F))) \
516
                                ; \
517
                        else \
518
                                printk ( KERN_DEBUG FST_NAME ": " fmt, ## A )
519
 
520
#else
521
#define dbg(X...)               /* NOP */
522
#endif
523
 
524
/*      Printing short cuts
525
 */
526
#define printk_err(fmt,A...)    printk ( KERN_ERR     FST_NAME ": " fmt, ## A )
527
#define printk_warn(fmt,A...)   printk ( KERN_WARNING FST_NAME ": " fmt, ## A )
528
#define printk_info(fmt,A...)   printk ( KERN_INFO    FST_NAME ": " fmt, ## A )
529
 
530
/*
531
 *      PCI ID lookup table
532
 */
533
static struct pci_device_id fst_pci_dev_id[] __devinitdata = {
534
        {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID,
535
         PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
536
 
537
        {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID,
538
         PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
539
 
540
        {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID,
541
         PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
542
 
543
        {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID,
544
         PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
545
 
546
        {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID,
547
         PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
548
 
549
        {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID,
550
         PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
551
 
552
        {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID,
553
         PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
554
        {0,}                     /* End */
555
};
556
 
557
MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
558
 
559
/*
560
 *      Device Driver Work Queues
561
 *
562
 *      So that we don't spend too much time processing events in the
563
 *      Interrupt Service routine, we will declare a work queue per Card
564
 *      and make the ISR schedule a task in the queue for later execution.
565
 *      In the 2.4 Kernel we used to use the immediate queue for BH's
566
 *      Now that they are gone, tasklets seem to be much better than work
567
 *      queues.
568
 */
569
 
570
static void do_bottom_half_tx(struct fst_card_info *card);
571
static void do_bottom_half_rx(struct fst_card_info *card);
572
static void fst_process_tx_work_q(unsigned long work_q);
573
static void fst_process_int_work_q(unsigned long work_q);
574
 
575
static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0);
576
static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0);
577
 
578
static struct fst_card_info *fst_card_array[FST_MAX_CARDS];
579
static spinlock_t fst_work_q_lock;
580
static u64 fst_work_txq;
581
static u64 fst_work_intq;
582
 
583
static void
584
fst_q_work_item(u64 * queue, int card_index)
585
{
586
        unsigned long flags;
587
        u64 mask;
588
 
589
        /*
590
         * Grab the queue exclusively
591
         */
592
        spin_lock_irqsave(&fst_work_q_lock, flags);
593
 
594
        /*
595
         * Making an entry in the queue is simply a matter of setting
596
         * a bit for the card indicating that there is work to do in the
597
         * bottom half for the card.  Note the limitation of 64 cards.
598
         * That ought to be enough
599
         */
600
        mask = 1 << card_index;
601
        *queue |= mask;
602
        spin_unlock_irqrestore(&fst_work_q_lock, flags);
603
}
604
 
605
static void
606
fst_process_tx_work_q(unsigned long /*void **/work_q)
607
{
608
        unsigned long flags;
609
        u64 work_txq;
610
        int i;
611
 
612
        /*
613
         * Grab the queue exclusively
614
         */
615
        dbg(DBG_TX, "fst_process_tx_work_q\n");
616
        spin_lock_irqsave(&fst_work_q_lock, flags);
617
        work_txq = fst_work_txq;
618
        fst_work_txq = 0;
619
        spin_unlock_irqrestore(&fst_work_q_lock, flags);
620
 
621
        /*
622
         * Call the bottom half for each card with work waiting
623
         */
624
        for (i = 0; i < FST_MAX_CARDS; i++) {
625
                if (work_txq & 0x01) {
626
                        if (fst_card_array[i] != NULL) {
627
                                dbg(DBG_TX, "Calling tx bh for card %d\n", i);
628
                                do_bottom_half_tx(fst_card_array[i]);
629
                        }
630
                }
631
                work_txq = work_txq >> 1;
632
        }
633
}
634
 
635
static void
636
fst_process_int_work_q(unsigned long /*void **/work_q)
637
{
638
        unsigned long flags;
639
        u64 work_intq;
640
        int i;
641
 
642
        /*
643
         * Grab the queue exclusively
644
         */
645
        dbg(DBG_INTR, "fst_process_int_work_q\n");
646
        spin_lock_irqsave(&fst_work_q_lock, flags);
647
        work_intq = fst_work_intq;
648
        fst_work_intq = 0;
649
        spin_unlock_irqrestore(&fst_work_q_lock, flags);
650
 
651
        /*
652
         * Call the bottom half for each card with work waiting
653
         */
654
        for (i = 0; i < FST_MAX_CARDS; i++) {
655
                if (work_intq & 0x01) {
656
                        if (fst_card_array[i] != NULL) {
657
                                dbg(DBG_INTR,
658
                                    "Calling rx & tx bh for card %d\n", i);
659
                                do_bottom_half_rx(fst_card_array[i]);
660
                                do_bottom_half_tx(fst_card_array[i]);
661
                        }
662
                }
663
                work_intq = work_intq >> 1;
664
        }
665
}
666
 
667
/*      Card control functions
668
 *      ======================
669
 */
670
/*      Place the processor in reset state
671
 *
672
 * Used to be a simple write to card control space but a glitch in the latest
673
 * AMD Am186CH processor means that we now have to do it by asserting and de-
674
 * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
675
 * at offset 9052_CNTRL.  Note the updates for the TXU.
676
 */
677
static inline void
678
fst_cpureset(struct fst_card_info *card)
679
{
680
        unsigned char interrupt_line_register;
681
        unsigned long j = jiffies + 1;
682
        unsigned int regval;
683
 
684
        if (card->family == FST_FAMILY_TXU) {
685
                if (pci_read_config_byte
686
                    (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
687
                        dbg(DBG_ASS,
688
                            "Error in reading interrupt line register\n");
689
                }
690
                /*
691
                 * Assert PLX software reset and Am186 hardware reset
692
                 * and then deassert the PLX software reset but 186 still in reset
693
                 */
694
                outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
695
                outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
696
                /*
697
                 * We are delaying here to allow the 9054 to reset itself
698
                 */
699
                j = jiffies + 1;
700
                while (jiffies < j)
701
                        /* Do nothing */ ;
702
                outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
703
                /*
704
                 * We are delaying here to allow the 9054 to reload its eeprom
705
                 */
706
                j = jiffies + 1;
707
                while (jiffies < j)
708
                        /* Do nothing */ ;
709
                outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
710
 
711
                if (pci_write_config_byte
712
                    (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
713
                        dbg(DBG_ASS,
714
                            "Error in writing interrupt line register\n");
715
                }
716
 
717
        } else {
718
                regval = inl(card->pci_conf + CNTRL_9052);
719
 
720
                outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
721
                outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
722
        }
723
}
724
 
725
/*      Release the processor from reset
726
 */
727
static inline void
728
fst_cpurelease(struct fst_card_info *card)
729
{
730
        if (card->family == FST_FAMILY_TXU) {
731
                /*
732
                 * Force posted writes to complete
733
                 */
734
                (void) readb(card->mem);
735
 
736
                /*
737
                 * Release LRESET DO = 1
738
                 * Then release Local Hold, DO = 1
739
                 */
740
                outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
741
                outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
742
        } else {
743
                (void) readb(card->ctlmem);
744
        }
745
}
746
 
747
/*      Clear the cards interrupt flag
748
 */
749
static inline void
750
fst_clear_intr(struct fst_card_info *card)
751
{
752
        if (card->family == FST_FAMILY_TXU) {
753
                (void) readb(card->ctlmem);
754
        } else {
755
                /* Poke the appropriate PLX chip register (same as enabling interrupts)
756
                 */
757
                outw(0x0543, card->pci_conf + INTCSR_9052);
758
        }
759
}
760
 
761
/*      Enable card interrupts
762
 */
763
static inline void
764
fst_enable_intr(struct fst_card_info *card)
765
{
766
        if (card->family == FST_FAMILY_TXU) {
767
                outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
768
        } else {
769
                outw(0x0543, card->pci_conf + INTCSR_9052);
770
        }
771
}
772
 
773
/*      Disable card interrupts
774
 */
775
static inline void
776
fst_disable_intr(struct fst_card_info *card)
777
{
778
        if (card->family == FST_FAMILY_TXU) {
779
                outl(0x00000000, card->pci_conf + INTCSR_9054);
780
        } else {
781
                outw(0x0000, card->pci_conf + INTCSR_9052);
782
        }
783
}
784
 
785
/*      Process the result of trying to pass a received frame up the stack
786
 */
787
static void
788
fst_process_rx_status(int rx_status, char *name)
789
{
790
        switch (rx_status) {
791
        case NET_RX_SUCCESS:
792
                {
793
                        /*
794
                         * Nothing to do here
795
                         */
796
                        break;
797
                }
798
 
799
        case NET_RX_CN_LOW:
800
                {
801
                        dbg(DBG_ASS, "%s: Receive Low Congestion\n", name);
802
                        break;
803
                }
804
 
805
        case NET_RX_CN_MOD:
806
                {
807
                        dbg(DBG_ASS, "%s: Receive Moderate Congestion\n", name);
808
                        break;
809
                }
810
 
811
        case NET_RX_CN_HIGH:
812
                {
813
                        dbg(DBG_ASS, "%s: Receive High Congestion\n", name);
814
                        break;
815
                }
816
 
817
        case NET_RX_DROP:
818
                {
819
                        dbg(DBG_ASS, "%s: Received packet dropped\n", name);
820
                        break;
821
                }
822
        }
823
}
824
 
825
/*      Initilaise DMA for PLX 9054
826
 */
827
static inline void
828
fst_init_dma(struct fst_card_info *card)
829
{
830
        /*
831
         * This is only required for the PLX 9054
832
         */
833
        if (card->family == FST_FAMILY_TXU) {
834
                pci_set_master(card->device);
835
                outl(0x00020441, card->pci_conf + DMAMODE0);
836
                outl(0x00020441, card->pci_conf + DMAMODE1);
837
                outl(0x0, card->pci_conf + DMATHR);
838
        }
839
}
840
 
841
/*      Tx dma complete interrupt
842
 */
843
static void
844
fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
845
                    int len, int txpos)
846
{
847
        struct net_device *dev = port_to_dev(port);
848
        struct net_device_stats *stats = hdlc_stats(dev);
849
 
850
        /*
851
         * Everything is now set, just tell the card to go
852
         */
853
        dbg(DBG_TX, "fst_tx_dma_complete\n");
854
        FST_WRB(card, txDescrRing[port->index][txpos].bits,
855
                DMA_OWN | TX_STP | TX_ENP);
856
        stats->tx_packets++;
857
        stats->tx_bytes += len;
858
        dev->trans_start = jiffies;
859
}
860
 
861
/*
862
 * Mark it for our own raw sockets interface
863
 */
864
static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev)
865
{
866
        skb->dev = dev;
867
        skb_reset_mac_header(skb);
868
        skb->pkt_type = PACKET_HOST;
869
        return htons(ETH_P_CUST);
870
}
871
 
872
/*      Rx dma complete interrupt
873
 */
874
static void
875
fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
876
                    int len, struct sk_buff *skb, int rxp)
877
{
878
        struct net_device *dev = port_to_dev(port);
879
        struct net_device_stats *stats = hdlc_stats(dev);
880
        int pi;
881
        int rx_status;
882
 
883
        dbg(DBG_TX, "fst_rx_dma_complete\n");
884
        pi = port->index;
885
        memcpy(skb_put(skb, len), card->rx_dma_handle_host, len);
886
 
887
        /* Reset buffer descriptor */
888
        FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
889
 
890
        /* Update stats */
891
        stats->rx_packets++;
892
        stats->rx_bytes += len;
893
 
894
        /* Push upstream */
895
        dbg(DBG_RX, "Pushing the frame up the stack\n");
896
        if (port->mode == FST_RAW)
897
                skb->protocol = farsync_type_trans(skb, dev);
898
        else
899
                skb->protocol = hdlc_type_trans(skb, dev);
900
        rx_status = netif_rx(skb);
901
        fst_process_rx_status(rx_status, port_to_dev(port)->name);
902
        if (rx_status == NET_RX_DROP)
903
                stats->rx_dropped++;
904
        dev->last_rx = jiffies;
905
}
906
 
907
/*
908
 *      Receive a frame through the DMA
909
 */
910
static inline void
911
fst_rx_dma(struct fst_card_info *card, unsigned char *skb,
912
           unsigned char *mem, int len)
913
{
914
        /*
915
         * This routine will setup the DMA and start it
916
         */
917
 
918
        dbg(DBG_RX, "In fst_rx_dma %p %p %d\n", skb, mem, len);
919
        if (card->dmarx_in_progress) {
920
                dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
921
        }
922
 
923
        outl((unsigned long) skb, card->pci_conf + DMAPADR0);   /* Copy to here */
924
        outl((unsigned long) mem, card->pci_conf + DMALADR0);   /* from here */
925
        outl(len, card->pci_conf + DMASIZ0);    /* for this length */
926
        outl(0x00000000c, card->pci_conf + DMADPR0);    /* In this direction */
927
 
928
        /*
929
         * We use the dmarx_in_progress flag to flag the channel as busy
930
         */
931
        card->dmarx_in_progress = 1;
932
        outb(0x03, card->pci_conf + DMACSR0);   /* Start the transfer */
933
}
934
 
935
/*
936
 *      Send a frame through the DMA
937
 */
938
static inline void
939
fst_tx_dma(struct fst_card_info *card, unsigned char *skb,
940
           unsigned char *mem, int len)
941
{
942
        /*
943
         * This routine will setup the DMA and start it.
944
         */
945
 
946
        dbg(DBG_TX, "In fst_tx_dma %p %p %d\n", skb, mem, len);
947
        if (card->dmatx_in_progress) {
948
                dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
949
        }
950
 
951
        outl((unsigned long) skb, card->pci_conf + DMAPADR1);   /* Copy from here */
952
        outl((unsigned long) mem, card->pci_conf + DMALADR1);   /* to here */
953
        outl(len, card->pci_conf + DMASIZ1);    /* for this length */
954
        outl(0x000000004, card->pci_conf + DMADPR1);    /* In this direction */
955
 
956
        /*
957
         * We use the dmatx_in_progress to flag the channel as busy
958
         */
959
        card->dmatx_in_progress = 1;
960
        outb(0x03, card->pci_conf + DMACSR1);   /* Start the transfer */
961
}
962
 
963
/*      Issue a Mailbox command for a port.
964
 *      Note we issue them on a fire and forget basis, not expecting to see an
965
 *      error and not waiting for completion.
966
 */
967
static void
968
fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
969
{
970
        struct fst_card_info *card;
971
        unsigned short mbval;
972
        unsigned long flags;
973
        int safety;
974
 
975
        card = port->card;
976
        spin_lock_irqsave(&card->card_lock, flags);
977
        mbval = FST_RDW(card, portMailbox[port->index][0]);
978
 
979
        safety = 0;
980
        /* Wait for any previous command to complete */
981
        while (mbval > NAK) {
982
                spin_unlock_irqrestore(&card->card_lock, flags);
983
                schedule_timeout_uninterruptible(1);
984
                spin_lock_irqsave(&card->card_lock, flags);
985
 
986
                if (++safety > 2000) {
987
                        printk_err("Mailbox safety timeout\n");
988
                        break;
989
                }
990
 
991
                mbval = FST_RDW(card, portMailbox[port->index][0]);
992
        }
993
        if (safety > 0) {
994
                dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
995
        }
996
        if (mbval == NAK) {
997
                dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
998
        }
999
 
1000
        FST_WRW(card, portMailbox[port->index][0], cmd);
1001
 
1002
        if (cmd == ABORTTX || cmd == STARTPORT) {
1003
                port->txpos = 0;
1004
                port->txipos = 0;
1005
                port->start = 0;
1006
        }
1007
 
1008
        spin_unlock_irqrestore(&card->card_lock, flags);
1009
}
1010
 
1011
/*      Port output signals control
1012
 */
1013
static inline void
1014
fst_op_raise(struct fst_port_info *port, unsigned int outputs)
1015
{
1016
        outputs |= FST_RDL(port->card, v24OpSts[port->index]);
1017
        FST_WRL(port->card, v24OpSts[port->index], outputs);
1018
 
1019
        if (port->run)
1020
                fst_issue_cmd(port, SETV24O);
1021
}
1022
 
1023
static inline void
1024
fst_op_lower(struct fst_port_info *port, unsigned int outputs)
1025
{
1026
        outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
1027
        FST_WRL(port->card, v24OpSts[port->index], outputs);
1028
 
1029
        if (port->run)
1030
                fst_issue_cmd(port, SETV24O);
1031
}
1032
 
1033
/*
1034
 *      Setup port Rx buffers
1035
 */
1036
static void
1037
fst_rx_config(struct fst_port_info *port)
1038
{
1039
        int i;
1040
        int pi;
1041
        unsigned int offset;
1042
        unsigned long flags;
1043
        struct fst_card_info *card;
1044
 
1045
        pi = port->index;
1046
        card = port->card;
1047
        spin_lock_irqsave(&card->card_lock, flags);
1048
        for (i = 0; i < NUM_RX_BUFFER; i++) {
1049
                offset = BUF_OFFSET(rxBuffer[pi][i][0]);
1050
 
1051
                FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset);
1052
                FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16));
1053
                FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
1054
                FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
1055
                FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
1056
        }
1057
        port->rxpos = 0;
1058
        spin_unlock_irqrestore(&card->card_lock, flags);
1059
}
1060
 
1061
/*
1062
 *      Setup port Tx buffers
1063
 */
1064
static void
1065
fst_tx_config(struct fst_port_info *port)
1066
{
1067
        int i;
1068
        int pi;
1069
        unsigned int offset;
1070
        unsigned long flags;
1071
        struct fst_card_info *card;
1072
 
1073
        pi = port->index;
1074
        card = port->card;
1075
        spin_lock_irqsave(&card->card_lock, flags);
1076
        for (i = 0; i < NUM_TX_BUFFER; i++) {
1077
                offset = BUF_OFFSET(txBuffer[pi][i][0]);
1078
 
1079
                FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset);
1080
                FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16));
1081
                FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
1082
                FST_WRB(card, txDescrRing[pi][i].bits, 0);
1083
        }
1084
        port->txpos = 0;
1085
        port->txipos = 0;
1086
        port->start = 0;
1087
        spin_unlock_irqrestore(&card->card_lock, flags);
1088
}
1089
 
1090
/*      TE1 Alarm change interrupt event
1091
 */
1092
static void
1093
fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
1094
{
1095
        u8 los;
1096
        u8 rra;
1097
        u8 ais;
1098
 
1099
        los = FST_RDB(card, suStatus.lossOfSignal);
1100
        rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
1101
        ais = FST_RDB(card, suStatus.alarmIndicationSignal);
1102
 
1103
        if (los) {
1104
                /*
1105
                 * Lost the link
1106
                 */
1107
                if (netif_carrier_ok(port_to_dev(port))) {
1108
                        dbg(DBG_INTR, "Net carrier off\n");
1109
                        netif_carrier_off(port_to_dev(port));
1110
                }
1111
        } else {
1112
                /*
1113
                 * Link available
1114
                 */
1115
                if (!netif_carrier_ok(port_to_dev(port))) {
1116
                        dbg(DBG_INTR, "Net carrier on\n");
1117
                        netif_carrier_on(port_to_dev(port));
1118
                }
1119
        }
1120
 
1121
        if (los)
1122
                dbg(DBG_INTR, "Assert LOS Alarm\n");
1123
        else
1124
                dbg(DBG_INTR, "De-assert LOS Alarm\n");
1125
        if (rra)
1126
                dbg(DBG_INTR, "Assert RRA Alarm\n");
1127
        else
1128
                dbg(DBG_INTR, "De-assert RRA Alarm\n");
1129
 
1130
        if (ais)
1131
                dbg(DBG_INTR, "Assert AIS Alarm\n");
1132
        else
1133
                dbg(DBG_INTR, "De-assert AIS Alarm\n");
1134
}
1135
 
1136
/*      Control signal change interrupt event
1137
 */
1138
static void
1139
fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
1140
{
1141
        int signals;
1142
 
1143
        signals = FST_RDL(card, v24DebouncedSts[port->index]);
1144
 
1145
        if (signals & (((port->hwif == X21) || (port->hwif == X21D))
1146
                       ? IPSTS_INDICATE : IPSTS_DCD)) {
1147
                if (!netif_carrier_ok(port_to_dev(port))) {
1148
                        dbg(DBG_INTR, "DCD active\n");
1149
                        netif_carrier_on(port_to_dev(port));
1150
                }
1151
        } else {
1152
                if (netif_carrier_ok(port_to_dev(port))) {
1153
                        dbg(DBG_INTR, "DCD lost\n");
1154
                        netif_carrier_off(port_to_dev(port));
1155
                }
1156
        }
1157
}
1158
 
1159
/*      Log Rx Errors
1160
 */
1161
static void
1162
fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1163
                 unsigned char dmabits, int rxp, unsigned short len)
1164
{
1165
        struct net_device *dev = port_to_dev(port);
1166
        struct net_device_stats *stats = hdlc_stats(dev);
1167
 
1168
        /*
1169
         * Increment the appropriate error counter
1170
         */
1171
        stats->rx_errors++;
1172
        if (dmabits & RX_OFLO) {
1173
                stats->rx_fifo_errors++;
1174
                dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
1175
                    card->card_no, port->index, rxp);
1176
        }
1177
        if (dmabits & RX_CRC) {
1178
                stats->rx_crc_errors++;
1179
                dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
1180
                    card->card_no, port->index);
1181
        }
1182
        if (dmabits & RX_FRAM) {
1183
                stats->rx_frame_errors++;
1184
                dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
1185
                    card->card_no, port->index);
1186
        }
1187
        if (dmabits == (RX_STP | RX_ENP)) {
1188
                stats->rx_length_errors++;
1189
                dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
1190
                    len, card->card_no, port->index);
1191
        }
1192
}
1193
 
1194
/*      Rx Error Recovery
1195
 */
1196
static void
1197
fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1198
                     unsigned char dmabits, int rxp, unsigned short len)
1199
{
1200
        int i;
1201
        int pi;
1202
 
1203
        pi = port->index;
1204
        /*
1205
         * Discard buffer descriptors until we see the start of the
1206
         * next frame.  Note that for long frames this could be in
1207
         * a subsequent interrupt.
1208
         */
1209
        i = 0;
1210
        while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
1211
                FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1212
                rxp = (rxp+1) % NUM_RX_BUFFER;
1213
                if (++i > NUM_RX_BUFFER) {
1214
                        dbg(DBG_ASS, "intr_rx: Discarding more bufs"
1215
                            " than we have\n");
1216
                        break;
1217
                }
1218
                dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1219
                dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
1220
        }
1221
        dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
1222
 
1223
        /* Discard the terminal buffer */
1224
        if (!(dmabits & DMA_OWN)) {
1225
                FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1226
                rxp = (rxp+1) % NUM_RX_BUFFER;
1227
        }
1228
        port->rxpos = rxp;
1229
        return;
1230
 
1231
}
1232
 
1233
/*      Rx complete interrupt
1234
 */
1235
static void
1236
fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
1237
{
1238
        unsigned char dmabits;
1239
        int pi;
1240
        int rxp;
1241
        int rx_status;
1242
        unsigned short len;
1243
        struct sk_buff *skb;
1244
        struct net_device *dev = port_to_dev(port);
1245
        struct net_device_stats *stats = hdlc_stats(dev);
1246
 
1247
        /* Check we have a buffer to process */
1248
        pi = port->index;
1249
        rxp = port->rxpos;
1250
        dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1251
        if (dmabits & DMA_OWN) {
1252
                dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
1253
                    pi, rxp);
1254
                return;
1255
        }
1256
        if (card->dmarx_in_progress) {
1257
                return;
1258
        }
1259
 
1260
        /* Get buffer length */
1261
        len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
1262
        /* Discard the CRC */
1263
        len -= 2;
1264
        if (len == 0) {
1265
                /*
1266
                 * This seems to happen on the TE1 interface sometimes
1267
                 * so throw the frame away and log the event.
1268
                 */
1269
                printk_err("Frame received with 0 length. Card %d Port %d\n",
1270
                           card->card_no, port->index);
1271
                /* Return descriptor to card */
1272
                FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1273
 
1274
                rxp = (rxp+1) % NUM_RX_BUFFER;
1275
                port->rxpos = rxp;
1276
                return;
1277
        }
1278
 
1279
        /* Check buffer length and for other errors. We insist on one packet
1280
         * in one buffer. This simplifies things greatly and since we've
1281
         * allocated 8K it shouldn't be a real world limitation
1282
         */
1283
        dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
1284
        if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
1285
                fst_log_rx_error(card, port, dmabits, rxp, len);
1286
                fst_recover_rx_error(card, port, dmabits, rxp, len);
1287
                return;
1288
        }
1289
 
1290
        /* Allocate SKB */
1291
        if ((skb = dev_alloc_skb(len)) == NULL) {
1292
                dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
1293
 
1294
                stats->rx_dropped++;
1295
 
1296
                /* Return descriptor to card */
1297
                FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1298
 
1299
                rxp = (rxp+1) % NUM_RX_BUFFER;
1300
                port->rxpos = rxp;
1301
                return;
1302
        }
1303
 
1304
        /*
1305
         * We know the length we need to receive, len.
1306
         * It's not worth using the DMA for reads of less than
1307
         * FST_MIN_DMA_LEN
1308
         */
1309
 
1310
        if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) {
1311
                memcpy_fromio(skb_put(skb, len),
1312
                              card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
1313
                              len);
1314
 
1315
                /* Reset buffer descriptor */
1316
                FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1317
 
1318
                /* Update stats */
1319
                stats->rx_packets++;
1320
                stats->rx_bytes += len;
1321
 
1322
                /* Push upstream */
1323
                dbg(DBG_RX, "Pushing frame up the stack\n");
1324
                if (port->mode == FST_RAW)
1325
                        skb->protocol = farsync_type_trans(skb, dev);
1326
                else
1327
                        skb->protocol = hdlc_type_trans(skb, dev);
1328
                rx_status = netif_rx(skb);
1329
                fst_process_rx_status(rx_status, port_to_dev(port)->name);
1330
                if (rx_status == NET_RX_DROP) {
1331
                        stats->rx_dropped++;
1332
                }
1333
                dev->last_rx = jiffies;
1334
        } else {
1335
                card->dma_skb_rx = skb;
1336
                card->dma_port_rx = port;
1337
                card->dma_len_rx = len;
1338
                card->dma_rxpos = rxp;
1339
                fst_rx_dma(card, (char *) card->rx_dma_handle_card,
1340
                           (char *) BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
1341
        }
1342
        if (rxp != port->rxpos) {
1343
                dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
1344
                dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
1345
        }
1346
        rxp = (rxp+1) % NUM_RX_BUFFER;
1347
        port->rxpos = rxp;
1348
}
1349
 
1350
/*
1351
 *      The bottom halfs to the ISR
1352
 *
1353
 */
1354
 
1355
static void
1356
do_bottom_half_tx(struct fst_card_info *card)
1357
{
1358
        struct fst_port_info *port;
1359
        int pi;
1360
        int txq_length;
1361
        struct sk_buff *skb;
1362
        unsigned long flags;
1363
        struct net_device *dev;
1364
        struct net_device_stats *stats;
1365
 
1366
        /*
1367
         *  Find a free buffer for the transmit
1368
         *  Step through each port on this card
1369
         */
1370
 
1371
        dbg(DBG_TX, "do_bottom_half_tx\n");
1372
        for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1373
                if (!port->run)
1374
                        continue;
1375
 
1376
                dev = port_to_dev(port);
1377
                stats = hdlc_stats(dev);
1378
                while (!
1379
                       (FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
1380
                        DMA_OWN)
1381
                       && !(card->dmatx_in_progress)) {
1382
                        /*
1383
                         * There doesn't seem to be a txdone event per-se
1384
                         * We seem to have to deduce it, by checking the DMA_OWN
1385
                         * bit on the next buffer we think we can use
1386
                         */
1387
                        spin_lock_irqsave(&card->card_lock, flags);
1388
                        if ((txq_length = port->txqe - port->txqs) < 0) {
1389
                                /*
1390
                                 * This is the case where one has wrapped and the
1391
                                 * maths gives us a negative number
1392
                                 */
1393
                                txq_length = txq_length + FST_TXQ_DEPTH;
1394
                        }
1395
                        spin_unlock_irqrestore(&card->card_lock, flags);
1396
                        if (txq_length > 0) {
1397
                                /*
1398
                                 * There is something to send
1399
                                 */
1400
                                spin_lock_irqsave(&card->card_lock, flags);
1401
                                skb = port->txq[port->txqs];
1402
                                port->txqs++;
1403
                                if (port->txqs == FST_TXQ_DEPTH) {
1404
                                        port->txqs = 0;
1405
                                }
1406
                                spin_unlock_irqrestore(&card->card_lock, flags);
1407
                                /*
1408
                                 * copy the data and set the required indicators on the
1409
                                 * card.
1410
                                 */
1411
                                FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
1412
                                        cnv_bcnt(skb->len));
1413
                                if ((skb->len < FST_MIN_DMA_LEN)
1414
                                    || (card->family == FST_FAMILY_TXP)) {
1415
                                        /* Enqueue the packet with normal io */
1416
                                        memcpy_toio(card->mem +
1417
                                                    BUF_OFFSET(txBuffer[pi]
1418
                                                               [port->
1419
                                                                txpos][0]),
1420
                                                    skb->data, skb->len);
1421
                                        FST_WRB(card,
1422
                                                txDescrRing[pi][port->txpos].
1423
                                                bits,
1424
                                                DMA_OWN | TX_STP | TX_ENP);
1425
                                        stats->tx_packets++;
1426
                                        stats->tx_bytes += skb->len;
1427
                                        dev->trans_start = jiffies;
1428
                                } else {
1429
                                        /* Or do it through dma */
1430
                                        memcpy(card->tx_dma_handle_host,
1431
                                               skb->data, skb->len);
1432
                                        card->dma_port_tx = port;
1433
                                        card->dma_len_tx = skb->len;
1434
                                        card->dma_txpos = port->txpos;
1435
                                        fst_tx_dma(card,
1436
                                                   (char *) card->
1437
                                                   tx_dma_handle_card,
1438
                                                   (char *)
1439
                                                   BUF_OFFSET(txBuffer[pi]
1440
                                                              [port->txpos][0]),
1441
                                                   skb->len);
1442
                                }
1443
                                if (++port->txpos >= NUM_TX_BUFFER)
1444
                                        port->txpos = 0;
1445
                                /*
1446
                                 * If we have flow control on, can we now release it?
1447
                                 */
1448
                                if (port->start) {
1449
                                        if (txq_length < fst_txq_low) {
1450
                                                netif_wake_queue(port_to_dev
1451
                                                                 (port));
1452
                                                port->start = 0;
1453
                                        }
1454
                                }
1455
                                dev_kfree_skb(skb);
1456
                        } else {
1457
                                /*
1458
                                 * Nothing to send so break out of the while loop
1459
                                 */
1460
                                break;
1461
                        }
1462
                }
1463
        }
1464
}
1465
 
1466
static void
1467
do_bottom_half_rx(struct fst_card_info *card)
1468
{
1469
        struct fst_port_info *port;
1470
        int pi;
1471
        int rx_count = 0;
1472
 
1473
        /* Check for rx completions on all ports on this card */
1474
        dbg(DBG_RX, "do_bottom_half_rx\n");
1475
        for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1476
                if (!port->run)
1477
                        continue;
1478
 
1479
                while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
1480
                         & DMA_OWN) && !(card->dmarx_in_progress)) {
1481
                        if (rx_count > fst_max_reads) {
1482
                                /*
1483
                                 * Don't spend forever in receive processing
1484
                                 * Schedule another event
1485
                                 */
1486
                                fst_q_work_item(&fst_work_intq, card->card_no);
1487
                                tasklet_schedule(&fst_int_task);
1488
                                break;  /* Leave the loop */
1489
                        }
1490
                        fst_intr_rx(card, port);
1491
                        rx_count++;
1492
                }
1493
        }
1494
}
1495
 
1496
/*
1497
 *      The interrupt service routine
1498
 *      Dev_id is our fst_card_info pointer
1499
 */
1500
static irqreturn_t
1501
fst_intr(int irq, void *dev_id)
1502
{
1503
        struct fst_card_info *card;
1504
        struct fst_port_info *port;
1505
        int rdidx;              /* Event buffer indices */
1506
        int wridx;
1507
        int event;              /* Actual event for processing */
1508
        unsigned int dma_intcsr = 0;
1509
        unsigned int do_card_interrupt;
1510
        unsigned int int_retry_count;
1511
 
1512
        if ((card = dev_id) == NULL) {
1513
                dbg(DBG_INTR, "intr: spurious %d\n", irq);
1514
                return IRQ_NONE;
1515
        }
1516
 
1517
        /*
1518
         * Check to see if the interrupt was for this card
1519
         * return if not
1520
         * Note that the call to clear the interrupt is important
1521
         */
1522
        dbg(DBG_INTR, "intr: %d %p\n", irq, card);
1523
        if (card->state != FST_RUNNING) {
1524
                printk_err
1525
                    ("Interrupt received for card %d in a non running state (%d)\n",
1526
                     card->card_no, card->state);
1527
 
1528
                /*
1529
                 * It is possible to really be running, i.e. we have re-loaded
1530
                 * a running card
1531
                 * Clear and reprime the interrupt source
1532
                 */
1533
                fst_clear_intr(card);
1534
                return IRQ_HANDLED;
1535
        }
1536
 
1537
        /* Clear and reprime the interrupt source */
1538
        fst_clear_intr(card);
1539
 
1540
        /*
1541
         * Is the interrupt for this card (handshake == 1)
1542
         */
1543
        do_card_interrupt = 0;
1544
        if (FST_RDB(card, interruptHandshake) == 1) {
1545
                do_card_interrupt += FST_CARD_INT;
1546
                /* Set the software acknowledge */
1547
                FST_WRB(card, interruptHandshake, 0xEE);
1548
        }
1549
        if (card->family == FST_FAMILY_TXU) {
1550
                /*
1551
                 * Is it a DMA Interrupt
1552
                 */
1553
                dma_intcsr = inl(card->pci_conf + INTCSR_9054);
1554
                if (dma_intcsr & 0x00200000) {
1555
                        /*
1556
                         * DMA Channel 0 (Rx transfer complete)
1557
                         */
1558
                        dbg(DBG_RX, "DMA Rx xfer complete\n");
1559
                        outb(0x8, card->pci_conf + DMACSR0);
1560
                        fst_rx_dma_complete(card, card->dma_port_rx,
1561
                                            card->dma_len_rx, card->dma_skb_rx,
1562
                                            card->dma_rxpos);
1563
                        card->dmarx_in_progress = 0;
1564
                        do_card_interrupt += FST_RX_DMA_INT;
1565
                }
1566
                if (dma_intcsr & 0x00400000) {
1567
                        /*
1568
                         * DMA Channel 1 (Tx transfer complete)
1569
                         */
1570
                        dbg(DBG_TX, "DMA Tx xfer complete\n");
1571
                        outb(0x8, card->pci_conf + DMACSR1);
1572
                        fst_tx_dma_complete(card, card->dma_port_tx,
1573
                                            card->dma_len_tx, card->dma_txpos);
1574
                        card->dmatx_in_progress = 0;
1575
                        do_card_interrupt += FST_TX_DMA_INT;
1576
                }
1577
        }
1578
 
1579
        /*
1580
         * Have we been missing Interrupts
1581
         */
1582
        int_retry_count = FST_RDL(card, interruptRetryCount);
1583
        if (int_retry_count) {
1584
                dbg(DBG_ASS, "Card %d int_retry_count is  %d\n",
1585
                    card->card_no, int_retry_count);
1586
                FST_WRL(card, interruptRetryCount, 0);
1587
        }
1588
 
1589
        if (!do_card_interrupt) {
1590
                return IRQ_HANDLED;
1591
        }
1592
 
1593
        /* Scehdule the bottom half of the ISR */
1594
        fst_q_work_item(&fst_work_intq, card->card_no);
1595
        tasklet_schedule(&fst_int_task);
1596
 
1597
        /* Drain the event queue */
1598
        rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
1599
        wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
1600
        while (rdidx != wridx) {
1601
                event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
1602
                port = &card->ports[event & 0x03];
1603
 
1604
                dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
1605
 
1606
                switch (event) {
1607
                case TE1_ALMA:
1608
                        dbg(DBG_INTR, "TE1 Alarm intr\n");
1609
                        if (port->run)
1610
                                fst_intr_te1_alarm(card, port);
1611
                        break;
1612
 
1613
                case CTLA_CHG:
1614
                case CTLB_CHG:
1615
                case CTLC_CHG:
1616
                case CTLD_CHG:
1617
                        if (port->run)
1618
                                fst_intr_ctlchg(card, port);
1619
                        break;
1620
 
1621
                case ABTA_SENT:
1622
                case ABTB_SENT:
1623
                case ABTC_SENT:
1624
                case ABTD_SENT:
1625
                        dbg(DBG_TX, "Abort complete port %d\n", port->index);
1626
                        break;
1627
 
1628
                case TXA_UNDF:
1629
                case TXB_UNDF:
1630
                case TXC_UNDF:
1631
                case TXD_UNDF:
1632
                        /* Difficult to see how we'd get this given that we
1633
                         * always load up the entire packet for DMA.
1634
                         */
1635
                        dbg(DBG_TX, "Tx underflow port %d\n", port->index);
1636
                        hdlc_stats(port_to_dev(port))->tx_errors++;
1637
                        hdlc_stats(port_to_dev(port))->tx_fifo_errors++;
1638
                        dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
1639
                            card->card_no, port->index);
1640
                        break;
1641
 
1642
                case INIT_CPLT:
1643
                        dbg(DBG_INIT, "Card init OK intr\n");
1644
                        break;
1645
 
1646
                case INIT_FAIL:
1647
                        dbg(DBG_INIT, "Card init FAILED intr\n");
1648
                        card->state = FST_IFAILED;
1649
                        break;
1650
 
1651
                default:
1652
                        printk_err("intr: unknown card event %d. ignored\n",
1653
                                   event);
1654
                        break;
1655
                }
1656
 
1657
                /* Bump and wrap the index */
1658
                if (++rdidx >= MAX_CIRBUFF)
1659
                        rdidx = 0;
1660
        }
1661
        FST_WRB(card, interruptEvent.rdindex, rdidx);
1662
        return IRQ_HANDLED;
1663
}
1664
 
1665
/*      Check that the shared memory configuration is one that we can handle
1666
 *      and that some basic parameters are correct
1667
 */
1668
static void
1669
check_started_ok(struct fst_card_info *card)
1670
{
1671
        int i;
1672
 
1673
        /* Check structure version and end marker */
1674
        if (FST_RDW(card, smcVersion) != SMC_VERSION) {
1675
                printk_err("Bad shared memory version %d expected %d\n",
1676
                           FST_RDW(card, smcVersion), SMC_VERSION);
1677
                card->state = FST_BADVERSION;
1678
                return;
1679
        }
1680
        if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
1681
                printk_err("Missing shared memory signature\n");
1682
                card->state = FST_BADVERSION;
1683
                return;
1684
        }
1685
        /* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
1686
        if ((i = FST_RDB(card, taskStatus)) == 0x01) {
1687
                card->state = FST_RUNNING;
1688
        } else if (i == 0xFF) {
1689
                printk_err("Firmware initialisation failed. Card halted\n");
1690
                card->state = FST_HALTED;
1691
                return;
1692
        } else if (i != 0x00) {
1693
                printk_err("Unknown firmware status 0x%x\n", i);
1694
                card->state = FST_HALTED;
1695
                return;
1696
        }
1697
 
1698
        /* Finally check the number of ports reported by firmware against the
1699
         * number we assumed at card detection. Should never happen with
1700
         * existing firmware etc so we just report it for the moment.
1701
         */
1702
        if (FST_RDL(card, numberOfPorts) != card->nports) {
1703
                printk_warn("Port count mismatch on card %d."
1704
                            " Firmware thinks %d we say %d\n", card->card_no,
1705
                            FST_RDL(card, numberOfPorts), card->nports);
1706
        }
1707
}
1708
 
1709
static int
1710
set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
1711
                   struct fstioc_info *info)
1712
{
1713
        int err;
1714
        unsigned char my_framing;
1715
 
1716
        /* Set things according to the user set valid flags
1717
         * Several of the old options have been invalidated/replaced by the
1718
         * generic hdlc package.
1719
         */
1720
        err = 0;
1721
        if (info->valid & FSTVAL_PROTO) {
1722
                if (info->proto == FST_RAW)
1723
                        port->mode = FST_RAW;
1724
                else
1725
                        port->mode = FST_GEN_HDLC;
1726
        }
1727
 
1728
        if (info->valid & FSTVAL_CABLE)
1729
                err = -EINVAL;
1730
 
1731
        if (info->valid & FSTVAL_SPEED)
1732
                err = -EINVAL;
1733
 
1734
        if (info->valid & FSTVAL_PHASE)
1735
                FST_WRB(card, portConfig[port->index].invertClock,
1736
                        info->invertClock);
1737
        if (info->valid & FSTVAL_MODE)
1738
                FST_WRW(card, cardMode, info->cardMode);
1739
        if (info->valid & FSTVAL_TE1) {
1740
                FST_WRL(card, suConfig.dataRate, info->lineSpeed);
1741
                FST_WRB(card, suConfig.clocking, info->clockSource);
1742
                my_framing = FRAMING_E1;
1743
                if (info->framing == E1)
1744
                        my_framing = FRAMING_E1;
1745
                if (info->framing == T1)
1746
                        my_framing = FRAMING_T1;
1747
                if (info->framing == J1)
1748
                        my_framing = FRAMING_J1;
1749
                FST_WRB(card, suConfig.framing, my_framing);
1750
                FST_WRB(card, suConfig.structure, info->structure);
1751
                FST_WRB(card, suConfig.interface, info->interface);
1752
                FST_WRB(card, suConfig.coding, info->coding);
1753
                FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
1754
                FST_WRB(card, suConfig.equalizer, info->equalizer);
1755
                FST_WRB(card, suConfig.transparentMode, info->transparentMode);
1756
                FST_WRB(card, suConfig.loopMode, info->loopMode);
1757
                FST_WRB(card, suConfig.range, info->range);
1758
                FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
1759
                FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
1760
                FST_WRB(card, suConfig.startingSlot, info->startingSlot);
1761
                FST_WRB(card, suConfig.losThreshold, info->losThreshold);
1762
                if (info->idleCode)
1763
                        FST_WRB(card, suConfig.enableIdleCode, 1);
1764
                else
1765
                        FST_WRB(card, suConfig.enableIdleCode, 0);
1766
                FST_WRB(card, suConfig.idleCode, info->idleCode);
1767
#if FST_DEBUG
1768
                if (info->valid & FSTVAL_TE1) {
1769
                        printk("Setting TE1 data\n");
1770
                        printk("Line Speed = %d\n", info->lineSpeed);
1771
                        printk("Start slot = %d\n", info->startingSlot);
1772
                        printk("Clock source = %d\n", info->clockSource);
1773
                        printk("Framing = %d\n", my_framing);
1774
                        printk("Structure = %d\n", info->structure);
1775
                        printk("interface = %d\n", info->interface);
1776
                        printk("Coding = %d\n", info->coding);
1777
                        printk("Line build out = %d\n", info->lineBuildOut);
1778
                        printk("Equaliser = %d\n", info->equalizer);
1779
                        printk("Transparent mode = %d\n",
1780
                               info->transparentMode);
1781
                        printk("Loop mode = %d\n", info->loopMode);
1782
                        printk("Range = %d\n", info->range);
1783
                        printk("Tx Buffer mode = %d\n", info->txBufferMode);
1784
                        printk("Rx Buffer mode = %d\n", info->rxBufferMode);
1785
                        printk("LOS Threshold = %d\n", info->losThreshold);
1786
                        printk("Idle Code = %d\n", info->idleCode);
1787
                }
1788
#endif
1789
        }
1790
#if FST_DEBUG
1791
        if (info->valid & FSTVAL_DEBUG) {
1792
                fst_debug_mask = info->debug;
1793
        }
1794
#endif
1795
 
1796
        return err;
1797
}
1798
 
1799
static void
1800
gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
1801
                 struct fstioc_info *info)
1802
{
1803
        int i;
1804
 
1805
        memset(info, 0, sizeof (struct fstioc_info));
1806
 
1807
        i = port->index;
1808
        info->kernelVersion = LINUX_VERSION_CODE;
1809
        info->nports = card->nports;
1810
        info->type = card->type;
1811
        info->state = card->state;
1812
        info->proto = FST_GEN_HDLC;
1813
        info->index = i;
1814
#if FST_DEBUG
1815
        info->debug = fst_debug_mask;
1816
#endif
1817
 
1818
        /* Only mark information as valid if card is running.
1819
         * Copy the data anyway in case it is useful for diagnostics
1820
         */
1821
        info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
1822
#if FST_DEBUG
1823
            | FSTVAL_DEBUG
1824
#endif
1825
            ;
1826
 
1827
        info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
1828
        info->internalClock = FST_RDB(card, portConfig[i].internalClock);
1829
        info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
1830
        info->invertClock = FST_RDB(card, portConfig[i].invertClock);
1831
        info->v24IpSts = FST_RDL(card, v24IpSts[i]);
1832
        info->v24OpSts = FST_RDL(card, v24OpSts[i]);
1833
        info->clockStatus = FST_RDW(card, clockStatus[i]);
1834
        info->cableStatus = FST_RDW(card, cableStatus);
1835
        info->cardMode = FST_RDW(card, cardMode);
1836
        info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
1837
 
1838
        /*
1839
         * The T2U can report cable presence for both A or B
1840
         * in bits 0 and 1 of cableStatus.  See which port we are and
1841
         * do the mapping.
1842
         */
1843
        if (card->family == FST_FAMILY_TXU) {
1844
                if (port->index == 0) {
1845
                        /*
1846
                         * Port A
1847
                         */
1848
                        info->cableStatus = info->cableStatus & 1;
1849
                } else {
1850
                        /*
1851
                         * Port B
1852
                         */
1853
                        info->cableStatus = info->cableStatus >> 1;
1854
                        info->cableStatus = info->cableStatus & 1;
1855
                }
1856
        }
1857
        /*
1858
         * Some additional bits if we are TE1
1859
         */
1860
        if (card->type == FST_TYPE_TE1) {
1861
                info->lineSpeed = FST_RDL(card, suConfig.dataRate);
1862
                info->clockSource = FST_RDB(card, suConfig.clocking);
1863
                info->framing = FST_RDB(card, suConfig.framing);
1864
                info->structure = FST_RDB(card, suConfig.structure);
1865
                info->interface = FST_RDB(card, suConfig.interface);
1866
                info->coding = FST_RDB(card, suConfig.coding);
1867
                info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
1868
                info->equalizer = FST_RDB(card, suConfig.equalizer);
1869
                info->loopMode = FST_RDB(card, suConfig.loopMode);
1870
                info->range = FST_RDB(card, suConfig.range);
1871
                info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
1872
                info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
1873
                info->startingSlot = FST_RDB(card, suConfig.startingSlot);
1874
                info->losThreshold = FST_RDB(card, suConfig.losThreshold);
1875
                if (FST_RDB(card, suConfig.enableIdleCode))
1876
                        info->idleCode = FST_RDB(card, suConfig.idleCode);
1877
                else
1878
                        info->idleCode = 0;
1879
                info->receiveBufferDelay =
1880
                    FST_RDL(card, suStatus.receiveBufferDelay);
1881
                info->framingErrorCount =
1882
                    FST_RDL(card, suStatus.framingErrorCount);
1883
                info->codeViolationCount =
1884
                    FST_RDL(card, suStatus.codeViolationCount);
1885
                info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
1886
                info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
1887
                info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
1888
                info->receiveRemoteAlarm =
1889
                    FST_RDB(card, suStatus.receiveRemoteAlarm);
1890
                info->alarmIndicationSignal =
1891
                    FST_RDB(card, suStatus.alarmIndicationSignal);
1892
        }
1893
}
1894
 
1895
static int
1896
fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
1897
              struct ifreq *ifr)
1898
{
1899
        sync_serial_settings sync;
1900
        int i;
1901
 
1902
        if (ifr->ifr_settings.size != sizeof (sync)) {
1903
                return -ENOMEM;
1904
        }
1905
 
1906
        if (copy_from_user
1907
            (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) {
1908
                return -EFAULT;
1909
        }
1910
 
1911
        if (sync.loopback)
1912
                return -EINVAL;
1913
 
1914
        i = port->index;
1915
 
1916
        switch (ifr->ifr_settings.type) {
1917
        case IF_IFACE_V35:
1918
                FST_WRW(card, portConfig[i].lineInterface, V35);
1919
                port->hwif = V35;
1920
                break;
1921
 
1922
        case IF_IFACE_V24:
1923
                FST_WRW(card, portConfig[i].lineInterface, V24);
1924
                port->hwif = V24;
1925
                break;
1926
 
1927
        case IF_IFACE_X21:
1928
                FST_WRW(card, portConfig[i].lineInterface, X21);
1929
                port->hwif = X21;
1930
                break;
1931
 
1932
        case IF_IFACE_X21D:
1933
                FST_WRW(card, portConfig[i].lineInterface, X21D);
1934
                port->hwif = X21D;
1935
                break;
1936
 
1937
        case IF_IFACE_T1:
1938
                FST_WRW(card, portConfig[i].lineInterface, T1);
1939
                port->hwif = T1;
1940
                break;
1941
 
1942
        case IF_IFACE_E1:
1943
                FST_WRW(card, portConfig[i].lineInterface, E1);
1944
                port->hwif = E1;
1945
                break;
1946
 
1947
        case IF_IFACE_SYNC_SERIAL:
1948
                break;
1949
 
1950
        default:
1951
                return -EINVAL;
1952
        }
1953
 
1954
        switch (sync.clock_type) {
1955
        case CLOCK_EXT:
1956
                FST_WRB(card, portConfig[i].internalClock, EXTCLK);
1957
                break;
1958
 
1959
        case CLOCK_INT:
1960
                FST_WRB(card, portConfig[i].internalClock, INTCLK);
1961
                break;
1962
 
1963
        default:
1964
                return -EINVAL;
1965
        }
1966
        FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
1967
        return 0;
1968
}
1969
 
1970
static int
1971
fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
1972
              struct ifreq *ifr)
1973
{
1974
        sync_serial_settings sync;
1975
        int i;
1976
 
1977
        /* First check what line type is set, we'll default to reporting X.21
1978
         * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
1979
         * changed
1980
         */
1981
        switch (port->hwif) {
1982
        case E1:
1983
                ifr->ifr_settings.type = IF_IFACE_E1;
1984
                break;
1985
        case T1:
1986
                ifr->ifr_settings.type = IF_IFACE_T1;
1987
                break;
1988
        case V35:
1989
                ifr->ifr_settings.type = IF_IFACE_V35;
1990
                break;
1991
        case V24:
1992
                ifr->ifr_settings.type = IF_IFACE_V24;
1993
                break;
1994
        case X21D:
1995
                ifr->ifr_settings.type = IF_IFACE_X21D;
1996
                break;
1997
        case X21:
1998
        default:
1999
                ifr->ifr_settings.type = IF_IFACE_X21;
2000
                break;
2001
        }
2002
        if (ifr->ifr_settings.size == 0) {
2003
                return 0;        /* only type requested */
2004
        }
2005
        if (ifr->ifr_settings.size < sizeof (sync)) {
2006
                return -ENOMEM;
2007
        }
2008
 
2009
        i = port->index;
2010
        sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
2011
        /* Lucky card and linux use same encoding here */
2012
        sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
2013
            INTCLK ? CLOCK_INT : CLOCK_EXT;
2014
        sync.loopback = 0;
2015
 
2016
        if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) {
2017
                return -EFAULT;
2018
        }
2019
 
2020
        ifr->ifr_settings.size = sizeof (sync);
2021
        return 0;
2022
}
2023
 
2024
static int
2025
fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2026
{
2027
        struct fst_card_info *card;
2028
        struct fst_port_info *port;
2029
        struct fstioc_write wrthdr;
2030
        struct fstioc_info info;
2031
        unsigned long flags;
2032
 
2033
        dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data);
2034
 
2035
        port = dev_to_port(dev);
2036
        card = port->card;
2037
 
2038
        if (!capable(CAP_NET_ADMIN))
2039
                return -EPERM;
2040
 
2041
        switch (cmd) {
2042
        case FSTCPURESET:
2043
                fst_cpureset(card);
2044
                card->state = FST_RESET;
2045
                return 0;
2046
 
2047
        case FSTCPURELEASE:
2048
                fst_cpurelease(card);
2049
                card->state = FST_STARTING;
2050
                return 0;
2051
 
2052
        case FSTWRITE:          /* Code write (download) */
2053
 
2054
                /* First copy in the header with the length and offset of data
2055
                 * to write
2056
                 */
2057
                if (ifr->ifr_data == NULL) {
2058
                        return -EINVAL;
2059
                }
2060
                if (copy_from_user(&wrthdr, ifr->ifr_data,
2061
                                   sizeof (struct fstioc_write))) {
2062
                        return -EFAULT;
2063
                }
2064
 
2065
                /* Sanity check the parameters. We don't support partial writes
2066
                 * when going over the top
2067
                 */
2068
                if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE
2069
                    || wrthdr.size + wrthdr.offset > FST_MEMSIZE) {
2070
                        return -ENXIO;
2071
                }
2072
 
2073
                /* Now copy the data to the card.
2074
                 * This will probably break on some architectures.
2075
                 * I'll fix it when I have something to test on.
2076
                 */
2077
                if (copy_from_user(card->mem + wrthdr.offset,
2078
                                   ifr->ifr_data + sizeof (struct fstioc_write),
2079
                                   wrthdr.size)) {
2080
                        return -EFAULT;
2081
                }
2082
 
2083
                /* Writes to the memory of a card in the reset state constitute
2084
                 * a download
2085
                 */
2086
                if (card->state == FST_RESET) {
2087
                        card->state = FST_DOWNLOAD;
2088
                }
2089
                return 0;
2090
 
2091
        case FSTGETCONF:
2092
 
2093
                /* If card has just been started check the shared memory config
2094
                 * version and marker
2095
                 */
2096
                if (card->state == FST_STARTING) {
2097
                        check_started_ok(card);
2098
 
2099
                        /* If everything checked out enable card interrupts */
2100
                        if (card->state == FST_RUNNING) {
2101
                                spin_lock_irqsave(&card->card_lock, flags);
2102
                                fst_enable_intr(card);
2103
                                FST_WRB(card, interruptHandshake, 0xEE);
2104
                                spin_unlock_irqrestore(&card->card_lock, flags);
2105
                        }
2106
                }
2107
 
2108
                if (ifr->ifr_data == NULL) {
2109
                        return -EINVAL;
2110
                }
2111
 
2112
                gather_conf_info(card, port, &info);
2113
 
2114
                if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) {
2115
                        return -EFAULT;
2116
                }
2117
                return 0;
2118
 
2119
        case FSTSETCONF:
2120
 
2121
                /*
2122
                 * Most of the settings have been moved to the generic ioctls
2123
                 * this just covers debug and board ident now
2124
                 */
2125
 
2126
                if (card->state != FST_RUNNING) {
2127
                        printk_err
2128
                            ("Attempt to configure card %d in non-running state (%d)\n",
2129
                             card->card_no, card->state);
2130
                        return -EIO;
2131
                }
2132
                if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) {
2133
                        return -EFAULT;
2134
                }
2135
 
2136
                return set_conf_from_info(card, port, &info);
2137
 
2138
        case SIOCWANDEV:
2139
                switch (ifr->ifr_settings.type) {
2140
                case IF_GET_IFACE:
2141
                        return fst_get_iface(card, port, ifr);
2142
 
2143
                case IF_IFACE_SYNC_SERIAL:
2144
                case IF_IFACE_V35:
2145
                case IF_IFACE_V24:
2146
                case IF_IFACE_X21:
2147
                case IF_IFACE_X21D:
2148
                case IF_IFACE_T1:
2149
                case IF_IFACE_E1:
2150
                        return fst_set_iface(card, port, ifr);
2151
 
2152
                case IF_PROTO_RAW:
2153
                        port->mode = FST_RAW;
2154
                        return 0;
2155
 
2156
                case IF_GET_PROTO:
2157
                        if (port->mode == FST_RAW) {
2158
                                ifr->ifr_settings.type = IF_PROTO_RAW;
2159
                                return 0;
2160
                        }
2161
                        return hdlc_ioctl(dev, ifr, cmd);
2162
 
2163
                default:
2164
                        port->mode = FST_GEN_HDLC;
2165
                        dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
2166
                            ifr->ifr_settings.type);
2167
                        return hdlc_ioctl(dev, ifr, cmd);
2168
                }
2169
 
2170
        default:
2171
                /* Not one of ours. Pass through to HDLC package */
2172
                return hdlc_ioctl(dev, ifr, cmd);
2173
        }
2174
}
2175
 
2176
static void
2177
fst_openport(struct fst_port_info *port)
2178
{
2179
        int signals;
2180
        int txq_length;
2181
 
2182
        /* Only init things if card is actually running. This allows open to
2183
         * succeed for downloads etc.
2184
         */
2185
        if (port->card->state == FST_RUNNING) {
2186
                if (port->run) {
2187
                        dbg(DBG_OPEN, "open: found port already running\n");
2188
 
2189
                        fst_issue_cmd(port, STOPPORT);
2190
                        port->run = 0;
2191
                }
2192
 
2193
                fst_rx_config(port);
2194
                fst_tx_config(port);
2195
                fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
2196
 
2197
                fst_issue_cmd(port, STARTPORT);
2198
                port->run = 1;
2199
 
2200
                signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
2201
                if (signals & (((port->hwif == X21) || (port->hwif == X21D))
2202
                               ? IPSTS_INDICATE : IPSTS_DCD))
2203
                        netif_carrier_on(port_to_dev(port));
2204
                else
2205
                        netif_carrier_off(port_to_dev(port));
2206
 
2207
                txq_length = port->txqe - port->txqs;
2208
                port->txqe = 0;
2209
                port->txqs = 0;
2210
        }
2211
 
2212
}
2213
 
2214
static void
2215
fst_closeport(struct fst_port_info *port)
2216
{
2217
        if (port->card->state == FST_RUNNING) {
2218
                if (port->run) {
2219
                        port->run = 0;
2220
                        fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
2221
 
2222
                        fst_issue_cmd(port, STOPPORT);
2223
                } else {
2224
                        dbg(DBG_OPEN, "close: port not running\n");
2225
                }
2226
        }
2227
}
2228
 
2229
static int
2230
fst_open(struct net_device *dev)
2231
{
2232
        int err;
2233
        struct fst_port_info *port;
2234
 
2235
        port = dev_to_port(dev);
2236
        if (!try_module_get(THIS_MODULE))
2237
          return -EBUSY;
2238
 
2239
        if (port->mode != FST_RAW) {
2240
                err = hdlc_open(dev);
2241
                if (err)
2242
                        return err;
2243
        }
2244
 
2245
        fst_openport(port);
2246
        netif_wake_queue(dev);
2247
        return 0;
2248
}
2249
 
2250
static int
2251
fst_close(struct net_device *dev)
2252
{
2253
        struct fst_port_info *port;
2254
        struct fst_card_info *card;
2255
        unsigned char tx_dma_done;
2256
        unsigned char rx_dma_done;
2257
 
2258
        port = dev_to_port(dev);
2259
        card = port->card;
2260
 
2261
        tx_dma_done = inb(card->pci_conf + DMACSR1);
2262
        rx_dma_done = inb(card->pci_conf + DMACSR0);
2263
        dbg(DBG_OPEN,
2264
            "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
2265
            card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
2266
            rx_dma_done);
2267
 
2268
        netif_stop_queue(dev);
2269
        fst_closeport(dev_to_port(dev));
2270
        if (port->mode != FST_RAW) {
2271
                hdlc_close(dev);
2272
        }
2273
        module_put(THIS_MODULE);
2274
        return 0;
2275
}
2276
 
2277
static int
2278
fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
2279
{
2280
        /*
2281
         * Setting currently fixed in FarSync card so we check and forget
2282
         */
2283
        if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
2284
                return -EINVAL;
2285
        return 0;
2286
}
2287
 
2288
static void
2289
fst_tx_timeout(struct net_device *dev)
2290
{
2291
        struct fst_port_info *port;
2292
        struct fst_card_info *card;
2293
        struct net_device_stats *stats = hdlc_stats(dev);
2294
 
2295
        port = dev_to_port(dev);
2296
        card = port->card;
2297
        stats->tx_errors++;
2298
        stats->tx_aborted_errors++;
2299
        dbg(DBG_ASS, "Tx timeout card %d port %d\n",
2300
            card->card_no, port->index);
2301
        fst_issue_cmd(port, ABORTTX);
2302
 
2303
        dev->trans_start = jiffies;
2304
        netif_wake_queue(dev);
2305
        port->start = 0;
2306
}
2307
 
2308
static int
2309
fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
2310
{
2311
        struct fst_card_info *card;
2312
        struct fst_port_info *port;
2313
        struct net_device_stats *stats = hdlc_stats(dev);
2314
        unsigned long flags;
2315
        int txq_length;
2316
 
2317
        port = dev_to_port(dev);
2318
        card = port->card;
2319
        dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
2320
 
2321
        /* Drop packet with error if we don't have carrier */
2322
        if (!netif_carrier_ok(dev)) {
2323
                dev_kfree_skb(skb);
2324
                stats->tx_errors++;
2325
                stats->tx_carrier_errors++;
2326
                dbg(DBG_ASS,
2327
                    "Tried to transmit but no carrier on card %d port %d\n",
2328
                    card->card_no, port->index);
2329
                return 0;
2330
        }
2331
 
2332
        /* Drop it if it's too big! MTU failure ? */
2333
        if (skb->len > LEN_TX_BUFFER) {
2334
                dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
2335
                    LEN_TX_BUFFER);
2336
                dev_kfree_skb(skb);
2337
                stats->tx_errors++;
2338
                return 0;
2339
        }
2340
 
2341
        /*
2342
         * We are always going to queue the packet
2343
         * so that the bottom half is the only place we tx from
2344
         * Check there is room in the port txq
2345
         */
2346
        spin_lock_irqsave(&card->card_lock, flags);
2347
        if ((txq_length = port->txqe - port->txqs) < 0) {
2348
                /*
2349
                 * This is the case where the next free has wrapped but the
2350
                 * last used hasn't
2351
                 */
2352
                txq_length = txq_length + FST_TXQ_DEPTH;
2353
        }
2354
        spin_unlock_irqrestore(&card->card_lock, flags);
2355
        if (txq_length > fst_txq_high) {
2356
                /*
2357
                 * We have got enough buffers in the pipeline.  Ask the network
2358
                 * layer to stop sending frames down
2359
                 */
2360
                netif_stop_queue(dev);
2361
                port->start = 1;        /* I'm using this to signal stop sent up */
2362
        }
2363
 
2364
        if (txq_length == FST_TXQ_DEPTH - 1) {
2365
                /*
2366
                 * This shouldn't have happened but such is life
2367
                 */
2368
                dev_kfree_skb(skb);
2369
                stats->tx_errors++;
2370
                dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
2371
                    card->card_no, port->index);
2372
                return 0;
2373
        }
2374
 
2375
        /*
2376
         * queue the buffer
2377
         */
2378
        spin_lock_irqsave(&card->card_lock, flags);
2379
        port->txq[port->txqe] = skb;
2380
        port->txqe++;
2381
        if (port->txqe == FST_TXQ_DEPTH)
2382
                port->txqe = 0;
2383
        spin_unlock_irqrestore(&card->card_lock, flags);
2384
 
2385
        /* Scehdule the bottom half which now does transmit processing */
2386
        fst_q_work_item(&fst_work_txq, card->card_no);
2387
        tasklet_schedule(&fst_tx_task);
2388
 
2389
        return 0;
2390
}
2391
 
2392
/*
2393
 *      Card setup having checked hardware resources.
2394
 *      Should be pretty bizarre if we get an error here (kernel memory
2395
 *      exhaustion is one possibility). If we do see a problem we report it
2396
 *      via a printk and leave the corresponding interface and all that follow
2397
 *      disabled.
2398
 */
2399
static char *type_strings[] __devinitdata = {
2400
        "no hardware",          /* Should never be seen */
2401
        "FarSync T2P",
2402
        "FarSync T4P",
2403
        "FarSync T1U",
2404
        "FarSync T2U",
2405
        "FarSync T4U",
2406
        "FarSync TE1"
2407
};
2408
 
2409
static void __devinit
2410
fst_init_card(struct fst_card_info *card)
2411
{
2412
        int i;
2413
        int err;
2414
 
2415
        /* We're working on a number of ports based on the card ID. If the
2416
         * firmware detects something different later (should never happen)
2417
         * we'll have to revise it in some way then.
2418
         */
2419
        for (i = 0; i < card->nports; i++) {
2420
                err = register_hdlc_device(card->ports[i].dev);
2421
                if (err < 0) {
2422
                        int j;
2423
                        printk_err ("Cannot register HDLC device for port %d"
2424
                                    " (errno %d)\n", i, -err );
2425
                        for (j = i; j < card->nports; j++) {
2426
                                free_netdev(card->ports[j].dev);
2427
                                card->ports[j].dev = NULL;
2428
                        }
2429
                        card->nports = i;
2430
                        break;
2431
                }
2432
        }
2433
 
2434
        printk_info("%s-%s: %s IRQ%d, %d ports\n",
2435
               port_to_dev(&card->ports[0])->name,
2436
               port_to_dev(&card->ports[card->nports - 1])->name,
2437
               type_strings[card->type], card->irq, card->nports);
2438
}
2439
 
2440
/*
2441
 *      Initialise card when detected.
2442
 *      Returns 0 to indicate success, or errno otherwise.
2443
 */
2444
static int __devinit
2445
fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2446
{
2447
        static int firsttime_done = 0;
2448
        static int no_of_cards_added = 0;
2449
        struct fst_card_info *card;
2450
        int err = 0;
2451
        int i;
2452
 
2453
        if (!firsttime_done) {
2454
                printk_info("FarSync WAN driver " FST_USER_VERSION
2455
                       " (c) 2001-2004 FarSite Communications Ltd.\n");
2456
                firsttime_done = 1;
2457
                dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
2458
        }
2459
 
2460
        /*
2461
         * We are going to be clever and allow certain cards not to be
2462
         * configured.  An exclude list can be provided in /etc/modules.conf
2463
         */
2464
        if (fst_excluded_cards != 0) {
2465
                /*
2466
                 * There are cards to exclude
2467
                 *
2468
                 */
2469
                for (i = 0; i < fst_excluded_cards; i++) {
2470
                        if ((pdev->devfn) >> 3 == fst_excluded_list[i]) {
2471
                                printk_info("FarSync PCI device %d not assigned\n",
2472
                                       (pdev->devfn) >> 3);
2473
                                return -EBUSY;
2474
                        }
2475
                }
2476
        }
2477
 
2478
        /* Allocate driver private data */
2479
        card = kzalloc(sizeof (struct fst_card_info), GFP_KERNEL);
2480
        if (card == NULL) {
2481
                printk_err("FarSync card found but insufficient memory for"
2482
                           " driver storage\n");
2483
                return -ENOMEM;
2484
        }
2485
 
2486
        /* Try to enable the device */
2487
        if ((err = pci_enable_device(pdev)) != 0) {
2488
                printk_err("Failed to enable card. Err %d\n", -err);
2489
                kfree(card);
2490
                return err;
2491
        }
2492
 
2493
        if ((err = pci_request_regions(pdev, "FarSync")) !=0) {
2494
                printk_err("Failed to allocate regions. Err %d\n", -err);
2495
                pci_disable_device(pdev);
2496
                kfree(card);
2497
                return err;
2498
        }
2499
 
2500
        /* Get virtual addresses of memory regions */
2501
        card->pci_conf = pci_resource_start(pdev, 1);
2502
        card->phys_mem = pci_resource_start(pdev, 2);
2503
        card->phys_ctlmem = pci_resource_start(pdev, 3);
2504
        if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) {
2505
                printk_err("Physical memory remap failed\n");
2506
                pci_release_regions(pdev);
2507
                pci_disable_device(pdev);
2508
                kfree(card);
2509
                return -ENODEV;
2510
        }
2511
        if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) {
2512
                printk_err("Control memory remap failed\n");
2513
                pci_release_regions(pdev);
2514
                pci_disable_device(pdev);
2515
                kfree(card);
2516
                return -ENODEV;
2517
        }
2518
        dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
2519
 
2520
        /* Register the interrupt handler */
2521
        if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) {
2522
                printk_err("Unable to register interrupt %d\n", card->irq);
2523
                pci_release_regions(pdev);
2524
                pci_disable_device(pdev);
2525
                iounmap(card->ctlmem);
2526
                iounmap(card->mem);
2527
                kfree(card);
2528
                return -ENODEV;
2529
        }
2530
 
2531
        /* Record info we need */
2532
        card->irq = pdev->irq;
2533
        card->type = ent->driver_data;
2534
        card->family = ((ent->driver_data == FST_TYPE_T2P) ||
2535
                        (ent->driver_data == FST_TYPE_T4P))
2536
            ? FST_FAMILY_TXP : FST_FAMILY_TXU;
2537
        if ((ent->driver_data == FST_TYPE_T1U) ||
2538
            (ent->driver_data == FST_TYPE_TE1))
2539
                card->nports = 1;
2540
        else
2541
                card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
2542
                                (ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
2543
 
2544
        card->state = FST_UNINIT;
2545
        spin_lock_init ( &card->card_lock );
2546
 
2547
        for ( i = 0 ; i < card->nports ; i++ ) {
2548
                struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
2549
                hdlc_device *hdlc;
2550
                if (!dev) {
2551
                        while (i--)
2552
                                free_netdev(card->ports[i].dev);
2553
                        printk_err ("FarSync: out of memory\n");
2554
                        free_irq(card->irq, card);
2555
                        pci_release_regions(pdev);
2556
                        pci_disable_device(pdev);
2557
                        iounmap(card->ctlmem);
2558
                        iounmap(card->mem);
2559
                        kfree(card);
2560
                        return -ENODEV;
2561
                }
2562
                card->ports[i].dev    = dev;
2563
                card->ports[i].card   = card;
2564
                card->ports[i].index  = i;
2565
                card->ports[i].run    = 0;
2566
 
2567
                hdlc = dev_to_hdlc(dev);
2568
 
2569
                /* Fill in the net device info */
2570
                /* Since this is a PCI setup this is purely
2571
                 * informational. Give them the buffer addresses
2572
                 * and basic card I/O.
2573
                 */
2574
                dev->mem_start   = card->phys_mem
2575
                                 + BUF_OFFSET ( txBuffer[i][0][0]);
2576
                dev->mem_end     = card->phys_mem
2577
                                 + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER][0]);
2578
                dev->base_addr   = card->pci_conf;
2579
                dev->irq         = card->irq;
2580
 
2581
                dev->tx_queue_len          = FST_TX_QUEUE_LEN;
2582
                dev->open                  = fst_open;
2583
                dev->stop                  = fst_close;
2584
                dev->do_ioctl              = fst_ioctl;
2585
                dev->watchdog_timeo        = FST_TX_TIMEOUT;
2586
                dev->tx_timeout            = fst_tx_timeout;
2587
                hdlc->attach = fst_attach;
2588
                hdlc->xmit   = fst_start_xmit;
2589
        }
2590
 
2591
        card->device = pdev;
2592
 
2593
        dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
2594
            card->nports, card->irq);
2595
        dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
2596
            card->pci_conf, card->phys_mem, card->phys_ctlmem);
2597
 
2598
        /* Reset the card's processor */
2599
        fst_cpureset(card);
2600
        card->state = FST_RESET;
2601
 
2602
        /* Initialise DMA (if required) */
2603
        fst_init_dma(card);
2604
 
2605
        /* Record driver data for later use */
2606
        pci_set_drvdata(pdev, card);
2607
 
2608
        /* Remainder of card setup */
2609
        fst_card_array[no_of_cards_added] = card;
2610
        card->card_no = no_of_cards_added++;    /* Record instance and bump it */
2611
        fst_init_card(card);
2612
        if (card->family == FST_FAMILY_TXU) {
2613
                /*
2614
                 * Allocate a dma buffer for transmit and receives
2615
                 */
2616
                card->rx_dma_handle_host =
2617
                    pci_alloc_consistent(card->device, FST_MAX_MTU,
2618
                                         &card->rx_dma_handle_card);
2619
                if (card->rx_dma_handle_host == NULL) {
2620
                        printk_err("Could not allocate rx dma buffer\n");
2621
                        fst_disable_intr(card);
2622
                        pci_release_regions(pdev);
2623
                        pci_disable_device(pdev);
2624
                        iounmap(card->ctlmem);
2625
                        iounmap(card->mem);
2626
                        kfree(card);
2627
                        return -ENOMEM;
2628
                }
2629
                card->tx_dma_handle_host =
2630
                    pci_alloc_consistent(card->device, FST_MAX_MTU,
2631
                                         &card->tx_dma_handle_card);
2632
                if (card->tx_dma_handle_host == NULL) {
2633
                        printk_err("Could not allocate tx dma buffer\n");
2634
                        fst_disable_intr(card);
2635
                        pci_release_regions(pdev);
2636
                        pci_disable_device(pdev);
2637
                        iounmap(card->ctlmem);
2638
                        iounmap(card->mem);
2639
                        kfree(card);
2640
                        return -ENOMEM;
2641
                }
2642
        }
2643
        return 0;                /* Success */
2644
}
2645
 
2646
/*
2647
 *      Cleanup and close down a card
2648
 */
2649
static void __devexit
2650
fst_remove_one(struct pci_dev *pdev)
2651
{
2652
        struct fst_card_info *card;
2653
        int i;
2654
 
2655
        card = pci_get_drvdata(pdev);
2656
 
2657
        for (i = 0; i < card->nports; i++) {
2658
                struct net_device *dev = port_to_dev(&card->ports[i]);
2659
                unregister_hdlc_device(dev);
2660
        }
2661
 
2662
        fst_disable_intr(card);
2663
        free_irq(card->irq, card);
2664
 
2665
        iounmap(card->ctlmem);
2666
        iounmap(card->mem);
2667
        pci_release_regions(pdev);
2668
        if (card->family == FST_FAMILY_TXU) {
2669
                /*
2670
                 * Free dma buffers
2671
                 */
2672
                pci_free_consistent(card->device, FST_MAX_MTU,
2673
                                    card->rx_dma_handle_host,
2674
                                    card->rx_dma_handle_card);
2675
                pci_free_consistent(card->device, FST_MAX_MTU,
2676
                                    card->tx_dma_handle_host,
2677
                                    card->tx_dma_handle_card);
2678
        }
2679
        fst_card_array[card->card_no] = NULL;
2680
}
2681
 
2682
static struct pci_driver fst_driver = {
2683
        .name           = FST_NAME,
2684
        .id_table       = fst_pci_dev_id,
2685
        .probe          = fst_add_one,
2686
        .remove = __devexit_p(fst_remove_one),
2687
        .suspend        = NULL,
2688
        .resume = NULL,
2689
};
2690
 
2691
static int __init
2692
fst_init(void)
2693
{
2694
        int i;
2695
 
2696
        for (i = 0; i < FST_MAX_CARDS; i++)
2697
                fst_card_array[i] = NULL;
2698
        spin_lock_init(&fst_work_q_lock);
2699
        return pci_register_driver(&fst_driver);
2700
}
2701
 
2702
static void __exit
2703
fst_cleanup_module(void)
2704
{
2705
        printk_info("FarSync WAN driver unloading\n");
2706
        pci_unregister_driver(&fst_driver);
2707
}
2708
 
2709
module_init(fst_init);
2710
module_exit(fst_cleanup_module);

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.