OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [drivers/] [net/] [wireless/] [strip.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 * Copyright 1996 The Board of Trustees of The Leland Stanford
3
 * Junior University. All Rights Reserved.
4
 *
5
 * Permission to use, copy, modify, and distribute this
6
 * software and its documentation for any purpose and without
7
 * fee is hereby granted, provided that the above copyright
8
 * notice appear in all copies.  Stanford University
9
 * makes no representations about the suitability of this
10
 * software for any purpose.  It is provided "as is" without
11
 * express or implied warranty.
12
 *
13
 * strip.c      This module implements Starmode Radio IP (STRIP)
14
 *              for kernel-based devices like TTY.  It interfaces between a
15
 *              raw TTY, and the kernel's INET protocol layers (via DDI).
16
 *
17
 * Version:     @(#)strip.c     1.3     July 1997
18
 *
19
 * Author:      Stuart Cheshire <cheshire@cs.stanford.edu>
20
 *
21
 * Fixes:       v0.9 12th Feb 1996 (SC)
22
 *              New byte stuffing (2+6 run-length encoding)
23
 *              New watchdog timer task
24
 *              New Protocol key (SIP0)
25
 *
26
 *              v0.9.1 3rd March 1996 (SC)
27
 *              Changed to dynamic device allocation -- no more compile
28
 *              time (or boot time) limit on the number of STRIP devices.
29
 *
30
 *              v0.9.2 13th March 1996 (SC)
31
 *              Uses arp cache lookups (but doesn't send arp packets yet)
32
 *
33
 *              v0.9.3 17th April 1996 (SC)
34
 *              Fixed bug where STR_ERROR flag was getting set unneccessarily
35
 *              (causing otherwise good packets to be unneccessarily dropped)
36
 *
37
 *              v0.9.4 27th April 1996 (SC)
38
 *              First attempt at using "&COMMAND" Starmode AT commands
39
 *
40
 *              v0.9.5 29th May 1996 (SC)
41
 *              First attempt at sending (unicast) ARP packets
42
 *
43
 *              v0.9.6 5th June 1996 (Elliot)
44
 *              Put "message level" tags in every "printk" statement
45
 *
46
 *              v0.9.7 13th June 1996 (laik)
47
 *              Added support for the /proc fs
48
 *
49
 *              v0.9.8 July 1996 (Mema)
50
 *              Added packet logging
51
 *
52
 *              v1.0 November 1996 (SC)
53
 *              Fixed (severe) memory leaks in the /proc fs code
54
 *              Fixed race conditions in the logging code
55
 *
56
 *              v1.1 January 1997 (SC)
57
 *              Deleted packet logging (use tcpdump instead)
58
 *              Added support for Metricom Firmware v204 features
59
 *              (like message checksums)
60
 *
61
 *              v1.2 January 1997 (SC)
62
 *              Put portables list back in
63
 *
64
 *              v1.3 July 1997 (SC)
65
 *              Made STRIP driver set the radio's baud rate automatically.
66
 *              It is no longer necessarily to manually set the radio's
67
 *              rate permanently to 115200 -- the driver handles setting
68
 *              the rate automatically.
69
 */
70
 
71
#ifdef MODULE
72
static const char StripVersion[] = "1.3A-STUART.CHESHIRE-MODULAR";
73
#else
74
static const char StripVersion[] = "1.3A-STUART.CHESHIRE";
75
#endif
76
 
77
#define TICKLE_TIMERS 0
78
#define EXT_COUNTERS 1
79
 
80
 
81
/************************************************************************/
82
/* Header files                                                         */
83
 
84
#include <linux/kernel.h>
85
#include <linux/module.h>
86
#include <linux/init.h>
87
#include <linux/bitops.h>
88
#include <asm/system.h>
89
#include <asm/uaccess.h>
90
 
91
# include <linux/ctype.h>
92
#include <linux/string.h>
93
#include <linux/mm.h>
94
#include <linux/interrupt.h>
95
#include <linux/in.h>
96
#include <linux/tty.h>
97
#include <linux/errno.h>
98
#include <linux/netdevice.h>
99
#include <linux/inetdevice.h>
100
#include <linux/etherdevice.h>
101
#include <linux/skbuff.h>
102
#include <linux/if_arp.h>
103
#include <linux/if_strip.h>
104
#include <linux/proc_fs.h>
105
#include <linux/seq_file.h>
106
#include <linux/serial.h>
107
#include <linux/serialP.h>
108
#include <linux/rcupdate.h>
109
#include <net/arp.h>
110
#include <net/net_namespace.h>
111
 
112
#include <linux/ip.h>
113
#include <linux/tcp.h>
114
#include <linux/time.h>
115
#include <linux/jiffies.h>
116
 
117
/************************************************************************/
118
/* Useful structures and definitions                                    */
119
 
120
/*
121
 * A MetricomKey identifies the protocol being carried inside a Metricom
122
 * Starmode packet.
123
 */
124
 
125
typedef union {
126
        __u8 c[4];
127
        __u32 l;
128
} MetricomKey;
129
 
130
/*
131
 * An IP address can be viewed as four bytes in memory (which is what it is) or as
132
 * a single 32-bit long (which is convenient for assignment, equality testing etc.)
133
 */
134
 
135
typedef union {
136
        __u8 b[4];
137
        __u32 l;
138
} IPaddr;
139
 
140
/*
141
 * A MetricomAddressString is used to hold a printable representation of
142
 * a Metricom address.
143
 */
144
 
145
typedef struct {
146
        __u8 c[24];
147
} MetricomAddressString;
148
 
149
/* Encapsulation can expand packet of size x to 65/64x + 1
150
 * Sent packet looks like "<CR>*<address>*<key><encaps payload><CR>"
151
 *                           1 1   1-18  1  4         ?         1
152
 * eg.                     <CR>*0000-1234*SIP0<encaps payload><CR>
153
 * We allow 31 bytes for the stars, the key, the address and the <CR>s
154
 */
155
#define STRIP_ENCAP_SIZE(X) (32 + (X)*65L/64L)
156
 
157
/*
158
 * A STRIP_Header is never really sent over the radio, but making a dummy
159
 * header for internal use within the kernel that looks like an Ethernet
160
 * header makes certain other software happier. For example, tcpdump
161
 * already understands Ethernet headers.
162
 */
163
 
164
typedef struct {
165
        MetricomAddress dst_addr;       /* Destination address, e.g. "0000-1234"   */
166
        MetricomAddress src_addr;       /* Source address, e.g. "0000-5678"        */
167
        unsigned short protocol;        /* The protocol type, using Ethernet codes */
168
} STRIP_Header;
169
 
170
typedef struct {
171
        char c[60];
172
} MetricomNode;
173
 
174
#define NODE_TABLE_SIZE 32
175
typedef struct {
176
        struct timeval timestamp;
177
        int num_nodes;
178
        MetricomNode node[NODE_TABLE_SIZE];
179
} MetricomNodeTable;
180
 
181
enum { FALSE = 0, TRUE = 1 };
182
 
183
/*
184
 * Holds the radio's firmware version.
185
 */
186
typedef struct {
187
        char c[50];
188
} FirmwareVersion;
189
 
190
/*
191
 * Holds the radio's serial number.
192
 */
193
typedef struct {
194
        char c[18];
195
} SerialNumber;
196
 
197
/*
198
 * Holds the radio's battery voltage.
199
 */
200
typedef struct {
201
        char c[11];
202
} BatteryVoltage;
203
 
204
typedef struct {
205
        char c[8];
206
} char8;
207
 
208
enum {
209
        NoStructure = 0, /* Really old firmware */
210
        StructuredMessages = 1, /* Parsable AT response msgs */
211
        ChecksummedMessages = 2 /* Parsable AT response msgs with checksums */
212
};
213
 
214
struct strip {
215
        int magic;
216
        /*
217
         * These are pointers to the malloc()ed frame buffers.
218
         */
219
 
220
        unsigned char *rx_buff; /* buffer for received IP packet */
221
        unsigned char *sx_buff; /* buffer for received serial data */
222
        int sx_count;           /* received serial data counter */
223
        int sx_size;            /* Serial buffer size           */
224
        unsigned char *tx_buff; /* transmitter buffer           */
225
        unsigned char *tx_head; /* pointer to next byte to XMIT */
226
        int tx_left;            /* bytes left in XMIT queue     */
227
        int tx_size;            /* Serial buffer size           */
228
 
229
        /*
230
         * STRIP interface statistics.
231
         */
232
 
233
        unsigned long rx_packets;       /* inbound frames counter       */
234
        unsigned long tx_packets;       /* outbound frames counter      */
235
        unsigned long rx_errors;        /* Parity, etc. errors          */
236
        unsigned long tx_errors;        /* Planned stuff                */
237
        unsigned long rx_dropped;       /* No memory for skb            */
238
        unsigned long tx_dropped;       /* When MTU change              */
239
        unsigned long rx_over_errors;   /* Frame bigger then STRIP buf. */
240
 
241
        unsigned long pps_timer;        /* Timer to determine pps       */
242
        unsigned long rx_pps_count;     /* Counter to determine pps     */
243
        unsigned long tx_pps_count;     /* Counter to determine pps     */
244
        unsigned long sx_pps_count;     /* Counter to determine pps     */
245
        unsigned long rx_average_pps;   /* rx packets per second * 8    */
246
        unsigned long tx_average_pps;   /* tx packets per second * 8    */
247
        unsigned long sx_average_pps;   /* sent packets per second * 8  */
248
 
249
#ifdef EXT_COUNTERS
250
        unsigned long rx_bytes;         /* total received bytes */
251
        unsigned long tx_bytes;         /* total received bytes */
252
        unsigned long rx_rbytes;        /* bytes thru radio i/f */
253
        unsigned long tx_rbytes;        /* bytes thru radio i/f */
254
        unsigned long rx_sbytes;        /* tot bytes thru serial i/f */
255
        unsigned long tx_sbytes;        /* tot bytes thru serial i/f */
256
        unsigned long rx_ebytes;        /* tot stat/err bytes */
257
        unsigned long tx_ebytes;        /* tot stat/err bytes */
258
#endif
259
 
260
        /*
261
         * Internal variables.
262
         */
263
 
264
        struct list_head  list;         /* Linked list of devices */
265
 
266
        int discard;                    /* Set if serial error          */
267
        int working;                    /* Is radio working correctly?  */
268
        int firmware_level;             /* Message structuring level    */
269
        int next_command;               /* Next periodic command        */
270
        unsigned int user_baud;         /* The user-selected baud rate  */
271
        int mtu;                        /* Our mtu (to spot changes!)   */
272
        long watchdog_doprobe;          /* Next time to test the radio  */
273
        long watchdog_doreset;          /* Time to do next reset        */
274
        long gratuitous_arp;            /* Time to send next ARP refresh */
275
        long arp_interval;              /* Next ARP interval            */
276
        struct timer_list idle_timer;   /* For periodic wakeup calls    */
277
        MetricomAddress true_dev_addr;  /* True address of radio        */
278
        int manual_dev_addr;            /* Hack: See note below         */
279
 
280
        FirmwareVersion firmware_version;       /* The radio's firmware version */
281
        SerialNumber serial_number;     /* The radio's serial number    */
282
        BatteryVoltage battery_voltage; /* The radio's battery voltage  */
283
 
284
        /*
285
         * Other useful structures.
286
         */
287
 
288
        struct tty_struct *tty;         /* ptr to TTY structure         */
289
        struct net_device *dev;         /* Our device structure         */
290
 
291
        /*
292
         * Neighbour radio records
293
         */
294
 
295
        MetricomNodeTable portables;
296
        MetricomNodeTable poletops;
297
};
298
 
299
/*
300
 * Note: manual_dev_addr hack
301
 *
302
 * It is not possible to change the hardware address of a Metricom radio,
303
 * or to send packets with a user-specified hardware source address, thus
304
 * trying to manually set a hardware source address is a questionable
305
 * thing to do.  However, if the user *does* manually set the hardware
306
 * source address of a STRIP interface, then the kernel will believe it,
307
 * and use it in certain places. For example, the hardware address listed
308
 * by ifconfig will be the manual address, not the true one.
309
 * (Both addresses are listed in /proc/net/strip.)
310
 * Also, ARP packets will be sent out giving the user-specified address as
311
 * the source address, not the real address. This is dangerous, because
312
 * it means you won't receive any replies -- the ARP replies will go to
313
 * the specified address, which will be some other radio. The case where
314
 * this is useful is when that other radio is also connected to the same
315
 * machine. This allows you to connect a pair of radios to one machine,
316
 * and to use one exclusively for inbound traffic, and the other
317
 * exclusively for outbound traffic. Pretty neat, huh?
318
 *
319
 * Here's the full procedure to set this up:
320
 *
321
 * 1. "slattach" two interfaces, e.g. st0 for outgoing packets,
322
 *    and st1 for incoming packets
323
 *
324
 * 2. "ifconfig" st0 (outbound radio) to have the hardware address
325
 *    which is the real hardware address of st1 (inbound radio).
326
 *    Now when it sends out packets, it will masquerade as st1, and
327
 *    replies will be sent to that radio, which is exactly what we want.
328
 *
329
 * 3. Set the route table entry ("route add default ..." or
330
 *    "route add -net ...", as appropriate) to send packets via the st0
331
 *    interface (outbound radio). Do not add any route which sends packets
332
 *    out via the st1 interface -- that radio is for inbound traffic only.
333
 *
334
 * 4. "ifconfig" st1 (inbound radio) to have hardware address zero.
335
 *    This tells the STRIP driver to "shut down" that interface and not
336
 *    send any packets through it. In particular, it stops sending the
337
 *    periodic gratuitous ARP packets that a STRIP interface normally sends.
338
 *    Also, when packets arrive on that interface, it will search the
339
 *    interface list to see if there is another interface who's manual
340
 *    hardware address matches its own real address (i.e. st0 in this
341
 *    example) and if so it will transfer ownership of the skbuff to
342
 *    that interface, so that it looks to the kernel as if the packet
343
 *    arrived on that interface. This is necessary because when the
344
 *    kernel sends an ARP packet on st0, it expects to get a reply on
345
 *    st0, and if it sees the reply come from st1 then it will ignore
346
 *    it (to be accurate, it puts the entry in the ARP table, but
347
 *    labelled in such a way that st0 can't use it).
348
 *
349
 * Thanks to Petros Maniatis for coming up with the idea of splitting
350
 * inbound and outbound traffic between two interfaces, which turned
351
 * out to be really easy to implement, even if it is a bit of a hack.
352
 *
353
 * Having set a manual address on an interface, you can restore it
354
 * to automatic operation (where the address is automatically kept
355
 * consistent with the real address of the radio) by setting a manual
356
 * address of all ones, e.g. "ifconfig st0 hw strip FFFFFFFFFFFF"
357
 * This 'turns off' manual override mode for the device address.
358
 *
359
 * Note: The IEEE 802 headers reported in tcpdump will show the *real*
360
 * radio addresses the packets were sent and received from, so that you
361
 * can see what is really going on with packets, and which interfaces
362
 * they are really going through.
363
 */
364
 
365
 
366
/************************************************************************/
367
/* Constants                                                            */
368
 
369
/*
370
 * CommandString1 works on all radios
371
 * Other CommandStrings are only used with firmware that provides structured responses.
372
 *
373
 * ats319=1 Enables Info message for node additions and deletions
374
 * ats319=2 Enables Info message for a new best node
375
 * ats319=4 Enables checksums
376
 * ats319=8 Enables ACK messages
377
 */
378
 
379
static const int MaxCommandStringLength = 32;
380
static const int CompatibilityCommand = 1;
381
 
382
static const char CommandString0[] = "*&COMMAND*ATS319=7";      /* Turn on checksums & info messages */
383
static const char CommandString1[] = "*&COMMAND*ATS305?";       /* Query radio name */
384
static const char CommandString2[] = "*&COMMAND*ATS325?";       /* Query battery voltage */
385
static const char CommandString3[] = "*&COMMAND*ATS300?";       /* Query version information */
386
static const char CommandString4[] = "*&COMMAND*ATS311?";       /* Query poletop list */
387
static const char CommandString5[] = "*&COMMAND*AT~LA";         /* Query portables list */
388
typedef struct {
389
        const char *string;
390
        long length;
391
} StringDescriptor;
392
 
393
static const StringDescriptor CommandString[] = {
394
        {CommandString0, sizeof(CommandString0) - 1},
395
        {CommandString1, sizeof(CommandString1) - 1},
396
        {CommandString2, sizeof(CommandString2) - 1},
397
        {CommandString3, sizeof(CommandString3) - 1},
398
        {CommandString4, sizeof(CommandString4) - 1},
399
        {CommandString5, sizeof(CommandString5) - 1}
400
};
401
 
402
#define GOT_ALL_RADIO_INFO(S)      \
403
    ((S)->firmware_version.c[0] && \
404
     (S)->battery_voltage.c[0]  && \
405
     memcmp(&(S)->true_dev_addr, zero_address.c, sizeof(zero_address)))
406
 
407
static const char hextable[16] = "0123456789ABCDEF";
408
 
409
static const MetricomAddress zero_address;
410
static const MetricomAddress broadcast_address =
411
    { {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF} };
412
 
413
static const MetricomKey SIP0Key = { "SIP0" };
414
static const MetricomKey ARP0Key = { "ARP0" };
415
static const MetricomKey ATR_Key = { "ATR " };
416
static const MetricomKey ACK_Key = { "ACK_" };
417
static const MetricomKey INF_Key = { "INF_" };
418
static const MetricomKey ERR_Key = { "ERR_" };
419
 
420
static const long MaxARPInterval = 60 * HZ;     /* One minute */
421
 
422
/*
423
 * Maximum Starmode packet length is 1183 bytes. Allowing 4 bytes for
424
 * protocol key, 4 bytes for checksum, one byte for CR, and 65/64 expansion
425
 * for STRIP encoding, that translates to a maximum payload MTU of 1155.
426
 * Note: A standard NFS 1K data packet is a total of 0x480 (1152) bytes
427
 * long, including IP header, UDP header, and NFS header. Setting the STRIP
428
 * MTU to 1152 allows us to send default sized NFS packets without fragmentation.
429
 */
430
static const unsigned short MAX_SEND_MTU = 1152;
431
static const unsigned short MAX_RECV_MTU = 1500;        /* Hoping for Ethernet sized packets in the future! */
432
static const unsigned short DEFAULT_STRIP_MTU = 1152;
433
static const int STRIP_MAGIC = 0x5303;
434
static const long LongTime = 0x7FFFFFFF;
435
 
436
/************************************************************************/
437
/* Global variables                                                     */
438
 
439
static LIST_HEAD(strip_list);
440
static DEFINE_SPINLOCK(strip_lock);
441
 
442
/************************************************************************/
443
/* Macros                                                               */
444
 
445
/* Returns TRUE if text T begins with prefix P */
446
#define has_prefix(T,L,P) (((L) >= sizeof(P)-1) && !strncmp((T), (P), sizeof(P)-1))
447
 
448
/* Returns TRUE if text T of length L is equal to string S */
449
#define text_equal(T,L,S) (((L) == sizeof(S)-1) && !strncmp((T), (S), sizeof(S)-1))
450
 
451
#define READHEX(X) ((X)>='0' && (X)<='9' ? (X)-'0' :      \
452
                    (X)>='a' && (X)<='f' ? (X)-'a'+10 :   \
453
                    (X)>='A' && (X)<='F' ? (X)-'A'+10 : 0 )
454
 
455
#define READHEX16(X) ((__u16)(READHEX(X)))
456
 
457
#define READDEC(X) ((X)>='0' && (X)<='9' ? (X)-'0' : 0)
458
 
459
#define ARRAY_END(X) (&((X)[ARRAY_SIZE(X)]))
460
 
461
#define JIFFIE_TO_SEC(X) ((X) / HZ)
462
 
463
 
464
/************************************************************************/
465
/* Utility routines                                                     */
466
 
467
static int arp_query(unsigned char *haddr, u32 paddr,
468
                     struct net_device *dev)
469
{
470
        struct neighbour *neighbor_entry;
471
        int ret = 0;
472
 
473
        neighbor_entry = neigh_lookup(&arp_tbl, &paddr, dev);
474
 
475
        if (neighbor_entry != NULL) {
476
                neighbor_entry->used = jiffies;
477
                if (neighbor_entry->nud_state & NUD_VALID) {
478
                        memcpy(haddr, neighbor_entry->ha, dev->addr_len);
479
                        ret = 1;
480
                }
481
                neigh_release(neighbor_entry);
482
        }
483
        return ret;
484
}
485
 
486
static void DumpData(char *msg, struct strip *strip_info, __u8 * ptr,
487
                     __u8 * end)
488
{
489
        static const int MAX_DumpData = 80;
490
        __u8 pkt_text[MAX_DumpData], *p = pkt_text;
491
 
492
        *p++ = '\"';
493
 
494
        while (ptr < end && p < &pkt_text[MAX_DumpData - 4]) {
495
                if (*ptr == '\\') {
496
                        *p++ = '\\';
497
                        *p++ = '\\';
498
                } else {
499
                        if (*ptr >= 32 && *ptr <= 126) {
500
                                *p++ = *ptr;
501
                        } else {
502
                                sprintf(p, "\\%02X", *ptr);
503
                                p += 3;
504
                        }
505
                }
506
                ptr++;
507
        }
508
 
509
        if (ptr == end)
510
                *p++ = '\"';
511
        *p++ = 0;
512
 
513
        printk(KERN_INFO "%s: %-13s%s\n", strip_info->dev->name, msg, pkt_text);
514
}
515
 
516
 
517
/************************************************************************/
518
/* Byte stuffing/unstuffing routines                                    */
519
 
520
/* Stuffing scheme:
521
 * 00    Unused (reserved character)
522
 * 01-3F Run of 2-64 different characters
523
 * 40-7F Run of 1-64 different characters plus a single zero at the end
524
 * 80-BF Run of 1-64 of the same character
525
 * C0-FF Run of 1-64 zeroes (ASCII 0)
526
 */
527
 
528
typedef enum {
529
        Stuff_Diff = 0x00,
530
        Stuff_DiffZero = 0x40,
531
        Stuff_Same = 0x80,
532
        Stuff_Zero = 0xC0,
533
        Stuff_NoCode = 0xFF,    /* Special code, meaning no code selected */
534
 
535
        Stuff_CodeMask = 0xC0,
536
        Stuff_CountMask = 0x3F,
537
        Stuff_MaxCount = 0x3F,
538
        Stuff_Magic = 0x0D      /* The value we are eliminating */
539
} StuffingCode;
540
 
541
/* StuffData encodes the data starting at "src" for "length" bytes.
542
 * It writes it to the buffer pointed to by "dst" (which must be at least
543
 * as long as 1 + 65/64 of the input length). The output may be up to 1.6%
544
 * larger than the input for pathological input, but will usually be smaller.
545
 * StuffData returns the new value of the dst pointer as its result.
546
 * "code_ptr_ptr" points to a "__u8 *" which is used to hold encoding state
547
 * between calls, allowing an encoded packet to be incrementally built up
548
 * from small parts. On the first call, the "__u8 *" pointed to should be
549
 * initialized to NULL; between subsequent calls the calling routine should
550
 * leave the value alone and simply pass it back unchanged so that the
551
 * encoder can recover its current state.
552
 */
553
 
554
#define StuffData_FinishBlock(X) \
555
(*code_ptr = (X) ^ Stuff_Magic, code = Stuff_NoCode)
556
 
557
static __u8 *StuffData(__u8 * src, __u32 length, __u8 * dst,
558
                       __u8 ** code_ptr_ptr)
559
{
560
        __u8 *end = src + length;
561
        __u8 *code_ptr = *code_ptr_ptr;
562
        __u8 code = Stuff_NoCode, count = 0;
563
 
564
        if (!length)
565
                return (dst);
566
 
567
        if (code_ptr) {
568
                /*
569
                 * Recover state from last call, if applicable
570
                 */
571
                code = (*code_ptr ^ Stuff_Magic) & Stuff_CodeMask;
572
                count = (*code_ptr ^ Stuff_Magic) & Stuff_CountMask;
573
        }
574
 
575
        while (src < end) {
576
                switch (code) {
577
                        /* Stuff_NoCode: If no current code, select one */
578
                case Stuff_NoCode:
579
                        /* Record where we're going to put this code */
580
                        code_ptr = dst++;
581
                        count = 0;       /* Reset the count (zero means one instance) */
582
                        /* Tentatively start a new block */
583
                        if (*src == 0) {
584
                                code = Stuff_Zero;
585
                                src++;
586
                        } else {
587
                                code = Stuff_Same;
588
                                *dst++ = *src++ ^ Stuff_Magic;
589
                        }
590
                        /* Note: We optimistically assume run of same -- */
591
                        /* which will be fixed later in Stuff_Same */
592
                        /* if it turns out not to be true. */
593
                        break;
594
 
595
                        /* Stuff_Zero: We already have at least one zero encoded */
596
                case Stuff_Zero:
597
                        /* If another zero, count it, else finish this code block */
598
                        if (*src == 0) {
599
                                count++;
600
                                src++;
601
                        } else {
602
                                StuffData_FinishBlock(Stuff_Zero + count);
603
                        }
604
                        break;
605
 
606
                        /* Stuff_Same: We already have at least one byte encoded */
607
                case Stuff_Same:
608
                        /* If another one the same, count it */
609
                        if ((*src ^ Stuff_Magic) == code_ptr[1]) {
610
                                count++;
611
                                src++;
612
                                break;
613
                        }
614
                        /* else, this byte does not match this block. */
615
                        /* If we already have two or more bytes encoded, finish this code block */
616
                        if (count) {
617
                                StuffData_FinishBlock(Stuff_Same + count);
618
                                break;
619
                        }
620
                        /* else, we only have one so far, so switch to Stuff_Diff code */
621
                        code = Stuff_Diff;
622
                        /* and fall through to Stuff_Diff case below
623
                         * Note cunning cleverness here: case Stuff_Diff compares
624
                         * the current character with the previous two to see if it
625
                         * has a run of three the same. Won't this be an error if
626
                         * there aren't two previous characters stored to compare with?
627
                         * No. Because we know the current character is *not* the same
628
                         * as the previous one, the first test below will necessarily
629
                         * fail and the send half of the "if" won't be executed.
630
                         */
631
 
632
                        /* Stuff_Diff: We have at least two *different* bytes encoded */
633
                case Stuff_Diff:
634
                        /* If this is a zero, must encode a Stuff_DiffZero, and begin a new block */
635
                        if (*src == 0) {
636
                                StuffData_FinishBlock(Stuff_DiffZero +
637
                                                      count);
638
                        }
639
                        /* else, if we have three in a row, it is worth starting a Stuff_Same block */
640
                        else if ((*src ^ Stuff_Magic) == dst[-1]
641
                                 && dst[-1] == dst[-2]) {
642
                                /* Back off the last two characters we encoded */
643
                                code += count - 2;
644
                                /* Note: "Stuff_Diff + 0" is an illegal code */
645
                                if (code == Stuff_Diff + 0) {
646
                                        code = Stuff_Same + 0;
647
                                }
648
                                StuffData_FinishBlock(code);
649
                                code_ptr = dst - 2;
650
                                /* dst[-1] already holds the correct value */
651
                                count = 2;      /* 2 means three bytes encoded */
652
                                code = Stuff_Same;
653
                        }
654
                        /* else, another different byte, so add it to the block */
655
                        else {
656
                                *dst++ = *src ^ Stuff_Magic;
657
                                count++;
658
                        }
659
                        src++;  /* Consume the byte */
660
                        break;
661
                }
662
                if (count == Stuff_MaxCount) {
663
                        StuffData_FinishBlock(code + count);
664
                }
665
        }
666
        if (code == Stuff_NoCode) {
667
                *code_ptr_ptr = NULL;
668
        } else {
669
                *code_ptr_ptr = code_ptr;
670
                StuffData_FinishBlock(code + count);
671
        }
672
        return (dst);
673
}
674
 
675
/*
676
 * UnStuffData decodes the data at "src", up to (but not including) "end".
677
 * It writes the decoded data into the buffer pointed to by "dst", up to a
678
 * maximum of "dst_length", and returns the new value of "src" so that a
679
 * follow-on call can read more data, continuing from where the first left off.
680
 *
681
 * There are three types of results:
682
 * 1. The source data runs out before extracting "dst_length" bytes:
683
 *    UnStuffData returns NULL to indicate failure.
684
 * 2. The source data produces exactly "dst_length" bytes:
685
 *    UnStuffData returns new_src = end to indicate that all bytes were consumed.
686
 * 3. "dst_length" bytes are extracted, with more remaining.
687
 *    UnStuffData returns new_src < end to indicate that there are more bytes
688
 *    to be read.
689
 *
690
 * Note: The decoding may be destructive, in that it may alter the source
691
 * data in the process of decoding it (this is necessary to allow a follow-on
692
 * call to resume correctly).
693
 */
694
 
695
static __u8 *UnStuffData(__u8 * src, __u8 * end, __u8 * dst,
696
                         __u32 dst_length)
697
{
698
        __u8 *dst_end = dst + dst_length;
699
        /* Sanity check */
700
        if (!src || !end || !dst || !dst_length)
701
                return (NULL);
702
        while (src < end && dst < dst_end) {
703
                int count = (*src ^ Stuff_Magic) & Stuff_CountMask;
704
                switch ((*src ^ Stuff_Magic) & Stuff_CodeMask) {
705
                case Stuff_Diff:
706
                        if (src + 1 + count >= end)
707
                                return (NULL);
708
                        do {
709
                                *dst++ = *++src ^ Stuff_Magic;
710
                        }
711
                        while (--count >= 0 && dst < dst_end);
712
                        if (count < 0)
713
                                src += 1;
714
                        else {
715
                                if (count == 0)
716
                                        *src = Stuff_Same ^ Stuff_Magic;
717
                                else
718
                                        *src =
719
                                            (Stuff_Diff +
720
                                             count) ^ Stuff_Magic;
721
                        }
722
                        break;
723
                case Stuff_DiffZero:
724
                        if (src + 1 + count >= end)
725
                                return (NULL);
726
                        do {
727
                                *dst++ = *++src ^ Stuff_Magic;
728
                        }
729
                        while (--count >= 0 && dst < dst_end);
730
                        if (count < 0)
731
                                *src = Stuff_Zero ^ Stuff_Magic;
732
                        else
733
                                *src =
734
                                    (Stuff_DiffZero + count) ^ Stuff_Magic;
735
                        break;
736
                case Stuff_Same:
737
                        if (src + 1 >= end)
738
                                return (NULL);
739
                        do {
740
                                *dst++ = src[1] ^ Stuff_Magic;
741
                        }
742
                        while (--count >= 0 && dst < dst_end);
743
                        if (count < 0)
744
                                src += 2;
745
                        else
746
                                *src = (Stuff_Same + count) ^ Stuff_Magic;
747
                        break;
748
                case Stuff_Zero:
749
                        do {
750
                                *dst++ = 0;
751
                        }
752
                        while (--count >= 0 && dst < dst_end);
753
                        if (count < 0)
754
                                src += 1;
755
                        else
756
                                *src = (Stuff_Zero + count) ^ Stuff_Magic;
757
                        break;
758
                }
759
        }
760
        if (dst < dst_end)
761
                return (NULL);
762
        else
763
                return (src);
764
}
765
 
766
 
767
/************************************************************************/
768
/* General routines for STRIP                                           */
769
 
770
/*
771
 * get_baud returns the current baud rate, as one of the constants defined in
772
 * termbits.h
773
 * If the user has issued a baud rate override using the 'setserial' command
774
 * and the logical current rate is set to 38.4, then the true baud rate
775
 * currently in effect (57.6 or 115.2) is returned.
776
 */
777
static unsigned int get_baud(struct tty_struct *tty)
778
{
779
        if (!tty || !tty->termios)
780
                return (0);
781
        if ((tty->termios->c_cflag & CBAUD) == B38400 && tty->driver_data) {
782
                struct async_struct *info =
783
                    (struct async_struct *) tty->driver_data;
784
                if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
785
                        return (B57600);
786
                if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
787
                        return (B115200);
788
        }
789
        return (tty->termios->c_cflag & CBAUD);
790
}
791
 
792
/*
793
 * set_baud sets the baud rate to the rate defined by baudcode
794
 * Note: The rate B38400 should be avoided, because the user may have
795
 * issued a 'setserial' speed override to map that to a different speed.
796
 * We could achieve a true rate of 38400 if we needed to by cancelling
797
 * any user speed override that is in place, but that might annoy the
798
 * user, so it is simplest to just avoid using 38400.
799
 */
800
static void set_baud(struct tty_struct *tty, unsigned int baudcode)
801
{
802
        struct ktermios old_termios = *(tty->termios);
803
        tty->termios->c_cflag &= ~CBAUD;        /* Clear the old baud setting */
804
        tty->termios->c_cflag |= baudcode;      /* Set the new baud setting */
805
        tty->driver->set_termios(tty, &old_termios);
806
}
807
 
808
/*
809
 * Convert a string to a Metricom Address.
810
 */
811
 
812
#define IS_RADIO_ADDRESS(p) (                                                 \
813
  isdigit((p)[0]) && isdigit((p)[1]) && isdigit((p)[2]) && isdigit((p)[3]) && \
814
  (p)[4] == '-' &&                                                            \
815
  isdigit((p)[5]) && isdigit((p)[6]) && isdigit((p)[7]) && isdigit((p)[8])    )
816
 
817
static int string_to_radio_address(MetricomAddress * addr, __u8 * p)
818
{
819
        if (!IS_RADIO_ADDRESS(p))
820
                return (1);
821
        addr->c[0] = 0;
822
        addr->c[1] = 0;
823
        addr->c[2] = READHEX(p[0]) << 4 | READHEX(p[1]);
824
        addr->c[3] = READHEX(p[2]) << 4 | READHEX(p[3]);
825
        addr->c[4] = READHEX(p[5]) << 4 | READHEX(p[6]);
826
        addr->c[5] = READHEX(p[7]) << 4 | READHEX(p[8]);
827
        return (0);
828
}
829
 
830
/*
831
 * Convert a Metricom Address to a string.
832
 */
833
 
834
static __u8 *radio_address_to_string(const MetricomAddress * addr,
835
                                     MetricomAddressString * p)
836
{
837
        sprintf(p->c, "%02X%02X-%02X%02X", addr->c[2], addr->c[3],
838
                addr->c[4], addr->c[5]);
839
        return (p->c);
840
}
841
 
842
/*
843
 * Note: Must make sure sx_size is big enough to receive a stuffed
844
 * MAX_RECV_MTU packet. Additionally, we also want to ensure that it's
845
 * big enough to receive a large radio neighbour list (currently 4K).
846
 */
847
 
848
static int allocate_buffers(struct strip *strip_info, int mtu)
849
{
850
        struct net_device *dev = strip_info->dev;
851
        int sx_size = max_t(int, STRIP_ENCAP_SIZE(MAX_RECV_MTU), 4096);
852
        int tx_size = STRIP_ENCAP_SIZE(mtu) + MaxCommandStringLength;
853
        __u8 *r = kmalloc(MAX_RECV_MTU, GFP_ATOMIC);
854
        __u8 *s = kmalloc(sx_size, GFP_ATOMIC);
855
        __u8 *t = kmalloc(tx_size, GFP_ATOMIC);
856
        if (r && s && t) {
857
                strip_info->rx_buff = r;
858
                strip_info->sx_buff = s;
859
                strip_info->tx_buff = t;
860
                strip_info->sx_size = sx_size;
861
                strip_info->tx_size = tx_size;
862
                strip_info->mtu = dev->mtu = mtu;
863
                return (1);
864
        }
865
        kfree(r);
866
        kfree(s);
867
        kfree(t);
868
        return (0);
869
}
870
 
871
/*
872
 * MTU has been changed by the IP layer.
873
 * We could be in
874
 * an upcall from the tty driver, or in an ip packet queue.
875
 */
876
static int strip_change_mtu(struct net_device *dev, int new_mtu)
877
{
878
        struct strip *strip_info = netdev_priv(dev);
879
        int old_mtu = strip_info->mtu;
880
        unsigned char *orbuff = strip_info->rx_buff;
881
        unsigned char *osbuff = strip_info->sx_buff;
882
        unsigned char *otbuff = strip_info->tx_buff;
883
 
884
        if (new_mtu > MAX_SEND_MTU) {
885
                printk(KERN_ERR
886
                       "%s: MTU exceeds maximum allowable (%d), MTU change cancelled.\n",
887
                       strip_info->dev->name, MAX_SEND_MTU);
888
                return -EINVAL;
889
        }
890
 
891
        spin_lock_bh(&strip_lock);
892
        if (!allocate_buffers(strip_info, new_mtu)) {
893
                printk(KERN_ERR "%s: unable to grow strip buffers, MTU change cancelled.\n",
894
                       strip_info->dev->name);
895
                spin_unlock_bh(&strip_lock);
896
                return -ENOMEM;
897
        }
898
 
899
        if (strip_info->sx_count) {
900
                if (strip_info->sx_count <= strip_info->sx_size)
901
                        memcpy(strip_info->sx_buff, osbuff,
902
                               strip_info->sx_count);
903
                else {
904
                        strip_info->discard = strip_info->sx_count;
905
                        strip_info->rx_over_errors++;
906
                }
907
        }
908
 
909
        if (strip_info->tx_left) {
910
                if (strip_info->tx_left <= strip_info->tx_size)
911
                        memcpy(strip_info->tx_buff, strip_info->tx_head,
912
                               strip_info->tx_left);
913
                else {
914
                        strip_info->tx_left = 0;
915
                        strip_info->tx_dropped++;
916
                }
917
        }
918
        strip_info->tx_head = strip_info->tx_buff;
919
        spin_unlock_bh(&strip_lock);
920
 
921
        printk(KERN_NOTICE "%s: strip MTU changed fom %d to %d.\n",
922
               strip_info->dev->name, old_mtu, strip_info->mtu);
923
 
924
        kfree(orbuff);
925
        kfree(osbuff);
926
        kfree(otbuff);
927
        return 0;
928
}
929
 
930
static void strip_unlock(struct strip *strip_info)
931
{
932
        /*
933
         * Set the timer to go off in one second.
934
         */
935
        strip_info->idle_timer.expires = jiffies + 1 * HZ;
936
        add_timer(&strip_info->idle_timer);
937
        netif_wake_queue(strip_info->dev);
938
}
939
 
940
 
941
 
942
/*
943
 * If the time is in the near future, time_delta prints the number of
944
 * seconds to go into the buffer and returns the address of the buffer.
945
 * If the time is not in the near future, it returns the address of the
946
 * string "Not scheduled" The buffer must be long enough to contain the
947
 * ascii representation of the number plus 9 charactes for the " seconds"
948
 * and the null character.
949
 */
950
#ifdef CONFIG_PROC_FS
951
static char *time_delta(char buffer[], long time)
952
{
953
        time -= jiffies;
954
        if (time > LongTime / 2)
955
                return ("Not scheduled");
956
        if (time < 0)
957
                time = 0;        /* Don't print negative times */
958
        sprintf(buffer, "%ld seconds", time / HZ);
959
        return (buffer);
960
}
961
 
962
/* get Nth element of the linked list */
963
static struct strip *strip_get_idx(loff_t pos)
964
{
965
        struct list_head *l;
966
        int i = 0;
967
 
968
        list_for_each_rcu(l, &strip_list) {
969
                if (pos == i)
970
                        return list_entry(l, struct strip, list);
971
                ++i;
972
        }
973
        return NULL;
974
}
975
 
976
static void *strip_seq_start(struct seq_file *seq, loff_t *pos)
977
{
978
        rcu_read_lock();
979
        return *pos ? strip_get_idx(*pos - 1) : SEQ_START_TOKEN;
980
}
981
 
982
static void *strip_seq_next(struct seq_file *seq, void *v, loff_t *pos)
983
{
984
        struct list_head *l;
985
        struct strip *s;
986
 
987
        ++*pos;
988
        if (v == SEQ_START_TOKEN)
989
                return strip_get_idx(1);
990
 
991
        s = v;
992
        l = &s->list;
993
        list_for_each_continue_rcu(l, &strip_list) {
994
                return list_entry(l, struct strip, list);
995
        }
996
        return NULL;
997
}
998
 
999
static void strip_seq_stop(struct seq_file *seq, void *v)
1000
{
1001
        rcu_read_unlock();
1002
}
1003
 
1004
static void strip_seq_neighbours(struct seq_file *seq,
1005
                           const MetricomNodeTable * table,
1006
                           const char *title)
1007
{
1008
        /* We wrap this in a do/while loop, so if the table changes */
1009
        /* while we're reading it, we just go around and try again. */
1010
        struct timeval t;
1011
 
1012
        do {
1013
                int i;
1014
                t = table->timestamp;
1015
                if (table->num_nodes)
1016
                        seq_printf(seq, "\n %s\n", title);
1017
                for (i = 0; i < table->num_nodes; i++) {
1018
                        MetricomNode node;
1019
 
1020
                        spin_lock_bh(&strip_lock);
1021
                        node = table->node[i];
1022
                        spin_unlock_bh(&strip_lock);
1023
                        seq_printf(seq, "  %s\n", node.c);
1024
                }
1025
        } while (table->timestamp.tv_sec != t.tv_sec
1026
                 || table->timestamp.tv_usec != t.tv_usec);
1027
}
1028
 
1029
/*
1030
 * This function prints radio status information via the seq_file
1031
 * interface.  The interface takes care of buffer size and over
1032
 * run issues.
1033
 *
1034
 * The buffer in seq_file is PAGESIZE (4K)
1035
 * so this routine should never print more or it will get truncated.
1036
 * With the maximum of 32 portables and 32 poletops
1037
 * reported, the routine outputs 3107 bytes into the buffer.
1038
 */
1039
static void strip_seq_status_info(struct seq_file *seq,
1040
                                  const struct strip *strip_info)
1041
{
1042
        char temp[32];
1043
        MetricomAddressString addr_string;
1044
 
1045
        /* First, we must copy all of our data to a safe place, */
1046
        /* in case a serial interrupt comes in and changes it.  */
1047
        int tx_left = strip_info->tx_left;
1048
        unsigned long rx_average_pps = strip_info->rx_average_pps;
1049
        unsigned long tx_average_pps = strip_info->tx_average_pps;
1050
        unsigned long sx_average_pps = strip_info->sx_average_pps;
1051
        int working = strip_info->working;
1052
        int firmware_level = strip_info->firmware_level;
1053
        long watchdog_doprobe = strip_info->watchdog_doprobe;
1054
        long watchdog_doreset = strip_info->watchdog_doreset;
1055
        long gratuitous_arp = strip_info->gratuitous_arp;
1056
        long arp_interval = strip_info->arp_interval;
1057
        FirmwareVersion firmware_version = strip_info->firmware_version;
1058
        SerialNumber serial_number = strip_info->serial_number;
1059
        BatteryVoltage battery_voltage = strip_info->battery_voltage;
1060
        char *if_name = strip_info->dev->name;
1061
        MetricomAddress true_dev_addr = strip_info->true_dev_addr;
1062
        MetricomAddress dev_dev_addr =
1063
            *(MetricomAddress *) strip_info->dev->dev_addr;
1064
        int manual_dev_addr = strip_info->manual_dev_addr;
1065
#ifdef EXT_COUNTERS
1066
        unsigned long rx_bytes = strip_info->rx_bytes;
1067
        unsigned long tx_bytes = strip_info->tx_bytes;
1068
        unsigned long rx_rbytes = strip_info->rx_rbytes;
1069
        unsigned long tx_rbytes = strip_info->tx_rbytes;
1070
        unsigned long rx_sbytes = strip_info->rx_sbytes;
1071
        unsigned long tx_sbytes = strip_info->tx_sbytes;
1072
        unsigned long rx_ebytes = strip_info->rx_ebytes;
1073
        unsigned long tx_ebytes = strip_info->tx_ebytes;
1074
#endif
1075
 
1076
        seq_printf(seq, "\nInterface name\t\t%s\n", if_name);
1077
        seq_printf(seq, " Radio working:\t\t%s\n", working ? "Yes" : "No");
1078
        radio_address_to_string(&true_dev_addr, &addr_string);
1079
        seq_printf(seq, " Radio address:\t\t%s\n", addr_string.c);
1080
        if (manual_dev_addr) {
1081
                radio_address_to_string(&dev_dev_addr, &addr_string);
1082
                seq_printf(seq, " Device address:\t%s\n", addr_string.c);
1083
        }
1084
        seq_printf(seq, " Firmware version:\t%s", !working ? "Unknown" :
1085
                     !firmware_level ? "Should be upgraded" :
1086
                     firmware_version.c);
1087
        if (firmware_level >= ChecksummedMessages)
1088
                seq_printf(seq, " (Checksums Enabled)");
1089
        seq_printf(seq, "\n");
1090
        seq_printf(seq, " Serial number:\t\t%s\n", serial_number.c);
1091
        seq_printf(seq, " Battery voltage:\t%s\n", battery_voltage.c);
1092
        seq_printf(seq, " Transmit queue (bytes):%d\n", tx_left);
1093
        seq_printf(seq, " Receive packet rate:   %ld packets per second\n",
1094
                     rx_average_pps / 8);
1095
        seq_printf(seq, " Transmit packet rate:  %ld packets per second\n",
1096
                     tx_average_pps / 8);
1097
        seq_printf(seq, " Sent packet rate:      %ld packets per second\n",
1098
                     sx_average_pps / 8);
1099
        seq_printf(seq, " Next watchdog probe:\t%s\n",
1100
                     time_delta(temp, watchdog_doprobe));
1101
        seq_printf(seq, " Next watchdog reset:\t%s\n",
1102
                     time_delta(temp, watchdog_doreset));
1103
        seq_printf(seq, " Next gratuitous ARP:\t");
1104
 
1105
        if (!memcmp
1106
            (strip_info->dev->dev_addr, zero_address.c,
1107
             sizeof(zero_address)))
1108
                seq_printf(seq, "Disabled\n");
1109
        else {
1110
                seq_printf(seq, "%s\n", time_delta(temp, gratuitous_arp));
1111
                seq_printf(seq, " Next ARP interval:\t%ld seconds\n",
1112
                             JIFFIE_TO_SEC(arp_interval));
1113
        }
1114
 
1115
        if (working) {
1116
#ifdef EXT_COUNTERS
1117
                seq_printf(seq, "\n");
1118
                seq_printf(seq,
1119
                             " Total bytes:         \trx:\t%lu\ttx:\t%lu\n",
1120
                             rx_bytes, tx_bytes);
1121
                seq_printf(seq,
1122
                             "  thru radio:         \trx:\t%lu\ttx:\t%lu\n",
1123
                             rx_rbytes, tx_rbytes);
1124
                seq_printf(seq,
1125
                             "  thru serial port:   \trx:\t%lu\ttx:\t%lu\n",
1126
                             rx_sbytes, tx_sbytes);
1127
                seq_printf(seq,
1128
                             " Total stat/err bytes:\trx:\t%lu\ttx:\t%lu\n",
1129
                             rx_ebytes, tx_ebytes);
1130
#endif
1131
                strip_seq_neighbours(seq, &strip_info->poletops,
1132
                                        "Poletops:");
1133
                strip_seq_neighbours(seq, &strip_info->portables,
1134
                                        "Portables:");
1135
        }
1136
}
1137
 
1138
/*
1139
 * This function is exports status information from the STRIP driver through
1140
 * the /proc file system.
1141
 */
1142
static int strip_seq_show(struct seq_file *seq, void *v)
1143
{
1144
        if (v == SEQ_START_TOKEN)
1145
                seq_printf(seq, "strip_version: %s\n", StripVersion);
1146
        else
1147
                strip_seq_status_info(seq, (const struct strip *)v);
1148
        return 0;
1149
}
1150
 
1151
 
1152
static struct seq_operations strip_seq_ops = {
1153
        .start = strip_seq_start,
1154
        .next  = strip_seq_next,
1155
        .stop  = strip_seq_stop,
1156
        .show  = strip_seq_show,
1157
};
1158
 
1159
static int strip_seq_open(struct inode *inode, struct file *file)
1160
{
1161
        return seq_open(file, &strip_seq_ops);
1162
}
1163
 
1164
static const struct file_operations strip_seq_fops = {
1165
        .owner   = THIS_MODULE,
1166
        .open    = strip_seq_open,
1167
        .read    = seq_read,
1168
        .llseek  = seq_lseek,
1169
        .release = seq_release,
1170
};
1171
#endif
1172
 
1173
 
1174
 
1175
/************************************************************************/
1176
/* Sending routines                                                     */
1177
 
1178
static void ResetRadio(struct strip *strip_info)
1179
{
1180
        struct tty_struct *tty = strip_info->tty;
1181
        static const char init[] = "ate0q1dt**starmode\r**";
1182
        StringDescriptor s = { init, sizeof(init) - 1 };
1183
 
1184
        /*
1185
         * If the radio isn't working anymore,
1186
         * we should clear the old status information.
1187
         */
1188
        if (strip_info->working) {
1189
                printk(KERN_INFO "%s: No response: Resetting radio.\n",
1190
                       strip_info->dev->name);
1191
                strip_info->firmware_version.c[0] = '\0';
1192
                strip_info->serial_number.c[0] = '\0';
1193
                strip_info->battery_voltage.c[0] = '\0';
1194
                strip_info->portables.num_nodes = 0;
1195
                do_gettimeofday(&strip_info->portables.timestamp);
1196
                strip_info->poletops.num_nodes = 0;
1197
                do_gettimeofday(&strip_info->poletops.timestamp);
1198
        }
1199
 
1200
        strip_info->pps_timer = jiffies;
1201
        strip_info->rx_pps_count = 0;
1202
        strip_info->tx_pps_count = 0;
1203
        strip_info->sx_pps_count = 0;
1204
        strip_info->rx_average_pps = 0;
1205
        strip_info->tx_average_pps = 0;
1206
        strip_info->sx_average_pps = 0;
1207
 
1208
        /* Mark radio address as unknown */
1209
        *(MetricomAddress *) & strip_info->true_dev_addr = zero_address;
1210
        if (!strip_info->manual_dev_addr)
1211
                *(MetricomAddress *) strip_info->dev->dev_addr =
1212
                    zero_address;
1213
        strip_info->working = FALSE;
1214
        strip_info->firmware_level = NoStructure;
1215
        strip_info->next_command = CompatibilityCommand;
1216
        strip_info->watchdog_doprobe = jiffies + 10 * HZ;
1217
        strip_info->watchdog_doreset = jiffies + 1 * HZ;
1218
 
1219
        /* If the user has selected a baud rate above 38.4 see what magic we have to do */
1220
        if (strip_info->user_baud > B38400) {
1221
                /*
1222
                 * Subtle stuff: Pay attention :-)
1223
                 * If the serial port is currently at the user's selected (>38.4) rate,
1224
                 * then we temporarily switch to 19.2 and issue the ATS304 command
1225
                 * to tell the radio to switch to the user's selected rate.
1226
                 * If the serial port is not currently at that rate, that means we just
1227
                 * issued the ATS304 command last time through, so this time we restore
1228
                 * the user's selected rate and issue the normal starmode reset string.
1229
                 */
1230
                if (strip_info->user_baud == get_baud(tty)) {
1231
                        static const char b0[] = "ate0q1s304=57600\r";
1232
                        static const char b1[] = "ate0q1s304=115200\r";
1233
                        static const StringDescriptor baudstring[2] =
1234
                            { {b0, sizeof(b0) - 1}
1235
                        , {b1, sizeof(b1) - 1}
1236
                        };
1237
                        set_baud(tty, B19200);
1238
                        if (strip_info->user_baud == B57600)
1239
                                s = baudstring[0];
1240
                        else if (strip_info->user_baud == B115200)
1241
                                s = baudstring[1];
1242
                        else
1243
                                s = baudstring[1];      /* For now */
1244
                } else
1245
                        set_baud(tty, strip_info->user_baud);
1246
        }
1247
 
1248
        tty->driver->write(tty, s.string, s.length);
1249
#ifdef EXT_COUNTERS
1250
        strip_info->tx_ebytes += s.length;
1251
#endif
1252
}
1253
 
1254
/*
1255
 * Called by the driver when there's room for more data.  If we have
1256
 * more packets to send, we send them here.
1257
 */
1258
 
1259
static void strip_write_some_more(struct tty_struct *tty)
1260
{
1261
        struct strip *strip_info = (struct strip *) tty->disc_data;
1262
 
1263
        /* First make sure we're connected. */
1264
        if (!strip_info || strip_info->magic != STRIP_MAGIC ||
1265
            !netif_running(strip_info->dev))
1266
                return;
1267
 
1268
        if (strip_info->tx_left > 0) {
1269
                int num_written =
1270
                    tty->driver->write(tty, strip_info->tx_head,
1271
                                      strip_info->tx_left);
1272
                strip_info->tx_left -= num_written;
1273
                strip_info->tx_head += num_written;
1274
#ifdef EXT_COUNTERS
1275
                strip_info->tx_sbytes += num_written;
1276
#endif
1277
        } else {                /* Else start transmission of another packet */
1278
 
1279
                tty->flags &= ~(1 << TTY_DO_WRITE_WAKEUP);
1280
                strip_unlock(strip_info);
1281
        }
1282
}
1283
 
1284
static __u8 *add_checksum(__u8 * buffer, __u8 * end)
1285
{
1286
        __u16 sum = 0;
1287
        __u8 *p = buffer;
1288
        while (p < end)
1289
                sum += *p++;
1290
        end[3] = hextable[sum & 0xF];
1291
        sum >>= 4;
1292
        end[2] = hextable[sum & 0xF];
1293
        sum >>= 4;
1294
        end[1] = hextable[sum & 0xF];
1295
        sum >>= 4;
1296
        end[0] = hextable[sum & 0xF];
1297
        return (end + 4);
1298
}
1299
 
1300
static unsigned char *strip_make_packet(unsigned char *buffer,
1301
                                        struct strip *strip_info,
1302
                                        struct sk_buff *skb)
1303
{
1304
        __u8 *ptr = buffer;
1305
        __u8 *stuffstate = NULL;
1306
        STRIP_Header *header = (STRIP_Header *) skb->data;
1307
        MetricomAddress haddr = header->dst_addr;
1308
        int len = skb->len - sizeof(STRIP_Header);
1309
        MetricomKey key;
1310
 
1311
        /*HexDump("strip_make_packet", strip_info, skb->data, skb->data + skb->len); */
1312
 
1313
        if (header->protocol == htons(ETH_P_IP))
1314
                key = SIP0Key;
1315
        else if (header->protocol == htons(ETH_P_ARP))
1316
                key = ARP0Key;
1317
        else {
1318
                printk(KERN_ERR
1319
                       "%s: strip_make_packet: Unknown packet type 0x%04X\n",
1320
                       strip_info->dev->name, ntohs(header->protocol));
1321
                return (NULL);
1322
        }
1323
 
1324
        if (len > strip_info->mtu) {
1325
                printk(KERN_ERR
1326
                       "%s: Dropping oversized transmit packet: %d bytes\n",
1327
                       strip_info->dev->name, len);
1328
                return (NULL);
1329
        }
1330
 
1331
        /*
1332
         * If we're sending to ourselves, discard the packet.
1333
         * (Metricom radios choke if they try to send a packet to their own address.)
1334
         */
1335
        if (!memcmp(haddr.c, strip_info->true_dev_addr.c, sizeof(haddr))) {
1336
                printk(KERN_ERR "%s: Dropping packet addressed to self\n",
1337
                       strip_info->dev->name);
1338
                return (NULL);
1339
        }
1340
 
1341
        /*
1342
         * If this is a broadcast packet, send it to our designated Metricom
1343
         * 'broadcast hub' radio (First byte of address being 0xFF means broadcast)
1344
         */
1345
        if (haddr.c[0] == 0xFF) {
1346
                __be32 brd = 0;
1347
                struct in_device *in_dev;
1348
 
1349
                rcu_read_lock();
1350
                in_dev = __in_dev_get_rcu(strip_info->dev);
1351
                if (in_dev == NULL) {
1352
                        rcu_read_unlock();
1353
                        return NULL;
1354
                }
1355
                if (in_dev->ifa_list)
1356
                        brd = in_dev->ifa_list->ifa_broadcast;
1357
                rcu_read_unlock();
1358
 
1359
                /* arp_query returns 1 if it succeeds in looking up the address, 0 if it fails */
1360
                if (!arp_query(haddr.c, brd, strip_info->dev)) {
1361
                        printk(KERN_ERR
1362
                               "%s: Unable to send packet (no broadcast hub configured)\n",
1363
                               strip_info->dev->name);
1364
                        return (NULL);
1365
                }
1366
                /*
1367
                 * If we are the broadcast hub, don't bother sending to ourselves.
1368
                 * (Metricom radios choke if they try to send a packet to their own address.)
1369
                 */
1370
                if (!memcmp
1371
                    (haddr.c, strip_info->true_dev_addr.c, sizeof(haddr)))
1372
                        return (NULL);
1373
        }
1374
 
1375
        *ptr++ = 0x0D;
1376
        *ptr++ = '*';
1377
        *ptr++ = hextable[haddr.c[2] >> 4];
1378
        *ptr++ = hextable[haddr.c[2] & 0xF];
1379
        *ptr++ = hextable[haddr.c[3] >> 4];
1380
        *ptr++ = hextable[haddr.c[3] & 0xF];
1381
        *ptr++ = '-';
1382
        *ptr++ = hextable[haddr.c[4] >> 4];
1383
        *ptr++ = hextable[haddr.c[4] & 0xF];
1384
        *ptr++ = hextable[haddr.c[5] >> 4];
1385
        *ptr++ = hextable[haddr.c[5] & 0xF];
1386
        *ptr++ = '*';
1387
        *ptr++ = key.c[0];
1388
        *ptr++ = key.c[1];
1389
        *ptr++ = key.c[2];
1390
        *ptr++ = key.c[3];
1391
 
1392
        ptr =
1393
            StuffData(skb->data + sizeof(STRIP_Header), len, ptr,
1394
                      &stuffstate);
1395
 
1396
        if (strip_info->firmware_level >= ChecksummedMessages)
1397
                ptr = add_checksum(buffer + 1, ptr);
1398
 
1399
        *ptr++ = 0x0D;
1400
        return (ptr);
1401
}
1402
 
1403
static void strip_send(struct strip *strip_info, struct sk_buff *skb)
1404
{
1405
        MetricomAddress haddr;
1406
        unsigned char *ptr = strip_info->tx_buff;
1407
        int doreset = (long) jiffies - strip_info->watchdog_doreset >= 0;
1408
        int doprobe = (long) jiffies - strip_info->watchdog_doprobe >= 0
1409
            && !doreset;
1410
        __be32 addr, brd;
1411
 
1412
        /*
1413
         * 1. If we have a packet, encapsulate it and put it in the buffer
1414
         */
1415
        if (skb) {
1416
                char *newptr = strip_make_packet(ptr, strip_info, skb);
1417
                strip_info->tx_pps_count++;
1418
                if (!newptr)
1419
                        strip_info->tx_dropped++;
1420
                else {
1421
                        ptr = newptr;
1422
                        strip_info->sx_pps_count++;
1423
                        strip_info->tx_packets++;       /* Count another successful packet */
1424
#ifdef EXT_COUNTERS
1425
                        strip_info->tx_bytes += skb->len;
1426
                        strip_info->tx_rbytes += ptr - strip_info->tx_buff;
1427
#endif
1428
                        /*DumpData("Sending:", strip_info, strip_info->tx_buff, ptr); */
1429
                        /*HexDump("Sending", strip_info, strip_info->tx_buff, ptr); */
1430
                }
1431
        }
1432
 
1433
        /*
1434
         * 2. If it is time for another tickle, tack it on, after the packet
1435
         */
1436
        if (doprobe) {
1437
                StringDescriptor ts = CommandString[strip_info->next_command];
1438
#if TICKLE_TIMERS
1439
                {
1440
                        struct timeval tv;
1441
                        do_gettimeofday(&tv);
1442
                        printk(KERN_INFO "**** Sending tickle string %d      at %02d.%06d\n",
1443
                               strip_info->next_command, tv.tv_sec % 100,
1444
                               tv.tv_usec);
1445
                }
1446
#endif
1447
                if (ptr == strip_info->tx_buff)
1448
                        *ptr++ = 0x0D;
1449
 
1450
                *ptr++ = '*';   /* First send "**" to provoke an error message */
1451
                *ptr++ = '*';
1452
 
1453
                /* Then add the command */
1454
                memcpy(ptr, ts.string, ts.length);
1455
 
1456
                /* Add a checksum ? */
1457
                if (strip_info->firmware_level < ChecksummedMessages)
1458
                        ptr += ts.length;
1459
                else
1460
                        ptr = add_checksum(ptr, ptr + ts.length);
1461
 
1462
                *ptr++ = 0x0D;  /* Terminate the command with a <CR> */
1463
 
1464
                /* Cycle to next periodic command? */
1465
                if (strip_info->firmware_level >= StructuredMessages)
1466
                        if (++strip_info->next_command >=
1467
                            ARRAY_SIZE(CommandString))
1468
                                strip_info->next_command = 0;
1469
#ifdef EXT_COUNTERS
1470
                strip_info->tx_ebytes += ts.length;
1471
#endif
1472
                strip_info->watchdog_doprobe = jiffies + 10 * HZ;
1473
                strip_info->watchdog_doreset = jiffies + 1 * HZ;
1474
                /*printk(KERN_INFO "%s: Routine radio test.\n", strip_info->dev->name); */
1475
        }
1476
 
1477
        /*
1478
         * 3. Set up the strip_info ready to send the data (if any).
1479
         */
1480
        strip_info->tx_head = strip_info->tx_buff;
1481
        strip_info->tx_left = ptr - strip_info->tx_buff;
1482
        strip_info->tty->flags |= (1 << TTY_DO_WRITE_WAKEUP);
1483
 
1484
        /*
1485
         * 4. Debugging check to make sure we're not overflowing the buffer.
1486
         */
1487
        if (strip_info->tx_size - strip_info->tx_left < 20)
1488
                printk(KERN_ERR "%s: Sending%5d bytes;%5d bytes free.\n",
1489
                       strip_info->dev->name, strip_info->tx_left,
1490
                       strip_info->tx_size - strip_info->tx_left);
1491
 
1492
        /*
1493
         * 5. If watchdog has expired, reset the radio. Note: if there's data waiting in
1494
         * the buffer, strip_write_some_more will send it after the reset has finished
1495
         */
1496
        if (doreset) {
1497
                ResetRadio(strip_info);
1498
                return;
1499
        }
1500
 
1501
        if (1) {
1502
                struct in_device *in_dev;
1503
 
1504
                brd = addr = 0;
1505
                rcu_read_lock();
1506
                in_dev = __in_dev_get_rcu(strip_info->dev);
1507
                if (in_dev) {
1508
                        if (in_dev->ifa_list) {
1509
                                brd = in_dev->ifa_list->ifa_broadcast;
1510
                                addr = in_dev->ifa_list->ifa_local;
1511
                        }
1512
                }
1513
                rcu_read_unlock();
1514
        }
1515
 
1516
 
1517
        /*
1518
         * 6. If it is time for a periodic ARP, queue one up to be sent.
1519
         * We only do this if:
1520
         *  1. The radio is working
1521
         *  2. It's time to send another periodic ARP
1522
         *  3. We really know what our address is (and it is not manually set to zero)
1523
         *  4. We have a designated broadcast address configured
1524
         * If we queue up an ARP packet when we don't have a designated broadcast
1525
         * address configured, then the packet will just have to be discarded in
1526
         * strip_make_packet. This is not fatal, but it causes misleading information
1527
         * to be displayed in tcpdump. tcpdump will report that periodic APRs are
1528
         * being sent, when in fact they are not, because they are all being dropped
1529
         * in the strip_make_packet routine.
1530
         */
1531
        if (strip_info->working
1532
            && (long) jiffies - strip_info->gratuitous_arp >= 0
1533
            && memcmp(strip_info->dev->dev_addr, zero_address.c,
1534
                      sizeof(zero_address))
1535
            && arp_query(haddr.c, brd, strip_info->dev)) {
1536
                /*printk(KERN_INFO "%s: Sending gratuitous ARP with interval %ld\n",
1537
                   strip_info->dev->name, strip_info->arp_interval / HZ); */
1538
                strip_info->gratuitous_arp =
1539
                    jiffies + strip_info->arp_interval;
1540
                strip_info->arp_interval *= 2;
1541
                if (strip_info->arp_interval > MaxARPInterval)
1542
                        strip_info->arp_interval = MaxARPInterval;
1543
                if (addr)
1544
                        arp_send(ARPOP_REPLY, ETH_P_ARP, addr,  /* Target address of ARP packet is our address */
1545
                                 strip_info->dev,       /* Device to send packet on */
1546
                                 addr,  /* Source IP address this ARP packet comes from */
1547
                                 NULL,  /* Destination HW address is NULL (broadcast it) */
1548
                                 strip_info->dev->dev_addr,     /* Source HW address is our HW address */
1549
                                 strip_info->dev->dev_addr);    /* Target HW address is our HW address (redundant) */
1550
        }
1551
 
1552
        /*
1553
         * 7. All ready. Start the transmission
1554
         */
1555
        strip_write_some_more(strip_info->tty);
1556
}
1557
 
1558
/* Encapsulate a datagram and kick it into a TTY queue. */
1559
static int strip_xmit(struct sk_buff *skb, struct net_device *dev)
1560
{
1561
        struct strip *strip_info = netdev_priv(dev);
1562
 
1563
        if (!netif_running(dev)) {
1564
                printk(KERN_ERR "%s: xmit call when iface is down\n",
1565
                       dev->name);
1566
                return (1);
1567
        }
1568
 
1569
        netif_stop_queue(dev);
1570
 
1571
        del_timer(&strip_info->idle_timer);
1572
 
1573
 
1574
        if (time_after(jiffies, strip_info->pps_timer + HZ)) {
1575
                unsigned long t = jiffies - strip_info->pps_timer;
1576
                unsigned long rx_pps_count = (strip_info->rx_pps_count * HZ * 8 + t / 2) / t;
1577
                unsigned long tx_pps_count = (strip_info->tx_pps_count * HZ * 8 + t / 2) / t;
1578
                unsigned long sx_pps_count = (strip_info->sx_pps_count * HZ * 8 + t / 2) / t;
1579
 
1580
                strip_info->pps_timer = jiffies;
1581
                strip_info->rx_pps_count = 0;
1582
                strip_info->tx_pps_count = 0;
1583
                strip_info->sx_pps_count = 0;
1584
 
1585
                strip_info->rx_average_pps = (strip_info->rx_average_pps + rx_pps_count + 1) / 2;
1586
                strip_info->tx_average_pps = (strip_info->tx_average_pps + tx_pps_count + 1) / 2;
1587
                strip_info->sx_average_pps = (strip_info->sx_average_pps + sx_pps_count + 1) / 2;
1588
 
1589
                if (rx_pps_count / 8 >= 10)
1590
                        printk(KERN_INFO "%s: WARNING: Receiving %ld packets per second.\n",
1591
                               strip_info->dev->name, rx_pps_count / 8);
1592
                if (tx_pps_count / 8 >= 10)
1593
                        printk(KERN_INFO "%s: WARNING: Tx        %ld packets per second.\n",
1594
                               strip_info->dev->name, tx_pps_count / 8);
1595
                if (sx_pps_count / 8 >= 10)
1596
                        printk(KERN_INFO "%s: WARNING: Sending   %ld packets per second.\n",
1597
                               strip_info->dev->name, sx_pps_count / 8);
1598
        }
1599
 
1600
        spin_lock_bh(&strip_lock);
1601
 
1602
        strip_send(strip_info, skb);
1603
 
1604
        spin_unlock_bh(&strip_lock);
1605
 
1606
        if (skb)
1607
                dev_kfree_skb(skb);
1608
        return 0;
1609
}
1610
 
1611
/*
1612
 * IdleTask periodically calls strip_xmit, so even when we have no IP packets
1613
 * to send for an extended period of time, the watchdog processing still gets
1614
 * done to ensure that the radio stays in Starmode
1615
 */
1616
 
1617
static void strip_IdleTask(unsigned long parameter)
1618
{
1619
        strip_xmit(NULL, (struct net_device *) parameter);
1620
}
1621
 
1622
/*
1623
 * Create the MAC header for an arbitrary protocol layer
1624
 *
1625
 * saddr!=NULL        means use this specific address (n/a for Metricom)
1626
 * saddr==NULL        means use default device source address
1627
 * daddr!=NULL        means use this destination address
1628
 * daddr==NULL        means leave destination address alone
1629
 *                 (e.g. unresolved arp -- kernel will call
1630
 *                 rebuild_header later to fill in the address)
1631
 */
1632
 
1633
static int strip_header(struct sk_buff *skb, struct net_device *dev,
1634
                        unsigned short type, const void *daddr,
1635
                        const void *saddr, unsigned len)
1636
{
1637
        struct strip *strip_info = netdev_priv(dev);
1638
        STRIP_Header *header = (STRIP_Header *) skb_push(skb, sizeof(STRIP_Header));
1639
 
1640
        /*printk(KERN_INFO "%s: strip_header 0x%04X %s\n", dev->name, type,
1641
           type == ETH_P_IP ? "IP" : type == ETH_P_ARP ? "ARP" : ""); */
1642
 
1643
        header->src_addr = strip_info->true_dev_addr;
1644
        header->protocol = htons(type);
1645
 
1646
        /*HexDump("strip_header", netdev_priv(dev), skb->data, skb->data + skb->len); */
1647
 
1648
        if (!daddr)
1649
                return (-dev->hard_header_len);
1650
 
1651
        header->dst_addr = *(MetricomAddress *) daddr;
1652
        return (dev->hard_header_len);
1653
}
1654
 
1655
/*
1656
 * Rebuild the MAC header. This is called after an ARP
1657
 * (or in future other address resolution) has completed on this
1658
 * sk_buff. We now let ARP fill in the other fields.
1659
 * I think this should return zero if packet is ready to send,
1660
 * or non-zero if it needs more time to do an address lookup
1661
 */
1662
 
1663
static int strip_rebuild_header(struct sk_buff *skb)
1664
{
1665
#ifdef CONFIG_INET
1666
        STRIP_Header *header = (STRIP_Header *) skb->data;
1667
 
1668
        /* Arp find returns zero if if knows the address, */
1669
        /* or if it doesn't know the address it sends an ARP packet and returns non-zero */
1670
        return arp_find(header->dst_addr.c, skb) ? 1 : 0;
1671
#else
1672
        return 0;
1673
#endif
1674
}
1675
 
1676
 
1677
/************************************************************************/
1678
/* Receiving routines                                                   */
1679
 
1680
/*
1681
 * This function parses the response to the ATS300? command,
1682
 * extracting the radio version and serial number.
1683
 */
1684
static void get_radio_version(struct strip *strip_info, __u8 * ptr, __u8 * end)
1685
{
1686
        __u8 *p, *value_begin, *value_end;
1687
        int len;
1688
 
1689
        /* Determine the beginning of the second line of the payload */
1690
        p = ptr;
1691
        while (p < end && *p != 10)
1692
                p++;
1693
        if (p >= end)
1694
                return;
1695
        p++;
1696
        value_begin = p;
1697
 
1698
        /* Determine the end of line */
1699
        while (p < end && *p != 10)
1700
                p++;
1701
        if (p >= end)
1702
                return;
1703
        value_end = p;
1704
        p++;
1705
 
1706
        len = value_end - value_begin;
1707
        len = min_t(int, len, sizeof(FirmwareVersion) - 1);
1708
        if (strip_info->firmware_version.c[0] == 0)
1709
                printk(KERN_INFO "%s: Radio Firmware: %.*s\n",
1710
                       strip_info->dev->name, len, value_begin);
1711
        sprintf(strip_info->firmware_version.c, "%.*s", len, value_begin);
1712
 
1713
        /* Look for the first colon */
1714
        while (p < end && *p != ':')
1715
                p++;
1716
        if (p >= end)
1717
                return;
1718
        /* Skip over the space */
1719
        p += 2;
1720
        len = sizeof(SerialNumber) - 1;
1721
        if (p + len <= end) {
1722
                sprintf(strip_info->serial_number.c, "%.*s", len, p);
1723
        } else {
1724
                printk(KERN_DEBUG
1725
                       "STRIP: radio serial number shorter (%zd) than expected (%d)\n",
1726
                       end - p, len);
1727
        }
1728
}
1729
 
1730
/*
1731
 * This function parses the response to the ATS325? command,
1732
 * extracting the radio battery voltage.
1733
 */
1734
static void get_radio_voltage(struct strip *strip_info, __u8 * ptr, __u8 * end)
1735
{
1736
        int len;
1737
 
1738
        len = sizeof(BatteryVoltage) - 1;
1739
        if (ptr + len <= end) {
1740
                sprintf(strip_info->battery_voltage.c, "%.*s", len, ptr);
1741
        } else {
1742
                printk(KERN_DEBUG
1743
                       "STRIP: radio voltage string shorter (%zd) than expected (%d)\n",
1744
                       end - ptr, len);
1745
        }
1746
}
1747
 
1748
/*
1749
 * This function parses the responses to the AT~LA and ATS311 commands,
1750
 * which list the radio's neighbours.
1751
 */
1752
static void get_radio_neighbours(MetricomNodeTable * table, __u8 * ptr, __u8 * end)
1753
{
1754
        table->num_nodes = 0;
1755
        while (ptr < end && table->num_nodes < NODE_TABLE_SIZE) {
1756
                MetricomNode *node = &table->node[table->num_nodes++];
1757
                char *dst = node->c, *limit = dst + sizeof(*node) - 1;
1758
                while (ptr < end && *ptr <= 32)
1759
                        ptr++;
1760
                while (ptr < end && dst < limit && *ptr != 10)
1761
                        *dst++ = *ptr++;
1762
                *dst++ = 0;
1763
                while (ptr < end && ptr[-1] != 10)
1764
                        ptr++;
1765
        }
1766
        do_gettimeofday(&table->timestamp);
1767
}
1768
 
1769
static int get_radio_address(struct strip *strip_info, __u8 * p)
1770
{
1771
        MetricomAddress addr;
1772
 
1773
        if (string_to_radio_address(&addr, p))
1774
                return (1);
1775
 
1776
        /* See if our radio address has changed */
1777
        if (memcmp(strip_info->true_dev_addr.c, addr.c, sizeof(addr))) {
1778
                MetricomAddressString addr_string;
1779
                radio_address_to_string(&addr, &addr_string);
1780
                printk(KERN_INFO "%s: Radio address = %s\n",
1781
                       strip_info->dev->name, addr_string.c);
1782
                strip_info->true_dev_addr = addr;
1783
                if (!strip_info->manual_dev_addr)
1784
                        *(MetricomAddress *) strip_info->dev->dev_addr =
1785
                            addr;
1786
                /* Give the radio a few seconds to get its head straight, then send an arp */
1787
                strip_info->gratuitous_arp = jiffies + 15 * HZ;
1788
                strip_info->arp_interval = 1 * HZ;
1789
        }
1790
        return (0);
1791
}
1792
 
1793
static int verify_checksum(struct strip *strip_info)
1794
{
1795
        __u8 *p = strip_info->sx_buff;
1796
        __u8 *end = strip_info->sx_buff + strip_info->sx_count - 4;
1797
        u_short sum =
1798
            (READHEX16(end[0]) << 12) | (READHEX16(end[1]) << 8) |
1799
            (READHEX16(end[2]) << 4) | (READHEX16(end[3]));
1800
        while (p < end)
1801
                sum -= *p++;
1802
        if (sum == 0 && strip_info->firmware_level == StructuredMessages) {
1803
                strip_info->firmware_level = ChecksummedMessages;
1804
                printk(KERN_INFO "%s: Radio provides message checksums\n",
1805
                       strip_info->dev->name);
1806
        }
1807
        return (sum == 0);
1808
}
1809
 
1810
static void RecvErr(char *msg, struct strip *strip_info)
1811
{
1812
        __u8 *ptr = strip_info->sx_buff;
1813
        __u8 *end = strip_info->sx_buff + strip_info->sx_count;
1814
        DumpData(msg, strip_info, ptr, end);
1815
        strip_info->rx_errors++;
1816
}
1817
 
1818
static void RecvErr_Message(struct strip *strip_info, __u8 * sendername,
1819
                            const __u8 * msg, u_long len)
1820
{
1821
        if (has_prefix(msg, len, "001")) {      /* Not in StarMode! */
1822
                RecvErr("Error Msg:", strip_info);
1823
                printk(KERN_INFO "%s: Radio %s is not in StarMode\n",
1824
                       strip_info->dev->name, sendername);
1825
        }
1826
 
1827
        else if (has_prefix(msg, len, "002")) { /* Remap handle */
1828
                /* We ignore "Remap handle" messages for now */
1829
        }
1830
 
1831
        else if (has_prefix(msg, len, "003")) { /* Can't resolve name */
1832
                RecvErr("Error Msg:", strip_info);
1833
                printk(KERN_INFO "%s: Destination radio name is unknown\n",
1834
                       strip_info->dev->name);
1835
        }
1836
 
1837
        else if (has_prefix(msg, len, "004")) { /* Name too small or missing */
1838
                strip_info->watchdog_doreset = jiffies + LongTime;
1839
#if TICKLE_TIMERS
1840
                {
1841
                        struct timeval tv;
1842
                        do_gettimeofday(&tv);
1843
                        printk(KERN_INFO
1844
                               "**** Got ERR_004 response         at %02d.%06d\n",
1845
                               tv.tv_sec % 100, tv.tv_usec);
1846
                }
1847
#endif
1848
                if (!strip_info->working) {
1849
                        strip_info->working = TRUE;
1850
                        printk(KERN_INFO "%s: Radio now in starmode\n",
1851
                               strip_info->dev->name);
1852
                        /*
1853
                         * If the radio has just entered a working state, we should do our first
1854
                         * probe ASAP, so that we find out our radio address etc. without delay.
1855
                         */
1856
                        strip_info->watchdog_doprobe = jiffies;
1857
                }
1858
                if (strip_info->firmware_level == NoStructure && sendername) {
1859
                        strip_info->firmware_level = StructuredMessages;
1860
                        strip_info->next_command = 0;    /* Try to enable checksums ASAP */
1861
                        printk(KERN_INFO
1862
                               "%s: Radio provides structured messages\n",
1863
                               strip_info->dev->name);
1864
                }
1865
                if (strip_info->firmware_level >= StructuredMessages) {
1866
                        /*
1867
                         * If this message has a valid checksum on the end, then the call to verify_checksum
1868
                         * will elevate the firmware_level to ChecksummedMessages for us. (The actual return
1869
                         * code from verify_checksum is ignored here.)
1870
                         */
1871
                        verify_checksum(strip_info);
1872
                        /*
1873
                         * If the radio has structured messages but we don't yet have all our information about it,
1874
                         * we should do probes without delay, until we have gathered all the information
1875
                         */
1876
                        if (!GOT_ALL_RADIO_INFO(strip_info))
1877
                                strip_info->watchdog_doprobe = jiffies;
1878
                }
1879
        }
1880
 
1881
        else if (has_prefix(msg, len, "005"))   /* Bad count specification */
1882
                RecvErr("Error Msg:", strip_info);
1883
 
1884
        else if (has_prefix(msg, len, "006"))   /* Header too big */
1885
                RecvErr("Error Msg:", strip_info);
1886
 
1887
        else if (has_prefix(msg, len, "007")) { /* Body too big */
1888
                RecvErr("Error Msg:", strip_info);
1889
                printk(KERN_ERR
1890
                       "%s: Error! Packet size too big for radio.\n",
1891
                       strip_info->dev->name);
1892
        }
1893
 
1894
        else if (has_prefix(msg, len, "008")) { /* Bad character in name */
1895
                RecvErr("Error Msg:", strip_info);
1896
                printk(KERN_ERR
1897
                       "%s: Radio name contains illegal character\n",
1898
                       strip_info->dev->name);
1899
        }
1900
 
1901
        else if (has_prefix(msg, len, "009"))   /* No count or line terminator */
1902
                RecvErr("Error Msg:", strip_info);
1903
 
1904
        else if (has_prefix(msg, len, "010"))   /* Invalid checksum */
1905
                RecvErr("Error Msg:", strip_info);
1906
 
1907
        else if (has_prefix(msg, len, "011"))   /* Checksum didn't match */
1908
                RecvErr("Error Msg:", strip_info);
1909
 
1910
        else if (has_prefix(msg, len, "012"))   /* Failed to transmit packet */
1911
                RecvErr("Error Msg:", strip_info);
1912
 
1913
        else
1914
                RecvErr("Error Msg:", strip_info);
1915
}
1916
 
1917
static void process_AT_response(struct strip *strip_info, __u8 * ptr,
1918
                                __u8 * end)
1919
{
1920
        u_long len;
1921
        __u8 *p = ptr;
1922
        while (p < end && p[-1] != 10)
1923
                p++;            /* Skip past first newline character */
1924
        /* Now ptr points to the AT command, and p points to the text of the response. */
1925
        len = p - ptr;
1926
 
1927
#if TICKLE_TIMERS
1928
        {
1929
                struct timeval tv;
1930
                do_gettimeofday(&tv);
1931
                printk(KERN_INFO "**** Got AT response %.7s      at %02d.%06d\n",
1932
                       ptr, tv.tv_sec % 100, tv.tv_usec);
1933
        }
1934
#endif
1935
 
1936
        if (has_prefix(ptr, len, "ATS300?"))
1937
                get_radio_version(strip_info, p, end);
1938
        else if (has_prefix(ptr, len, "ATS305?"))
1939
                get_radio_address(strip_info, p);
1940
        else if (has_prefix(ptr, len, "ATS311?"))
1941
                get_radio_neighbours(&strip_info->poletops, p, end);
1942
        else if (has_prefix(ptr, len, "ATS319=7"))
1943
                verify_checksum(strip_info);
1944
        else if (has_prefix(ptr, len, "ATS325?"))
1945
                get_radio_voltage(strip_info, p, end);
1946
        else if (has_prefix(ptr, len, "AT~LA"))
1947
                get_radio_neighbours(&strip_info->portables, p, end);
1948
        else
1949
                RecvErr("Unknown AT Response:", strip_info);
1950
}
1951
 
1952
static void process_ACK(struct strip *strip_info, __u8 * ptr, __u8 * end)
1953
{
1954
        /* Currently we don't do anything with ACKs from the radio */
1955
}
1956
 
1957
static void process_Info(struct strip *strip_info, __u8 * ptr, __u8 * end)
1958
{
1959
        if (ptr + 16 > end)
1960
                RecvErr("Bad Info Msg:", strip_info);
1961
}
1962
 
1963
static struct net_device *get_strip_dev(struct strip *strip_info)
1964
{
1965
        /* If our hardware address is *manually set* to zero, and we know our */
1966
        /* real radio hardware address, try to find another strip device that has been */
1967
        /* manually set to that address that we can 'transfer ownership' of this packet to  */
1968
        if (strip_info->manual_dev_addr &&
1969
            !memcmp(strip_info->dev->dev_addr, zero_address.c,
1970
                    sizeof(zero_address))
1971
            && memcmp(&strip_info->true_dev_addr, zero_address.c,
1972
                      sizeof(zero_address))) {
1973
                struct net_device *dev;
1974
                read_lock_bh(&dev_base_lock);
1975
                for_each_netdev(&init_net, dev) {
1976
                        if (dev->type == strip_info->dev->type &&
1977
                            !memcmp(dev->dev_addr,
1978
                                    &strip_info->true_dev_addr,
1979
                                    sizeof(MetricomAddress))) {
1980
                                printk(KERN_INFO
1981
                                       "%s: Transferred packet ownership to %s.\n",
1982
                                       strip_info->dev->name, dev->name);
1983
                                read_unlock_bh(&dev_base_lock);
1984
                                return (dev);
1985
                        }
1986
                }
1987
                read_unlock_bh(&dev_base_lock);
1988
        }
1989
        return (strip_info->dev);
1990
}
1991
 
1992
/*
1993
 * Send one completely decapsulated datagram to the next layer.
1994
 */
1995
 
1996
static void deliver_packet(struct strip *strip_info, STRIP_Header * header,
1997
                           __u16 packetlen)
1998
{
1999
        struct sk_buff *skb = dev_alloc_skb(sizeof(STRIP_Header) + packetlen);
2000
        if (!skb) {
2001
                printk(KERN_ERR "%s: memory squeeze, dropping packet.\n",
2002
                       strip_info->dev->name);
2003
                strip_info->rx_dropped++;
2004
        } else {
2005
                memcpy(skb_put(skb, sizeof(STRIP_Header)), header,
2006
                       sizeof(STRIP_Header));
2007
                memcpy(skb_put(skb, packetlen), strip_info->rx_buff,
2008
                       packetlen);
2009
                skb->dev = get_strip_dev(strip_info);
2010
                skb->protocol = header->protocol;
2011
                skb_reset_mac_header(skb);
2012
 
2013
                /* Having put a fake header on the front of the sk_buff for the */
2014
                /* benefit of tools like tcpdump, skb_pull now 'consumes' that  */
2015
                /* fake header before we hand the packet up to the next layer.  */
2016
                skb_pull(skb, sizeof(STRIP_Header));
2017
 
2018
                /* Finally, hand the packet up to the next layer (e.g. IP or ARP, etc.) */
2019
                strip_info->rx_packets++;
2020
                strip_info->rx_pps_count++;
2021
#ifdef EXT_COUNTERS
2022
                strip_info->rx_bytes += packetlen;
2023
#endif
2024
                skb->dev->last_rx = jiffies;
2025
                netif_rx(skb);
2026
        }
2027
}
2028
 
2029
static void process_IP_packet(struct strip *strip_info,
2030
                              STRIP_Header * header, __u8 * ptr,
2031
                              __u8 * end)
2032
{
2033
        __u16 packetlen;
2034
 
2035
        /* Decode start of the IP packet header */
2036
        ptr = UnStuffData(ptr, end, strip_info->rx_buff, 4);
2037
        if (!ptr) {
2038
                RecvErr("IP Packet too short", strip_info);
2039
                return;
2040
        }
2041
 
2042
        packetlen = ((__u16) strip_info->rx_buff[2] << 8) | strip_info->rx_buff[3];
2043
 
2044
        if (packetlen > MAX_RECV_MTU) {
2045
                printk(KERN_INFO "%s: Dropping oversized received IP packet: %d bytes\n",
2046
                       strip_info->dev->name, packetlen);
2047
                strip_info->rx_dropped++;
2048
                return;
2049
        }
2050
 
2051
        /*printk(KERN_INFO "%s: Got %d byte IP packet\n", strip_info->dev->name, packetlen); */
2052
 
2053
        /* Decode remainder of the IP packet */
2054
        ptr =
2055
            UnStuffData(ptr, end, strip_info->rx_buff + 4, packetlen - 4);
2056
        if (!ptr) {
2057
                RecvErr("IP Packet too short", strip_info);
2058
                return;
2059
        }
2060
 
2061
        if (ptr < end) {
2062
                RecvErr("IP Packet too long", strip_info);
2063
                return;
2064
        }
2065
 
2066
        header->protocol = htons(ETH_P_IP);
2067
 
2068
        deliver_packet(strip_info, header, packetlen);
2069
}
2070
 
2071
static void process_ARP_packet(struct strip *strip_info,
2072
                               STRIP_Header * header, __u8 * ptr,
2073
                               __u8 * end)
2074
{
2075
        __u16 packetlen;
2076
        struct arphdr *arphdr = (struct arphdr *) strip_info->rx_buff;
2077
 
2078
        /* Decode start of the ARP packet */
2079
        ptr = UnStuffData(ptr, end, strip_info->rx_buff, 8);
2080
        if (!ptr) {
2081
                RecvErr("ARP Packet too short", strip_info);
2082
                return;
2083
        }
2084
 
2085
        packetlen = 8 + (arphdr->ar_hln + arphdr->ar_pln) * 2;
2086
 
2087
        if (packetlen > MAX_RECV_MTU) {
2088
                printk(KERN_INFO
2089
                       "%s: Dropping oversized received ARP packet: %d bytes\n",
2090
                       strip_info->dev->name, packetlen);
2091
                strip_info->rx_dropped++;
2092
                return;
2093
        }
2094
 
2095
        /*printk(KERN_INFO "%s: Got %d byte ARP %s\n",
2096
           strip_info->dev->name, packetlen,
2097
           ntohs(arphdr->ar_op) == ARPOP_REQUEST ? "request" : "reply"); */
2098
 
2099
        /* Decode remainder of the ARP packet */
2100
        ptr =
2101
            UnStuffData(ptr, end, strip_info->rx_buff + 8, packetlen - 8);
2102
        if (!ptr) {
2103
                RecvErr("ARP Packet too short", strip_info);
2104
                return;
2105
        }
2106
 
2107
        if (ptr < end) {
2108
                RecvErr("ARP Packet too long", strip_info);
2109
                return;
2110
        }
2111
 
2112
        header->protocol = htons(ETH_P_ARP);
2113
 
2114
        deliver_packet(strip_info, header, packetlen);
2115
}
2116
 
2117
/*
2118
 * process_text_message processes a <CR>-terminated block of data received
2119
 * from the radio that doesn't begin with a '*' character. All normal
2120
 * Starmode communication messages with the radio begin with a '*',
2121
 * so any text that does not indicates a serial port error, a radio that
2122
 * is in Hayes command mode instead of Starmode, or a radio with really
2123
 * old firmware that doesn't frame its Starmode responses properly.
2124
 */
2125
static void process_text_message(struct strip *strip_info)
2126
{
2127
        __u8 *msg = strip_info->sx_buff;
2128
        int len = strip_info->sx_count;
2129
 
2130
        /* Check for anything that looks like it might be our radio name */
2131
        /* (This is here for backwards compatibility with old firmware)  */
2132
        if (len == 9 && get_radio_address(strip_info, msg) == 0)
2133
                return;
2134
 
2135
        if (text_equal(msg, len, "OK"))
2136
                return;         /* Ignore 'OK' responses from prior commands */
2137
        if (text_equal(msg, len, "ERROR"))
2138
                return;         /* Ignore 'ERROR' messages */
2139
        if (has_prefix(msg, len, "ate0q1"))
2140
                return;         /* Ignore character echo back from the radio */
2141
 
2142
        /* Catch other error messages */
2143
        /* (This is here for backwards compatibility with old firmware) */
2144
        if (has_prefix(msg, len, "ERR_")) {
2145
                RecvErr_Message(strip_info, NULL, &msg[4], len - 4);
2146
                return;
2147
        }
2148
 
2149
        RecvErr("No initial *", strip_info);
2150
}
2151
 
2152
/*
2153
 * process_message processes a <CR>-terminated block of data received
2154
 * from the radio. If the radio is not in Starmode or has old firmware,
2155
 * it may be a line of text in response to an AT command. Ideally, with
2156
 * a current radio that's properly in Starmode, all data received should
2157
 * be properly framed and checksummed radio message blocks, containing
2158
 * either a starmode packet, or a other communication from the radio
2159
 * firmware, like "INF_" Info messages and &COMMAND responses.
2160
 */
2161
static void process_message(struct strip *strip_info)
2162
{
2163
        STRIP_Header header = { zero_address, zero_address, 0 };
2164
        __u8 *ptr = strip_info->sx_buff;
2165
        __u8 *end = strip_info->sx_buff + strip_info->sx_count;
2166
        __u8 sendername[32], *sptr = sendername;
2167
        MetricomKey key;
2168
 
2169
        /*HexDump("Receiving", strip_info, ptr, end); */
2170
 
2171
        /* Check for start of address marker, and then skip over it */
2172
        if (*ptr == '*')
2173
                ptr++;
2174
        else {
2175
                process_text_message(strip_info);
2176
                return;
2177
        }
2178
 
2179
        /* Copy out the return address */
2180
        while (ptr < end && *ptr != '*'
2181
               && sptr < ARRAY_END(sendername) - 1)
2182
                *sptr++ = *ptr++;
2183
        *sptr = 0;               /* Null terminate the sender name */
2184
 
2185
        /* Check for end of address marker, and skip over it */
2186
        if (ptr >= end || *ptr != '*') {
2187
                RecvErr("No second *", strip_info);
2188
                return;
2189
        }
2190
        ptr++;                  /* Skip the second '*' */
2191
 
2192
        /* If the sender name is "&COMMAND", ignore this 'packet'       */
2193
        /* (This is here for backwards compatibility with old firmware) */
2194
        if (!strcmp(sendername, "&COMMAND")) {
2195
                strip_info->firmware_level = NoStructure;
2196
                strip_info->next_command = CompatibilityCommand;
2197
                return;
2198
        }
2199
 
2200
        if (ptr + 4 > end) {
2201
                RecvErr("No proto key", strip_info);
2202
                return;
2203
        }
2204
 
2205
        /* Get the protocol key out of the buffer */
2206
        key.c[0] = *ptr++;
2207
        key.c[1] = *ptr++;
2208
        key.c[2] = *ptr++;
2209
        key.c[3] = *ptr++;
2210
 
2211
        /* If we're using checksums, verify the checksum at the end of the packet */
2212
        if (strip_info->firmware_level >= ChecksummedMessages) {
2213
                end -= 4;       /* Chop the last four bytes off the packet (they're the checksum) */
2214
                if (ptr > end) {
2215
                        RecvErr("Missing Checksum", strip_info);
2216
                        return;
2217
                }
2218
                if (!verify_checksum(strip_info)) {
2219
                        RecvErr("Bad Checksum", strip_info);
2220
                        return;
2221
                }
2222
        }
2223
 
2224
        /*printk(KERN_INFO "%s: Got packet from \"%s\".\n", strip_info->dev->name, sendername); */
2225
 
2226
        /*
2227
         * Fill in (pseudo) source and destination addresses in the packet.
2228
         * We assume that the destination address was our address (the radio does not
2229
         * tell us this). If the radio supplies a source address, then we use it.
2230
         */
2231
        header.dst_addr = strip_info->true_dev_addr;
2232
        string_to_radio_address(&header.src_addr, sendername);
2233
 
2234
#ifdef EXT_COUNTERS
2235
        if (key.l == SIP0Key.l) {
2236
                strip_info->rx_rbytes += (end - ptr);
2237
                process_IP_packet(strip_info, &header, ptr, end);
2238
        } else if (key.l == ARP0Key.l) {
2239
                strip_info->rx_rbytes += (end - ptr);
2240
                process_ARP_packet(strip_info, &header, ptr, end);
2241
        } else if (key.l == ATR_Key.l) {
2242
                strip_info->rx_ebytes += (end - ptr);
2243
                process_AT_response(strip_info, ptr, end);
2244
        } else if (key.l == ACK_Key.l) {
2245
                strip_info->rx_ebytes += (end - ptr);
2246
                process_ACK(strip_info, ptr, end);
2247
        } else if (key.l == INF_Key.l) {
2248
                strip_info->rx_ebytes += (end - ptr);
2249
                process_Info(strip_info, ptr, end);
2250
        } else if (key.l == ERR_Key.l) {
2251
                strip_info->rx_ebytes += (end - ptr);
2252
                RecvErr_Message(strip_info, sendername, ptr, end - ptr);
2253
        } else
2254
                RecvErr("Unrecognized protocol key", strip_info);
2255
#else
2256
        if (key.l == SIP0Key.l)
2257
                process_IP_packet(strip_info, &header, ptr, end);
2258
        else if (key.l == ARP0Key.l)
2259
                process_ARP_packet(strip_info, &header, ptr, end);
2260
        else if (key.l == ATR_Key.l)
2261
                process_AT_response(strip_info, ptr, end);
2262
        else if (key.l == ACK_Key.l)
2263
                process_ACK(strip_info, ptr, end);
2264
        else if (key.l == INF_Key.l)
2265
                process_Info(strip_info, ptr, end);
2266
        else if (key.l == ERR_Key.l)
2267
                RecvErr_Message(strip_info, sendername, ptr, end - ptr);
2268
        else
2269
                RecvErr("Unrecognized protocol key", strip_info);
2270
#endif
2271
}
2272
 
2273
#define TTYERROR(X) ((X) == TTY_BREAK   ? "Break"            : \
2274
                     (X) == TTY_FRAME   ? "Framing Error"    : \
2275
                     (X) == TTY_PARITY  ? "Parity Error"     : \
2276
                     (X) == TTY_OVERRUN ? "Hardware Overrun" : "Unknown Error")
2277
 
2278
/*
2279
 * Handle the 'receiver data ready' interrupt.
2280
 * This function is called by the 'tty_io' module in the kernel when
2281
 * a block of STRIP data has been received, which can now be decapsulated
2282
 * and sent on to some IP layer for further processing.
2283
 */
2284
 
2285
static void strip_receive_buf(struct tty_struct *tty, const unsigned char *cp,
2286
                  char *fp, int count)
2287
{
2288
        struct strip *strip_info = (struct strip *) tty->disc_data;
2289
        const unsigned char *end = cp + count;
2290
 
2291
        if (!strip_info || strip_info->magic != STRIP_MAGIC
2292
            || !netif_running(strip_info->dev))
2293
                return;
2294
 
2295
        spin_lock_bh(&strip_lock);
2296
#if 0
2297
        {
2298
                struct timeval tv;
2299
                do_gettimeofday(&tv);
2300
                printk(KERN_INFO
2301
                       "**** strip_receive_buf: %3d bytes at %02d.%06d\n",
2302
                       count, tv.tv_sec % 100, tv.tv_usec);
2303
        }
2304
#endif
2305
 
2306
#ifdef EXT_COUNTERS
2307
        strip_info->rx_sbytes += count;
2308
#endif
2309
 
2310
        /* Read the characters out of the buffer */
2311
        while (cp < end) {
2312
                if (fp && *fp)
2313
                        printk(KERN_INFO "%s: %s on serial port\n",
2314
                               strip_info->dev->name, TTYERROR(*fp));
2315
                if (fp && *fp++ && !strip_info->discard) {      /* If there's a serial error, record it */
2316
                        /* If we have some characters in the buffer, discard them */
2317
                        strip_info->discard = strip_info->sx_count;
2318
                        strip_info->rx_errors++;
2319
                }
2320
 
2321
                /* Leading control characters (CR, NL, Tab, etc.) are ignored */
2322
                if (strip_info->sx_count > 0 || *cp >= ' ') {
2323
                        if (*cp == 0x0D) {      /* If end of packet, decide what to do with it */
2324
                                if (strip_info->sx_count > 3000)
2325
                                        printk(KERN_INFO
2326
                                               "%s: Cut a %d byte packet (%zd bytes remaining)%s\n",
2327
                                               strip_info->dev->name,
2328
                                               strip_info->sx_count,
2329
                                               end - cp - 1,
2330
                                               strip_info->
2331
                                               discard ? " (discarded)" :
2332
                                               "");
2333
                                if (strip_info->sx_count >
2334
                                    strip_info->sx_size) {
2335
                                        strip_info->rx_over_errors++;
2336
                                        printk(KERN_INFO
2337
                                               "%s: sx_buff overflow (%d bytes total)\n",
2338
                                               strip_info->dev->name,
2339
                                               strip_info->sx_count);
2340
                                } else if (strip_info->discard)
2341
                                        printk(KERN_INFO
2342
                                               "%s: Discarding bad packet (%d/%d)\n",
2343
                                               strip_info->dev->name,
2344
                                               strip_info->discard,
2345
                                               strip_info->sx_count);
2346
                                else
2347
                                        process_message(strip_info);
2348
                                strip_info->discard = 0;
2349
                                strip_info->sx_count = 0;
2350
                        } else {
2351
                                /* Make sure we have space in the buffer */
2352
                                if (strip_info->sx_count <
2353
                                    strip_info->sx_size)
2354
                                        strip_info->sx_buff[strip_info->
2355
                                                            sx_count] =
2356
                                            *cp;
2357
                                strip_info->sx_count++;
2358
                        }
2359
                }
2360
                cp++;
2361
        }
2362
        spin_unlock_bh(&strip_lock);
2363
}
2364
 
2365
 
2366
/************************************************************************/
2367
/* General control routines                                             */
2368
 
2369
static int set_mac_address(struct strip *strip_info,
2370
                           MetricomAddress * addr)
2371
{
2372
        /*
2373
         * We're using a manually specified address if the address is set
2374
         * to anything other than all ones. Setting the address to all ones
2375
         * disables manual mode and goes back to automatic address determination
2376
         * (tracking the true address that the radio has).
2377
         */
2378
        strip_info->manual_dev_addr =
2379
            memcmp(addr->c, broadcast_address.c,
2380
                   sizeof(broadcast_address));
2381
        if (strip_info->manual_dev_addr)
2382
                *(MetricomAddress *) strip_info->dev->dev_addr = *addr;
2383
        else
2384
                *(MetricomAddress *) strip_info->dev->dev_addr =
2385
                    strip_info->true_dev_addr;
2386
        return 0;
2387
}
2388
 
2389
static int strip_set_mac_address(struct net_device *dev, void *addr)
2390
{
2391
        struct strip *strip_info = netdev_priv(dev);
2392
        struct sockaddr *sa = addr;
2393
        printk(KERN_INFO "%s: strip_set_dev_mac_address called\n", dev->name);
2394
        set_mac_address(strip_info, (MetricomAddress *) sa->sa_data);
2395
        return 0;
2396
}
2397
 
2398
static struct net_device_stats *strip_get_stats(struct net_device *dev)
2399
{
2400
        struct strip *strip_info = netdev_priv(dev);
2401
        static struct net_device_stats stats;
2402
 
2403
        memset(&stats, 0, sizeof(struct net_device_stats));
2404
 
2405
        stats.rx_packets = strip_info->rx_packets;
2406
        stats.tx_packets = strip_info->tx_packets;
2407
        stats.rx_dropped = strip_info->rx_dropped;
2408
        stats.tx_dropped = strip_info->tx_dropped;
2409
        stats.tx_errors = strip_info->tx_errors;
2410
        stats.rx_errors = strip_info->rx_errors;
2411
        stats.rx_over_errors = strip_info->rx_over_errors;
2412
        return (&stats);
2413
}
2414
 
2415
 
2416
/************************************************************************/
2417
/* Opening and closing                                                  */
2418
 
2419
/*
2420
 * Here's the order things happen:
2421
 * When the user runs "slattach -p strip ..."
2422
 *  1. The TTY module calls strip_open;;
2423
 *  2. strip_open calls strip_alloc
2424
 *  3.                  strip_alloc calls register_netdev
2425
 *  4.                  register_netdev calls strip_dev_init
2426
 *  5. then strip_open finishes setting up the strip_info
2427
 *
2428
 * When the user runs "ifconfig st<x> up address netmask ..."
2429
 *  6. strip_open_low gets called
2430
 *
2431
 * When the user runs "ifconfig st<x> down"
2432
 *  7. strip_close_low gets called
2433
 *
2434
 * When the user kills the slattach process
2435
 *  8. strip_close gets called
2436
 *  9. strip_close calls dev_close
2437
 * 10. if the device is still up, then dev_close calls strip_close_low
2438
 * 11. strip_close calls strip_free
2439
 */
2440
 
2441
/* Open the low-level part of the STRIP channel. Easy! */
2442
 
2443
static int strip_open_low(struct net_device *dev)
2444
{
2445
        struct strip *strip_info = netdev_priv(dev);
2446
 
2447
        if (strip_info->tty == NULL)
2448
                return (-ENODEV);
2449
 
2450
        if (!allocate_buffers(strip_info, dev->mtu))
2451
                return (-ENOMEM);
2452
 
2453
        strip_info->sx_count = 0;
2454
        strip_info->tx_left = 0;
2455
 
2456
        strip_info->discard = 0;
2457
        strip_info->working = FALSE;
2458
        strip_info->firmware_level = NoStructure;
2459
        strip_info->next_command = CompatibilityCommand;
2460
        strip_info->user_baud = get_baud(strip_info->tty);
2461
 
2462
        printk(KERN_INFO "%s: Initializing Radio.\n",
2463
               strip_info->dev->name);
2464
        ResetRadio(strip_info);
2465
        strip_info->idle_timer.expires = jiffies + 1 * HZ;
2466
        add_timer(&strip_info->idle_timer);
2467
        netif_wake_queue(dev);
2468
        return (0);
2469
}
2470
 
2471
 
2472
/*
2473
 * Close the low-level part of the STRIP channel. Easy!
2474
 */
2475
 
2476
static int strip_close_low(struct net_device *dev)
2477
{
2478
        struct strip *strip_info = netdev_priv(dev);
2479
 
2480
        if (strip_info->tty == NULL)
2481
                return -EBUSY;
2482
        strip_info->tty->flags &= ~(1 << TTY_DO_WRITE_WAKEUP);
2483
 
2484
        netif_stop_queue(dev);
2485
 
2486
        /*
2487
         * Free all STRIP frame buffers.
2488
         */
2489
        kfree(strip_info->rx_buff);
2490
        strip_info->rx_buff = NULL;
2491
        kfree(strip_info->sx_buff);
2492
        strip_info->sx_buff = NULL;
2493
        kfree(strip_info->tx_buff);
2494
        strip_info->tx_buff = NULL;
2495
 
2496
        del_timer(&strip_info->idle_timer);
2497
        return 0;
2498
}
2499
 
2500
static const struct header_ops strip_header_ops = {
2501
        .create = strip_header,
2502
        .rebuild = strip_rebuild_header,
2503
};
2504
 
2505
/*
2506
 * This routine is called by DDI when the
2507
 * (dynamically assigned) device is registered
2508
 */
2509
 
2510
static void strip_dev_setup(struct net_device *dev)
2511
{
2512
        /*
2513
         * Finish setting up the DEVICE info.
2514
         */
2515
 
2516
        dev->trans_start = 0;
2517
        dev->last_rx = 0;
2518
        dev->tx_queue_len = 30; /* Drop after 30 frames queued */
2519
 
2520
        dev->flags = 0;
2521
        dev->mtu = DEFAULT_STRIP_MTU;
2522
        dev->type = ARPHRD_METRICOM;    /* dtang */
2523
        dev->hard_header_len = sizeof(STRIP_Header);
2524
        /*
2525
         *  dev->priv             Already holds a pointer to our struct strip
2526
         */
2527
 
2528
        *(MetricomAddress *) & dev->broadcast = broadcast_address;
2529
        dev->dev_addr[0] = 0;
2530
        dev->addr_len = sizeof(MetricomAddress);
2531
 
2532
        /*
2533
         * Pointers to interface service routines.
2534
         */
2535
 
2536
        dev->open = strip_open_low;
2537
        dev->stop = strip_close_low;
2538
        dev->hard_start_xmit = strip_xmit;
2539
        dev->header_ops = &strip_header_ops;
2540
 
2541
        dev->set_mac_address = strip_set_mac_address;
2542
        dev->get_stats = strip_get_stats;
2543
        dev->change_mtu = strip_change_mtu;
2544
}
2545
 
2546
/*
2547
 * Free a STRIP channel.
2548
 */
2549
 
2550
static void strip_free(struct strip *strip_info)
2551
{
2552
        spin_lock_bh(&strip_lock);
2553
        list_del_rcu(&strip_info->list);
2554
        spin_unlock_bh(&strip_lock);
2555
 
2556
        strip_info->magic = 0;
2557
 
2558
        free_netdev(strip_info->dev);
2559
}
2560
 
2561
 
2562
/*
2563
 * Allocate a new free STRIP channel
2564
 */
2565
static struct strip *strip_alloc(void)
2566
{
2567
        struct list_head *n;
2568
        struct net_device *dev;
2569
        struct strip *strip_info;
2570
 
2571
        dev = alloc_netdev(sizeof(struct strip), "st%d",
2572
                           strip_dev_setup);
2573
 
2574
        if (!dev)
2575
                return NULL;    /* If no more memory, return */
2576
 
2577
 
2578
        strip_info = netdev_priv(dev);
2579
        strip_info->dev = dev;
2580
 
2581
        strip_info->magic = STRIP_MAGIC;
2582
        strip_info->tty = NULL;
2583
 
2584
        strip_info->gratuitous_arp = jiffies + LongTime;
2585
        strip_info->arp_interval = 0;
2586
        init_timer(&strip_info->idle_timer);
2587
        strip_info->idle_timer.data = (long) dev;
2588
        strip_info->idle_timer.function = strip_IdleTask;
2589
 
2590
 
2591
        spin_lock_bh(&strip_lock);
2592
 rescan:
2593
        /*
2594
         * Search the list to find where to put our new entry
2595
         * (and in the process decide what channel number it is
2596
         * going to be)
2597
         */
2598
        list_for_each(n, &strip_list) {
2599
                struct strip *s = hlist_entry(n, struct strip, list);
2600
 
2601
                if (s->dev->base_addr == dev->base_addr) {
2602
                        ++dev->base_addr;
2603
                        goto rescan;
2604
                }
2605
        }
2606
 
2607
        sprintf(dev->name, "st%ld", dev->base_addr);
2608
 
2609
        list_add_tail_rcu(&strip_info->list, &strip_list);
2610
        spin_unlock_bh(&strip_lock);
2611
 
2612
        return strip_info;
2613
}
2614
 
2615
/*
2616
 * Open the high-level part of the STRIP channel.
2617
 * This function is called by the TTY module when the
2618
 * STRIP line discipline is called for.  Because we are
2619
 * sure the tty line exists, we only have to link it to
2620
 * a free STRIP channel...
2621
 */
2622
 
2623
static int strip_open(struct tty_struct *tty)
2624
{
2625
        struct strip *strip_info = (struct strip *) tty->disc_data;
2626
 
2627
        /*
2628
         * First make sure we're not already connected.
2629
         */
2630
 
2631
        if (strip_info && strip_info->magic == STRIP_MAGIC)
2632
                return -EEXIST;
2633
 
2634
        /*
2635
         * OK.  Find a free STRIP channel to use.
2636
         */
2637
        if ((strip_info = strip_alloc()) == NULL)
2638
                return -ENFILE;
2639
 
2640
        /*
2641
         * Register our newly created device so it can be ifconfig'd
2642
         * strip_dev_init() will be called as a side-effect
2643
         */
2644
 
2645
        if (register_netdev(strip_info->dev) != 0) {
2646
                printk(KERN_ERR "strip: register_netdev() failed.\n");
2647
                strip_free(strip_info);
2648
                return -ENFILE;
2649
        }
2650
 
2651
        strip_info->tty = tty;
2652
        tty->disc_data = strip_info;
2653
        tty->receive_room = 65536;
2654
 
2655
        if (tty->driver->flush_buffer)
2656
                tty->driver->flush_buffer(tty);
2657
 
2658
        /*
2659
         * Restore default settings
2660
         */
2661
 
2662
        strip_info->dev->type = ARPHRD_METRICOM;        /* dtang */
2663
 
2664
        /*
2665
         * Set tty options
2666
         */
2667
 
2668
        tty->termios->c_iflag |= IGNBRK | IGNPAR;       /* Ignore breaks and parity errors. */
2669
        tty->termios->c_cflag |= CLOCAL;        /* Ignore modem control signals. */
2670
        tty->termios->c_cflag &= ~HUPCL;        /* Don't close on hup */
2671
 
2672
        printk(KERN_INFO "STRIP: device \"%s\" activated\n",
2673
               strip_info->dev->name);
2674
 
2675
        /*
2676
         * Done.  We have linked the TTY line to a channel.
2677
         */
2678
        return (strip_info->dev->base_addr);
2679
}
2680
 
2681
/*
2682
 * Close down a STRIP channel.
2683
 * This means flushing out any pending queues, and then restoring the
2684
 * TTY line discipline to what it was before it got hooked to STRIP
2685
 * (which usually is TTY again).
2686
 */
2687
 
2688
static void strip_close(struct tty_struct *tty)
2689
{
2690
        struct strip *strip_info = (struct strip *) tty->disc_data;
2691
 
2692
        /*
2693
         * First make sure we're connected.
2694
         */
2695
 
2696
        if (!strip_info || strip_info->magic != STRIP_MAGIC)
2697
                return;
2698
 
2699
        unregister_netdev(strip_info->dev);
2700
 
2701
        tty->disc_data = NULL;
2702
        strip_info->tty = NULL;
2703
        printk(KERN_INFO "STRIP: device \"%s\" closed down\n",
2704
               strip_info->dev->name);
2705
        strip_free(strip_info);
2706
        tty->disc_data = NULL;
2707
}
2708
 
2709
 
2710
/************************************************************************/
2711
/* Perform I/O control calls on an active STRIP channel.                */
2712
 
2713
static int strip_ioctl(struct tty_struct *tty, struct file *file,
2714
                       unsigned int cmd, unsigned long arg)
2715
{
2716
        struct strip *strip_info = (struct strip *) tty->disc_data;
2717
 
2718
        /*
2719
         * First make sure we're connected.
2720
         */
2721
 
2722
        if (!strip_info || strip_info->magic != STRIP_MAGIC)
2723
                return -EINVAL;
2724
 
2725
        switch (cmd) {
2726
        case SIOCGIFNAME:
2727
                if(copy_to_user((void __user *) arg, strip_info->dev->name, strlen(strip_info->dev->name) + 1))
2728
                        return -EFAULT;
2729
                break;
2730
        case SIOCSIFHWADDR:
2731
        {
2732
                MetricomAddress addr;
2733
                //printk(KERN_INFO "%s: SIOCSIFHWADDR\n", strip_info->dev->name);
2734
                if(copy_from_user(&addr, (void __user *) arg, sizeof(MetricomAddress)))
2735
                        return -EFAULT;
2736
                return set_mac_address(strip_info, &addr);
2737
        }
2738
        default:
2739
                return tty_mode_ioctl(tty, file, cmd, arg);
2740
                break;
2741
        }
2742
        return 0;
2743
}
2744
 
2745
 
2746
/************************************************************************/
2747
/* Initialization                                                       */
2748
 
2749
static struct tty_ldisc strip_ldisc = {
2750
        .magic = TTY_LDISC_MAGIC,
2751
        .name = "strip",
2752
        .owner = THIS_MODULE,
2753
        .open = strip_open,
2754
        .close = strip_close,
2755
        .ioctl = strip_ioctl,
2756
        .receive_buf = strip_receive_buf,
2757
        .write_wakeup = strip_write_some_more,
2758
};
2759
 
2760
/*
2761
 * Initialize the STRIP driver.
2762
 * This routine is called at boot time, to bootstrap the multi-channel
2763
 * STRIP driver
2764
 */
2765
 
2766
static char signon[] __initdata =
2767
    KERN_INFO "STRIP: Version %s (unlimited channels)\n";
2768
 
2769
static int __init strip_init_driver(void)
2770
{
2771
        int status;
2772
 
2773
        printk(signon, StripVersion);
2774
 
2775
 
2776
        /*
2777
         * Fill in our line protocol discipline, and register it
2778
         */
2779
        if ((status = tty_register_ldisc(N_STRIP, &strip_ldisc)))
2780
                printk(KERN_ERR "STRIP: can't register line discipline (err = %d)\n",
2781
                       status);
2782
 
2783
        /*
2784
         * Register the status file with /proc
2785
         */
2786
        proc_net_fops_create(&init_net, "strip", S_IFREG | S_IRUGO, &strip_seq_fops);
2787
 
2788
        return status;
2789
}
2790
 
2791
module_init(strip_init_driver);
2792
 
2793
static const char signoff[] __exitdata =
2794
    KERN_INFO "STRIP: Module Unloaded\n";
2795
 
2796
static void __exit strip_exit_driver(void)
2797
{
2798
        int i;
2799
        struct list_head *p,*n;
2800
 
2801
        /* module ref count rules assure that all entries are unregistered */
2802
        list_for_each_safe(p, n, &strip_list) {
2803
                struct strip *s = list_entry(p, struct strip, list);
2804
                strip_free(s);
2805
        }
2806
 
2807
        /* Unregister with the /proc/net file here. */
2808
        proc_net_remove(&init_net, "strip");
2809
 
2810
        if ((i = tty_unregister_ldisc(N_STRIP)))
2811
                printk(KERN_ERR "STRIP: can't unregister line discipline (err = %d)\n", i);
2812
 
2813
        printk(signoff);
2814
}
2815
 
2816
module_exit(strip_exit_driver);
2817
 
2818
MODULE_AUTHOR("Stuart Cheshire <cheshire@cs.stanford.edu>");
2819
MODULE_DESCRIPTION("Starmode Radio IP (STRIP) Device Driver");
2820
MODULE_LICENSE("Dual BSD/GPL");
2821
 
2822
MODULE_SUPPORTED_DEVICE("Starmode Radio IP (STRIP) modem");

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.