OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [drivers/] [parport/] [parport_ip32.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/* Low-level parallel port routines for built-in port on SGI IP32
2
 *
3
 * Author: Arnaud Giersch <arnaud.giersch@free.fr>
4
 *
5
 * Based on parport_pc.c by
6
 *      Phil Blundell, Tim Waugh, Jose Renau, David Campbell,
7
 *      Andrea Arcangeli, et al.
8
 *
9
 * Thanks to Ilya A. Volynets-Evenbakh for his help.
10
 *
11
 * Copyright (C) 2005, 2006 Arnaud Giersch.
12
 *
13
 * This program is free software; you can redistribute it and/or modify it
14
 * under the terms of the GNU General Public License as published by the Free
15
 * Software Foundation; either version 2 of the License, or (at your option)
16
 * any later version.
17
 *
18
 * This program is distributed in the hope that it will be useful, but WITHOUT
19
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
20
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
21
 * more details.
22
 *
23
 * You should have received a copy of the GNU General Public License along
24
 * with this program; if not, write to the Free Software Foundation, Inc., 59
25
 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26
 */
27
 
28
/* Current status:
29
 *
30
 *      Basic SPP and PS2 modes are supported.
31
 *      Support for parallel port IRQ is present.
32
 *      Hardware SPP (a.k.a. compatibility), EPP, and ECP modes are
33
 *      supported.
34
 *      SPP/ECP FIFO can be driven in PIO or DMA mode.  PIO mode can work with
35
 *      or without interrupt support.
36
 *
37
 *      Hardware ECP mode is not fully implemented (ecp_read_data and
38
 *      ecp_write_addr are actually missing).
39
 *
40
 * To do:
41
 *
42
 *      Fully implement ECP mode.
43
 *      EPP and ECP mode need to be tested.  I currently do not own any
44
 *      peripheral supporting these extended mode, and cannot test them.
45
 *      If DMA mode works well, decide if support for PIO FIFO modes should be
46
 *      dropped.
47
 *      Use the io{read,write} family functions when they become available in
48
 *      the linux-mips.org tree.  Note: the MIPS specific functions readsb()
49
 *      and writesb() are to be translated by ioread8_rep() and iowrite8_rep()
50
 *      respectively.
51
 */
52
 
53
/* The built-in parallel port on the SGI 02 workstation (a.k.a. IP32) is an
54
 * IEEE 1284 parallel port driven by a Texas Instrument TL16PIR552PH chip[1].
55
 * This chip supports SPP, bidirectional, EPP and ECP modes.  It has a 16 byte
56
 * FIFO buffer and supports DMA transfers.
57
 *
58
 * [1] http://focus.ti.com/docs/prod/folders/print/tl16pir552.html
59
 *
60
 * Theoretically, we could simply use the parport_pc module.  It is however
61
 * not so simple.  The parport_pc code assumes that the parallel port
62
 * registers are port-mapped.  On the O2, they are memory-mapped.
63
 * Furthermore, each register is replicated on 256 consecutive addresses (as
64
 * it is for the built-in serial ports on the same chip).
65
 */
66
 
67
/*--- Some configuration defines ---------------------------------------*/
68
 
69
/* DEBUG_PARPORT_IP32
70
 *      0        disable debug
71
 *      1       standard level: pr_debug1 is enabled
72
 *      2       parport_ip32_dump_state is enabled
73
 *      >=3     verbose level: pr_debug is enabled
74
 */
75
#if !defined(DEBUG_PARPORT_IP32)
76
#       define DEBUG_PARPORT_IP32  0    /* 0 (disabled) for production */
77
#endif
78
 
79
/*----------------------------------------------------------------------*/
80
 
81
/* Setup DEBUG macros.  This is done before any includes, just in case we
82
 * activate pr_debug() with DEBUG_PARPORT_IP32 >= 3.
83
 */
84
#if DEBUG_PARPORT_IP32 == 1
85
#       warning DEBUG_PARPORT_IP32 == 1
86
#elif DEBUG_PARPORT_IP32 == 2
87
#       warning DEBUG_PARPORT_IP32 == 2
88
#elif DEBUG_PARPORT_IP32 >= 3
89
#       warning DEBUG_PARPORT_IP32 >= 3
90
#       if !defined(DEBUG)
91
#               define DEBUG /* enable pr_debug() in kernel.h */
92
#       endif
93
#endif
94
 
95
#include <linux/completion.h>
96
#include <linux/delay.h>
97
#include <linux/dma-mapping.h>
98
#include <linux/err.h>
99
#include <linux/init.h>
100
#include <linux/interrupt.h>
101
#include <linux/jiffies.h>
102
#include <linux/kernel.h>
103
#include <linux/module.h>
104
#include <linux/parport.h>
105
#include <linux/sched.h>
106
#include <linux/spinlock.h>
107
#include <linux/stddef.h>
108
#include <linux/types.h>
109
#include <asm/io.h>
110
#include <asm/ip32/ip32_ints.h>
111
#include <asm/ip32/mace.h>
112
 
113
/*--- Global variables -------------------------------------------------*/
114
 
115
/* Verbose probing on by default for debugging. */
116
#if DEBUG_PARPORT_IP32 >= 1
117
#       define DEFAULT_VERBOSE_PROBING  1
118
#else
119
#       define DEFAULT_VERBOSE_PROBING  0
120
#endif
121
 
122
/* Default prefix for printk */
123
#define PPIP32 "parport_ip32: "
124
 
125
/*
126
 * These are the module parameters:
127
 * @features:           bit mask of features to enable/disable
128
 *                      (all enabled by default)
129
 * @verbose_probing:    log chit-chat during initialization
130
 */
131
#define PARPORT_IP32_ENABLE_IRQ (1U << 0)
132
#define PARPORT_IP32_ENABLE_DMA (1U << 1)
133
#define PARPORT_IP32_ENABLE_SPP (1U << 2)
134
#define PARPORT_IP32_ENABLE_EPP (1U << 3)
135
#define PARPORT_IP32_ENABLE_ECP (1U << 4)
136
static unsigned int features =  ~0U;
137
static int verbose_probing =    DEFAULT_VERBOSE_PROBING;
138
 
139
/* We do not support more than one port. */
140
static struct parport *this_port = NULL;
141
 
142
/* Timing constants for FIFO modes.  */
143
#define FIFO_NFAULT_TIMEOUT     100     /* milliseconds */
144
#define FIFO_POLLING_INTERVAL   50      /* microseconds */
145
 
146
/*--- I/O register definitions -----------------------------------------*/
147
 
148
/**
149
 * struct parport_ip32_regs - virtual addresses of parallel port registers
150
 * @data:       Data Register
151
 * @dsr:        Device Status Register
152
 * @dcr:        Device Control Register
153
 * @eppAddr:    EPP Address Register
154
 * @eppData0:   EPP Data Register 0
155
 * @eppData1:   EPP Data Register 1
156
 * @eppData2:   EPP Data Register 2
157
 * @eppData3:   EPP Data Register 3
158
 * @ecpAFifo:   ECP Address FIFO
159
 * @fifo:       General FIFO register.  The same address is used for:
160
 *              - cFifo, the Parallel Port DATA FIFO
161
 *              - ecpDFifo, the ECP Data FIFO
162
 *              - tFifo, the ECP Test FIFO
163
 * @cnfgA:      Configuration Register A
164
 * @cnfgB:      Configuration Register B
165
 * @ecr:        Extended Control Register
166
 */
167
struct parport_ip32_regs {
168
        void __iomem *data;
169
        void __iomem *dsr;
170
        void __iomem *dcr;
171
        void __iomem *eppAddr;
172
        void __iomem *eppData0;
173
        void __iomem *eppData1;
174
        void __iomem *eppData2;
175
        void __iomem *eppData3;
176
        void __iomem *ecpAFifo;
177
        void __iomem *fifo;
178
        void __iomem *cnfgA;
179
        void __iomem *cnfgB;
180
        void __iomem *ecr;
181
};
182
 
183
/* Device Status Register */
184
#define DSR_nBUSY               (1U << 7)       /* PARPORT_STATUS_BUSY */
185
#define DSR_nACK                (1U << 6)       /* PARPORT_STATUS_ACK */
186
#define DSR_PERROR              (1U << 5)       /* PARPORT_STATUS_PAPEROUT */
187
#define DSR_SELECT              (1U << 4)       /* PARPORT_STATUS_SELECT */
188
#define DSR_nFAULT              (1U << 3)       /* PARPORT_STATUS_ERROR */
189
#define DSR_nPRINT              (1U << 2)       /* specific to TL16PIR552 */
190
/* #define DSR_reserved         (1U << 1) */
191
#define DSR_TIMEOUT             (1U << 0)       /* EPP timeout */
192
 
193
/* Device Control Register */
194
/* #define DCR_reserved         (1U << 7) | (1U <<  6) */
195
#define DCR_DIR                 (1U << 5)       /* direction */
196
#define DCR_IRQ                 (1U << 4)       /* interrupt on nAck */
197
#define DCR_SELECT              (1U << 3)       /* PARPORT_CONTROL_SELECT */
198
#define DCR_nINIT               (1U << 2)       /* PARPORT_CONTROL_INIT */
199
#define DCR_AUTOFD              (1U << 1)       /* PARPORT_CONTROL_AUTOFD */
200
#define DCR_STROBE              (1U << 0)       /* PARPORT_CONTROL_STROBE */
201
 
202
/* ECP Configuration Register A */
203
#define CNFGA_IRQ               (1U << 7)
204
#define CNFGA_ID_MASK           ((1U << 6) | (1U << 5) | (1U << 4))
205
#define CNFGA_ID_SHIFT          4
206
#define CNFGA_ID_16             (00U << CNFGA_ID_SHIFT)
207
#define CNFGA_ID_8              (01U << CNFGA_ID_SHIFT)
208
#define CNFGA_ID_32             (02U << CNFGA_ID_SHIFT)
209
/* #define CNFGA_reserved       (1U << 3) */
210
#define CNFGA_nBYTEINTRANS      (1U << 2)
211
#define CNFGA_PWORDLEFT         ((1U << 1) | (1U << 0))
212
 
213
/* ECP Configuration Register B */
214
#define CNFGB_COMPRESS          (1U << 7)
215
#define CNFGB_INTRVAL           (1U << 6)
216
#define CNFGB_IRQ_MASK          ((1U << 5) | (1U << 4) | (1U << 3))
217
#define CNFGB_IRQ_SHIFT         3
218
#define CNFGB_DMA_MASK          ((1U << 2) | (1U << 1) | (1U << 0))
219
#define CNFGB_DMA_SHIFT         0
220
 
221
/* Extended Control Register */
222
#define ECR_MODE_MASK           ((1U << 7) | (1U << 6) | (1U << 5))
223
#define ECR_MODE_SHIFT          5
224
#define ECR_MODE_SPP            (00U << ECR_MODE_SHIFT)
225
#define ECR_MODE_PS2            (01U << ECR_MODE_SHIFT)
226
#define ECR_MODE_PPF            (02U << ECR_MODE_SHIFT)
227
#define ECR_MODE_ECP            (03U << ECR_MODE_SHIFT)
228
#define ECR_MODE_EPP            (04U << ECR_MODE_SHIFT)
229
/* #define ECR_MODE_reserved    (05U << ECR_MODE_SHIFT) */
230
#define ECR_MODE_TST            (06U << ECR_MODE_SHIFT)
231
#define ECR_MODE_CFG            (07U << ECR_MODE_SHIFT)
232
#define ECR_nERRINTR            (1U << 4)
233
#define ECR_DMAEN               (1U << 3)
234
#define ECR_SERVINTR            (1U << 2)
235
#define ECR_F_FULL              (1U << 1)
236
#define ECR_F_EMPTY             (1U << 0)
237
 
238
/*--- Private data -----------------------------------------------------*/
239
 
240
/**
241
 * enum parport_ip32_irq_mode - operation mode of interrupt handler
242
 * @PARPORT_IP32_IRQ_FWD:       forward interrupt to the upper parport layer
243
 * @PARPORT_IP32_IRQ_HERE:      interrupt is handled locally
244
 */
245
enum parport_ip32_irq_mode { PARPORT_IP32_IRQ_FWD, PARPORT_IP32_IRQ_HERE };
246
 
247
/**
248
 * struct parport_ip32_private - private stuff for &struct parport
249
 * @regs:               register addresses
250
 * @dcr_cache:          cached contents of DCR
251
 * @dcr_writable:       bit mask of writable DCR bits
252
 * @pword:              number of bytes per PWord
253
 * @fifo_depth:         number of PWords that FIFO will hold
254
 * @readIntrThreshold:  minimum number of PWords we can read
255
 *                      if we get an interrupt
256
 * @writeIntrThreshold: minimum number of PWords we can write
257
 *                      if we get an interrupt
258
 * @irq_mode:           operation mode of interrupt handler for this port
259
 * @irq_complete:       mutex used to wait for an interrupt to occur
260
 */
261
struct parport_ip32_private {
262
        struct parport_ip32_regs        regs;
263
        unsigned int                    dcr_cache;
264
        unsigned int                    dcr_writable;
265
        unsigned int                    pword;
266
        unsigned int                    fifo_depth;
267
        unsigned int                    readIntrThreshold;
268
        unsigned int                    writeIntrThreshold;
269
        enum parport_ip32_irq_mode      irq_mode;
270
        struct completion               irq_complete;
271
};
272
 
273
/*--- Debug code -------------------------------------------------------*/
274
 
275
/*
276
 * pr_debug1 - print debug messages
277
 *
278
 * This is like pr_debug(), but is defined for %DEBUG_PARPORT_IP32 >= 1
279
 */
280
#if DEBUG_PARPORT_IP32 >= 1
281
#       define pr_debug1(...)   printk(KERN_DEBUG __VA_ARGS__)
282
#else /* DEBUG_PARPORT_IP32 < 1 */
283
#       define pr_debug1(...)   do { } while (0)
284
#endif
285
 
286
/*
287
 * pr_trace, pr_trace1 - trace function calls
288
 * @p:          pointer to &struct parport
289
 * @fmt:        printk format string
290
 * @...:        parameters for format string
291
 *
292
 * Macros used to trace function calls.  The given string is formatted after
293
 * function name.  pr_trace() uses pr_debug(), and pr_trace1() uses
294
 * pr_debug1().  __pr_trace() is the low-level macro and is not to be used
295
 * directly.
296
 */
297
#define __pr_trace(pr, p, fmt, ...)                                     \
298
        pr("%s: %s" fmt "\n",                                           \
299
           ({ const struct parport *__p = (p);                          \
300
                   __p ? __p->name : "parport_ip32"; }),                \
301
           __func__ , ##__VA_ARGS__)
302
#define pr_trace(p, fmt, ...)   __pr_trace(pr_debug, p, fmt , ##__VA_ARGS__)
303
#define pr_trace1(p, fmt, ...)  __pr_trace(pr_debug1, p, fmt , ##__VA_ARGS__)
304
 
305
/*
306
 * __pr_probe, pr_probe - print message if @verbose_probing is true
307
 * @p:          pointer to &struct parport
308
 * @fmt:        printk format string
309
 * @...:        parameters for format string
310
 *
311
 * For new lines, use pr_probe().  Use __pr_probe() for continued lines.
312
 */
313
#define __pr_probe(...)                                                 \
314
        do { if (verbose_probing) printk(__VA_ARGS__); } while (0)
315
#define pr_probe(p, fmt, ...)                                           \
316
        __pr_probe(KERN_INFO PPIP32 "0x%lx: " fmt, (p)->base , ##__VA_ARGS__)
317
 
318
/*
319
 * parport_ip32_dump_state - print register status of parport
320
 * @p:          pointer to &struct parport
321
 * @str:        string to add in message
322
 * @show_ecp_config:    shall we dump ECP configuration registers too?
323
 *
324
 * This function is only here for debugging purpose, and should be used with
325
 * care.  Reading the parallel port registers may have undesired side effects.
326
 * Especially if @show_ecp_config is true, the parallel port is resetted.
327
 * This function is only defined if %DEBUG_PARPORT_IP32 >= 2.
328
 */
329
#if DEBUG_PARPORT_IP32 >= 2
330
static void parport_ip32_dump_state(struct parport *p, char *str,
331
                                    unsigned int show_ecp_config)
332
{
333
        struct parport_ip32_private * const priv = p->physport->private_data;
334
        unsigned int i;
335
 
336
        printk(KERN_DEBUG PPIP32 "%s: state (%s):\n", p->name, str);
337
        {
338
                static const char ecr_modes[8][4] = {"SPP", "PS2", "PPF",
339
                                                     "ECP", "EPP", "???",
340
                                                     "TST", "CFG"};
341
                unsigned int ecr = readb(priv->regs.ecr);
342
                printk(KERN_DEBUG PPIP32 "    ecr=0x%02x", ecr);
343
                printk(" %s",
344
                       ecr_modes[(ecr & ECR_MODE_MASK) >> ECR_MODE_SHIFT]);
345
                if (ecr & ECR_nERRINTR)
346
                        printk(",nErrIntrEn");
347
                if (ecr & ECR_DMAEN)
348
                        printk(",dmaEn");
349
                if (ecr & ECR_SERVINTR)
350
                        printk(",serviceIntr");
351
                if (ecr & ECR_F_FULL)
352
                        printk(",f_full");
353
                if (ecr & ECR_F_EMPTY)
354
                        printk(",f_empty");
355
                printk("\n");
356
        }
357
        if (show_ecp_config) {
358
                unsigned int oecr, cnfgA, cnfgB;
359
                oecr = readb(priv->regs.ecr);
360
                writeb(ECR_MODE_PS2, priv->regs.ecr);
361
                writeb(ECR_MODE_CFG, priv->regs.ecr);
362
                cnfgA = readb(priv->regs.cnfgA);
363
                cnfgB = readb(priv->regs.cnfgB);
364
                writeb(ECR_MODE_PS2, priv->regs.ecr);
365
                writeb(oecr, priv->regs.ecr);
366
                printk(KERN_DEBUG PPIP32 "    cnfgA=0x%02x", cnfgA);
367
                printk(" ISA-%s", (cnfgA & CNFGA_IRQ) ? "Level" : "Pulses");
368
                switch (cnfgA & CNFGA_ID_MASK) {
369
                case CNFGA_ID_8:
370
                        printk(",8 bits");
371
                        break;
372
                case CNFGA_ID_16:
373
                        printk(",16 bits");
374
                        break;
375
                case CNFGA_ID_32:
376
                        printk(",32 bits");
377
                        break;
378
                default:
379
                        printk(",unknown ID");
380
                        break;
381
                }
382
                if (!(cnfgA & CNFGA_nBYTEINTRANS))
383
                        printk(",ByteInTrans");
384
                if ((cnfgA & CNFGA_ID_MASK) != CNFGA_ID_8)
385
                        printk(",%d byte%s left", cnfgA & CNFGA_PWORDLEFT,
386
                               ((cnfgA & CNFGA_PWORDLEFT) > 1) ? "s" : "");
387
                printk("\n");
388
                printk(KERN_DEBUG PPIP32 "    cnfgB=0x%02x", cnfgB);
389
                printk(" irq=%u,dma=%u",
390
                       (cnfgB & CNFGB_IRQ_MASK) >> CNFGB_IRQ_SHIFT,
391
                       (cnfgB & CNFGB_DMA_MASK) >> CNFGB_DMA_SHIFT);
392
                printk(",intrValue=%d", !!(cnfgB & CNFGB_INTRVAL));
393
                if (cnfgB & CNFGB_COMPRESS)
394
                        printk(",compress");
395
                printk("\n");
396
        }
397
        for (i = 0; i < 2; i++) {
398
                unsigned int dcr = i ? priv->dcr_cache : readb(priv->regs.dcr);
399
                printk(KERN_DEBUG PPIP32 "    dcr(%s)=0x%02x",
400
                       i ? "soft" : "hard", dcr);
401
                printk(" %s", (dcr & DCR_DIR) ? "rev" : "fwd");
402
                if (dcr & DCR_IRQ)
403
                        printk(",ackIntEn");
404
                if (!(dcr & DCR_SELECT))
405
                        printk(",nSelectIn");
406
                if (dcr & DCR_nINIT)
407
                        printk(",nInit");
408
                if (!(dcr & DCR_AUTOFD))
409
                        printk(",nAutoFD");
410
                if (!(dcr & DCR_STROBE))
411
                        printk(",nStrobe");
412
                printk("\n");
413
        }
414
#define sep (f++ ? ',' : ' ')
415
        {
416
                unsigned int f = 0;
417
                unsigned int dsr = readb(priv->regs.dsr);
418
                printk(KERN_DEBUG PPIP32 "    dsr=0x%02x", dsr);
419
                if (!(dsr & DSR_nBUSY))
420
                        printk("%cBusy", sep);
421
                if (dsr & DSR_nACK)
422
                        printk("%cnAck", sep);
423
                if (dsr & DSR_PERROR)
424
                        printk("%cPError", sep);
425
                if (dsr & DSR_SELECT)
426
                        printk("%cSelect", sep);
427
                if (dsr & DSR_nFAULT)
428
                        printk("%cnFault", sep);
429
                if (!(dsr & DSR_nPRINT))
430
                        printk("%c(Print)", sep);
431
                if (dsr & DSR_TIMEOUT)
432
                        printk("%cTimeout", sep);
433
                printk("\n");
434
        }
435
#undef sep
436
}
437
#else /* DEBUG_PARPORT_IP32 < 2 */
438
#define parport_ip32_dump_state(...)    do { } while (0)
439
#endif
440
 
441
/*
442
 * CHECK_EXTRA_BITS - track and log extra bits
443
 * @p:          pointer to &struct parport
444
 * @b:          byte to inspect
445
 * @m:          bit mask of authorized bits
446
 *
447
 * This is used to track and log extra bits that should not be there in
448
 * parport_ip32_write_control() and parport_ip32_frob_control().  It is only
449
 * defined if %DEBUG_PARPORT_IP32 >= 1.
450
 */
451
#if DEBUG_PARPORT_IP32 >= 1
452
#define CHECK_EXTRA_BITS(p, b, m)                                       \
453
        do {                                                            \
454
                unsigned int __b = (b), __m = (m);                      \
455
                if (__b & ~__m)                                         \
456
                        pr_debug1(PPIP32 "%s: extra bits in %s(%s): "   \
457
                                  "0x%02x/0x%02x\n",                    \
458
                                  (p)->name, __func__, #b, __b, __m);   \
459
        } while (0)
460
#else /* DEBUG_PARPORT_IP32 < 1 */
461
#define CHECK_EXTRA_BITS(...)   do { } while (0)
462
#endif
463
 
464
/*--- IP32 parallel port DMA operations --------------------------------*/
465
 
466
/**
467
 * struct parport_ip32_dma_data - private data needed for DMA operation
468
 * @dir:        DMA direction (from or to device)
469
 * @buf:        buffer physical address
470
 * @len:        buffer length
471
 * @next:       address of next bytes to DMA transfer
472
 * @left:       number of bytes remaining
473
 * @ctx:        next context to write (0: context_a; 1: context_b)
474
 * @irq_on:     are the DMA IRQs currently enabled?
475
 * @lock:       spinlock to protect access to the structure
476
 */
477
struct parport_ip32_dma_data {
478
        enum dma_data_direction         dir;
479
        dma_addr_t                      buf;
480
        dma_addr_t                      next;
481
        size_t                          len;
482
        size_t                          left;
483
        unsigned int                    ctx;
484
        unsigned int                    irq_on;
485
        spinlock_t                      lock;
486
};
487
static struct parport_ip32_dma_data parport_ip32_dma;
488
 
489
/**
490
 * parport_ip32_dma_setup_context - setup next DMA context
491
 * @limit:      maximum data size for the context
492
 *
493
 * The alignment constraints must be verified in caller function, and the
494
 * parameter @limit must be set accordingly.
495
 */
496
static void parport_ip32_dma_setup_context(unsigned int limit)
497
{
498
        unsigned long flags;
499
 
500
        spin_lock_irqsave(&parport_ip32_dma.lock, flags);
501
        if (parport_ip32_dma.left > 0) {
502
                /* Note: ctxreg is "volatile" here only because
503
                 * mace->perif.ctrl.parport.context_a and context_b are
504
                 * "volatile".  */
505
                volatile u64 __iomem *ctxreg = (parport_ip32_dma.ctx == 0) ?
506
                        &mace->perif.ctrl.parport.context_a :
507
                        &mace->perif.ctrl.parport.context_b;
508
                u64 count;
509
                u64 ctxval;
510
                if (parport_ip32_dma.left <= limit) {
511
                        count = parport_ip32_dma.left;
512
                        ctxval = MACEPAR_CONTEXT_LASTFLAG;
513
                } else {
514
                        count = limit;
515
                        ctxval = 0;
516
                }
517
 
518
                pr_trace(NULL,
519
                         "(%u): 0x%04x:0x%04x, %u -> %u%s",
520
                         limit,
521
                         (unsigned int)parport_ip32_dma.buf,
522
                         (unsigned int)parport_ip32_dma.next,
523
                         (unsigned int)count,
524
                         parport_ip32_dma.ctx, ctxval ? "*" : "");
525
 
526
                ctxval |= parport_ip32_dma.next &
527
                        MACEPAR_CONTEXT_BASEADDR_MASK;
528
                ctxval |= ((count - 1) << MACEPAR_CONTEXT_DATALEN_SHIFT) &
529
                        MACEPAR_CONTEXT_DATALEN_MASK;
530
                writeq(ctxval, ctxreg);
531
                parport_ip32_dma.next += count;
532
                parport_ip32_dma.left -= count;
533
                parport_ip32_dma.ctx ^= 1U;
534
        }
535
        /* If there is nothing more to send, disable IRQs to avoid to
536
         * face an IRQ storm which can lock the machine.  Disable them
537
         * only once. */
538
        if (parport_ip32_dma.left == 0 && parport_ip32_dma.irq_on) {
539
                pr_debug(PPIP32 "IRQ off (ctx)\n");
540
                disable_irq_nosync(MACEISA_PAR_CTXA_IRQ);
541
                disable_irq_nosync(MACEISA_PAR_CTXB_IRQ);
542
                parport_ip32_dma.irq_on = 0;
543
        }
544
        spin_unlock_irqrestore(&parport_ip32_dma.lock, flags);
545
}
546
 
547
/**
548
 * parport_ip32_dma_interrupt - DMA interrupt handler
549
 * @irq:        interrupt number
550
 * @dev_id:     unused
551
 */
552
static irqreturn_t parport_ip32_dma_interrupt(int irq, void *dev_id)
553
{
554
        if (parport_ip32_dma.left)
555
                pr_trace(NULL, "(%d): ctx=%d", irq, parport_ip32_dma.ctx);
556
        parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND);
557
        return IRQ_HANDLED;
558
}
559
 
560
#if DEBUG_PARPORT_IP32
561
static irqreturn_t parport_ip32_merr_interrupt(int irq, void *dev_id)
562
{
563
        pr_trace1(NULL, "(%d)", irq);
564
        return IRQ_HANDLED;
565
}
566
#endif
567
 
568
/**
569
 * parport_ip32_dma_start - begins a DMA transfer
570
 * @dir:        DMA direction: DMA_TO_DEVICE or DMA_FROM_DEVICE
571
 * @addr:       pointer to data buffer
572
 * @count:      buffer size
573
 *
574
 * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be
575
 * correctly balanced.
576
 */
577
static int parport_ip32_dma_start(enum dma_data_direction dir,
578
                                  void *addr, size_t count)
579
{
580
        unsigned int limit;
581
        u64 ctrl;
582
 
583
        pr_trace(NULL, "(%d, %lu)", dir, (unsigned long)count);
584
 
585
        /* FIXME - add support for DMA_FROM_DEVICE.  In this case, buffer must
586
         * be 64 bytes aligned. */
587
        BUG_ON(dir != DMA_TO_DEVICE);
588
 
589
        /* Reset DMA controller */
590
        ctrl = MACEPAR_CTLSTAT_RESET;
591
        writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
592
 
593
        /* DMA IRQs should normally be enabled */
594
        if (!parport_ip32_dma.irq_on) {
595
                WARN_ON(1);
596
                enable_irq(MACEISA_PAR_CTXA_IRQ);
597
                enable_irq(MACEISA_PAR_CTXB_IRQ);
598
                parport_ip32_dma.irq_on = 1;
599
        }
600
 
601
        /* Prepare DMA pointers */
602
        parport_ip32_dma.dir = dir;
603
        parport_ip32_dma.buf = dma_map_single(NULL, addr, count, dir);
604
        parport_ip32_dma.len = count;
605
        parport_ip32_dma.next = parport_ip32_dma.buf;
606
        parport_ip32_dma.left = parport_ip32_dma.len;
607
        parport_ip32_dma.ctx = 0;
608
 
609
        /* Setup DMA direction and first two contexts */
610
        ctrl = (dir == DMA_TO_DEVICE) ? 0 : MACEPAR_CTLSTAT_DIRECTION;
611
        writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
612
        /* Single transfer should not cross a 4K page boundary */
613
        limit = MACEPAR_CONTEXT_DATA_BOUND -
614
                (parport_ip32_dma.next & (MACEPAR_CONTEXT_DATA_BOUND - 1));
615
        parport_ip32_dma_setup_context(limit);
616
        parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND);
617
 
618
        /* Real start of DMA transfer */
619
        ctrl |= MACEPAR_CTLSTAT_ENABLE;
620
        writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
621
 
622
        return 0;
623
}
624
 
625
/**
626
 * parport_ip32_dma_stop - ends a running DMA transfer
627
 *
628
 * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be
629
 * correctly balanced.
630
 */
631
static void parport_ip32_dma_stop(void)
632
{
633
        u64 ctx_a;
634
        u64 ctx_b;
635
        u64 ctrl;
636
        u64 diag;
637
        size_t res[2];  /* {[0] = res_a, [1] = res_b} */
638
 
639
        pr_trace(NULL, "()");
640
 
641
        /* Disable IRQs */
642
        spin_lock_irq(&parport_ip32_dma.lock);
643
        if (parport_ip32_dma.irq_on) {
644
                pr_debug(PPIP32 "IRQ off (stop)\n");
645
                disable_irq_nosync(MACEISA_PAR_CTXA_IRQ);
646
                disable_irq_nosync(MACEISA_PAR_CTXB_IRQ);
647
                parport_ip32_dma.irq_on = 0;
648
        }
649
        spin_unlock_irq(&parport_ip32_dma.lock);
650
        /* Force IRQ synchronization, even if the IRQs were disabled
651
         * elsewhere. */
652
        synchronize_irq(MACEISA_PAR_CTXA_IRQ);
653
        synchronize_irq(MACEISA_PAR_CTXB_IRQ);
654
 
655
        /* Stop DMA transfer */
656
        ctrl = readq(&mace->perif.ctrl.parport.cntlstat);
657
        ctrl &= ~MACEPAR_CTLSTAT_ENABLE;
658
        writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
659
 
660
        /* Adjust residue (parport_ip32_dma.left) */
661
        ctx_a = readq(&mace->perif.ctrl.parport.context_a);
662
        ctx_b = readq(&mace->perif.ctrl.parport.context_b);
663
        ctrl = readq(&mace->perif.ctrl.parport.cntlstat);
664
        diag = readq(&mace->perif.ctrl.parport.diagnostic);
665
        res[0] = (ctrl & MACEPAR_CTLSTAT_CTXA_VALID) ?
666
                1 + ((ctx_a & MACEPAR_CONTEXT_DATALEN_MASK) >>
667
                     MACEPAR_CONTEXT_DATALEN_SHIFT) :
668
                0;
669
        res[1] = (ctrl & MACEPAR_CTLSTAT_CTXB_VALID) ?
670
                1 + ((ctx_b & MACEPAR_CONTEXT_DATALEN_MASK) >>
671
                     MACEPAR_CONTEXT_DATALEN_SHIFT) :
672
                0;
673
        if (diag & MACEPAR_DIAG_DMACTIVE)
674
                res[(diag & MACEPAR_DIAG_CTXINUSE) != 0] =
675
                        1 + ((diag & MACEPAR_DIAG_CTRMASK) >>
676
                             MACEPAR_DIAG_CTRSHIFT);
677
        parport_ip32_dma.left += res[0] + res[1];
678
 
679
        /* Reset DMA controller, and re-enable IRQs */
680
        ctrl = MACEPAR_CTLSTAT_RESET;
681
        writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
682
        pr_debug(PPIP32 "IRQ on (stop)\n");
683
        enable_irq(MACEISA_PAR_CTXA_IRQ);
684
        enable_irq(MACEISA_PAR_CTXB_IRQ);
685
        parport_ip32_dma.irq_on = 1;
686
 
687
        dma_unmap_single(NULL, parport_ip32_dma.buf, parport_ip32_dma.len,
688
                         parport_ip32_dma.dir);
689
}
690
 
691
/**
692
 * parport_ip32_dma_get_residue - get residue from last DMA transfer
693
 *
694
 * Returns the number of bytes remaining from last DMA transfer.
695
 */
696
static inline size_t parport_ip32_dma_get_residue(void)
697
{
698
        return parport_ip32_dma.left;
699
}
700
 
701
/**
702
 * parport_ip32_dma_register - initialize DMA engine
703
 *
704
 * Returns zero for success.
705
 */
706
static int parport_ip32_dma_register(void)
707
{
708
        int err;
709
 
710
        spin_lock_init(&parport_ip32_dma.lock);
711
        parport_ip32_dma.irq_on = 1;
712
 
713
        /* Reset DMA controller */
714
        writeq(MACEPAR_CTLSTAT_RESET, &mace->perif.ctrl.parport.cntlstat);
715
 
716
        /* Request IRQs */
717
        err = request_irq(MACEISA_PAR_CTXA_IRQ, parport_ip32_dma_interrupt,
718
                          0, "parport_ip32", NULL);
719
        if (err)
720
                goto fail_a;
721
        err = request_irq(MACEISA_PAR_CTXB_IRQ, parport_ip32_dma_interrupt,
722
                          0, "parport_ip32", NULL);
723
        if (err)
724
                goto fail_b;
725
#if DEBUG_PARPORT_IP32
726
        /* FIXME - what is this IRQ for? */
727
        err = request_irq(MACEISA_PAR_MERR_IRQ, parport_ip32_merr_interrupt,
728
                          0, "parport_ip32", NULL);
729
        if (err)
730
                goto fail_merr;
731
#endif
732
        return 0;
733
 
734
#if DEBUG_PARPORT_IP32
735
fail_merr:
736
        free_irq(MACEISA_PAR_CTXB_IRQ, NULL);
737
#endif
738
fail_b:
739
        free_irq(MACEISA_PAR_CTXA_IRQ, NULL);
740
fail_a:
741
        return err;
742
}
743
 
744
/**
745
 * parport_ip32_dma_unregister - release and free resources for DMA engine
746
 */
747
static void parport_ip32_dma_unregister(void)
748
{
749
#if DEBUG_PARPORT_IP32
750
        free_irq(MACEISA_PAR_MERR_IRQ, NULL);
751
#endif
752
        free_irq(MACEISA_PAR_CTXB_IRQ, NULL);
753
        free_irq(MACEISA_PAR_CTXA_IRQ, NULL);
754
}
755
 
756
/*--- Interrupt handlers and associates --------------------------------*/
757
 
758
/**
759
 * parport_ip32_wakeup - wakes up code waiting for an interrupt
760
 * @p:          pointer to &struct parport
761
 */
762
static inline void parport_ip32_wakeup(struct parport *p)
763
{
764
        struct parport_ip32_private * const priv = p->physport->private_data;
765
        complete(&priv->irq_complete);
766
}
767
 
768
/**
769
 * parport_ip32_interrupt - interrupt handler
770
 * @irq:        interrupt number
771
 * @dev_id:     pointer to &struct parport
772
 *
773
 * Caught interrupts are forwarded to the upper parport layer if IRQ_mode is
774
 * %PARPORT_IP32_IRQ_FWD.
775
 */
776
static irqreturn_t parport_ip32_interrupt(int irq, void *dev_id)
777
{
778
        struct parport * const p = dev_id;
779
        struct parport_ip32_private * const priv = p->physport->private_data;
780
        enum parport_ip32_irq_mode irq_mode = priv->irq_mode;
781
 
782
        switch (irq_mode) {
783
        case PARPORT_IP32_IRQ_FWD:
784
                return parport_irq_handler(irq, dev_id);
785
 
786
        case PARPORT_IP32_IRQ_HERE:
787
                parport_ip32_wakeup(p);
788
                break;
789
        }
790
 
791
        return IRQ_HANDLED;
792
}
793
 
794
/*--- Some utility function to manipulate ECR register -----------------*/
795
 
796
/**
797
 * parport_ip32_read_econtrol - read contents of the ECR register
798
 * @p:          pointer to &struct parport
799
 */
800
static inline unsigned int parport_ip32_read_econtrol(struct parport *p)
801
{
802
        struct parport_ip32_private * const priv = p->physport->private_data;
803
        return readb(priv->regs.ecr);
804
}
805
 
806
/**
807
 * parport_ip32_write_econtrol - write new contents to the ECR register
808
 * @p:          pointer to &struct parport
809
 * @c:          new value to write
810
 */
811
static inline void parport_ip32_write_econtrol(struct parport *p,
812
                                               unsigned int c)
813
{
814
        struct parport_ip32_private * const priv = p->physport->private_data;
815
        writeb(c, priv->regs.ecr);
816
}
817
 
818
/**
819
 * parport_ip32_frob_econtrol - change bits from the ECR register
820
 * @p:          pointer to &struct parport
821
 * @mask:       bit mask of bits to change
822
 * @val:        new value for changed bits
823
 *
824
 * Read from the ECR, mask out the bits in @mask, exclusive-or with the bits
825
 * in @val, and write the result to the ECR.
826
 */
827
static inline void parport_ip32_frob_econtrol(struct parport *p,
828
                                              unsigned int mask,
829
                                              unsigned int val)
830
{
831
        unsigned int c;
832
        c = (parport_ip32_read_econtrol(p) & ~mask) ^ val;
833
        parport_ip32_write_econtrol(p, c);
834
}
835
 
836
/**
837
 * parport_ip32_set_mode - change mode of ECP port
838
 * @p:          pointer to &struct parport
839
 * @mode:       new mode to write in ECR
840
 *
841
 * ECR is reset in a sane state (interrupts and DMA disabled), and placed in
842
 * mode @mode.  Go through PS2 mode if needed.
843
 */
844
static void parport_ip32_set_mode(struct parport *p, unsigned int mode)
845
{
846
        unsigned int omode;
847
 
848
        mode &= ECR_MODE_MASK;
849
        omode = parport_ip32_read_econtrol(p) & ECR_MODE_MASK;
850
 
851
        if (!(mode == ECR_MODE_SPP || mode == ECR_MODE_PS2
852
              || omode == ECR_MODE_SPP || omode == ECR_MODE_PS2)) {
853
                /* We have to go through PS2 mode */
854
                unsigned int ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
855
                parport_ip32_write_econtrol(p, ecr);
856
        }
857
        parport_ip32_write_econtrol(p, mode | ECR_nERRINTR | ECR_SERVINTR);
858
}
859
 
860
/*--- Basic functions needed for parport -------------------------------*/
861
 
862
/**
863
 * parport_ip32_read_data - return current contents of the DATA register
864
 * @p:          pointer to &struct parport
865
 */
866
static inline unsigned char parport_ip32_read_data(struct parport *p)
867
{
868
        struct parport_ip32_private * const priv = p->physport->private_data;
869
        return readb(priv->regs.data);
870
}
871
 
872
/**
873
 * parport_ip32_write_data - set new contents for the DATA register
874
 * @p:          pointer to &struct parport
875
 * @d:          new value to write
876
 */
877
static inline void parport_ip32_write_data(struct parport *p, unsigned char d)
878
{
879
        struct parport_ip32_private * const priv = p->physport->private_data;
880
        writeb(d, priv->regs.data);
881
}
882
 
883
/**
884
 * parport_ip32_read_status - return current contents of the DSR register
885
 * @p:          pointer to &struct parport
886
 */
887
static inline unsigned char parport_ip32_read_status(struct parport *p)
888
{
889
        struct parport_ip32_private * const priv = p->physport->private_data;
890
        return readb(priv->regs.dsr);
891
}
892
 
893
/**
894
 * __parport_ip32_read_control - return cached contents of the DCR register
895
 * @p:          pointer to &struct parport
896
 */
897
static inline unsigned int __parport_ip32_read_control(struct parport *p)
898
{
899
        struct parport_ip32_private * const priv = p->physport->private_data;
900
        return priv->dcr_cache; /* use soft copy */
901
}
902
 
903
/**
904
 * __parport_ip32_write_control - set new contents for the DCR register
905
 * @p:          pointer to &struct parport
906
 * @c:          new value to write
907
 */
908
static inline void __parport_ip32_write_control(struct parport *p,
909
                                                unsigned int c)
910
{
911
        struct parport_ip32_private * const priv = p->physport->private_data;
912
        CHECK_EXTRA_BITS(p, c, priv->dcr_writable);
913
        c &= priv->dcr_writable; /* only writable bits */
914
        writeb(c, priv->regs.dcr);
915
        priv->dcr_cache = c;            /* update soft copy */
916
}
917
 
918
/**
919
 * __parport_ip32_frob_control - change bits from the DCR register
920
 * @p:          pointer to &struct parport
921
 * @mask:       bit mask of bits to change
922
 * @val:        new value for changed bits
923
 *
924
 * This is equivalent to read from the DCR, mask out the bits in @mask,
925
 * exclusive-or with the bits in @val, and write the result to the DCR.
926
 * Actually, the cached contents of the DCR is used.
927
 */
928
static inline void __parport_ip32_frob_control(struct parport *p,
929
                                               unsigned int mask,
930
                                               unsigned int val)
931
{
932
        unsigned int c;
933
        c = (__parport_ip32_read_control(p) & ~mask) ^ val;
934
        __parport_ip32_write_control(p, c);
935
}
936
 
937
/**
938
 * parport_ip32_read_control - return cached contents of the DCR register
939
 * @p:          pointer to &struct parport
940
 *
941
 * The return value is masked so as to only return the value of %DCR_STROBE,
942
 * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
943
 */
944
static inline unsigned char parport_ip32_read_control(struct parport *p)
945
{
946
        const unsigned int rm =
947
                DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
948
        return __parport_ip32_read_control(p) & rm;
949
}
950
 
951
/**
952
 * parport_ip32_write_control - set new contents for the DCR register
953
 * @p:          pointer to &struct parport
954
 * @c:          new value to write
955
 *
956
 * The value is masked so as to only change the value of %DCR_STROBE,
957
 * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
958
 */
959
static inline void parport_ip32_write_control(struct parport *p,
960
                                              unsigned char c)
961
{
962
        const unsigned int wm =
963
                DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
964
        CHECK_EXTRA_BITS(p, c, wm);
965
        __parport_ip32_frob_control(p, wm, c & wm);
966
}
967
 
968
/**
969
 * parport_ip32_frob_control - change bits from the DCR register
970
 * @p:          pointer to &struct parport
971
 * @mask:       bit mask of bits to change
972
 * @val:        new value for changed bits
973
 *
974
 * This differs from __parport_ip32_frob_control() in that it only allows to
975
 * change the value of %DCR_STROBE, %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
976
 */
977
static inline unsigned char parport_ip32_frob_control(struct parport *p,
978
                                                      unsigned char mask,
979
                                                      unsigned char val)
980
{
981
        const unsigned int wm =
982
                DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
983
        CHECK_EXTRA_BITS(p, mask, wm);
984
        CHECK_EXTRA_BITS(p, val, wm);
985
        __parport_ip32_frob_control(p, mask & wm, val & wm);
986
        return parport_ip32_read_control(p);
987
}
988
 
989
/**
990
 * parport_ip32_disable_irq - disable interrupts on the rising edge of nACK
991
 * @p:          pointer to &struct parport
992
 */
993
static inline void parport_ip32_disable_irq(struct parport *p)
994
{
995
        __parport_ip32_frob_control(p, DCR_IRQ, 0);
996
}
997
 
998
/**
999
 * parport_ip32_enable_irq - enable interrupts on the rising edge of nACK
1000
 * @p:          pointer to &struct parport
1001
 */
1002
static inline void parport_ip32_enable_irq(struct parport *p)
1003
{
1004
        __parport_ip32_frob_control(p, DCR_IRQ, DCR_IRQ);
1005
}
1006
 
1007
/**
1008
 * parport_ip32_data_forward - enable host-to-peripheral communications
1009
 * @p:          pointer to &struct parport
1010
 *
1011
 * Enable the data line drivers, for 8-bit host-to-peripheral communications.
1012
 */
1013
static inline void parport_ip32_data_forward(struct parport *p)
1014
{
1015
        __parport_ip32_frob_control(p, DCR_DIR, 0);
1016
}
1017
 
1018
/**
1019
 * parport_ip32_data_reverse - enable peripheral-to-host communications
1020
 * @p:          pointer to &struct parport
1021
 *
1022
 * Place the data bus in a high impedance state, if @p->modes has the
1023
 * PARPORT_MODE_TRISTATE bit set.
1024
 */
1025
static inline void parport_ip32_data_reverse(struct parport *p)
1026
{
1027
        __parport_ip32_frob_control(p, DCR_DIR, DCR_DIR);
1028
}
1029
 
1030
/**
1031
 * parport_ip32_init_state - for core parport code
1032
 * @dev:        pointer to &struct pardevice
1033
 * @s:          pointer to &struct parport_state to initialize
1034
 */
1035
static void parport_ip32_init_state(struct pardevice *dev,
1036
                                    struct parport_state *s)
1037
{
1038
        s->u.ip32.dcr = DCR_SELECT | DCR_nINIT;
1039
        s->u.ip32.ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
1040
}
1041
 
1042
/**
1043
 * parport_ip32_save_state - for core parport code
1044
 * @p:          pointer to &struct parport
1045
 * @s:          pointer to &struct parport_state to save state to
1046
 */
1047
static void parport_ip32_save_state(struct parport *p,
1048
                                    struct parport_state *s)
1049
{
1050
        s->u.ip32.dcr = __parport_ip32_read_control(p);
1051
        s->u.ip32.ecr = parport_ip32_read_econtrol(p);
1052
}
1053
 
1054
/**
1055
 * parport_ip32_restore_state - for core parport code
1056
 * @p:          pointer to &struct parport
1057
 * @s:          pointer to &struct parport_state to restore state from
1058
 */
1059
static void parport_ip32_restore_state(struct parport *p,
1060
                                       struct parport_state *s)
1061
{
1062
        parport_ip32_set_mode(p, s->u.ip32.ecr & ECR_MODE_MASK);
1063
        parport_ip32_write_econtrol(p, s->u.ip32.ecr);
1064
        __parport_ip32_write_control(p, s->u.ip32.dcr);
1065
}
1066
 
1067
/*--- EPP mode functions -----------------------------------------------*/
1068
 
1069
/**
1070
 * parport_ip32_clear_epp_timeout - clear Timeout bit in EPP mode
1071
 * @p:          pointer to &struct parport
1072
 *
1073
 * Returns 1 if the Timeout bit is clear, and 0 otherwise.
1074
 */
1075
static unsigned int parport_ip32_clear_epp_timeout(struct parport *p)
1076
{
1077
        struct parport_ip32_private * const priv = p->physport->private_data;
1078
        unsigned int cleared;
1079
 
1080
        if (!(parport_ip32_read_status(p) & DSR_TIMEOUT))
1081
                cleared = 1;
1082
        else {
1083
                unsigned int r;
1084
                /* To clear timeout some chips require double read */
1085
                parport_ip32_read_status(p);
1086
                r = parport_ip32_read_status(p);
1087
                /* Some reset by writing 1 */
1088
                writeb(r | DSR_TIMEOUT, priv->regs.dsr);
1089
                /* Others by writing 0 */
1090
                writeb(r & ~DSR_TIMEOUT, priv->regs.dsr);
1091
 
1092
                r = parport_ip32_read_status(p);
1093
                cleared = !(r & DSR_TIMEOUT);
1094
        }
1095
 
1096
        pr_trace(p, "(): %s", cleared ? "cleared" : "failed");
1097
        return cleared;
1098
}
1099
 
1100
/**
1101
 * parport_ip32_epp_read - generic EPP read function
1102
 * @eppreg:     I/O register to read from
1103
 * @p:          pointer to &struct parport
1104
 * @buf:        buffer to store read data
1105
 * @len:        length of buffer @buf
1106
 * @flags:      may be PARPORT_EPP_FAST
1107
 */
1108
static size_t parport_ip32_epp_read(void __iomem *eppreg,
1109
                                    struct parport *p, void *buf,
1110
                                    size_t len, int flags)
1111
{
1112
        struct parport_ip32_private * const priv = p->physport->private_data;
1113
        size_t got;
1114
        parport_ip32_set_mode(p, ECR_MODE_EPP);
1115
        parport_ip32_data_reverse(p);
1116
        parport_ip32_write_control(p, DCR_nINIT);
1117
        if ((flags & PARPORT_EPP_FAST) && (len > 1)) {
1118
                readsb(eppreg, buf, len);
1119
                if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1120
                        parport_ip32_clear_epp_timeout(p);
1121
                        return -EIO;
1122
                }
1123
                got = len;
1124
        } else {
1125
                u8 *bufp = buf;
1126
                for (got = 0; got < len; got++) {
1127
                        *bufp++ = readb(eppreg);
1128
                        if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1129
                                parport_ip32_clear_epp_timeout(p);
1130
                                break;
1131
                        }
1132
                }
1133
        }
1134
        parport_ip32_data_forward(p);
1135
        parport_ip32_set_mode(p, ECR_MODE_PS2);
1136
        return got;
1137
}
1138
 
1139
/**
1140
 * parport_ip32_epp_write - generic EPP write function
1141
 * @eppreg:     I/O register to write to
1142
 * @p:          pointer to &struct parport
1143
 * @buf:        buffer of data to write
1144
 * @len:        length of buffer @buf
1145
 * @flags:      may be PARPORT_EPP_FAST
1146
 */
1147
static size_t parport_ip32_epp_write(void __iomem *eppreg,
1148
                                     struct parport *p, const void *buf,
1149
                                     size_t len, int flags)
1150
{
1151
        struct parport_ip32_private * const priv = p->physport->private_data;
1152
        size_t written;
1153
        parport_ip32_set_mode(p, ECR_MODE_EPP);
1154
        parport_ip32_data_forward(p);
1155
        parport_ip32_write_control(p, DCR_nINIT);
1156
        if ((flags & PARPORT_EPP_FAST) && (len > 1)) {
1157
                writesb(eppreg, buf, len);
1158
                if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1159
                        parport_ip32_clear_epp_timeout(p);
1160
                        return -EIO;
1161
                }
1162
                written = len;
1163
        } else {
1164
                const u8 *bufp = buf;
1165
                for (written = 0; written < len; written++) {
1166
                        writeb(*bufp++, eppreg);
1167
                        if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1168
                                parport_ip32_clear_epp_timeout(p);
1169
                                break;
1170
                        }
1171
                }
1172
        }
1173
        parport_ip32_set_mode(p, ECR_MODE_PS2);
1174
        return written;
1175
}
1176
 
1177
/**
1178
 * parport_ip32_epp_read_data - read a block of data in EPP mode
1179
 * @p:          pointer to &struct parport
1180
 * @buf:        buffer to store read data
1181
 * @len:        length of buffer @buf
1182
 * @flags:      may be PARPORT_EPP_FAST
1183
 */
1184
static size_t parport_ip32_epp_read_data(struct parport *p, void *buf,
1185
                                         size_t len, int flags)
1186
{
1187
        struct parport_ip32_private * const priv = p->physport->private_data;
1188
        return parport_ip32_epp_read(priv->regs.eppData0, p, buf, len, flags);
1189
}
1190
 
1191
/**
1192
 * parport_ip32_epp_write_data - write a block of data in EPP mode
1193
 * @p:          pointer to &struct parport
1194
 * @buf:        buffer of data to write
1195
 * @len:        length of buffer @buf
1196
 * @flags:      may be PARPORT_EPP_FAST
1197
 */
1198
static size_t parport_ip32_epp_write_data(struct parport *p, const void *buf,
1199
                                          size_t len, int flags)
1200
{
1201
        struct parport_ip32_private * const priv = p->physport->private_data;
1202
        return parport_ip32_epp_write(priv->regs.eppData0, p, buf, len, flags);
1203
}
1204
 
1205
/**
1206
 * parport_ip32_epp_read_addr - read a block of addresses in EPP mode
1207
 * @p:          pointer to &struct parport
1208
 * @buf:        buffer to store read data
1209
 * @len:        length of buffer @buf
1210
 * @flags:      may be PARPORT_EPP_FAST
1211
 */
1212
static size_t parport_ip32_epp_read_addr(struct parport *p, void *buf,
1213
                                         size_t len, int flags)
1214
{
1215
        struct parport_ip32_private * const priv = p->physport->private_data;
1216
        return parport_ip32_epp_read(priv->regs.eppAddr, p, buf, len, flags);
1217
}
1218
 
1219
/**
1220
 * parport_ip32_epp_write_addr - write a block of addresses in EPP mode
1221
 * @p:          pointer to &struct parport
1222
 * @buf:        buffer of data to write
1223
 * @len:        length of buffer @buf
1224
 * @flags:      may be PARPORT_EPP_FAST
1225
 */
1226
static size_t parport_ip32_epp_write_addr(struct parport *p, const void *buf,
1227
                                          size_t len, int flags)
1228
{
1229
        struct parport_ip32_private * const priv = p->physport->private_data;
1230
        return parport_ip32_epp_write(priv->regs.eppAddr, p, buf, len, flags);
1231
}
1232
 
1233
/*--- ECP mode functions (FIFO) ----------------------------------------*/
1234
 
1235
/**
1236
 * parport_ip32_fifo_wait_break - check if the waiting function should return
1237
 * @p:          pointer to &struct parport
1238
 * @expire:     timeout expiring date, in jiffies
1239
 *
1240
 * parport_ip32_fifo_wait_break() checks if the waiting function should return
1241
 * immediately or not.  The break conditions are:
1242
 *      - expired timeout;
1243
 *      - a pending signal;
1244
 *      - nFault asserted low.
1245
 * This function also calls cond_resched().
1246
 */
1247
static unsigned int parport_ip32_fifo_wait_break(struct parport *p,
1248
                                                 unsigned long expire)
1249
{
1250
        cond_resched();
1251
        if (time_after(jiffies, expire)) {
1252
                pr_debug1(PPIP32 "%s: FIFO write timed out\n", p->name);
1253
                return 1;
1254
        }
1255
        if (signal_pending(current)) {
1256
                pr_debug1(PPIP32 "%s: Signal pending\n", p->name);
1257
                return 1;
1258
        }
1259
        if (!(parport_ip32_read_status(p) & DSR_nFAULT)) {
1260
                pr_debug1(PPIP32 "%s: nFault asserted low\n", p->name);
1261
                return 1;
1262
        }
1263
        return 0;
1264
}
1265
 
1266
/**
1267
 * parport_ip32_fwp_wait_polling - wait for FIFO to empty (polling)
1268
 * @p:          pointer to &struct parport
1269
 *
1270
 * Returns the number of bytes that can safely be written in the FIFO.  A
1271
 * return value of zero means that the calling function should terminate as
1272
 * fast as possible.
1273
 */
1274
static unsigned int parport_ip32_fwp_wait_polling(struct parport *p)
1275
{
1276
        struct parport_ip32_private * const priv = p->physport->private_data;
1277
        struct parport * const physport = p->physport;
1278
        unsigned long expire;
1279
        unsigned int count;
1280
        unsigned int ecr;
1281
 
1282
        expire = jiffies + physport->cad->timeout;
1283
        count = 0;
1284
        while (1) {
1285
                if (parport_ip32_fifo_wait_break(p, expire))
1286
                        break;
1287
 
1288
                /* Check FIFO state.  We do nothing when the FIFO is nor full,
1289
                 * nor empty.  It appears that the FIFO full bit is not always
1290
                 * reliable, the FIFO state is sometimes wrongly reported, and
1291
                 * the chip gets confused if we give it another byte. */
1292
                ecr = parport_ip32_read_econtrol(p);
1293
                if (ecr & ECR_F_EMPTY) {
1294
                        /* FIFO is empty, fill it up */
1295
                        count = priv->fifo_depth;
1296
                        break;
1297
                }
1298
 
1299
                /* Wait a moment... */
1300
                udelay(FIFO_POLLING_INTERVAL);
1301
        } /* while (1) */
1302
 
1303
        return count;
1304
}
1305
 
1306
/**
1307
 * parport_ip32_fwp_wait_interrupt - wait for FIFO to empty (interrupt-driven)
1308
 * @p:          pointer to &struct parport
1309
 *
1310
 * Returns the number of bytes that can safely be written in the FIFO.  A
1311
 * return value of zero means that the calling function should terminate as
1312
 * fast as possible.
1313
 */
1314
static unsigned int parport_ip32_fwp_wait_interrupt(struct parport *p)
1315
{
1316
        static unsigned int lost_interrupt = 0;
1317
        struct parport_ip32_private * const priv = p->physport->private_data;
1318
        struct parport * const physport = p->physport;
1319
        unsigned long nfault_timeout;
1320
        unsigned long expire;
1321
        unsigned int count;
1322
        unsigned int ecr;
1323
 
1324
        nfault_timeout = min((unsigned long)physport->cad->timeout,
1325
                             msecs_to_jiffies(FIFO_NFAULT_TIMEOUT));
1326
        expire = jiffies + physport->cad->timeout;
1327
        count = 0;
1328
        while (1) {
1329
                if (parport_ip32_fifo_wait_break(p, expire))
1330
                        break;
1331
 
1332
                /* Initialize mutex used to take interrupts into account */
1333
                INIT_COMPLETION(priv->irq_complete);
1334
 
1335
                /* Enable serviceIntr */
1336
                parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1337
 
1338
                /* Enabling serviceIntr while the FIFO is empty does not
1339
                 * always generate an interrupt, so check for emptiness
1340
                 * now. */
1341
                ecr = parport_ip32_read_econtrol(p);
1342
                if (!(ecr & ECR_F_EMPTY)) {
1343
                        /* FIFO is not empty: wait for an interrupt or a
1344
                         * timeout to occur */
1345
                        wait_for_completion_interruptible_timeout(
1346
                                &priv->irq_complete, nfault_timeout);
1347
                        ecr = parport_ip32_read_econtrol(p);
1348
                        if ((ecr & ECR_F_EMPTY) && !(ecr & ECR_SERVINTR)
1349
                            && !lost_interrupt) {
1350
                                printk(KERN_WARNING PPIP32
1351
                                       "%s: lost interrupt in %s\n",
1352
                                       p->name, __func__);
1353
                                lost_interrupt = 1;
1354
                        }
1355
                }
1356
 
1357
                /* Disable serviceIntr */
1358
                parport_ip32_frob_econtrol(p, ECR_SERVINTR, ECR_SERVINTR);
1359
 
1360
                /* Check FIFO state */
1361
                if (ecr & ECR_F_EMPTY) {
1362
                        /* FIFO is empty, fill it up */
1363
                        count = priv->fifo_depth;
1364
                        break;
1365
                } else if (ecr & ECR_SERVINTR) {
1366
                        /* FIFO is not empty, but we know that can safely push
1367
                         * writeIntrThreshold bytes into it */
1368
                        count = priv->writeIntrThreshold;
1369
                        break;
1370
                }
1371
                /* FIFO is not empty, and we did not get any interrupt.
1372
                 * Either it's time to check for nFault, or a signal is
1373
                 * pending.  This is verified in
1374
                 * parport_ip32_fifo_wait_break(), so we continue the loop. */
1375
        } /* while (1) */
1376
 
1377
        return count;
1378
}
1379
 
1380
/**
1381
 * parport_ip32_fifo_write_block_pio - write a block of data (PIO mode)
1382
 * @p:          pointer to &struct parport
1383
 * @buf:        buffer of data to write
1384
 * @len:        length of buffer @buf
1385
 *
1386
 * Uses PIO to write the contents of the buffer @buf into the parallel port
1387
 * FIFO.  Returns the number of bytes that were actually written.  It can work
1388
 * with or without the help of interrupts.  The parallel port must be
1389
 * correctly initialized before calling parport_ip32_fifo_write_block_pio().
1390
 */
1391
static size_t parport_ip32_fifo_write_block_pio(struct parport *p,
1392
                                                const void *buf, size_t len)
1393
{
1394
        struct parport_ip32_private * const priv = p->physport->private_data;
1395
        const u8 *bufp = buf;
1396
        size_t left = len;
1397
 
1398
        priv->irq_mode = PARPORT_IP32_IRQ_HERE;
1399
 
1400
        while (left > 0) {
1401
                unsigned int count;
1402
 
1403
                count = (p->irq == PARPORT_IRQ_NONE) ?
1404
                        parport_ip32_fwp_wait_polling(p) :
1405
                        parport_ip32_fwp_wait_interrupt(p);
1406
                if (count == 0)
1407
                        break;  /* Transmission should be stopped */
1408
                if (count > left)
1409
                        count = left;
1410
                if (count == 1) {
1411
                        writeb(*bufp, priv->regs.fifo);
1412
                        bufp++, left--;
1413
                } else {
1414
                        writesb(priv->regs.fifo, bufp, count);
1415
                        bufp += count, left -= count;
1416
                }
1417
        }
1418
 
1419
        priv->irq_mode = PARPORT_IP32_IRQ_FWD;
1420
 
1421
        return len - left;
1422
}
1423
 
1424
/**
1425
 * parport_ip32_fifo_write_block_dma - write a block of data (DMA mode)
1426
 * @p:          pointer to &struct parport
1427
 * @buf:        buffer of data to write
1428
 * @len:        length of buffer @buf
1429
 *
1430
 * Uses DMA to write the contents of the buffer @buf into the parallel port
1431
 * FIFO.  Returns the number of bytes that were actually written.  The
1432
 * parallel port must be correctly initialized before calling
1433
 * parport_ip32_fifo_write_block_dma().
1434
 */
1435
static size_t parport_ip32_fifo_write_block_dma(struct parport *p,
1436
                                                const void *buf, size_t len)
1437
{
1438
        struct parport_ip32_private * const priv = p->physport->private_data;
1439
        struct parport * const physport = p->physport;
1440
        unsigned long nfault_timeout;
1441
        unsigned long expire;
1442
        size_t written;
1443
        unsigned int ecr;
1444
 
1445
        priv->irq_mode = PARPORT_IP32_IRQ_HERE;
1446
 
1447
        parport_ip32_dma_start(DMA_TO_DEVICE, (void *)buf, len);
1448
        INIT_COMPLETION(priv->irq_complete);
1449
        parport_ip32_frob_econtrol(p, ECR_DMAEN | ECR_SERVINTR, ECR_DMAEN);
1450
 
1451
        nfault_timeout = min((unsigned long)physport->cad->timeout,
1452
                             msecs_to_jiffies(FIFO_NFAULT_TIMEOUT));
1453
        expire = jiffies + physport->cad->timeout;
1454
        while (1) {
1455
                if (parport_ip32_fifo_wait_break(p, expire))
1456
                        break;
1457
                wait_for_completion_interruptible_timeout(&priv->irq_complete,
1458
                                                          nfault_timeout);
1459
                ecr = parport_ip32_read_econtrol(p);
1460
                if (ecr & ECR_SERVINTR)
1461
                        break;  /* DMA transfer just finished */
1462
        }
1463
        parport_ip32_dma_stop();
1464
        written = len - parport_ip32_dma_get_residue();
1465
 
1466
        priv->irq_mode = PARPORT_IP32_IRQ_FWD;
1467
 
1468
        return written;
1469
}
1470
 
1471
/**
1472
 * parport_ip32_fifo_write_block - write a block of data
1473
 * @p:          pointer to &struct parport
1474
 * @buf:        buffer of data to write
1475
 * @len:        length of buffer @buf
1476
 *
1477
 * Uses PIO or DMA to write the contents of the buffer @buf into the parallel
1478
 * p FIFO.  Returns the number of bytes that were actually written.
1479
 */
1480
static size_t parport_ip32_fifo_write_block(struct parport *p,
1481
                                            const void *buf, size_t len)
1482
{
1483
        size_t written = 0;
1484
        if (len)
1485
                /* FIXME - Maybe some threshold value should be set for @len
1486
                 * under which we revert to PIO mode? */
1487
                written = (p->modes & PARPORT_MODE_DMA) ?
1488
                        parport_ip32_fifo_write_block_dma(p, buf, len) :
1489
                        parport_ip32_fifo_write_block_pio(p, buf, len);
1490
        return written;
1491
}
1492
 
1493
/**
1494
 * parport_ip32_drain_fifo - wait for FIFO to empty
1495
 * @p:          pointer to &struct parport
1496
 * @timeout:    timeout, in jiffies
1497
 *
1498
 * This function waits for FIFO to empty.  It returns 1 when FIFO is empty, or
1499
 * 0 if the timeout @timeout is reached before, or if a signal is pending.
1500
 */
1501
static unsigned int parport_ip32_drain_fifo(struct parport *p,
1502
                                            unsigned long timeout)
1503
{
1504
        unsigned long expire = jiffies + timeout;
1505
        unsigned int polling_interval;
1506
        unsigned int counter;
1507
 
1508
        /* Busy wait for approx. 200us */
1509
        for (counter = 0; counter < 40; counter++) {
1510
                if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY)
1511
                        break;
1512
                if (time_after(jiffies, expire))
1513
                        break;
1514
                if (signal_pending(current))
1515
                        break;
1516
                udelay(5);
1517
        }
1518
        /* Poll slowly.  Polling interval starts with 1 millisecond, and is
1519
         * increased exponentially until 128.  */
1520
        polling_interval = 1; /* msecs */
1521
        while (!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY)) {
1522
                if (time_after_eq(jiffies, expire))
1523
                        break;
1524
                msleep_interruptible(polling_interval);
1525
                if (signal_pending(current))
1526
                        break;
1527
                if (polling_interval < 128)
1528
                        polling_interval *= 2;
1529
        }
1530
 
1531
        return !!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY);
1532
}
1533
 
1534
/**
1535
 * parport_ip32_get_fifo_residue - reset FIFO
1536
 * @p:          pointer to &struct parport
1537
 * @mode:       current operation mode (ECR_MODE_PPF or ECR_MODE_ECP)
1538
 *
1539
 * This function resets FIFO, and returns the number of bytes remaining in it.
1540
 */
1541
static unsigned int parport_ip32_get_fifo_residue(struct parport *p,
1542
                                                  unsigned int mode)
1543
{
1544
        struct parport_ip32_private * const priv = p->physport->private_data;
1545
        unsigned int residue;
1546
        unsigned int cnfga;
1547
 
1548
        /* FIXME - We are missing one byte if the printer is off-line.  I
1549
         * don't know how to detect this.  It looks that the full bit is not
1550
         * always reliable.  For the moment, the problem is avoided in most
1551
         * cases by testing for BUSY in parport_ip32_compat_write_data().
1552
         */
1553
        if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY)
1554
                residue = 0;
1555
        else {
1556
                pr_debug1(PPIP32 "%s: FIFO is stuck\n", p->name);
1557
 
1558
                /* Stop all transfers.
1559
                 *
1560
                 * Microsoft's document instructs to drive DCR_STROBE to 0,
1561
                 * but it doesn't work (at least in Compatibility mode, not
1562
                 * tested in ECP mode).  Switching directly to Test mode (as
1563
                 * in parport_pc) is not an option: it does confuse the port,
1564
                 * ECP service interrupts are no more working after that.  A
1565
                 * hard reset is then needed to revert to a sane state.
1566
                 *
1567
                 * Let's hope that the FIFO is really stuck and that the
1568
                 * peripheral doesn't wake up now.
1569
                 */
1570
                parport_ip32_frob_control(p, DCR_STROBE, 0);
1571
 
1572
                /* Fill up FIFO */
1573
                for (residue = priv->fifo_depth; residue > 0; residue--) {
1574
                        if (parport_ip32_read_econtrol(p) & ECR_F_FULL)
1575
                                break;
1576
                        writeb(0x00, priv->regs.fifo);
1577
                }
1578
        }
1579
        if (residue)
1580
                pr_debug1(PPIP32 "%s: %d PWord%s left in FIFO\n",
1581
                          p->name, residue,
1582
                          (residue == 1) ? " was" : "s were");
1583
 
1584
        /* Now reset the FIFO */
1585
        parport_ip32_set_mode(p, ECR_MODE_PS2);
1586
 
1587
        /* Host recovery for ECP mode */
1588
        if (mode == ECR_MODE_ECP) {
1589
                parport_ip32_data_reverse(p);
1590
                parport_ip32_frob_control(p, DCR_nINIT, 0);
1591
                if (parport_wait_peripheral(p, DSR_PERROR, 0))
1592
                        pr_debug1(PPIP32 "%s: PEerror timeout 1 in %s\n",
1593
                                  p->name, __func__);
1594
                parport_ip32_frob_control(p, DCR_STROBE, DCR_STROBE);
1595
                parport_ip32_frob_control(p, DCR_nINIT, DCR_nINIT);
1596
                if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR))
1597
                        pr_debug1(PPIP32 "%s: PEerror timeout 2 in %s\n",
1598
                                  p->name, __func__);
1599
        }
1600
 
1601
        /* Adjust residue if needed */
1602
        parport_ip32_set_mode(p, ECR_MODE_CFG);
1603
        cnfga = readb(priv->regs.cnfgA);
1604
        if (!(cnfga & CNFGA_nBYTEINTRANS)) {
1605
                pr_debug1(PPIP32 "%s: cnfgA contains 0x%02x\n",
1606
                          p->name, cnfga);
1607
                pr_debug1(PPIP32 "%s: Accounting for extra byte\n",
1608
                          p->name);
1609
                residue++;
1610
        }
1611
 
1612
        /* Don't care about partial PWords since we do not support
1613
         * PWord != 1 byte. */
1614
 
1615
        /* Back to forward PS2 mode. */
1616
        parport_ip32_set_mode(p, ECR_MODE_PS2);
1617
        parport_ip32_data_forward(p);
1618
 
1619
        return residue;
1620
}
1621
 
1622
/**
1623
 * parport_ip32_compat_write_data - write a block of data in SPP mode
1624
 * @p:          pointer to &struct parport
1625
 * @buf:        buffer of data to write
1626
 * @len:        length of buffer @buf
1627
 * @flags:      ignored
1628
 */
1629
static size_t parport_ip32_compat_write_data(struct parport *p,
1630
                                             const void *buf, size_t len,
1631
                                             int flags)
1632
{
1633
        static unsigned int ready_before = 1;
1634
        struct parport_ip32_private * const priv = p->physport->private_data;
1635
        struct parport * const physport = p->physport;
1636
        size_t written = 0;
1637
 
1638
        /* Special case: a timeout of zero means we cannot call schedule().
1639
         * Also if O_NONBLOCK is set then use the default implementation. */
1640
        if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK)
1641
                return parport_ieee1284_write_compat(p, buf, len, flags);
1642
 
1643
        /* Reset FIFO, go in forward mode, and disable ackIntEn */
1644
        parport_ip32_set_mode(p, ECR_MODE_PS2);
1645
        parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1646
        parport_ip32_data_forward(p);
1647
        parport_ip32_disable_irq(p);
1648
        parport_ip32_set_mode(p, ECR_MODE_PPF);
1649
        physport->ieee1284.phase = IEEE1284_PH_FWD_DATA;
1650
 
1651
        /* Wait for peripheral to become ready */
1652
        if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT,
1653
                                       DSR_nBUSY | DSR_nFAULT)) {
1654
                /* Avoid to flood the logs */
1655
                if (ready_before)
1656
                        printk(KERN_INFO PPIP32 "%s: not ready in %s\n",
1657
                               p->name, __func__);
1658
                ready_before = 0;
1659
                goto stop;
1660
        }
1661
        ready_before = 1;
1662
 
1663
        written = parport_ip32_fifo_write_block(p, buf, len);
1664
 
1665
        /* Wait FIFO to empty.  Timeout is proportional to FIFO_depth.  */
1666
        parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth);
1667
 
1668
        /* Check for a potential residue */
1669
        written -= parport_ip32_get_fifo_residue(p, ECR_MODE_PPF);
1670
 
1671
        /* Then, wait for BUSY to get low. */
1672
        if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY))
1673
                printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n",
1674
                       p->name, __func__);
1675
 
1676
stop:
1677
        /* Reset FIFO */
1678
        parport_ip32_set_mode(p, ECR_MODE_PS2);
1679
        physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE;
1680
 
1681
        return written;
1682
}
1683
 
1684
/*
1685
 * FIXME - Insert here parport_ip32_ecp_read_data().
1686
 */
1687
 
1688
/**
1689
 * parport_ip32_ecp_write_data - write a block of data in ECP mode
1690
 * @p:          pointer to &struct parport
1691
 * @buf:        buffer of data to write
1692
 * @len:        length of buffer @buf
1693
 * @flags:      ignored
1694
 */
1695
static size_t parport_ip32_ecp_write_data(struct parport *p,
1696
                                          const void *buf, size_t len,
1697
                                          int flags)
1698
{
1699
        static unsigned int ready_before = 1;
1700
        struct parport_ip32_private * const priv = p->physport->private_data;
1701
        struct parport * const physport = p->physport;
1702
        size_t written = 0;
1703
 
1704
        /* Special case: a timeout of zero means we cannot call schedule().
1705
         * Also if O_NONBLOCK is set then use the default implementation. */
1706
        if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK)
1707
                return parport_ieee1284_ecp_write_data(p, buf, len, flags);
1708
 
1709
        /* Negotiate to forward mode if necessary. */
1710
        if (physport->ieee1284.phase != IEEE1284_PH_FWD_IDLE) {
1711
                /* Event 47: Set nInit high. */
1712
                parport_ip32_frob_control(p, DCR_nINIT | DCR_AUTOFD,
1713
                                             DCR_nINIT | DCR_AUTOFD);
1714
 
1715
                /* Event 49: PError goes high. */
1716
                if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR)) {
1717
                        printk(KERN_DEBUG PPIP32 "%s: PError timeout in %s",
1718
                               p->name, __func__);
1719
                        physport->ieee1284.phase = IEEE1284_PH_ECP_DIR_UNKNOWN;
1720
                        return 0;
1721
                }
1722
        }
1723
 
1724
        /* Reset FIFO, go in forward mode, and disable ackIntEn */
1725
        parport_ip32_set_mode(p, ECR_MODE_PS2);
1726
        parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1727
        parport_ip32_data_forward(p);
1728
        parport_ip32_disable_irq(p);
1729
        parport_ip32_set_mode(p, ECR_MODE_ECP);
1730
        physport->ieee1284.phase = IEEE1284_PH_FWD_DATA;
1731
 
1732
        /* Wait for peripheral to become ready */
1733
        if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT,
1734
                                       DSR_nBUSY | DSR_nFAULT)) {
1735
                /* Avoid to flood the logs */
1736
                if (ready_before)
1737
                        printk(KERN_INFO PPIP32 "%s: not ready in %s\n",
1738
                               p->name, __func__);
1739
                ready_before = 0;
1740
                goto stop;
1741
        }
1742
        ready_before = 1;
1743
 
1744
        written = parport_ip32_fifo_write_block(p, buf, len);
1745
 
1746
        /* Wait FIFO to empty.  Timeout is proportional to FIFO_depth.  */
1747
        parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth);
1748
 
1749
        /* Check for a potential residue */
1750
        written -= parport_ip32_get_fifo_residue(p, ECR_MODE_ECP);
1751
 
1752
        /* Then, wait for BUSY to get low. */
1753
        if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY))
1754
                printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n",
1755
                       p->name, __func__);
1756
 
1757
stop:
1758
        /* Reset FIFO */
1759
        parport_ip32_set_mode(p, ECR_MODE_PS2);
1760
        physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE;
1761
 
1762
        return written;
1763
}
1764
 
1765
/*
1766
 * FIXME - Insert here parport_ip32_ecp_write_addr().
1767
 */
1768
 
1769
/*--- Default parport operations ---------------------------------------*/
1770
 
1771
static __initdata struct parport_operations parport_ip32_ops = {
1772
        .write_data             = parport_ip32_write_data,
1773
        .read_data              = parport_ip32_read_data,
1774
 
1775
        .write_control          = parport_ip32_write_control,
1776
        .read_control           = parport_ip32_read_control,
1777
        .frob_control           = parport_ip32_frob_control,
1778
 
1779
        .read_status            = parport_ip32_read_status,
1780
 
1781
        .enable_irq             = parport_ip32_enable_irq,
1782
        .disable_irq            = parport_ip32_disable_irq,
1783
 
1784
        .data_forward           = parport_ip32_data_forward,
1785
        .data_reverse           = parport_ip32_data_reverse,
1786
 
1787
        .init_state             = parport_ip32_init_state,
1788
        .save_state             = parport_ip32_save_state,
1789
        .restore_state          = parport_ip32_restore_state,
1790
 
1791
        .epp_write_data         = parport_ieee1284_epp_write_data,
1792
        .epp_read_data          = parport_ieee1284_epp_read_data,
1793
        .epp_write_addr         = parport_ieee1284_epp_write_addr,
1794
        .epp_read_addr          = parport_ieee1284_epp_read_addr,
1795
 
1796
        .ecp_write_data         = parport_ieee1284_ecp_write_data,
1797
        .ecp_read_data          = parport_ieee1284_ecp_read_data,
1798
        .ecp_write_addr         = parport_ieee1284_ecp_write_addr,
1799
 
1800
        .compat_write_data      = parport_ieee1284_write_compat,
1801
        .nibble_read_data       = parport_ieee1284_read_nibble,
1802
        .byte_read_data         = parport_ieee1284_read_byte,
1803
 
1804
        .owner                  = THIS_MODULE,
1805
};
1806
 
1807
/*--- Device detection -------------------------------------------------*/
1808
 
1809
/**
1810
 * parport_ip32_ecp_supported - check for an ECP port
1811
 * @p:          pointer to the &parport structure
1812
 *
1813
 * Returns 1 if an ECP port is found, and 0 otherwise.  This function actually
1814
 * checks if an Extended Control Register seems to be present.  On successful
1815
 * return, the port is placed in SPP mode.
1816
 */
1817
static __init unsigned int parport_ip32_ecp_supported(struct parport *p)
1818
{
1819
        struct parport_ip32_private * const priv = p->physport->private_data;
1820
        unsigned int ecr;
1821
 
1822
        ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
1823
        writeb(ecr, priv->regs.ecr);
1824
        if (readb(priv->regs.ecr) != (ecr | ECR_F_EMPTY))
1825
                goto fail;
1826
 
1827
        pr_probe(p, "Found working ECR register\n");
1828
        parport_ip32_set_mode(p, ECR_MODE_SPP);
1829
        parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1830
        return 1;
1831
 
1832
fail:
1833
        pr_probe(p, "ECR register not found\n");
1834
        return 0;
1835
}
1836
 
1837
/**
1838
 * parport_ip32_fifo_supported - check for FIFO parameters
1839
 * @p:          pointer to the &parport structure
1840
 *
1841
 * Check for FIFO parameters of an Extended Capabilities Port.  Returns 1 on
1842
 * success, and 0 otherwise.  Adjust FIFO parameters in the parport structure.
1843
 * On return, the port is placed in SPP mode.
1844
 */
1845
static __init unsigned int parport_ip32_fifo_supported(struct parport *p)
1846
{
1847
        struct parport_ip32_private * const priv = p->physport->private_data;
1848
        unsigned int configa, configb;
1849
        unsigned int pword;
1850
        unsigned int i;
1851
 
1852
        /* Configuration mode */
1853
        parport_ip32_set_mode(p, ECR_MODE_CFG);
1854
        configa = readb(priv->regs.cnfgA);
1855
        configb = readb(priv->regs.cnfgB);
1856
 
1857
        /* Find out PWord size */
1858
        switch (configa & CNFGA_ID_MASK) {
1859
        case CNFGA_ID_8:
1860
                pword = 1;
1861
                break;
1862
        case CNFGA_ID_16:
1863
                pword = 2;
1864
                break;
1865
        case CNFGA_ID_32:
1866
                pword = 4;
1867
                break;
1868
        default:
1869
                pr_probe(p, "Unknown implementation ID: 0x%0x\n",
1870
                         (configa & CNFGA_ID_MASK) >> CNFGA_ID_SHIFT);
1871
                goto fail;
1872
                break;
1873
        }
1874
        if (pword != 1) {
1875
                pr_probe(p, "Unsupported PWord size: %u\n", pword);
1876
                goto fail;
1877
        }
1878
        priv->pword = pword;
1879
        pr_probe(p, "PWord is %u bits\n", 8 * priv->pword);
1880
 
1881
        /* Check for compression support */
1882
        writeb(configb | CNFGB_COMPRESS, priv->regs.cnfgB);
1883
        if (readb(priv->regs.cnfgB) & CNFGB_COMPRESS)
1884
                pr_probe(p, "Hardware compression detected (unsupported)\n");
1885
        writeb(configb & ~CNFGB_COMPRESS, priv->regs.cnfgB);
1886
 
1887
        /* Reset FIFO and go in test mode (no interrupt, no DMA) */
1888
        parport_ip32_set_mode(p, ECR_MODE_TST);
1889
 
1890
        /* FIFO must be empty now */
1891
        if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) {
1892
                pr_probe(p, "FIFO not reset\n");
1893
                goto fail;
1894
        }
1895
 
1896
        /* Find out FIFO depth. */
1897
        priv->fifo_depth = 0;
1898
        for (i = 0; i < 1024; i++) {
1899
                if (readb(priv->regs.ecr) & ECR_F_FULL) {
1900
                        /* FIFO full */
1901
                        priv->fifo_depth = i;
1902
                        break;
1903
                }
1904
                writeb((u8)i, priv->regs.fifo);
1905
        }
1906
        if (i >= 1024) {
1907
                pr_probe(p, "Can't fill FIFO\n");
1908
                goto fail;
1909
        }
1910
        if (!priv->fifo_depth) {
1911
                pr_probe(p, "Can't get FIFO depth\n");
1912
                goto fail;
1913
        }
1914
        pr_probe(p, "FIFO is %u PWords deep\n", priv->fifo_depth);
1915
 
1916
        /* Enable interrupts */
1917
        parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1918
 
1919
        /* Find out writeIntrThreshold: number of PWords we know we can write
1920
         * if we get an interrupt. */
1921
        priv->writeIntrThreshold = 0;
1922
        for (i = 0; i < priv->fifo_depth; i++) {
1923
                if (readb(priv->regs.fifo) != (u8)i) {
1924
                        pr_probe(p, "Invalid data in FIFO\n");
1925
                        goto fail;
1926
                }
1927
                if (!priv->writeIntrThreshold
1928
                    && readb(priv->regs.ecr) & ECR_SERVINTR)
1929
                        /* writeIntrThreshold reached */
1930
                        priv->writeIntrThreshold = i + 1;
1931
                if (i + 1 < priv->fifo_depth
1932
                    && readb(priv->regs.ecr) & ECR_F_EMPTY) {
1933
                        /* FIFO empty before the last byte? */
1934
                        pr_probe(p, "Data lost in FIFO\n");
1935
                        goto fail;
1936
                }
1937
        }
1938
        if (!priv->writeIntrThreshold) {
1939
                pr_probe(p, "Can't get writeIntrThreshold\n");
1940
                goto fail;
1941
        }
1942
        pr_probe(p, "writeIntrThreshold is %u\n", priv->writeIntrThreshold);
1943
 
1944
        /* FIFO must be empty now */
1945
        if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) {
1946
                pr_probe(p, "Can't empty FIFO\n");
1947
                goto fail;
1948
        }
1949
 
1950
        /* Reset FIFO */
1951
        parport_ip32_set_mode(p, ECR_MODE_PS2);
1952
        /* Set reverse direction (must be in PS2 mode) */
1953
        parport_ip32_data_reverse(p);
1954
        /* Test FIFO, no interrupt, no DMA */
1955
        parport_ip32_set_mode(p, ECR_MODE_TST);
1956
        /* Enable interrupts */
1957
        parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1958
 
1959
        /* Find out readIntrThreshold: number of PWords we can read if we get
1960
         * an interrupt. */
1961
        priv->readIntrThreshold = 0;
1962
        for (i = 0; i < priv->fifo_depth; i++) {
1963
                writeb(0xaa, priv->regs.fifo);
1964
                if (readb(priv->regs.ecr) & ECR_SERVINTR) {
1965
                        /* readIntrThreshold reached */
1966
                        priv->readIntrThreshold = i + 1;
1967
                        break;
1968
                }
1969
        }
1970
        if (!priv->readIntrThreshold) {
1971
                pr_probe(p, "Can't get readIntrThreshold\n");
1972
                goto fail;
1973
        }
1974
        pr_probe(p, "readIntrThreshold is %u\n", priv->readIntrThreshold);
1975
 
1976
        /* Reset ECR */
1977
        parport_ip32_set_mode(p, ECR_MODE_PS2);
1978
        parport_ip32_data_forward(p);
1979
        parport_ip32_set_mode(p, ECR_MODE_SPP);
1980
        return 1;
1981
 
1982
fail:
1983
        priv->fifo_depth = 0;
1984
        parport_ip32_set_mode(p, ECR_MODE_SPP);
1985
        return 0;
1986
}
1987
 
1988
/*--- Initialization code ----------------------------------------------*/
1989
 
1990
/**
1991
 * parport_ip32_make_isa_registers - compute (ISA) register addresses
1992
 * @regs:       pointer to &struct parport_ip32_regs to fill
1993
 * @base:       base address of standard and EPP registers
1994
 * @base_hi:    base address of ECP registers
1995
 * @regshift:   how much to shift register offset by
1996
 *
1997
 * Compute register addresses, according to the ISA standard.  The addresses
1998
 * of the standard and EPP registers are computed from address @base.  The
1999
 * addresses of the ECP registers are computed from address @base_hi.
2000
 */
2001
static void __init
2002
parport_ip32_make_isa_registers(struct parport_ip32_regs *regs,
2003
                                void __iomem *base, void __iomem *base_hi,
2004
                                unsigned int regshift)
2005
{
2006
#define r_base(offset)    ((u8 __iomem *)base    + ((offset) << regshift))
2007
#define r_base_hi(offset) ((u8 __iomem *)base_hi + ((offset) << regshift))
2008
        *regs = (struct parport_ip32_regs){
2009
                .data           = r_base(0),
2010
                .dsr            = r_base(1),
2011
                .dcr            = r_base(2),
2012
                .eppAddr        = r_base(3),
2013
                .eppData0       = r_base(4),
2014
                .eppData1       = r_base(5),
2015
                .eppData2       = r_base(6),
2016
                .eppData3       = r_base(7),
2017
                .ecpAFifo       = r_base(0),
2018
                .fifo           = r_base_hi(0),
2019
                .cnfgA          = r_base_hi(0),
2020
                .cnfgB          = r_base_hi(1),
2021
                .ecr            = r_base_hi(2)
2022
        };
2023
#undef r_base_hi
2024
#undef r_base
2025
}
2026
 
2027
/**
2028
 * parport_ip32_probe_port - probe and register IP32 built-in parallel port
2029
 *
2030
 * Returns the new allocated &parport structure.  On error, an error code is
2031
 * encoded in return value with the ERR_PTR function.
2032
 */
2033
static __init struct parport *parport_ip32_probe_port(void)
2034
{
2035
        struct parport_ip32_regs regs;
2036
        struct parport_ip32_private *priv = NULL;
2037
        struct parport_operations *ops = NULL;
2038
        struct parport *p = NULL;
2039
        int err;
2040
 
2041
        parport_ip32_make_isa_registers(&regs, &mace->isa.parallel,
2042
                                        &mace->isa.ecp1284, 8 /* regshift */);
2043
 
2044
        ops = kmalloc(sizeof(struct parport_operations), GFP_KERNEL);
2045
        priv = kmalloc(sizeof(struct parport_ip32_private), GFP_KERNEL);
2046
        p = parport_register_port(0, PARPORT_IRQ_NONE, PARPORT_DMA_NONE, ops);
2047
        if (ops == NULL || priv == NULL || p == NULL) {
2048
                err = -ENOMEM;
2049
                goto fail;
2050
        }
2051
        p->base = MACE_BASE + offsetof(struct sgi_mace, isa.parallel);
2052
        p->base_hi = MACE_BASE + offsetof(struct sgi_mace, isa.ecp1284);
2053
        p->private_data = priv;
2054
 
2055
        *ops = parport_ip32_ops;
2056
        *priv = (struct parport_ip32_private){
2057
                .regs                   = regs,
2058
                .dcr_writable           = DCR_DIR | DCR_SELECT | DCR_nINIT |
2059
                                          DCR_AUTOFD | DCR_STROBE,
2060
                .irq_mode               = PARPORT_IP32_IRQ_FWD,
2061
        };
2062
        init_completion(&priv->irq_complete);
2063
 
2064
        /* Probe port. */
2065
        if (!parport_ip32_ecp_supported(p)) {
2066
                err = -ENODEV;
2067
                goto fail;
2068
        }
2069
        parport_ip32_dump_state(p, "begin init", 0);
2070
 
2071
        /* We found what looks like a working ECR register.  Simply assume
2072
         * that all modes are correctly supported.  Enable basic modes. */
2073
        p->modes = PARPORT_MODE_PCSPP | PARPORT_MODE_SAFEININT;
2074
        p->modes |= PARPORT_MODE_TRISTATE;
2075
 
2076
        if (!parport_ip32_fifo_supported(p)) {
2077
                printk(KERN_WARNING PPIP32
2078
                       "%s: error: FIFO disabled\n", p->name);
2079
                /* Disable hardware modes depending on a working FIFO. */
2080
                features &= ~PARPORT_IP32_ENABLE_SPP;
2081
                features &= ~PARPORT_IP32_ENABLE_ECP;
2082
                /* DMA is not needed if FIFO is not supported.  */
2083
                features &= ~PARPORT_IP32_ENABLE_DMA;
2084
        }
2085
 
2086
        /* Request IRQ */
2087
        if (features & PARPORT_IP32_ENABLE_IRQ) {
2088
                int irq = MACEISA_PARALLEL_IRQ;
2089
                if (request_irq(irq, parport_ip32_interrupt, 0, p->name, p)) {
2090
                        printk(KERN_WARNING PPIP32
2091
                               "%s: error: IRQ disabled\n", p->name);
2092
                        /* DMA cannot work without interrupts. */
2093
                        features &= ~PARPORT_IP32_ENABLE_DMA;
2094
                } else {
2095
                        pr_probe(p, "Interrupt support enabled\n");
2096
                        p->irq = irq;
2097
                        priv->dcr_writable |= DCR_IRQ;
2098
                }
2099
        }
2100
 
2101
        /* Allocate DMA resources */
2102
        if (features & PARPORT_IP32_ENABLE_DMA) {
2103
                if (parport_ip32_dma_register())
2104
                        printk(KERN_WARNING PPIP32
2105
                               "%s: error: DMA disabled\n", p->name);
2106
                else {
2107
                        pr_probe(p, "DMA support enabled\n");
2108
                        p->dma = 0; /* arbitrary value != PARPORT_DMA_NONE */
2109
                        p->modes |= PARPORT_MODE_DMA;
2110
                }
2111
        }
2112
 
2113
        if (features & PARPORT_IP32_ENABLE_SPP) {
2114
                /* Enable compatibility FIFO mode */
2115
                p->ops->compat_write_data = parport_ip32_compat_write_data;
2116
                p->modes |= PARPORT_MODE_COMPAT;
2117
                pr_probe(p, "Hardware support for SPP mode enabled\n");
2118
        }
2119
        if (features & PARPORT_IP32_ENABLE_EPP) {
2120
                /* Set up access functions to use EPP hardware. */
2121
                p->ops->epp_read_data = parport_ip32_epp_read_data;
2122
                p->ops->epp_write_data = parport_ip32_epp_write_data;
2123
                p->ops->epp_read_addr = parport_ip32_epp_read_addr;
2124
                p->ops->epp_write_addr = parport_ip32_epp_write_addr;
2125
                p->modes |= PARPORT_MODE_EPP;
2126
                pr_probe(p, "Hardware support for EPP mode enabled\n");
2127
        }
2128
        if (features & PARPORT_IP32_ENABLE_ECP) {
2129
                /* Enable ECP FIFO mode */
2130
                p->ops->ecp_write_data = parport_ip32_ecp_write_data;
2131
                /* FIXME - not implemented */
2132
/*              p->ops->ecp_read_data  = parport_ip32_ecp_read_data; */
2133
/*              p->ops->ecp_write_addr = parport_ip32_ecp_write_addr; */
2134
                p->modes |= PARPORT_MODE_ECP;
2135
                pr_probe(p, "Hardware support for ECP mode enabled\n");
2136
        }
2137
 
2138
        /* Initialize the port with sensible values */
2139
        parport_ip32_set_mode(p, ECR_MODE_PS2);
2140
        parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
2141
        parport_ip32_data_forward(p);
2142
        parport_ip32_disable_irq(p);
2143
        parport_ip32_write_data(p, 0x00);
2144
        parport_ip32_dump_state(p, "end init", 0);
2145
 
2146
        /* Print out what we found */
2147
        printk(KERN_INFO "%s: SGI IP32 at 0x%lx (0x%lx)",
2148
               p->name, p->base, p->base_hi);
2149
        if (p->irq != PARPORT_IRQ_NONE)
2150
                printk(", irq %d", p->irq);
2151
        printk(" [");
2152
#define printmode(x)    if (p->modes & PARPORT_MODE_##x)                \
2153
                                printk("%s%s", f++ ? "," : "", #x)
2154
        {
2155
                unsigned int f = 0;
2156
                printmode(PCSPP);
2157
                printmode(TRISTATE);
2158
                printmode(COMPAT);
2159
                printmode(EPP);
2160
                printmode(ECP);
2161
                printmode(DMA);
2162
        }
2163
#undef printmode
2164
        printk("]\n");
2165
 
2166
        parport_announce_port(p);
2167
        return p;
2168
 
2169
fail:
2170
        if (p)
2171
                parport_put_port(p);
2172
        kfree(priv);
2173
        kfree(ops);
2174
        return ERR_PTR(err);
2175
}
2176
 
2177
/**
2178
 * parport_ip32_unregister_port - unregister a parallel port
2179
 * @p:          pointer to the &struct parport
2180
 *
2181
 * Unregisters a parallel port and free previously allocated resources
2182
 * (memory, IRQ, ...).
2183
 */
2184
static __exit void parport_ip32_unregister_port(struct parport *p)
2185
{
2186
        struct parport_ip32_private * const priv = p->physport->private_data;
2187
        struct parport_operations *ops = p->ops;
2188
 
2189
        parport_remove_port(p);
2190
        if (p->modes & PARPORT_MODE_DMA)
2191
                parport_ip32_dma_unregister();
2192
        if (p->irq != PARPORT_IRQ_NONE)
2193
                free_irq(p->irq, p);
2194
        parport_put_port(p);
2195
        kfree(priv);
2196
        kfree(ops);
2197
}
2198
 
2199
/**
2200
 * parport_ip32_init - module initialization function
2201
 */
2202
static int __init parport_ip32_init(void)
2203
{
2204
        pr_info(PPIP32 "SGI IP32 built-in parallel port driver v0.6\n");
2205
        pr_debug1(PPIP32 "Compiled on %s, %s\n", __DATE__, __TIME__);
2206
        this_port = parport_ip32_probe_port();
2207
        return IS_ERR(this_port) ? PTR_ERR(this_port) : 0;
2208
}
2209
 
2210
/**
2211
 * parport_ip32_exit - module termination function
2212
 */
2213
static void __exit parport_ip32_exit(void)
2214
{
2215
        parport_ip32_unregister_port(this_port);
2216
}
2217
 
2218
/*--- Module stuff -----------------------------------------------------*/
2219
 
2220
MODULE_AUTHOR("Arnaud Giersch <arnaud.giersch@free.fr>");
2221
MODULE_DESCRIPTION("SGI IP32 built-in parallel port driver");
2222
MODULE_LICENSE("GPL");
2223
MODULE_VERSION("0.6");          /* update in parport_ip32_init() too */
2224
 
2225
module_init(parport_ip32_init);
2226
module_exit(parport_ip32_exit);
2227
 
2228
module_param(verbose_probing, bool, S_IRUGO);
2229
MODULE_PARM_DESC(verbose_probing, "Log chit-chat during initialization");
2230
 
2231
module_param(features, uint, S_IRUGO);
2232
MODULE_PARM_DESC(features,
2233
                 "Bit mask of features to enable"
2234
                 ", bit 0: IRQ support"
2235
                 ", bit 1: DMA support"
2236
                 ", bit 2: hardware SPP mode"
2237
                 ", bit 3: hardware EPP mode"
2238
                 ", bit 4: hardware ECP mode");
2239
 
2240
/*--- Inform (X)Emacs about preferred coding style ---------------------*/
2241
/*
2242
 * Local Variables:
2243
 * mode: c
2244
 * c-file-style: "linux"
2245
 * indent-tabs-mode: t
2246
 * tab-width: 8
2247
 * fill-column: 78
2248
 * ispell-local-dictionary: "american"
2249
 * End:
2250
 */

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.