OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [drivers/] [pci/] [hotplug/] [cpqphp_ctrl.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 * Compaq Hot Plug Controller Driver
3
 *
4
 * Copyright (C) 1995,2001 Compaq Computer Corporation
5
 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6
 * Copyright (C) 2001 IBM Corp.
7
 *
8
 * All rights reserved.
9
 *
10
 * This program is free software; you can redistribute it and/or modify
11
 * it under the terms of the GNU General Public License as published by
12
 * the Free Software Foundation; either version 2 of the License, or (at
13
 * your option) any later version.
14
 *
15
 * This program is distributed in the hope that it will be useful, but
16
 * WITHOUT ANY WARRANTY; without even the implied warranty of
17
 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18
 * NON INFRINGEMENT.  See the GNU General Public License for more
19
 * details.
20
 *
21
 * You should have received a copy of the GNU General Public License
22
 * along with this program; if not, write to the Free Software
23
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24
 *
25
 * Send feedback to <greg@kroah.com>
26
 *
27
 */
28
 
29
#include <linux/module.h>
30
#include <linux/kernel.h>
31
#include <linux/types.h>
32
#include <linux/slab.h>
33
#include <linux/workqueue.h>
34
#include <linux/interrupt.h>
35
#include <linux/delay.h>
36
#include <linux/wait.h>
37
#include <linux/smp_lock.h>
38
#include <linux/pci.h>
39
#include <linux/pci_hotplug.h>
40
#include <linux/kthread.h>
41
#include "cpqphp.h"
42
 
43
static u32 configure_new_device(struct controller* ctrl, struct pci_func *func,
44
                        u8 behind_bridge, struct resource_lists *resources);
45
static int configure_new_function(struct controller* ctrl, struct pci_func *func,
46
                        u8 behind_bridge, struct resource_lists *resources);
47
static void interrupt_event_handler(struct controller *ctrl);
48
 
49
 
50
static struct task_struct *cpqhp_event_thread;
51
static unsigned long pushbutton_pending;        /* = 0 */
52
 
53
/* delay is in jiffies to wait for */
54
static void long_delay(int delay)
55
{
56
        /*
57
         * XXX(hch): if someone is bored please convert all callers
58
         * to call msleep_interruptible directly.  They really want
59
         * to specify timeouts in natural units and spend a lot of
60
         * effort converting them to jiffies..
61
         */
62
        msleep_interruptible(jiffies_to_msecs(delay));
63
}
64
 
65
 
66
/* FIXME: The following line needs to be somewhere else... */
67
#define WRONG_BUS_FREQUENCY 0x07
68
static u8 handle_switch_change(u8 change, struct controller * ctrl)
69
{
70
        int hp_slot;
71
        u8 rc = 0;
72
        u16 temp_word;
73
        struct pci_func *func;
74
        struct event_info *taskInfo;
75
 
76
        if (!change)
77
                return 0;
78
 
79
        /* Switch Change */
80
        dbg("cpqsbd:  Switch interrupt received.\n");
81
 
82
        for (hp_slot = 0; hp_slot < 6; hp_slot++) {
83
                if (change & (0x1L << hp_slot)) {
84
                        /**********************************
85
                         * this one changed.
86
                         **********************************/
87
                        func = cpqhp_slot_find(ctrl->bus,
88
                                (hp_slot + ctrl->slot_device_offset), 0);
89
 
90
                        /* this is the structure that tells the worker thread
91
                         *what to do */
92
                        taskInfo = &(ctrl->event_queue[ctrl->next_event]);
93
                        ctrl->next_event = (ctrl->next_event + 1) % 10;
94
                        taskInfo->hp_slot = hp_slot;
95
 
96
                        rc++;
97
 
98
                        temp_word = ctrl->ctrl_int_comp >> 16;
99
                        func->presence_save = (temp_word >> hp_slot) & 0x01;
100
                        func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
101
 
102
                        if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
103
                                /**********************************
104
                                 * Switch opened
105
                                 **********************************/
106
 
107
                                func->switch_save = 0;
108
 
109
                                taskInfo->event_type = INT_SWITCH_OPEN;
110
                        } else {
111
                                /**********************************
112
                                 * Switch closed
113
                                 **********************************/
114
 
115
                                func->switch_save = 0x10;
116
 
117
                                taskInfo->event_type = INT_SWITCH_CLOSE;
118
                        }
119
                }
120
        }
121
 
122
        return rc;
123
}
124
 
125
/**
126
 * cpqhp_find_slot - find the struct slot of given device
127
 * @ctrl: scan lots of this controller
128
 * @device: the device id to find
129
 */
130
static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
131
{
132
        struct slot *slot = ctrl->slot;
133
 
134
        while (slot && (slot->device != device)) {
135
                slot = slot->next;
136
        }
137
 
138
        return slot;
139
}
140
 
141
 
142
static u8 handle_presence_change(u16 change, struct controller * ctrl)
143
{
144
        int hp_slot;
145
        u8 rc = 0;
146
        u8 temp_byte;
147
        u16 temp_word;
148
        struct pci_func *func;
149
        struct event_info *taskInfo;
150
        struct slot *p_slot;
151
 
152
        if (!change)
153
                return 0;
154
 
155
        /**********************************
156
         * Presence Change
157
         **********************************/
158
        dbg("cpqsbd:  Presence/Notify input change.\n");
159
        dbg("         Changed bits are 0x%4.4x\n", change );
160
 
161
        for (hp_slot = 0; hp_slot < 6; hp_slot++) {
162
                if (change & (0x0101 << hp_slot)) {
163
                        /**********************************
164
                         * this one changed.
165
                         **********************************/
166
                        func = cpqhp_slot_find(ctrl->bus,
167
                                (hp_slot + ctrl->slot_device_offset), 0);
168
 
169
                        taskInfo = &(ctrl->event_queue[ctrl->next_event]);
170
                        ctrl->next_event = (ctrl->next_event + 1) % 10;
171
                        taskInfo->hp_slot = hp_slot;
172
 
173
                        rc++;
174
 
175
                        p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
176
                        if (!p_slot)
177
                                return 0;
178
 
179
                        /* If the switch closed, must be a button
180
                         * If not in button mode, nevermind */
181
                        if (func->switch_save && (ctrl->push_button == 1)) {
182
                                temp_word = ctrl->ctrl_int_comp >> 16;
183
                                temp_byte = (temp_word >> hp_slot) & 0x01;
184
                                temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
185
 
186
                                if (temp_byte != func->presence_save) {
187
                                        /**************************************
188
                                         * button Pressed (doesn't do anything)
189
                                         **************************************/
190
                                        dbg("hp_slot %d button pressed\n", hp_slot);
191
                                        taskInfo->event_type = INT_BUTTON_PRESS;
192
                                } else {
193
                                        /**********************************
194
                                         * button Released - TAKE ACTION!!!!
195
                                         **********************************/
196
                                        dbg("hp_slot %d button released\n", hp_slot);
197
                                        taskInfo->event_type = INT_BUTTON_RELEASE;
198
 
199
                                        /* Cancel if we are still blinking */
200
                                        if ((p_slot->state == BLINKINGON_STATE)
201
                                            || (p_slot->state == BLINKINGOFF_STATE)) {
202
                                                taskInfo->event_type = INT_BUTTON_CANCEL;
203
                                                dbg("hp_slot %d button cancel\n", hp_slot);
204
                                        } else if ((p_slot->state == POWERON_STATE)
205
                                                   || (p_slot->state == POWEROFF_STATE)) {
206
                                                /* info(msg_button_ignore, p_slot->number); */
207
                                                taskInfo->event_type = INT_BUTTON_IGNORE;
208
                                                dbg("hp_slot %d button ignore\n", hp_slot);
209
                                        }
210
                                }
211
                        } else {
212
                                /* Switch is open, assume a presence change
213
                                 * Save the presence state */
214
                                temp_word = ctrl->ctrl_int_comp >> 16;
215
                                func->presence_save = (temp_word >> hp_slot) & 0x01;
216
                                func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
217
 
218
                                if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
219
                                    (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
220
                                        /* Present */
221
                                        taskInfo->event_type = INT_PRESENCE_ON;
222
                                } else {
223
                                        /* Not Present */
224
                                        taskInfo->event_type = INT_PRESENCE_OFF;
225
                                }
226
                        }
227
                }
228
        }
229
 
230
        return rc;
231
}
232
 
233
 
234
static u8 handle_power_fault(u8 change, struct controller * ctrl)
235
{
236
        int hp_slot;
237
        u8 rc = 0;
238
        struct pci_func *func;
239
        struct event_info *taskInfo;
240
 
241
        if (!change)
242
                return 0;
243
 
244
        /**********************************
245
         * power fault
246
         **********************************/
247
 
248
        info("power fault interrupt\n");
249
 
250
        for (hp_slot = 0; hp_slot < 6; hp_slot++) {
251
                if (change & (0x01 << hp_slot)) {
252
                        /**********************************
253
                         * this one changed.
254
                         **********************************/
255
                        func = cpqhp_slot_find(ctrl->bus,
256
                                (hp_slot + ctrl->slot_device_offset), 0);
257
 
258
                        taskInfo = &(ctrl->event_queue[ctrl->next_event]);
259
                        ctrl->next_event = (ctrl->next_event + 1) % 10;
260
                        taskInfo->hp_slot = hp_slot;
261
 
262
                        rc++;
263
 
264
                        if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
265
                                /**********************************
266
                                 * power fault Cleared
267
                                 **********************************/
268
                                func->status = 0x00;
269
 
270
                                taskInfo->event_type = INT_POWER_FAULT_CLEAR;
271
                        } else {
272
                                /**********************************
273
                                 * power fault
274
                                 **********************************/
275
                                taskInfo->event_type = INT_POWER_FAULT;
276
 
277
                                if (ctrl->rev < 4) {
278
                                        amber_LED_on (ctrl, hp_slot);
279
                                        green_LED_off (ctrl, hp_slot);
280
                                        set_SOGO (ctrl);
281
 
282
                                        /* this is a fatal condition, we want
283
                                         * to crash the machine to protect from
284
                                         * data corruption. simulated_NMI
285
                                         * shouldn't ever return */
286
                                        /* FIXME
287
                                        simulated_NMI(hp_slot, ctrl); */
288
 
289
                                        /* The following code causes a software
290
                                         * crash just in case simulated_NMI did
291
                                         * return */
292
                                        /*FIXME
293
                                        panic(msg_power_fault); */
294
                                } else {
295
                                        /* set power fault status for this board */
296
                                        func->status = 0xFF;
297
                                        info("power fault bit %x set\n", hp_slot);
298
                                }
299
                        }
300
                }
301
        }
302
 
303
        return rc;
304
}
305
 
306
 
307
/**
308
 * sort_by_size - sort nodes on the list by their length, smallest first.
309
 * @head: list to sort
310
 */
311
static int sort_by_size(struct pci_resource **head)
312
{
313
        struct pci_resource *current_res;
314
        struct pci_resource *next_res;
315
        int out_of_order = 1;
316
 
317
        if (!(*head))
318
                return 1;
319
 
320
        if (!((*head)->next))
321
                return 0;
322
 
323
        while (out_of_order) {
324
                out_of_order = 0;
325
 
326
                /* Special case for swapping list head */
327
                if (((*head)->next) &&
328
                    ((*head)->length > (*head)->next->length)) {
329
                        out_of_order++;
330
                        current_res = *head;
331
                        *head = (*head)->next;
332
                        current_res->next = (*head)->next;
333
                        (*head)->next = current_res;
334
                }
335
 
336
                current_res = *head;
337
 
338
                while (current_res->next && current_res->next->next) {
339
                        if (current_res->next->length > current_res->next->next->length) {
340
                                out_of_order++;
341
                                next_res = current_res->next;
342
                                current_res->next = current_res->next->next;
343
                                current_res = current_res->next;
344
                                next_res->next = current_res->next;
345
                                current_res->next = next_res;
346
                        } else
347
                                current_res = current_res->next;
348
                }
349
        }  /* End of out_of_order loop */
350
 
351
        return 0;
352
}
353
 
354
 
355
/**
356
 * sort_by_max_size - sort nodes on the list by their length, largest first.
357
 * @head: list to sort
358
 */
359
static int sort_by_max_size(struct pci_resource **head)
360
{
361
        struct pci_resource *current_res;
362
        struct pci_resource *next_res;
363
        int out_of_order = 1;
364
 
365
        if (!(*head))
366
                return 1;
367
 
368
        if (!((*head)->next))
369
                return 0;
370
 
371
        while (out_of_order) {
372
                out_of_order = 0;
373
 
374
                /* Special case for swapping list head */
375
                if (((*head)->next) &&
376
                    ((*head)->length < (*head)->next->length)) {
377
                        out_of_order++;
378
                        current_res = *head;
379
                        *head = (*head)->next;
380
                        current_res->next = (*head)->next;
381
                        (*head)->next = current_res;
382
                }
383
 
384
                current_res = *head;
385
 
386
                while (current_res->next && current_res->next->next) {
387
                        if (current_res->next->length < current_res->next->next->length) {
388
                                out_of_order++;
389
                                next_res = current_res->next;
390
                                current_res->next = current_res->next->next;
391
                                current_res = current_res->next;
392
                                next_res->next = current_res->next;
393
                                current_res->next = next_res;
394
                        } else
395
                                current_res = current_res->next;
396
                }
397
        }  /* End of out_of_order loop */
398
 
399
        return 0;
400
}
401
 
402
 
403
/**
404
 * do_pre_bridge_resource_split - find node of resources that are unused
405
 * @head: new list head
406
 * @orig_head: original list head
407
 * @alignment: max node size (?)
408
 */
409
static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
410
                                struct pci_resource **orig_head, u32 alignment)
411
{
412
        struct pci_resource *prevnode = NULL;
413
        struct pci_resource *node;
414
        struct pci_resource *split_node;
415
        u32 rc;
416
        u32 temp_dword;
417
        dbg("do_pre_bridge_resource_split\n");
418
 
419
        if (!(*head) || !(*orig_head))
420
                return NULL;
421
 
422
        rc = cpqhp_resource_sort_and_combine(head);
423
 
424
        if (rc)
425
                return NULL;
426
 
427
        if ((*head)->base != (*orig_head)->base)
428
                return NULL;
429
 
430
        if ((*head)->length == (*orig_head)->length)
431
                return NULL;
432
 
433
 
434
        /* If we got here, there the bridge requires some of the resource, but
435
         * we may be able to split some off of the front */
436
 
437
        node = *head;
438
 
439
        if (node->length & (alignment -1)) {
440
                /* this one isn't an aligned length, so we'll make a new entry
441
                 * and split it up. */
442
                split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
443
 
444
                if (!split_node)
445
                        return NULL;
446
 
447
                temp_dword = (node->length | (alignment-1)) + 1 - alignment;
448
 
449
                split_node->base = node->base;
450
                split_node->length = temp_dword;
451
 
452
                node->length -= temp_dword;
453
                node->base += split_node->length;
454
 
455
                /* Put it in the list */
456
                *head = split_node;
457
                split_node->next = node;
458
        }
459
 
460
        if (node->length < alignment)
461
                return NULL;
462
 
463
        /* Now unlink it */
464
        if (*head == node) {
465
                *head = node->next;
466
        } else {
467
                prevnode = *head;
468
                while (prevnode->next != node)
469
                        prevnode = prevnode->next;
470
 
471
                prevnode->next = node->next;
472
        }
473
        node->next = NULL;
474
 
475
        return node;
476
}
477
 
478
 
479
/**
480
 * do_bridge_resource_split - find one node of resources that aren't in use
481
 * @head: list head
482
 * @alignment: max node size (?)
483
 */
484
static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
485
{
486
        struct pci_resource *prevnode = NULL;
487
        struct pci_resource *node;
488
        u32 rc;
489
        u32 temp_dword;
490
 
491
        rc = cpqhp_resource_sort_and_combine(head);
492
 
493
        if (rc)
494
                return NULL;
495
 
496
        node = *head;
497
 
498
        while (node->next) {
499
                prevnode = node;
500
                node = node->next;
501
                kfree(prevnode);
502
        }
503
 
504
        if (node->length < alignment)
505
                goto error;
506
 
507
        if (node->base & (alignment - 1)) {
508
                /* Short circuit if adjusted size is too small */
509
                temp_dword = (node->base | (alignment-1)) + 1;
510
                if ((node->length - (temp_dword - node->base)) < alignment)
511
                        goto error;
512
 
513
                node->length -= (temp_dword - node->base);
514
                node->base = temp_dword;
515
        }
516
 
517
        if (node->length & (alignment - 1))
518
                /* There's stuff in use after this node */
519
                goto error;
520
 
521
        return node;
522
error:
523
        kfree(node);
524
        return NULL;
525
}
526
 
527
 
528
/**
529
 * get_io_resource - find first node of given size not in ISA aliasing window.
530
 * @head: list to search
531
 * @size: size of node to find, must be a power of two.
532
 *
533
 * Description: This function sorts the resource list by size and then returns
534
 * returns the first node of "size" length that is not in the ISA aliasing
535
 * window.  If it finds a node larger than "size" it will split it up.
536
 */
537
static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
538
{
539
        struct pci_resource *prevnode;
540
        struct pci_resource *node;
541
        struct pci_resource *split_node;
542
        u32 temp_dword;
543
 
544
        if (!(*head))
545
                return NULL;
546
 
547
        if ( cpqhp_resource_sort_and_combine(head) )
548
                return NULL;
549
 
550
        if ( sort_by_size(head) )
551
                return NULL;
552
 
553
        for (node = *head; node; node = node->next) {
554
                if (node->length < size)
555
                        continue;
556
 
557
                if (node->base & (size - 1)) {
558
                        /* this one isn't base aligned properly
559
                         * so we'll make a new entry and split it up */
560
                        temp_dword = (node->base | (size-1)) + 1;
561
 
562
                        /* Short circuit if adjusted size is too small */
563
                        if ((node->length - (temp_dword - node->base)) < size)
564
                                continue;
565
 
566
                        split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
567
 
568
                        if (!split_node)
569
                                return NULL;
570
 
571
                        split_node->base = node->base;
572
                        split_node->length = temp_dword - node->base;
573
                        node->base = temp_dword;
574
                        node->length -= split_node->length;
575
 
576
                        /* Put it in the list */
577
                        split_node->next = node->next;
578
                        node->next = split_node;
579
                } /* End of non-aligned base */
580
 
581
                /* Don't need to check if too small since we already did */
582
                if (node->length > size) {
583
                        /* this one is longer than we need
584
                         * so we'll make a new entry and split it up */
585
                        split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
586
 
587
                        if (!split_node)
588
                                return NULL;
589
 
590
                        split_node->base = node->base + size;
591
                        split_node->length = node->length - size;
592
                        node->length = size;
593
 
594
                        /* Put it in the list */
595
                        split_node->next = node->next;
596
                        node->next = split_node;
597
                }  /* End of too big on top end */
598
 
599
                /* For IO make sure it's not in the ISA aliasing space */
600
                if (node->base & 0x300L)
601
                        continue;
602
 
603
                /* If we got here, then it is the right size
604
                 * Now take it out of the list and break */
605
                if (*head == node) {
606
                        *head = node->next;
607
                } else {
608
                        prevnode = *head;
609
                        while (prevnode->next != node)
610
                                prevnode = prevnode->next;
611
 
612
                        prevnode->next = node->next;
613
                }
614
                node->next = NULL;
615
                break;
616
        }
617
 
618
        return node;
619
}
620
 
621
 
622
/**
623
 * get_max_resource - get largest node which has at least the given size.
624
 * @head: the list to search the node in
625
 * @size: the minimum size of the node to find
626
 *
627
 * Description: Gets the largest node that is at least "size" big from the
628
 * list pointed to by head.  It aligns the node on top and bottom
629
 * to "size" alignment before returning it.
630
 */
631
static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
632
{
633
        struct pci_resource *max;
634
        struct pci_resource *temp;
635
        struct pci_resource *split_node;
636
        u32 temp_dword;
637
 
638
        if (cpqhp_resource_sort_and_combine(head))
639
                return NULL;
640
 
641
        if (sort_by_max_size(head))
642
                return NULL;
643
 
644
        for (max = *head; max; max = max->next) {
645
                /* If not big enough we could probably just bail,
646
                 * instead we'll continue to the next. */
647
                if (max->length < size)
648
                        continue;
649
 
650
                if (max->base & (size - 1)) {
651
                        /* this one isn't base aligned properly
652
                         * so we'll make a new entry and split it up */
653
                        temp_dword = (max->base | (size-1)) + 1;
654
 
655
                        /* Short circuit if adjusted size is too small */
656
                        if ((max->length - (temp_dword - max->base)) < size)
657
                                continue;
658
 
659
                        split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
660
 
661
                        if (!split_node)
662
                                return NULL;
663
 
664
                        split_node->base = max->base;
665
                        split_node->length = temp_dword - max->base;
666
                        max->base = temp_dword;
667
                        max->length -= split_node->length;
668
 
669
                        split_node->next = max->next;
670
                        max->next = split_node;
671
                }
672
 
673
                if ((max->base + max->length) & (size - 1)) {
674
                        /* this one isn't end aligned properly at the top
675
                         * so we'll make a new entry and split it up */
676
                        split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
677
 
678
                        if (!split_node)
679
                                return NULL;
680
                        temp_dword = ((max->base + max->length) & ~(size - 1));
681
                        split_node->base = temp_dword;
682
                        split_node->length = max->length + max->base
683
                                             - split_node->base;
684
                        max->length -= split_node->length;
685
 
686
                        split_node->next = max->next;
687
                        max->next = split_node;
688
                }
689
 
690
                /* Make sure it didn't shrink too much when we aligned it */
691
                if (max->length < size)
692
                        continue;
693
 
694
                /* Now take it out of the list */
695
                temp = *head;
696
                if (temp == max) {
697
                        *head = max->next;
698
                } else {
699
                        while (temp && temp->next != max) {
700
                                temp = temp->next;
701
                        }
702
 
703
                        temp->next = max->next;
704
                }
705
 
706
                max->next = NULL;
707
                break;
708
        }
709
 
710
        return max;
711
}
712
 
713
 
714
/**
715
 * get_resource - find resource of given size and split up larger ones.
716
 * @head: the list to search for resources
717
 * @size: the size limit to use
718
 *
719
 * Description: This function sorts the resource list by size and then
720
 * returns the first node of "size" length.  If it finds a node
721
 * larger than "size" it will split it up.
722
 *
723
 * size must be a power of two.
724
 */
725
static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
726
{
727
        struct pci_resource *prevnode;
728
        struct pci_resource *node;
729
        struct pci_resource *split_node;
730
        u32 temp_dword;
731
 
732
        if (cpqhp_resource_sort_and_combine(head))
733
                return NULL;
734
 
735
        if (sort_by_size(head))
736
                return NULL;
737
 
738
        for (node = *head; node; node = node->next) {
739
                dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
740
                    __FUNCTION__, size, node, node->base, node->length);
741
                if (node->length < size)
742
                        continue;
743
 
744
                if (node->base & (size - 1)) {
745
                        dbg("%s: not aligned\n", __FUNCTION__);
746
                        /* this one isn't base aligned properly
747
                         * so we'll make a new entry and split it up */
748
                        temp_dword = (node->base | (size-1)) + 1;
749
 
750
                        /* Short circuit if adjusted size is too small */
751
                        if ((node->length - (temp_dword - node->base)) < size)
752
                                continue;
753
 
754
                        split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
755
 
756
                        if (!split_node)
757
                                return NULL;
758
 
759
                        split_node->base = node->base;
760
                        split_node->length = temp_dword - node->base;
761
                        node->base = temp_dword;
762
                        node->length -= split_node->length;
763
 
764
                        split_node->next = node->next;
765
                        node->next = split_node;
766
                } /* End of non-aligned base */
767
 
768
                /* Don't need to check if too small since we already did */
769
                if (node->length > size) {
770
                        dbg("%s: too big\n", __FUNCTION__);
771
                        /* this one is longer than we need
772
                         * so we'll make a new entry and split it up */
773
                        split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
774
 
775
                        if (!split_node)
776
                                return NULL;
777
 
778
                        split_node->base = node->base + size;
779
                        split_node->length = node->length - size;
780
                        node->length = size;
781
 
782
                        /* Put it in the list */
783
                        split_node->next = node->next;
784
                        node->next = split_node;
785
                }  /* End of too big on top end */
786
 
787
                dbg("%s: got one!!!\n", __FUNCTION__);
788
                /* If we got here, then it is the right size
789
                 * Now take it out of the list */
790
                if (*head == node) {
791
                        *head = node->next;
792
                } else {
793
                        prevnode = *head;
794
                        while (prevnode->next != node)
795
                                prevnode = prevnode->next;
796
 
797
                        prevnode->next = node->next;
798
                }
799
                node->next = NULL;
800
                break;
801
        }
802
        return node;
803
}
804
 
805
 
806
/**
807
 * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
808
 * @head: the list to sort and clean up
809
 *
810
 * Description: Sorts all of the nodes in the list in ascending order by
811
 * their base addresses.  Also does garbage collection by
812
 * combining adjacent nodes.
813
 *
814
 * Returns %0 if success.
815
 */
816
int cpqhp_resource_sort_and_combine(struct pci_resource **head)
817
{
818
        struct pci_resource *node1;
819
        struct pci_resource *node2;
820
        int out_of_order = 1;
821
 
822
        dbg("%s: head = %p, *head = %p\n", __FUNCTION__, head, *head);
823
 
824
        if (!(*head))
825
                return 1;
826
 
827
        dbg("*head->next = %p\n",(*head)->next);
828
 
829
        if (!(*head)->next)
830
                return 0;        /* only one item on the list, already sorted! */
831
 
832
        dbg("*head->base = 0x%x\n",(*head)->base);
833
        dbg("*head->next->base = 0x%x\n",(*head)->next->base);
834
        while (out_of_order) {
835
                out_of_order = 0;
836
 
837
                /* Special case for swapping list head */
838
                if (((*head)->next) &&
839
                    ((*head)->base > (*head)->next->base)) {
840
                        node1 = *head;
841
                        (*head) = (*head)->next;
842
                        node1->next = (*head)->next;
843
                        (*head)->next = node1;
844
                        out_of_order++;
845
                }
846
 
847
                node1 = (*head);
848
 
849
                while (node1->next && node1->next->next) {
850
                        if (node1->next->base > node1->next->next->base) {
851
                                out_of_order++;
852
                                node2 = node1->next;
853
                                node1->next = node1->next->next;
854
                                node1 = node1->next;
855
                                node2->next = node1->next;
856
                                node1->next = node2;
857
                        } else
858
                                node1 = node1->next;
859
                }
860
        }  /* End of out_of_order loop */
861
 
862
        node1 = *head;
863
 
864
        while (node1 && node1->next) {
865
                if ((node1->base + node1->length) == node1->next->base) {
866
                        /* Combine */
867
                        dbg("8..\n");
868
                        node1->length += node1->next->length;
869
                        node2 = node1->next;
870
                        node1->next = node1->next->next;
871
                        kfree(node2);
872
                } else
873
                        node1 = node1->next;
874
        }
875
 
876
        return 0;
877
}
878
 
879
 
880
irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
881
{
882
        struct controller *ctrl = data;
883
        u8 schedule_flag = 0;
884
        u8 reset;
885
        u16 misc;
886
        u32 Diff;
887
        u32 temp_dword;
888
 
889
 
890
        misc = readw(ctrl->hpc_reg + MISC);
891
        /***************************************
892
         * Check to see if it was our interrupt
893
         ***************************************/
894
        if (!(misc & 0x000C)) {
895
                return IRQ_NONE;
896
        }
897
 
898
        if (misc & 0x0004) {
899
                /**********************************
900
                 * Serial Output interrupt Pending
901
                 **********************************/
902
 
903
                /* Clear the interrupt */
904
                misc |= 0x0004;
905
                writew(misc, ctrl->hpc_reg + MISC);
906
 
907
                /* Read to clear posted writes */
908
                misc = readw(ctrl->hpc_reg + MISC);
909
 
910
                dbg ("%s - waking up\n", __FUNCTION__);
911
                wake_up_interruptible(&ctrl->queue);
912
        }
913
 
914
        if (misc & 0x0008) {
915
                /* General-interrupt-input interrupt Pending */
916
                Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
917
 
918
                ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
919
 
920
                /* Clear the interrupt */
921
                writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
922
 
923
                /* Read it back to clear any posted writes */
924
                temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
925
 
926
                if (!Diff)
927
                        /* Clear all interrupts */
928
                        writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
929
 
930
                schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
931
                schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
932
                schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
933
        }
934
 
935
        reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
936
        if (reset & 0x40) {
937
                /* Bus reset has completed */
938
                reset &= 0xCF;
939
                writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
940
                reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
941
                wake_up_interruptible(&ctrl->queue);
942
        }
943
 
944
        if (schedule_flag) {
945
                wake_up_process(cpqhp_event_thread);
946
                dbg("Waking even thread");
947
        }
948
        return IRQ_HANDLED;
949
}
950
 
951
 
952
/**
953
 * cpqhp_slot_create - Creates a node and adds it to the proper bus.
954
 * @busnumber: bus where new node is to be located
955
 *
956
 * Returns pointer to the new node or %NULL if unsuccessful.
957
 */
958
struct pci_func *cpqhp_slot_create(u8 busnumber)
959
{
960
        struct pci_func *new_slot;
961
        struct pci_func *next;
962
 
963
        new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
964
        if (new_slot == NULL) {
965
                /* I'm not dead yet!
966
                 * You will be. */
967
                return new_slot;
968
        }
969
 
970
        new_slot->next = NULL;
971
        new_slot->configured = 1;
972
 
973
        if (cpqhp_slot_list[busnumber] == NULL) {
974
                cpqhp_slot_list[busnumber] = new_slot;
975
        } else {
976
                next = cpqhp_slot_list[busnumber];
977
                while (next->next != NULL)
978
                        next = next->next;
979
                next->next = new_slot;
980
        }
981
        return new_slot;
982
}
983
 
984
 
985
/**
986
 * slot_remove - Removes a node from the linked list of slots.
987
 * @old_slot: slot to remove
988
 *
989
 * Returns %0 if successful, !0 otherwise.
990
 */
991
static int slot_remove(struct pci_func * old_slot)
992
{
993
        struct pci_func *next;
994
 
995
        if (old_slot == NULL)
996
                return 1;
997
 
998
        next = cpqhp_slot_list[old_slot->bus];
999
 
1000
        if (next == NULL) {
1001
                return 1;
1002
        }
1003
 
1004
        if (next == old_slot) {
1005
                cpqhp_slot_list[old_slot->bus] = old_slot->next;
1006
                cpqhp_destroy_board_resources(old_slot);
1007
                kfree(old_slot);
1008
                return 0;
1009
        }
1010
 
1011
        while ((next->next != old_slot) && (next->next != NULL)) {
1012
                next = next->next;
1013
        }
1014
 
1015
        if (next->next == old_slot) {
1016
                next->next = old_slot->next;
1017
                cpqhp_destroy_board_resources(old_slot);
1018
                kfree(old_slot);
1019
                return 0;
1020
        } else
1021
                return 2;
1022
}
1023
 
1024
 
1025
/**
1026
 * bridge_slot_remove - Removes a node from the linked list of slots.
1027
 * @bridge: bridge to remove
1028
 *
1029
 * Returns %0 if successful, !0 otherwise.
1030
 */
1031
static int bridge_slot_remove(struct pci_func *bridge)
1032
{
1033
        u8 subordinateBus, secondaryBus;
1034
        u8 tempBus;
1035
        struct pci_func *next;
1036
 
1037
        secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1038
        subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1039
 
1040
        for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1041
                next = cpqhp_slot_list[tempBus];
1042
 
1043
                while (!slot_remove(next)) {
1044
                        next = cpqhp_slot_list[tempBus];
1045
                }
1046
        }
1047
 
1048
        next = cpqhp_slot_list[bridge->bus];
1049
 
1050
        if (next == NULL)
1051
                return 1;
1052
 
1053
        if (next == bridge) {
1054
                cpqhp_slot_list[bridge->bus] = bridge->next;
1055
                goto out;
1056
        }
1057
 
1058
        while ((next->next != bridge) && (next->next != NULL))
1059
                next = next->next;
1060
 
1061
        if (next->next != bridge)
1062
                return 2;
1063
        next->next = bridge->next;
1064
out:
1065
        kfree(bridge);
1066
        return 0;
1067
}
1068
 
1069
 
1070
/**
1071
 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1072
 * @bus: bus to find
1073
 * @device: device to find
1074
 * @index: is %0 for first function found, %1 for the second...
1075
 *
1076
 * Returns pointer to the node if successful, %NULL otherwise.
1077
 */
1078
struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1079
{
1080
        int found = -1;
1081
        struct pci_func *func;
1082
 
1083
        func = cpqhp_slot_list[bus];
1084
 
1085
        if ((func == NULL) || ((func->device == device) && (index == 0)))
1086
                return func;
1087
 
1088
        if (func->device == device)
1089
                found++;
1090
 
1091
        while (func->next != NULL) {
1092
                func = func->next;
1093
 
1094
                if (func->device == device)
1095
                        found++;
1096
 
1097
                if (found == index)
1098
                        return func;
1099
        }
1100
 
1101
        return NULL;
1102
}
1103
 
1104
 
1105
/* DJZ: I don't think is_bridge will work as is.
1106
 * FIXME */
1107
static int is_bridge(struct pci_func * func)
1108
{
1109
        /* Check the header type */
1110
        if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1111
                return 1;
1112
        else
1113
                return 0;
1114
}
1115
 
1116
 
1117
/**
1118
 * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1119
 * @ctrl: controller to change frequency/mode for.
1120
 * @adapter_speed: the speed of the adapter we want to match.
1121
 * @hp_slot: the slot number where the adapter is installed.
1122
 *
1123
 * Returns %0 if we successfully change frequency and/or mode to match the
1124
 * adapter speed.
1125
 */
1126
static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1127
{
1128
        struct slot *slot;
1129
        u8 reg;
1130
        u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1131
        u16 reg16;
1132
        u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1133
 
1134
        if (ctrl->speed == adapter_speed)
1135
                return 0;
1136
 
1137
        /* We don't allow freq/mode changes if we find another adapter running
1138
         * in another slot on this controller */
1139
        for(slot = ctrl->slot; slot; slot = slot->next) {
1140
                if (slot->device == (hp_slot + ctrl->slot_device_offset))
1141
                        continue;
1142
                if (!slot->hotplug_slot && !slot->hotplug_slot->info)
1143
                        continue;
1144
                if (slot->hotplug_slot->info->adapter_status == 0)
1145
                        continue;
1146
                /* If another adapter is running on the same segment but at a
1147
                 * lower speed/mode, we allow the new adapter to function at
1148
                 * this rate if supported */
1149
                if (ctrl->speed < adapter_speed)
1150
                        return 0;
1151
 
1152
                return 1;
1153
        }
1154
 
1155
        /* If the controller doesn't support freq/mode changes and the
1156
         * controller is running at a higher mode, we bail */
1157
        if ((ctrl->speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1158
                return 1;
1159
 
1160
        /* But we allow the adapter to run at a lower rate if possible */
1161
        if ((ctrl->speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1162
                return 0;
1163
 
1164
        /* We try to set the max speed supported by both the adapter and
1165
         * controller */
1166
        if (ctrl->speed_capability < adapter_speed) {
1167
                if (ctrl->speed == ctrl->speed_capability)
1168
                        return 0;
1169
                adapter_speed = ctrl->speed_capability;
1170
        }
1171
 
1172
        writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1173
        writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1174
 
1175
        set_SOGO(ctrl);
1176
        wait_for_ctrl_irq(ctrl);
1177
 
1178
        if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1179
                reg = 0xF5;
1180
        else
1181
                reg = 0xF4;
1182
        pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1183
 
1184
        reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1185
        reg16 &= ~0x000F;
1186
        switch(adapter_speed) {
1187
                case(PCI_SPEED_133MHz_PCIX):
1188
                        reg = 0x75;
1189
                        reg16 |= 0xB;
1190
                        break;
1191
                case(PCI_SPEED_100MHz_PCIX):
1192
                        reg = 0x74;
1193
                        reg16 |= 0xA;
1194
                        break;
1195
                case(PCI_SPEED_66MHz_PCIX):
1196
                        reg = 0x73;
1197
                        reg16 |= 0x9;
1198
                        break;
1199
                case(PCI_SPEED_66MHz):
1200
                        reg = 0x73;
1201
                        reg16 |= 0x1;
1202
                        break;
1203
                default: /* 33MHz PCI 2.2 */
1204
                        reg = 0x71;
1205
                        break;
1206
 
1207
        }
1208
        reg16 |= 0xB << 12;
1209
        writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1210
 
1211
        mdelay(5);
1212
 
1213
        /* Reenable interrupts */
1214
        writel(0, ctrl->hpc_reg + INT_MASK);
1215
 
1216
        pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1217
 
1218
        /* Restart state machine */
1219
        reg = ~0xF;
1220
        pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1221
        pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1222
 
1223
        /* Only if mode change...*/
1224
        if (((ctrl->speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1225
                ((ctrl->speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1226
                        set_SOGO(ctrl);
1227
 
1228
        wait_for_ctrl_irq(ctrl);
1229
        mdelay(1100);
1230
 
1231
        /* Restore LED/Slot state */
1232
        writel(leds, ctrl->hpc_reg + LED_CONTROL);
1233
        writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1234
 
1235
        set_SOGO(ctrl);
1236
        wait_for_ctrl_irq(ctrl);
1237
 
1238
        ctrl->speed = adapter_speed;
1239
        slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1240
 
1241
        info("Successfully changed frequency/mode for adapter in slot %d\n",
1242
                        slot->number);
1243
        return 0;
1244
}
1245
 
1246
/* the following routines constitute the bulk of the
1247
   hotplug controller logic
1248
 */
1249
 
1250
 
1251
/**
1252
 * board_replaced - Called after a board has been replaced in the system.
1253
 * @func: PCI device/function information
1254
 * @ctrl: hotplug controller
1255
 *
1256
 * This is only used if we don't have resources for hot add.
1257
 * Turns power on for the board.
1258
 * Checks to see if board is the same.
1259
 * If board is same, reconfigures it.
1260
 * If board isn't same, turns it back off.
1261
 */
1262
static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1263
{
1264
        u8 hp_slot;
1265
        u8 temp_byte;
1266
        u8 adapter_speed;
1267
        u32 rc = 0;
1268
 
1269
        hp_slot = func->device - ctrl->slot_device_offset;
1270
 
1271
        if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot)) {
1272
                /**********************************
1273
                 * The switch is open.
1274
                 **********************************/
1275
                rc = INTERLOCK_OPEN;
1276
        } else if (is_slot_enabled (ctrl, hp_slot)) {
1277
                /**********************************
1278
                 * The board is already on
1279
                 **********************************/
1280
                rc = CARD_FUNCTIONING;
1281
        } else {
1282
                mutex_lock(&ctrl->crit_sect);
1283
 
1284
                /* turn on board without attaching to the bus */
1285
                enable_slot_power (ctrl, hp_slot);
1286
 
1287
                set_SOGO(ctrl);
1288
 
1289
                /* Wait for SOBS to be unset */
1290
                wait_for_ctrl_irq (ctrl);
1291
 
1292
                /* Change bits in slot power register to force another shift out
1293
                 * NOTE: this is to work around the timer bug */
1294
                temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1295
                writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1296
                writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1297
 
1298
                set_SOGO(ctrl);
1299
 
1300
                /* Wait for SOBS to be unset */
1301
                wait_for_ctrl_irq (ctrl);
1302
 
1303
                adapter_speed = get_adapter_speed(ctrl, hp_slot);
1304
                if (ctrl->speed != adapter_speed)
1305
                        if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1306
                                rc = WRONG_BUS_FREQUENCY;
1307
 
1308
                /* turn off board without attaching to the bus */
1309
                disable_slot_power (ctrl, hp_slot);
1310
 
1311
                set_SOGO(ctrl);
1312
 
1313
                /* Wait for SOBS to be unset */
1314
                wait_for_ctrl_irq (ctrl);
1315
 
1316
                mutex_unlock(&ctrl->crit_sect);
1317
 
1318
                if (rc)
1319
                        return rc;
1320
 
1321
                mutex_lock(&ctrl->crit_sect);
1322
 
1323
                slot_enable (ctrl, hp_slot);
1324
                green_LED_blink (ctrl, hp_slot);
1325
 
1326
                amber_LED_off (ctrl, hp_slot);
1327
 
1328
                set_SOGO(ctrl);
1329
 
1330
                /* Wait for SOBS to be unset */
1331
                wait_for_ctrl_irq (ctrl);
1332
 
1333
                mutex_unlock(&ctrl->crit_sect);
1334
 
1335
                /* Wait for ~1 second because of hot plug spec */
1336
                long_delay(1*HZ);
1337
 
1338
                /* Check for a power fault */
1339
                if (func->status == 0xFF) {
1340
                        /* power fault occurred, but it was benign */
1341
                        rc = POWER_FAILURE;
1342
                        func->status = 0;
1343
                } else
1344
                        rc = cpqhp_valid_replace(ctrl, func);
1345
 
1346
                if (!rc) {
1347
                        /* It must be the same board */
1348
 
1349
                        rc = cpqhp_configure_board(ctrl, func);
1350
 
1351
                        /* If configuration fails, turn it off
1352
                         * Get slot won't work for devices behind
1353
                         * bridges, but in this case it will always be
1354
                         * called for the "base" bus/dev/func of an
1355
                         * adapter. */
1356
 
1357
                        mutex_lock(&ctrl->crit_sect);
1358
 
1359
                        amber_LED_on (ctrl, hp_slot);
1360
                        green_LED_off (ctrl, hp_slot);
1361
                        slot_disable (ctrl, hp_slot);
1362
 
1363
                        set_SOGO(ctrl);
1364
 
1365
                        /* Wait for SOBS to be unset */
1366
                        wait_for_ctrl_irq (ctrl);
1367
 
1368
                        mutex_unlock(&ctrl->crit_sect);
1369
 
1370
                        if (rc)
1371
                                return rc;
1372
                        else
1373
                                return 1;
1374
 
1375
                } else {
1376
                        /* Something is wrong
1377
 
1378
                         * Get slot won't work for devices behind bridges, but
1379
                         * in this case it will always be called for the "base"
1380
                         * bus/dev/func of an adapter. */
1381
 
1382
                        mutex_lock(&ctrl->crit_sect);
1383
 
1384
                        amber_LED_on (ctrl, hp_slot);
1385
                        green_LED_off (ctrl, hp_slot);
1386
                        slot_disable (ctrl, hp_slot);
1387
 
1388
                        set_SOGO(ctrl);
1389
 
1390
                        /* Wait for SOBS to be unset */
1391
                        wait_for_ctrl_irq (ctrl);
1392
 
1393
                        mutex_unlock(&ctrl->crit_sect);
1394
                }
1395
 
1396
        }
1397
        return rc;
1398
 
1399
}
1400
 
1401
 
1402
/**
1403
 * board_added - Called after a board has been added to the system.
1404
 * @func: PCI device/function info
1405
 * @ctrl: hotplug controller
1406
 *
1407
 * Turns power on for the board.
1408
 * Configures board.
1409
 */
1410
static u32 board_added(struct pci_func *func, struct controller *ctrl)
1411
{
1412
        u8 hp_slot;
1413
        u8 temp_byte;
1414
        u8 adapter_speed;
1415
        int index;
1416
        u32 temp_register = 0xFFFFFFFF;
1417
        u32 rc = 0;
1418
        struct pci_func *new_slot = NULL;
1419
        struct slot *p_slot;
1420
        struct resource_lists res_lists;
1421
 
1422
        hp_slot = func->device - ctrl->slot_device_offset;
1423
        dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1424
            __FUNCTION__, func->device, ctrl->slot_device_offset, hp_slot);
1425
 
1426
        mutex_lock(&ctrl->crit_sect);
1427
 
1428
        /* turn on board without attaching to the bus */
1429
        enable_slot_power(ctrl, hp_slot);
1430
 
1431
        set_SOGO(ctrl);
1432
 
1433
        /* Wait for SOBS to be unset */
1434
        wait_for_ctrl_irq (ctrl);
1435
 
1436
        /* Change bits in slot power register to force another shift out
1437
         * NOTE: this is to work around the timer bug */
1438
        temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1439
        writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1440
        writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1441
 
1442
        set_SOGO(ctrl);
1443
 
1444
        /* Wait for SOBS to be unset */
1445
        wait_for_ctrl_irq (ctrl);
1446
 
1447
        adapter_speed = get_adapter_speed(ctrl, hp_slot);
1448
        if (ctrl->speed != adapter_speed)
1449
                if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1450
                        rc = WRONG_BUS_FREQUENCY;
1451
 
1452
        /* turn off board without attaching to the bus */
1453
        disable_slot_power (ctrl, hp_slot);
1454
 
1455
        set_SOGO(ctrl);
1456
 
1457
        /* Wait for SOBS to be unset */
1458
        wait_for_ctrl_irq(ctrl);
1459
 
1460
        mutex_unlock(&ctrl->crit_sect);
1461
 
1462
        if (rc)
1463
                return rc;
1464
 
1465
        p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1466
 
1467
        /* turn on board and blink green LED */
1468
 
1469
        dbg("%s: before down\n", __FUNCTION__);
1470
        mutex_lock(&ctrl->crit_sect);
1471
        dbg("%s: after down\n", __FUNCTION__);
1472
 
1473
        dbg("%s: before slot_enable\n", __FUNCTION__);
1474
        slot_enable (ctrl, hp_slot);
1475
 
1476
        dbg("%s: before green_LED_blink\n", __FUNCTION__);
1477
        green_LED_blink (ctrl, hp_slot);
1478
 
1479
        dbg("%s: before amber_LED_blink\n", __FUNCTION__);
1480
        amber_LED_off (ctrl, hp_slot);
1481
 
1482
        dbg("%s: before set_SOGO\n", __FUNCTION__);
1483
        set_SOGO(ctrl);
1484
 
1485
        /* Wait for SOBS to be unset */
1486
        dbg("%s: before wait_for_ctrl_irq\n", __FUNCTION__);
1487
        wait_for_ctrl_irq (ctrl);
1488
        dbg("%s: after wait_for_ctrl_irq\n", __FUNCTION__);
1489
 
1490
        dbg("%s: before up\n", __FUNCTION__);
1491
        mutex_unlock(&ctrl->crit_sect);
1492
        dbg("%s: after up\n", __FUNCTION__);
1493
 
1494
        /* Wait for ~1 second because of hot plug spec */
1495
        dbg("%s: before long_delay\n", __FUNCTION__);
1496
        long_delay(1*HZ);
1497
        dbg("%s: after long_delay\n", __FUNCTION__);
1498
 
1499
        dbg("%s: func status = %x\n", __FUNCTION__, func->status);
1500
        /* Check for a power fault */
1501
        if (func->status == 0xFF) {
1502
                /* power fault occurred, but it was benign */
1503
                temp_register = 0xFFFFFFFF;
1504
                dbg("%s: temp register set to %x by power fault\n", __FUNCTION__, temp_register);
1505
                rc = POWER_FAILURE;
1506
                func->status = 0;
1507
        } else {
1508
                /* Get vendor/device ID u32 */
1509
                ctrl->pci_bus->number = func->bus;
1510
                rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1511
                dbg("%s: pci_read_config_dword returns %d\n", __FUNCTION__, rc);
1512
                dbg("%s: temp_register is %x\n", __FUNCTION__, temp_register);
1513
 
1514
                if (rc != 0) {
1515
                        /* Something's wrong here */
1516
                        temp_register = 0xFFFFFFFF;
1517
                        dbg("%s: temp register set to %x by error\n", __FUNCTION__, temp_register);
1518
                }
1519
                /* Preset return code.  It will be changed later if things go okay. */
1520
                rc = NO_ADAPTER_PRESENT;
1521
        }
1522
 
1523
        /* All F's is an empty slot or an invalid board */
1524
        if (temp_register != 0xFFFFFFFF) {        /* Check for a board in the slot */
1525
                res_lists.io_head = ctrl->io_head;
1526
                res_lists.mem_head = ctrl->mem_head;
1527
                res_lists.p_mem_head = ctrl->p_mem_head;
1528
                res_lists.bus_head = ctrl->bus_head;
1529
                res_lists.irqs = NULL;
1530
 
1531
                rc = configure_new_device(ctrl, func, 0, &res_lists);
1532
 
1533
                dbg("%s: back from configure_new_device\n", __FUNCTION__);
1534
                ctrl->io_head = res_lists.io_head;
1535
                ctrl->mem_head = res_lists.mem_head;
1536
                ctrl->p_mem_head = res_lists.p_mem_head;
1537
                ctrl->bus_head = res_lists.bus_head;
1538
 
1539
                cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1540
                cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1541
                cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1542
                cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1543
 
1544
                if (rc) {
1545
                        mutex_lock(&ctrl->crit_sect);
1546
 
1547
                        amber_LED_on (ctrl, hp_slot);
1548
                        green_LED_off (ctrl, hp_slot);
1549
                        slot_disable (ctrl, hp_slot);
1550
 
1551
                        set_SOGO(ctrl);
1552
 
1553
                        /* Wait for SOBS to be unset */
1554
                        wait_for_ctrl_irq (ctrl);
1555
 
1556
                        mutex_unlock(&ctrl->crit_sect);
1557
                        return rc;
1558
                } else {
1559
                        cpqhp_save_slot_config(ctrl, func);
1560
                }
1561
 
1562
 
1563
                func->status = 0;
1564
                func->switch_save = 0x10;
1565
                func->is_a_board = 0x01;
1566
 
1567
                /* next, we will instantiate the linux pci_dev structures (with
1568
                 * appropriate driver notification, if already present) */
1569
                dbg("%s: configure linux pci_dev structure\n", __FUNCTION__);
1570
                index = 0;
1571
                do {
1572
                        new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1573
                        if (new_slot && !new_slot->pci_dev) {
1574
                                cpqhp_configure_device(ctrl, new_slot);
1575
                        }
1576
                } while (new_slot);
1577
 
1578
                mutex_lock(&ctrl->crit_sect);
1579
 
1580
                green_LED_on (ctrl, hp_slot);
1581
 
1582
                set_SOGO(ctrl);
1583
 
1584
                /* Wait for SOBS to be unset */
1585
                wait_for_ctrl_irq (ctrl);
1586
 
1587
                mutex_unlock(&ctrl->crit_sect);
1588
        } else {
1589
                mutex_lock(&ctrl->crit_sect);
1590
 
1591
                amber_LED_on (ctrl, hp_slot);
1592
                green_LED_off (ctrl, hp_slot);
1593
                slot_disable (ctrl, hp_slot);
1594
 
1595
                set_SOGO(ctrl);
1596
 
1597
                /* Wait for SOBS to be unset */
1598
                wait_for_ctrl_irq (ctrl);
1599
 
1600
                mutex_unlock(&ctrl->crit_sect);
1601
 
1602
                return rc;
1603
        }
1604
        return 0;
1605
}
1606
 
1607
 
1608
/**
1609
 * remove_board - Turns off slot and LEDs
1610
 * @func: PCI device/function info
1611
 * @replace_flag: whether replacing or adding a new device
1612
 * @ctrl: target controller
1613
 */
1614
static u32 remove_board(struct pci_func * func, u32 replace_flag, struct controller * ctrl)
1615
{
1616
        int index;
1617
        u8 skip = 0;
1618
        u8 device;
1619
        u8 hp_slot;
1620
        u8 temp_byte;
1621
        u32 rc;
1622
        struct resource_lists res_lists;
1623
        struct pci_func *temp_func;
1624
 
1625
        if (cpqhp_unconfigure_device(func))
1626
                return 1;
1627
 
1628
        device = func->device;
1629
 
1630
        hp_slot = func->device - ctrl->slot_device_offset;
1631
        dbg("In %s, hp_slot = %d\n", __FUNCTION__, hp_slot);
1632
 
1633
        /* When we get here, it is safe to change base address registers.
1634
         * We will attempt to save the base address register lengths */
1635
        if (replace_flag || !ctrl->add_support)
1636
                rc = cpqhp_save_base_addr_length(ctrl, func);
1637
        else if (!func->bus_head && !func->mem_head &&
1638
                 !func->p_mem_head && !func->io_head) {
1639
                /* Here we check to see if we've saved any of the board's
1640
                 * resources already.  If so, we'll skip the attempt to
1641
                 * determine what's being used. */
1642
                index = 0;
1643
                temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1644
                while (temp_func) {
1645
                        if (temp_func->bus_head || temp_func->mem_head
1646
                            || temp_func->p_mem_head || temp_func->io_head) {
1647
                                skip = 1;
1648
                                break;
1649
                        }
1650
                        temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1651
                }
1652
 
1653
                if (!skip)
1654
                        rc = cpqhp_save_used_resources(ctrl, func);
1655
        }
1656
        /* Change status to shutdown */
1657
        if (func->is_a_board)
1658
                func->status = 0x01;
1659
        func->configured = 0;
1660
 
1661
        mutex_lock(&ctrl->crit_sect);
1662
 
1663
        green_LED_off (ctrl, hp_slot);
1664
        slot_disable (ctrl, hp_slot);
1665
 
1666
        set_SOGO(ctrl);
1667
 
1668
        /* turn off SERR for slot */
1669
        temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1670
        temp_byte &= ~(0x01 << hp_slot);
1671
        writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1672
 
1673
        /* Wait for SOBS to be unset */
1674
        wait_for_ctrl_irq (ctrl);
1675
 
1676
        mutex_unlock(&ctrl->crit_sect);
1677
 
1678
        if (!replace_flag && ctrl->add_support) {
1679
                while (func) {
1680
                        res_lists.io_head = ctrl->io_head;
1681
                        res_lists.mem_head = ctrl->mem_head;
1682
                        res_lists.p_mem_head = ctrl->p_mem_head;
1683
                        res_lists.bus_head = ctrl->bus_head;
1684
 
1685
                        cpqhp_return_board_resources(func, &res_lists);
1686
 
1687
                        ctrl->io_head = res_lists.io_head;
1688
                        ctrl->mem_head = res_lists.mem_head;
1689
                        ctrl->p_mem_head = res_lists.p_mem_head;
1690
                        ctrl->bus_head = res_lists.bus_head;
1691
 
1692
                        cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1693
                        cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1694
                        cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1695
                        cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1696
 
1697
                        if (is_bridge(func)) {
1698
                                bridge_slot_remove(func);
1699
                        } else
1700
                                slot_remove(func);
1701
 
1702
                        func = cpqhp_slot_find(ctrl->bus, device, 0);
1703
                }
1704
 
1705
                /* Setup slot structure with entry for empty slot */
1706
                func = cpqhp_slot_create(ctrl->bus);
1707
 
1708
                if (func == NULL)
1709
                        return 1;
1710
 
1711
                func->bus = ctrl->bus;
1712
                func->device = device;
1713
                func->function = 0;
1714
                func->configured = 0;
1715
                func->switch_save = 0x10;
1716
                func->is_a_board = 0;
1717
                func->p_task_event = NULL;
1718
        }
1719
 
1720
        return 0;
1721
}
1722
 
1723
static void pushbutton_helper_thread(unsigned long data)
1724
{
1725
        pushbutton_pending = data;
1726
        wake_up_process(cpqhp_event_thread);
1727
}
1728
 
1729
 
1730
/* this is the main worker thread */
1731
static int event_thread(void* data)
1732
{
1733
        struct controller *ctrl;
1734
 
1735
        while (1) {
1736
                dbg("!!!!event_thread sleeping\n");
1737
                set_current_state(TASK_INTERRUPTIBLE);
1738
                schedule();
1739
 
1740
                if (kthread_should_stop())
1741
                        break;
1742
                /* Do stuff here */
1743
                if (pushbutton_pending)
1744
                        cpqhp_pushbutton_thread(pushbutton_pending);
1745
                else
1746
                        for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next)
1747
                                interrupt_event_handler(ctrl);
1748
        }
1749
        dbg("event_thread signals exit\n");
1750
        return 0;
1751
}
1752
 
1753
int cpqhp_event_start_thread(void)
1754
{
1755
        cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
1756
        if (IS_ERR(cpqhp_event_thread)) {
1757
                err ("Can't start up our event thread\n");
1758
                return PTR_ERR(cpqhp_event_thread);
1759
        }
1760
 
1761
        return 0;
1762
}
1763
 
1764
 
1765
void cpqhp_event_stop_thread(void)
1766
{
1767
        kthread_stop(cpqhp_event_thread);
1768
}
1769
 
1770
 
1771
static int update_slot_info(struct controller *ctrl, struct slot *slot)
1772
{
1773
        struct hotplug_slot_info *info;
1774
        int result;
1775
 
1776
        info = kmalloc(sizeof(*info), GFP_KERNEL);
1777
        if (!info)
1778
                return -ENOMEM;
1779
 
1780
        info->power_status = get_slot_enabled(ctrl, slot);
1781
        info->attention_status = cpq_get_attention_status(ctrl, slot);
1782
        info->latch_status = cpq_get_latch_status(ctrl, slot);
1783
        info->adapter_status = get_presence_status(ctrl, slot);
1784
        result = pci_hp_change_slot_info(slot->hotplug_slot, info);
1785
        kfree (info);
1786
        return result;
1787
}
1788
 
1789
static void interrupt_event_handler(struct controller *ctrl)
1790
{
1791
        int loop = 0;
1792
        int change = 1;
1793
        struct pci_func *func;
1794
        u8 hp_slot;
1795
        struct slot *p_slot;
1796
 
1797
        while (change) {
1798
                change = 0;
1799
 
1800
                for (loop = 0; loop < 10; loop++) {
1801
                        /* dbg("loop %d\n", loop); */
1802
                        if (ctrl->event_queue[loop].event_type != 0) {
1803
                                hp_slot = ctrl->event_queue[loop].hp_slot;
1804
 
1805
                                func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1806
                                if (!func)
1807
                                        return;
1808
 
1809
                                p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1810
                                if (!p_slot)
1811
                                        return;
1812
 
1813
                                dbg("hp_slot %d, func %p, p_slot %p\n",
1814
                                    hp_slot, func, p_slot);
1815
 
1816
                                if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1817
                                        dbg("button pressed\n");
1818
                                } else if (ctrl->event_queue[loop].event_type ==
1819
                                           INT_BUTTON_CANCEL) {
1820
                                        dbg("button cancel\n");
1821
                                        del_timer(&p_slot->task_event);
1822
 
1823
                                        mutex_lock(&ctrl->crit_sect);
1824
 
1825
                                        if (p_slot->state == BLINKINGOFF_STATE) {
1826
                                                /* slot is on */
1827
                                                dbg("turn on green LED\n");
1828
                                                green_LED_on (ctrl, hp_slot);
1829
                                        } else if (p_slot->state == BLINKINGON_STATE) {
1830
                                                /* slot is off */
1831
                                                dbg("turn off green LED\n");
1832
                                                green_LED_off (ctrl, hp_slot);
1833
                                        }
1834
 
1835
                                        info(msg_button_cancel, p_slot->number);
1836
 
1837
                                        p_slot->state = STATIC_STATE;
1838
 
1839
                                        amber_LED_off (ctrl, hp_slot);
1840
 
1841
                                        set_SOGO(ctrl);
1842
 
1843
                                        /* Wait for SOBS to be unset */
1844
                                        wait_for_ctrl_irq (ctrl);
1845
 
1846
                                        mutex_unlock(&ctrl->crit_sect);
1847
                                }
1848
                                /*** button Released (No action on press...) */
1849
                                else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1850
                                        dbg("button release\n");
1851
 
1852
                                        if (is_slot_enabled (ctrl, hp_slot)) {
1853
                                                dbg("slot is on\n");
1854
                                                p_slot->state = BLINKINGOFF_STATE;
1855
                                                info(msg_button_off, p_slot->number);
1856
                                        } else {
1857
                                                dbg("slot is off\n");
1858
                                                p_slot->state = BLINKINGON_STATE;
1859
                                                info(msg_button_on, p_slot->number);
1860
                                        }
1861
                                        mutex_lock(&ctrl->crit_sect);
1862
 
1863
                                        dbg("blink green LED and turn off amber\n");
1864
 
1865
                                        amber_LED_off (ctrl, hp_slot);
1866
                                        green_LED_blink (ctrl, hp_slot);
1867
 
1868
                                        set_SOGO(ctrl);
1869
 
1870
                                        /* Wait for SOBS to be unset */
1871
                                        wait_for_ctrl_irq (ctrl);
1872
 
1873
                                        mutex_unlock(&ctrl->crit_sect);
1874
                                        init_timer(&p_slot->task_event);
1875
                                        p_slot->hp_slot = hp_slot;
1876
                                        p_slot->ctrl = ctrl;
1877
/*                                      p_slot->physical_slot = physical_slot; */
1878
                                        p_slot->task_event.expires = jiffies + 5 * HZ;   /* 5 second delay */
1879
                                        p_slot->task_event.function = pushbutton_helper_thread;
1880
                                        p_slot->task_event.data = (u32) p_slot;
1881
 
1882
                                        dbg("add_timer p_slot = %p\n", p_slot);
1883
                                        add_timer(&p_slot->task_event);
1884
                                }
1885
                                /***********POWER FAULT */
1886
                                else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1887
                                        dbg("power fault\n");
1888
                                } else {
1889
                                        /* refresh notification */
1890
                                        if (p_slot)
1891
                                                update_slot_info(ctrl, p_slot);
1892
                                }
1893
 
1894
                                ctrl->event_queue[loop].event_type = 0;
1895
 
1896
                                change = 1;
1897
                        }
1898
                }               /* End of FOR loop */
1899
        }
1900
 
1901
        return;
1902
}
1903
 
1904
 
1905
/**
1906
 * cpqhp_pushbutton_thread - handle pushbutton events
1907
 * @slot: target slot (struct)
1908
 *
1909
 * Scheduled procedure to handle blocking stuff for the pushbuttons.
1910
 * Handles all pending events and exits.
1911
 */
1912
void cpqhp_pushbutton_thread(unsigned long slot)
1913
{
1914
        u8 hp_slot;
1915
        u8 device;
1916
        struct pci_func *func;
1917
        struct slot *p_slot = (struct slot *) slot;
1918
        struct controller *ctrl = (struct controller *) p_slot->ctrl;
1919
 
1920
        pushbutton_pending = 0;
1921
        hp_slot = p_slot->hp_slot;
1922
 
1923
        device = p_slot->device;
1924
 
1925
        if (is_slot_enabled(ctrl, hp_slot)) {
1926
                p_slot->state = POWEROFF_STATE;
1927
                /* power Down board */
1928
                func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1929
                dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1930
                if (!func) {
1931
                        dbg("Error! func NULL in %s\n", __FUNCTION__);
1932
                        return ;
1933
                }
1934
 
1935
                if (cpqhp_process_SS(ctrl, func) != 0) {
1936
                        amber_LED_on(ctrl, hp_slot);
1937
                        green_LED_on(ctrl, hp_slot);
1938
 
1939
                        set_SOGO(ctrl);
1940
 
1941
                        /* Wait for SOBS to be unset */
1942
                        wait_for_ctrl_irq(ctrl);
1943
                }
1944
 
1945
                p_slot->state = STATIC_STATE;
1946
        } else {
1947
                p_slot->state = POWERON_STATE;
1948
                /* slot is off */
1949
 
1950
                func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1951
                dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1952
                if (!func) {
1953
                        dbg("Error! func NULL in %s\n", __FUNCTION__);
1954
                        return ;
1955
                }
1956
 
1957
                if (func != NULL && ctrl != NULL) {
1958
                        if (cpqhp_process_SI(ctrl, func) != 0) {
1959
                                amber_LED_on(ctrl, hp_slot);
1960
                                green_LED_off(ctrl, hp_slot);
1961
 
1962
                                set_SOGO(ctrl);
1963
 
1964
                                /* Wait for SOBS to be unset */
1965
                                wait_for_ctrl_irq (ctrl);
1966
                        }
1967
                }
1968
 
1969
                p_slot->state = STATIC_STATE;
1970
        }
1971
 
1972
        return;
1973
}
1974
 
1975
 
1976
int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
1977
{
1978
        u8 device, hp_slot;
1979
        u16 temp_word;
1980
        u32 tempdword;
1981
        int rc;
1982
        struct slot* p_slot;
1983
        int physical_slot = 0;
1984
 
1985
        tempdword = 0;
1986
 
1987
        device = func->device;
1988
        hp_slot = device - ctrl->slot_device_offset;
1989
        p_slot = cpqhp_find_slot(ctrl, device);
1990
        if (p_slot)
1991
                physical_slot = p_slot->number;
1992
 
1993
        /* Check to see if the interlock is closed */
1994
        tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
1995
 
1996
        if (tempdword & (0x01 << hp_slot)) {
1997
                return 1;
1998
        }
1999
 
2000
        if (func->is_a_board) {
2001
                rc = board_replaced(func, ctrl);
2002
        } else {
2003
                /* add board */
2004
                slot_remove(func);
2005
 
2006
                func = cpqhp_slot_create(ctrl->bus);
2007
                if (func == NULL)
2008
                        return 1;
2009
 
2010
                func->bus = ctrl->bus;
2011
                func->device = device;
2012
                func->function = 0;
2013
                func->configured = 0;
2014
                func->is_a_board = 1;
2015
 
2016
                /* We have to save the presence info for these slots */
2017
                temp_word = ctrl->ctrl_int_comp >> 16;
2018
                func->presence_save = (temp_word >> hp_slot) & 0x01;
2019
                func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
2020
 
2021
                if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2022
                        func->switch_save = 0;
2023
                } else {
2024
                        func->switch_save = 0x10;
2025
                }
2026
 
2027
                rc = board_added(func, ctrl);
2028
                if (rc) {
2029
                        if (is_bridge(func)) {
2030
                                bridge_slot_remove(func);
2031
                        } else
2032
                                slot_remove(func);
2033
 
2034
                        /* Setup slot structure with entry for empty slot */
2035
                        func = cpqhp_slot_create(ctrl->bus);
2036
 
2037
                        if (func == NULL)
2038
                                return 1;
2039
 
2040
                        func->bus = ctrl->bus;
2041
                        func->device = device;
2042
                        func->function = 0;
2043
                        func->configured = 0;
2044
                        func->is_a_board = 0;
2045
 
2046
                        /* We have to save the presence info for these slots */
2047
                        temp_word = ctrl->ctrl_int_comp >> 16;
2048
                        func->presence_save = (temp_word >> hp_slot) & 0x01;
2049
                        func->presence_save |=
2050
                        (temp_word >> (hp_slot + 7)) & 0x02;
2051
 
2052
                        if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2053
                                func->switch_save = 0;
2054
                        } else {
2055
                                func->switch_save = 0x10;
2056
                        }
2057
                }
2058
        }
2059
 
2060
        if (rc) {
2061
                dbg("%s: rc = %d\n", __FUNCTION__, rc);
2062
        }
2063
 
2064
        if (p_slot)
2065
                update_slot_info(ctrl, p_slot);
2066
 
2067
        return rc;
2068
}
2069
 
2070
 
2071
int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2072
{
2073
        u8 device, class_code, header_type, BCR;
2074
        u8 index = 0;
2075
        u8 replace_flag;
2076
        u32 rc = 0;
2077
        unsigned int devfn;
2078
        struct slot* p_slot;
2079
        struct pci_bus *pci_bus = ctrl->pci_bus;
2080
        int physical_slot=0;
2081
 
2082
        device = func->device;
2083
        func = cpqhp_slot_find(ctrl->bus, device, index++);
2084
        p_slot = cpqhp_find_slot(ctrl, device);
2085
        if (p_slot) {
2086
                physical_slot = p_slot->number;
2087
        }
2088
 
2089
        /* Make sure there are no video controllers here */
2090
        while (func && !rc) {
2091
                pci_bus->number = func->bus;
2092
                devfn = PCI_DEVFN(func->device, func->function);
2093
 
2094
                /* Check the Class Code */
2095
                rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2096
                if (rc)
2097
                        return rc;
2098
 
2099
                if (class_code == PCI_BASE_CLASS_DISPLAY) {
2100
                        /* Display/Video adapter (not supported) */
2101
                        rc = REMOVE_NOT_SUPPORTED;
2102
                } else {
2103
                        /* See if it's a bridge */
2104
                        rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2105
                        if (rc)
2106
                                return rc;
2107
 
2108
                        /* If it's a bridge, check the VGA Enable bit */
2109
                        if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2110
                                rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2111
                                if (rc)
2112
                                        return rc;
2113
 
2114
                                /* If the VGA Enable bit is set, remove isn't
2115
                                 * supported */
2116
                                if (BCR & PCI_BRIDGE_CTL_VGA) {
2117
                                        rc = REMOVE_NOT_SUPPORTED;
2118
                                }
2119
                        }
2120
                }
2121
 
2122
                func = cpqhp_slot_find(ctrl->bus, device, index++);
2123
        }
2124
 
2125
        func = cpqhp_slot_find(ctrl->bus, device, 0);
2126
        if ((func != NULL) && !rc) {
2127
                /* FIXME: Replace flag should be passed into process_SS */
2128
                replace_flag = !(ctrl->add_support);
2129
                rc = remove_board(func, replace_flag, ctrl);
2130
        } else if (!rc) {
2131
                rc = 1;
2132
        }
2133
 
2134
        if (p_slot)
2135
                update_slot_info(ctrl, p_slot);
2136
 
2137
        return rc;
2138
}
2139
 
2140
/**
2141
 * switch_leds - switch the leds, go from one site to the other.
2142
 * @ctrl: controller to use
2143
 * @num_of_slots: number of slots to use
2144
 * @work_LED: LED control value
2145
 * @direction: 1 to start from the left side, 0 to start right.
2146
 */
2147
static void switch_leds(struct controller *ctrl, const int num_of_slots,
2148
                        u32 *work_LED, const int direction)
2149
{
2150
        int loop;
2151
 
2152
        for (loop = 0; loop < num_of_slots; loop++) {
2153
                if (direction)
2154
                        *work_LED = *work_LED >> 1;
2155
                else
2156
                        *work_LED = *work_LED << 1;
2157
                writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2158
 
2159
                set_SOGO(ctrl);
2160
 
2161
                /* Wait for SOGO interrupt */
2162
                wait_for_ctrl_irq(ctrl);
2163
 
2164
                /* Get ready for next iteration */
2165
                long_delay((2*HZ)/10);
2166
        }
2167
}
2168
 
2169
/**
2170
 * cpqhp_hardware_test - runs hardware tests
2171
 * @ctrl: target controller
2172
 * @test_num: the number written to the "test" file in sysfs.
2173
 *
2174
 * For hot plug ctrl folks to play with.
2175
 */
2176
int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2177
{
2178
        u32 save_LED;
2179
        u32 work_LED;
2180
        int loop;
2181
        int num_of_slots;
2182
 
2183
        num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2184
 
2185
        switch (test_num) {
2186
                case 1:
2187
                        /* Do stuff here! */
2188
 
2189
                        /* Do that funky LED thing */
2190
                        /* so we can restore them later */
2191
                        save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2192
                        work_LED = 0x01010101;
2193
                        switch_leds(ctrl, num_of_slots, &work_LED, 0);
2194
                        switch_leds(ctrl, num_of_slots, &work_LED, 1);
2195
                        switch_leds(ctrl, num_of_slots, &work_LED, 0);
2196
                        switch_leds(ctrl, num_of_slots, &work_LED, 1);
2197
 
2198
                        work_LED = 0x01010000;
2199
                        writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2200
                        switch_leds(ctrl, num_of_slots, &work_LED, 0);
2201
                        switch_leds(ctrl, num_of_slots, &work_LED, 1);
2202
                        work_LED = 0x00000101;
2203
                        writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2204
                        switch_leds(ctrl, num_of_slots, &work_LED, 0);
2205
                        switch_leds(ctrl, num_of_slots, &work_LED, 1);
2206
 
2207
                        work_LED = 0x01010000;
2208
                        writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2209
                        for (loop = 0; loop < num_of_slots; loop++) {
2210
                                set_SOGO(ctrl);
2211
 
2212
                                /* Wait for SOGO interrupt */
2213
                                wait_for_ctrl_irq (ctrl);
2214
 
2215
                                /* Get ready for next iteration */
2216
                                long_delay((3*HZ)/10);
2217
                                work_LED = work_LED >> 16;
2218
                                writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2219
 
2220
                                set_SOGO(ctrl);
2221
 
2222
                                /* Wait for SOGO interrupt */
2223
                                wait_for_ctrl_irq (ctrl);
2224
 
2225
                                /* Get ready for next iteration */
2226
                                long_delay((3*HZ)/10);
2227
                                work_LED = work_LED << 16;
2228
                                writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2229
                                work_LED = work_LED << 1;
2230
                                writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2231
                        }
2232
 
2233
                        /* put it back the way it was */
2234
                        writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2235
 
2236
                        set_SOGO(ctrl);
2237
 
2238
                        /* Wait for SOBS to be unset */
2239
                        wait_for_ctrl_irq (ctrl);
2240
                        break;
2241
                case 2:
2242
                        /* Do other stuff here! */
2243
                        break;
2244
                case 3:
2245
                        /* and more... */
2246
                        break;
2247
        }
2248
        return 0;
2249
}
2250
 
2251
 
2252
/**
2253
 * configure_new_device - Configures the PCI header information of one board.
2254
 * @ctrl: pointer to controller structure
2255
 * @func: pointer to function structure
2256
 * @behind_bridge: 1 if this is a recursive call, 0 if not
2257
 * @resources: pointer to set of resource lists
2258
 *
2259
 * Returns 0 if success.
2260
 */
2261
static u32 configure_new_device(struct controller * ctrl, struct pci_func * func,
2262
                                 u8 behind_bridge, struct resource_lists * resources)
2263
{
2264
        u8 temp_byte, function, max_functions, stop_it;
2265
        int rc;
2266
        u32 ID;
2267
        struct pci_func *new_slot;
2268
        int index;
2269
 
2270
        new_slot = func;
2271
 
2272
        dbg("%s\n", __FUNCTION__);
2273
        /* Check for Multi-function device */
2274
        ctrl->pci_bus->number = func->bus;
2275
        rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2276
        if (rc) {
2277
                dbg("%s: rc = %d\n", __FUNCTION__, rc);
2278
                return rc;
2279
        }
2280
 
2281
        if (temp_byte & 0x80)   /* Multi-function device */
2282
                max_functions = 8;
2283
        else
2284
                max_functions = 1;
2285
 
2286
        function = 0;
2287
 
2288
        do {
2289
                rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2290
 
2291
                if (rc) {
2292
                        dbg("configure_new_function failed %d\n",rc);
2293
                        index = 0;
2294
 
2295
                        while (new_slot) {
2296
                                new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2297
 
2298
                                if (new_slot)
2299
                                        cpqhp_return_board_resources(new_slot, resources);
2300
                        }
2301
 
2302
                        return rc;
2303
                }
2304
 
2305
                function++;
2306
 
2307
                stop_it = 0;
2308
 
2309
                /* The following loop skips to the next present function
2310
                 * and creates a board structure */
2311
 
2312
                while ((function < max_functions) && (!stop_it)) {
2313
                        pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2314
 
2315
                        if (ID == 0xFFFFFFFF) {   /* There's nothing there. */
2316
                                function++;
2317
                        } else {  /* There's something there */
2318
                                /* Setup slot structure. */
2319
                                new_slot = cpqhp_slot_create(func->bus);
2320
 
2321
                                if (new_slot == NULL)
2322
                                        return 1;
2323
 
2324
                                new_slot->bus = func->bus;
2325
                                new_slot->device = func->device;
2326
                                new_slot->function = function;
2327
                                new_slot->is_a_board = 1;
2328
                                new_slot->status = 0;
2329
 
2330
                                stop_it++;
2331
                        }
2332
                }
2333
 
2334
        } while (function < max_functions);
2335
        dbg("returning from configure_new_device\n");
2336
 
2337
        return 0;
2338
}
2339
 
2340
 
2341
/*
2342
  Configuration logic that involves the hotplug data structures and
2343
  their bookkeeping
2344
 */
2345
 
2346
 
2347
/**
2348
 * configure_new_function - Configures the PCI header information of one device
2349
 * @ctrl: pointer to controller structure
2350
 * @func: pointer to function structure
2351
 * @behind_bridge: 1 if this is a recursive call, 0 if not
2352
 * @resources: pointer to set of resource lists
2353
 *
2354
 * Calls itself recursively for bridged devices.
2355
 * Returns 0 if success.
2356
 */
2357
static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2358
                                   u8 behind_bridge,
2359
                                   struct resource_lists *resources)
2360
{
2361
        int cloop;
2362
        u8 IRQ = 0;
2363
        u8 temp_byte;
2364
        u8 device;
2365
        u8 class_code;
2366
        u16 command;
2367
        u16 temp_word;
2368
        u32 temp_dword;
2369
        u32 rc;
2370
        u32 temp_register;
2371
        u32 base;
2372
        u32 ID;
2373
        unsigned int devfn;
2374
        struct pci_resource *mem_node;
2375
        struct pci_resource *p_mem_node;
2376
        struct pci_resource *io_node;
2377
        struct pci_resource *bus_node;
2378
        struct pci_resource *hold_mem_node;
2379
        struct pci_resource *hold_p_mem_node;
2380
        struct pci_resource *hold_IO_node;
2381
        struct pci_resource *hold_bus_node;
2382
        struct irq_mapping irqs;
2383
        struct pci_func *new_slot;
2384
        struct pci_bus *pci_bus;
2385
        struct resource_lists temp_resources;
2386
 
2387
        pci_bus = ctrl->pci_bus;
2388
        pci_bus->number = func->bus;
2389
        devfn = PCI_DEVFN(func->device, func->function);
2390
 
2391
        /* Check for Bridge */
2392
        rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2393
        if (rc)
2394
                return rc;
2395
 
2396
        if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* PCI-PCI Bridge */
2397
                /* set Primary bus */
2398
                dbg("set Primary bus = %d\n", func->bus);
2399
                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2400
                if (rc)
2401
                        return rc;
2402
 
2403
                /* find range of busses to use */
2404
                dbg("find ranges of buses to use\n");
2405
                bus_node = get_max_resource(&(resources->bus_head), 1);
2406
 
2407
                /* If we don't have any busses to allocate, we can't continue */
2408
                if (!bus_node)
2409
                        return -ENOMEM;
2410
 
2411
                /* set Secondary bus */
2412
                temp_byte = bus_node->base;
2413
                dbg("set Secondary bus = %d\n", bus_node->base);
2414
                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2415
                if (rc)
2416
                        return rc;
2417
 
2418
                /* set subordinate bus */
2419
                temp_byte = bus_node->base + bus_node->length - 1;
2420
                dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2421
                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2422
                if (rc)
2423
                        return rc;
2424
 
2425
                /* set subordinate Latency Timer and base Latency Timer */
2426
                temp_byte = 0x40;
2427
                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2428
                if (rc)
2429
                        return rc;
2430
                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2431
                if (rc)
2432
                        return rc;
2433
 
2434
                /* set Cache Line size */
2435
                temp_byte = 0x08;
2436
                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2437
                if (rc)
2438
                        return rc;
2439
 
2440
                /* Setup the IO, memory, and prefetchable windows */
2441
                io_node = get_max_resource(&(resources->io_head), 0x1000);
2442
                if (!io_node)
2443
                        return -ENOMEM;
2444
                mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2445
                if (!mem_node)
2446
                        return -ENOMEM;
2447
                p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2448
                if (!p_mem_node)
2449
                        return -ENOMEM;
2450
                dbg("Setup the IO, memory, and prefetchable windows\n");
2451
                dbg("io_node\n");
2452
                dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2453
                                        io_node->length, io_node->next);
2454
                dbg("mem_node\n");
2455
                dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2456
                                        mem_node->length, mem_node->next);
2457
                dbg("p_mem_node\n");
2458
                dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2459
                                        p_mem_node->length, p_mem_node->next);
2460
 
2461
                /* set up the IRQ info */
2462
                if (!resources->irqs) {
2463
                        irqs.barber_pole = 0;
2464
                        irqs.interrupt[0] = 0;
2465
                        irqs.interrupt[1] = 0;
2466
                        irqs.interrupt[2] = 0;
2467
                        irqs.interrupt[3] = 0;
2468
                        irqs.valid_INT = 0;
2469
                } else {
2470
                        irqs.barber_pole = resources->irqs->barber_pole;
2471
                        irqs.interrupt[0] = resources->irqs->interrupt[0];
2472
                        irqs.interrupt[1] = resources->irqs->interrupt[1];
2473
                        irqs.interrupt[2] = resources->irqs->interrupt[2];
2474
                        irqs.interrupt[3] = resources->irqs->interrupt[3];
2475
                        irqs.valid_INT = resources->irqs->valid_INT;
2476
                }
2477
 
2478
                /* set up resource lists that are now aligned on top and bottom
2479
                 * for anything behind the bridge. */
2480
                temp_resources.bus_head = bus_node;
2481
                temp_resources.io_head = io_node;
2482
                temp_resources.mem_head = mem_node;
2483
                temp_resources.p_mem_head = p_mem_node;
2484
                temp_resources.irqs = &irqs;
2485
 
2486
                /* Make copies of the nodes we are going to pass down so that
2487
                 * if there is a problem,we can just use these to free resources */
2488
                hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2489
                hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2490
                hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2491
                hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2492
 
2493
                if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2494
                        kfree(hold_bus_node);
2495
                        kfree(hold_IO_node);
2496
                        kfree(hold_mem_node);
2497
                        kfree(hold_p_mem_node);
2498
 
2499
                        return 1;
2500
                }
2501
 
2502
                memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2503
 
2504
                bus_node->base += 1;
2505
                bus_node->length -= 1;
2506
                bus_node->next = NULL;
2507
 
2508
                /* If we have IO resources copy them and fill in the bridge's
2509
                 * IO range registers */
2510
                if (io_node) {
2511
                        memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2512
                        io_node->next = NULL;
2513
 
2514
                        /* set IO base and Limit registers */
2515
                        temp_byte = io_node->base >> 8;
2516
                        rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2517
 
2518
                        temp_byte = (io_node->base + io_node->length - 1) >> 8;
2519
                        rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2520
                } else {
2521
                        kfree(hold_IO_node);
2522
                        hold_IO_node = NULL;
2523
                }
2524
 
2525
                /* If we have memory resources copy them and fill in the
2526
                 * bridge's memory range registers.  Otherwise, fill in the
2527
                 * range registers with values that disable them. */
2528
                if (mem_node) {
2529
                        memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2530
                        mem_node->next = NULL;
2531
 
2532
                        /* set Mem base and Limit registers */
2533
                        temp_word = mem_node->base >> 16;
2534
                        rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2535
 
2536
                        temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2537
                        rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2538
                } else {
2539
                        temp_word = 0xFFFF;
2540
                        rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2541
 
2542
                        temp_word = 0x0000;
2543
                        rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2544
 
2545
                        kfree(hold_mem_node);
2546
                        hold_mem_node = NULL;
2547
                }
2548
 
2549
                memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2550
                p_mem_node->next = NULL;
2551
 
2552
                /* set Pre Mem base and Limit registers */
2553
                temp_word = p_mem_node->base >> 16;
2554
                rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2555
 
2556
                temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2557
                rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2558
 
2559
                /* Adjust this to compensate for extra adjustment in first loop */
2560
                irqs.barber_pole--;
2561
 
2562
                rc = 0;
2563
 
2564
                /* Here we actually find the devices and configure them */
2565
                for (device = 0; (device <= 0x1F) && !rc; device++) {
2566
                        irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2567
 
2568
                        ID = 0xFFFFFFFF;
2569
                        pci_bus->number = hold_bus_node->base;
2570
                        pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2571
                        pci_bus->number = func->bus;
2572
 
2573
                        if (ID != 0xFFFFFFFF) {   /*  device present */
2574
                                /* Setup slot structure. */
2575
                                new_slot = cpqhp_slot_create(hold_bus_node->base);
2576
 
2577
                                if (new_slot == NULL) {
2578
                                        rc = -ENOMEM;
2579
                                        continue;
2580
                                }
2581
 
2582
                                new_slot->bus = hold_bus_node->base;
2583
                                new_slot->device = device;
2584
                                new_slot->function = 0;
2585
                                new_slot->is_a_board = 1;
2586
                                new_slot->status = 0;
2587
 
2588
                                rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2589
                                dbg("configure_new_device rc=0x%x\n",rc);
2590
                        }       /* End of IF (device in slot?) */
2591
                }               /* End of FOR loop */
2592
 
2593
                if (rc)
2594
                        goto free_and_out;
2595
                /* save the interrupt routing information */
2596
                if (resources->irqs) {
2597
                        resources->irqs->interrupt[0] = irqs.interrupt[0];
2598
                        resources->irqs->interrupt[1] = irqs.interrupt[1];
2599
                        resources->irqs->interrupt[2] = irqs.interrupt[2];
2600
                        resources->irqs->interrupt[3] = irqs.interrupt[3];
2601
                        resources->irqs->valid_INT = irqs.valid_INT;
2602
                } else if (!behind_bridge) {
2603
                        /* We need to hook up the interrupts here */
2604
                        for (cloop = 0; cloop < 4; cloop++) {
2605
                                if (irqs.valid_INT & (0x01 << cloop)) {
2606
                                        rc = cpqhp_set_irq(func->bus, func->device,
2607
                                                           0x0A + cloop, irqs.interrupt[cloop]);
2608
                                        if (rc)
2609
                                                goto free_and_out;
2610
                                }
2611
                        }       /* end of for loop */
2612
                }
2613
                /* Return unused bus resources
2614
                 * First use the temporary node to store information for
2615
                 * the board */
2616
                if (hold_bus_node && bus_node && temp_resources.bus_head) {
2617
                        hold_bus_node->length = bus_node->base - hold_bus_node->base;
2618
 
2619
                        hold_bus_node->next = func->bus_head;
2620
                        func->bus_head = hold_bus_node;
2621
 
2622
                        temp_byte = temp_resources.bus_head->base - 1;
2623
 
2624
                        /* set subordinate bus */
2625
                        rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2626
 
2627
                        if (temp_resources.bus_head->length == 0) {
2628
                                kfree(temp_resources.bus_head);
2629
                                temp_resources.bus_head = NULL;
2630
                        } else {
2631
                                return_resource(&(resources->bus_head), temp_resources.bus_head);
2632
                        }
2633
                }
2634
 
2635
                /* If we have IO space available and there is some left,
2636
                 * return the unused portion */
2637
                if (hold_IO_node && temp_resources.io_head) {
2638
                        io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2639
                                                               &hold_IO_node, 0x1000);
2640
 
2641
                        /* Check if we were able to split something off */
2642
                        if (io_node) {
2643
                                hold_IO_node->base = io_node->base + io_node->length;
2644
 
2645
                                temp_byte = (hold_IO_node->base) >> 8;
2646
                                rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte);
2647
 
2648
                                return_resource(&(resources->io_head), io_node);
2649
                        }
2650
 
2651
                        io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2652
 
2653
                        /* Check if we were able to split something off */
2654
                        if (io_node) {
2655
                                /* First use the temporary node to store
2656
                                 * information for the board */
2657
                                hold_IO_node->length = io_node->base - hold_IO_node->base;
2658
 
2659
                                /* If we used any, add it to the board's list */
2660
                                if (hold_IO_node->length) {
2661
                                        hold_IO_node->next = func->io_head;
2662
                                        func->io_head = hold_IO_node;
2663
 
2664
                                        temp_byte = (io_node->base - 1) >> 8;
2665
                                        rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2666
 
2667
                                        return_resource(&(resources->io_head), io_node);
2668
                                } else {
2669
                                        /* it doesn't need any IO */
2670
                                        temp_word = 0x0000;
2671
                                        rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2672
 
2673
                                        return_resource(&(resources->io_head), io_node);
2674
                                        kfree(hold_IO_node);
2675
                                }
2676
                        } else {
2677
                                /* it used most of the range */
2678
                                hold_IO_node->next = func->io_head;
2679
                                func->io_head = hold_IO_node;
2680
                        }
2681
                } else if (hold_IO_node) {
2682
                        /* it used the whole range */
2683
                        hold_IO_node->next = func->io_head;
2684
                        func->io_head = hold_IO_node;
2685
                }
2686
                /* If we have memory space available and there is some left,
2687
                 * return the unused portion */
2688
                if (hold_mem_node && temp_resources.mem_head) {
2689
                        mem_node = do_pre_bridge_resource_split(&(temp_resources.  mem_head),
2690
                                                                &hold_mem_node, 0x100000);
2691
 
2692
                        /* Check if we were able to split something off */
2693
                        if (mem_node) {
2694
                                hold_mem_node->base = mem_node->base + mem_node->length;
2695
 
2696
                                temp_word = (hold_mem_node->base) >> 16;
2697
                                rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2698
 
2699
                                return_resource(&(resources->mem_head), mem_node);
2700
                        }
2701
 
2702
                        mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2703
 
2704
                        /* Check if we were able to split something off */
2705
                        if (mem_node) {
2706
                                /* First use the temporary node to store
2707
                                 * information for the board */
2708
                                hold_mem_node->length = mem_node->base - hold_mem_node->base;
2709
 
2710
                                if (hold_mem_node->length) {
2711
                                        hold_mem_node->next = func->mem_head;
2712
                                        func->mem_head = hold_mem_node;
2713
 
2714
                                        /* configure end address */
2715
                                        temp_word = (mem_node->base - 1) >> 16;
2716
                                        rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2717
 
2718
                                        /* Return unused resources to the pool */
2719
                                        return_resource(&(resources->mem_head), mem_node);
2720
                                } else {
2721
                                        /* it doesn't need any Mem */
2722
                                        temp_word = 0x0000;
2723
                                        rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2724
 
2725
                                        return_resource(&(resources->mem_head), mem_node);
2726
                                        kfree(hold_mem_node);
2727
                                }
2728
                        } else {
2729
                                /* it used most of the range */
2730
                                hold_mem_node->next = func->mem_head;
2731
                                func->mem_head = hold_mem_node;
2732
                        }
2733
                } else if (hold_mem_node) {
2734
                        /* it used the whole range */
2735
                        hold_mem_node->next = func->mem_head;
2736
                        func->mem_head = hold_mem_node;
2737
                }
2738
                /* If we have prefetchable memory space available and there
2739
                 * is some left at the end, return the unused portion */
2740
                if (hold_p_mem_node && temp_resources.p_mem_head) {
2741
                        p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2742
                                                                  &hold_p_mem_node, 0x100000);
2743
 
2744
                        /* Check if we were able to split something off */
2745
                        if (p_mem_node) {
2746
                                hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2747
 
2748
                                temp_word = (hold_p_mem_node->base) >> 16;
2749
                                rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2750
 
2751
                                return_resource(&(resources->p_mem_head), p_mem_node);
2752
                        }
2753
 
2754
                        p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2755
 
2756
                        /* Check if we were able to split something off */
2757
                        if (p_mem_node) {
2758
                                /* First use the temporary node to store
2759
                                 * information for the board */
2760
                                hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2761
 
2762
                                /* If we used any, add it to the board's list */
2763
                                if (hold_p_mem_node->length) {
2764
                                        hold_p_mem_node->next = func->p_mem_head;
2765
                                        func->p_mem_head = hold_p_mem_node;
2766
 
2767
                                        temp_word = (p_mem_node->base - 1) >> 16;
2768
                                        rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2769
 
2770
                                        return_resource(&(resources->p_mem_head), p_mem_node);
2771
                                } else {
2772
                                        /* it doesn't need any PMem */
2773
                                        temp_word = 0x0000;
2774
                                        rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2775
 
2776
                                        return_resource(&(resources->p_mem_head), p_mem_node);
2777
                                        kfree(hold_p_mem_node);
2778
                                }
2779
                        } else {
2780
                                /* it used the most of the range */
2781
                                hold_p_mem_node->next = func->p_mem_head;
2782
                                func->p_mem_head = hold_p_mem_node;
2783
                        }
2784
                } else if (hold_p_mem_node) {
2785
                        /* it used the whole range */
2786
                        hold_p_mem_node->next = func->p_mem_head;
2787
                        func->p_mem_head = hold_p_mem_node;
2788
                }
2789
                /* We should be configuring an IRQ and the bridge's base address
2790
                 * registers if it needs them.  Although we have never seen such
2791
                 * a device */
2792
 
2793
                /* enable card */
2794
                command = 0x0157;       /* = PCI_COMMAND_IO |
2795
                                         *   PCI_COMMAND_MEMORY |
2796
                                         *   PCI_COMMAND_MASTER |
2797
                                         *   PCI_COMMAND_INVALIDATE |
2798
                                         *   PCI_COMMAND_PARITY |
2799
                                         *   PCI_COMMAND_SERR */
2800
                rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command);
2801
 
2802
                /* set Bridge Control Register */
2803
                command = 0x07;         /* = PCI_BRIDGE_CTL_PARITY |
2804
                                         *   PCI_BRIDGE_CTL_SERR |
2805
                                         *   PCI_BRIDGE_CTL_NO_ISA */
2806
                rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2807
        } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2808
                /* Standard device */
2809
                rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2810
 
2811
                if (class_code == PCI_BASE_CLASS_DISPLAY) {
2812
                        /* Display (video) adapter (not supported) */
2813
                        return DEVICE_TYPE_NOT_SUPPORTED;
2814
                }
2815
                /* Figure out IO and memory needs */
2816
                for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2817
                        temp_register = 0xFFFFFFFF;
2818
 
2819
                        dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2820
                        rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
2821
 
2822
                        rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register);
2823
                        dbg("CND: base = 0x%x\n", temp_register);
2824
 
2825
                        if (temp_register) {      /* If this register is implemented */
2826
                                if ((temp_register & 0x03L) == 0x01) {
2827
                                        /* Map IO */
2828
 
2829
                                        /* set base = amount of IO space */
2830
                                        base = temp_register & 0xFFFFFFFC;
2831
                                        base = ~base + 1;
2832
 
2833
                                        dbg("CND:      length = 0x%x\n", base);
2834
                                        io_node = get_io_resource(&(resources->io_head), base);
2835
                                        dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2836
                                            io_node->base, io_node->length, io_node->next);
2837
                                        dbg("func (%p) io_head (%p)\n", func, func->io_head);
2838
 
2839
                                        /* allocate the resource to the board */
2840
                                        if (io_node) {
2841
                                                base = io_node->base;
2842
 
2843
                                                io_node->next = func->io_head;
2844
                                                func->io_head = io_node;
2845
                                        } else
2846
                                                return -ENOMEM;
2847
                                } else if ((temp_register & 0x0BL) == 0x08) {
2848
                                        /* Map prefetchable memory */
2849
                                        base = temp_register & 0xFFFFFFF0;
2850
                                        base = ~base + 1;
2851
 
2852
                                        dbg("CND:      length = 0x%x\n", base);
2853
                                        p_mem_node = get_resource(&(resources->p_mem_head), base);
2854
 
2855
                                        /* allocate the resource to the board */
2856
                                        if (p_mem_node) {
2857
                                                base = p_mem_node->base;
2858
 
2859
                                                p_mem_node->next = func->p_mem_head;
2860
                                                func->p_mem_head = p_mem_node;
2861
                                        } else
2862
                                                return -ENOMEM;
2863
                                } else if ((temp_register & 0x0BL) == 0x00) {
2864
                                        /* Map memory */
2865
                                        base = temp_register & 0xFFFFFFF0;
2866
                                        base = ~base + 1;
2867
 
2868
                                        dbg("CND:      length = 0x%x\n", base);
2869
                                        mem_node = get_resource(&(resources->mem_head), base);
2870
 
2871
                                        /* allocate the resource to the board */
2872
                                        if (mem_node) {
2873
                                                base = mem_node->base;
2874
 
2875
                                                mem_node->next = func->mem_head;
2876
                                                func->mem_head = mem_node;
2877
                                        } else
2878
                                                return -ENOMEM;
2879
                                } else if ((temp_register & 0x0BL) == 0x04) {
2880
                                        /* Map memory */
2881
                                        base = temp_register & 0xFFFFFFF0;
2882
                                        base = ~base + 1;
2883
 
2884
                                        dbg("CND:      length = 0x%x\n", base);
2885
                                        mem_node = get_resource(&(resources->mem_head), base);
2886
 
2887
                                        /* allocate the resource to the board */
2888
                                        if (mem_node) {
2889
                                                base = mem_node->base;
2890
 
2891
                                                mem_node->next = func->mem_head;
2892
                                                func->mem_head = mem_node;
2893
                                        } else
2894
                                                return -ENOMEM;
2895
                                } else if ((temp_register & 0x0BL) == 0x06) {
2896
                                        /* Those bits are reserved, we can't handle this */
2897
                                        return 1;
2898
                                } else {
2899
                                        /* Requesting space below 1M */
2900
                                        return NOT_ENOUGH_RESOURCES;
2901
                                }
2902
 
2903
                                rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2904
 
2905
                                /* Check for 64-bit base */
2906
                                if ((temp_register & 0x07L) == 0x04) {
2907
                                        cloop += 4;
2908
 
2909
                                        /* Upper 32 bits of address always zero
2910
                                         * on today's systems */
2911
                                        /* FIXME this is probably not true on
2912
                                         * Alpha and ia64??? */
2913
                                        base = 0;
2914
                                        rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2915
                                }
2916
                        }
2917
                }               /* End of base register loop */
2918
                if (cpqhp_legacy_mode) {
2919
                        /* Figure out which interrupt pin this function uses */
2920
                        rc = pci_bus_read_config_byte (pci_bus, devfn,
2921
                                PCI_INTERRUPT_PIN, &temp_byte);
2922
 
2923
                        /* If this function needs an interrupt and we are behind
2924
                         * a bridge and the pin is tied to something that's
2925
                         * alread mapped, set this one the same */
2926
                        if (temp_byte && resources->irqs &&
2927
                            (resources->irqs->valid_INT &
2928
                             (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2929
                                /* We have to share with something already set up */
2930
                                IRQ = resources->irqs->interrupt[(temp_byte +
2931
                                        resources->irqs->barber_pole - 1) & 0x03];
2932
                        } else {
2933
                                /* Program IRQ based on card type */
2934
                                rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2935
 
2936
                                if (class_code == PCI_BASE_CLASS_STORAGE) {
2937
                                        IRQ = cpqhp_disk_irq;
2938
                                } else {
2939
                                        IRQ = cpqhp_nic_irq;
2940
                                }
2941
                        }
2942
 
2943
                        /* IRQ Line */
2944
                        rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2945
                }
2946
 
2947
                if (!behind_bridge) {
2948
                        rc = cpqhp_set_irq(func->bus, func->device, temp_byte + 0x09, IRQ);
2949
                        if (rc)
2950
                                return 1;
2951
                } else {
2952
                        /* TBD - this code may also belong in the other clause
2953
                         * of this If statement */
2954
                        resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2955
                        resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2956
                }
2957
 
2958
                /* Latency Timer */
2959
                temp_byte = 0x40;
2960
                rc = pci_bus_write_config_byte(pci_bus, devfn,
2961
                                        PCI_LATENCY_TIMER, temp_byte);
2962
 
2963
                /* Cache Line size */
2964
                temp_byte = 0x08;
2965
                rc = pci_bus_write_config_byte(pci_bus, devfn,
2966
                                        PCI_CACHE_LINE_SIZE, temp_byte);
2967
 
2968
                /* disable ROM base Address */
2969
                temp_dword = 0x00L;
2970
                rc = pci_bus_write_config_word(pci_bus, devfn,
2971
                                        PCI_ROM_ADDRESS, temp_dword);
2972
 
2973
                /* enable card */
2974
                temp_word = 0x0157;     /* = PCI_COMMAND_IO |
2975
                                         *   PCI_COMMAND_MEMORY |
2976
                                         *   PCI_COMMAND_MASTER |
2977
                                         *   PCI_COMMAND_INVALIDATE |
2978
                                         *   PCI_COMMAND_PARITY |
2979
                                         *   PCI_COMMAND_SERR */
2980
                rc = pci_bus_write_config_word (pci_bus, devfn,
2981
                                        PCI_COMMAND, temp_word);
2982
        } else {                /* End of Not-A-Bridge else */
2983
                /* It's some strange type of PCI adapter (Cardbus?) */
2984
                return DEVICE_TYPE_NOT_SUPPORTED;
2985
        }
2986
 
2987
        func->configured = 1;
2988
 
2989
        return 0;
2990
free_and_out:
2991
        cpqhp_destroy_resource_list (&temp_resources);
2992
 
2993
        return_resource(&(resources-> bus_head), hold_bus_node);
2994
        return_resource(&(resources-> io_head), hold_IO_node);
2995
        return_resource(&(resources-> mem_head), hold_mem_node);
2996
        return_resource(&(resources-> p_mem_head), hold_p_mem_node);
2997
        return rc;
2998
}

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.