OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [drivers/] [sbus/] [char/] [bbc_envctrl.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/* $Id: bbc_envctrl.c,v 1.4 2001/04/06 16:48:08 davem Exp $
2
 * bbc_envctrl.c: UltraSPARC-III environment control driver.
3
 *
4
 * Copyright (C) 2001 David S. Miller (davem@redhat.com)
5
 */
6
 
7
#include <linux/kthread.h>
8
#include <linux/delay.h>
9
#include <linux/kmod.h>
10
#include <linux/reboot.h>
11
#include <asm/oplib.h>
12
#include <asm/ebus.h>
13
 
14
#include "bbc_i2c.h"
15
#include "max1617.h"
16
 
17
#undef ENVCTRL_TRACE
18
 
19
/* WARNING: Making changes to this driver is very dangerous.
20
 *          If you misprogram the sensor chips they can
21
 *          cut the power on you instantly.
22
 */
23
 
24
/* Two temperature sensors exist in the SunBLADE-1000 enclosure.
25
 * Both are implemented using max1617 i2c devices.  Each max1617
26
 * monitors 2 temperatures, one for one of the cpu dies and the other
27
 * for the ambient temperature.
28
 *
29
 * The max1617 is capable of being programmed with power-off
30
 * temperature values, one low limit and one high limit.  These
31
 * can be controlled independently for the cpu or ambient temperature.
32
 * If a limit is violated, the power is simply shut off.  The frequency
33
 * with which the max1617 does temperature sampling can be controlled
34
 * as well.
35
 *
36
 * Three fans exist inside the machine, all three are controlled with
37
 * an i2c digital to analog converter.  There is a fan directed at the
38
 * two processor slots, another for the rest of the enclosure, and the
39
 * third is for the power supply.  The first two fans may be speed
40
 * controlled by changing the voltage fed to them.  The third fan may
41
 * only be completely off or on.  The third fan is meant to only be
42
 * disabled/enabled when entering/exiting the lowest power-saving
43
 * mode of the machine.
44
 *
45
 * An environmental control kernel thread periodically monitors all
46
 * temperature sensors.  Based upon the samples it will adjust the
47
 * fan speeds to try and keep the system within a certain temperature
48
 * range (the goal being to make the fans as quiet as possible without
49
 * allowing the system to get too hot).
50
 *
51
 * If the temperature begins to rise/fall outside of the acceptable
52
 * operating range, a periodic warning will be sent to the kernel log.
53
 * The fans will be put on full blast to attempt to deal with this
54
 * situation.  After exceeding the acceptable operating range by a
55
 * certain threshold, the kernel thread will shut down the system.
56
 * Here, the thread is attempting to shut the machine down cleanly
57
 * before the hardware based power-off event is triggered.
58
 */
59
 
60
/* These settings are in Celsius.  We use these defaults only
61
 * if we cannot interrogate the cpu-fru SEEPROM.
62
 */
63
struct temp_limits {
64
        s8 high_pwroff, high_shutdown, high_warn;
65
        s8 low_warn, low_shutdown, low_pwroff;
66
};
67
 
68
static struct temp_limits cpu_temp_limits[2] = {
69
        { 100, 85, 80, 5, -5, -10 },
70
        { 100, 85, 80, 5, -5, -10 },
71
};
72
 
73
static struct temp_limits amb_temp_limits[2] = {
74
        { 65, 55, 40, 5, -5, -10 },
75
        { 65, 55, 40, 5, -5, -10 },
76
};
77
 
78
enum fan_action { FAN_SLOWER, FAN_SAME, FAN_FASTER, FAN_FULLBLAST, FAN_STATE_MAX };
79
 
80
struct bbc_cpu_temperature {
81
        struct bbc_cpu_temperature      *next;
82
 
83
        struct bbc_i2c_client           *client;
84
        int                             index;
85
 
86
        /* Current readings, and history. */
87
        s8                              curr_cpu_temp;
88
        s8                              curr_amb_temp;
89
        s8                              prev_cpu_temp;
90
        s8                              prev_amb_temp;
91
        s8                              avg_cpu_temp;
92
        s8                              avg_amb_temp;
93
 
94
        int                             sample_tick;
95
 
96
        enum fan_action                 fan_todo[2];
97
#define FAN_AMBIENT     0
98
#define FAN_CPU         1
99
};
100
 
101
struct bbc_cpu_temperature *all_bbc_temps;
102
 
103
struct bbc_fan_control {
104
        struct bbc_fan_control  *next;
105
 
106
        struct bbc_i2c_client   *client;
107
        int                     index;
108
 
109
        int                     psupply_fan_on;
110
        int                     cpu_fan_speed;
111
        int                     system_fan_speed;
112
};
113
 
114
struct bbc_fan_control *all_bbc_fans;
115
 
116
#define CPU_FAN_REG     0xf0
117
#define SYS_FAN_REG     0xf2
118
#define PSUPPLY_FAN_REG 0xf4
119
 
120
#define FAN_SPEED_MIN   0x0c
121
#define FAN_SPEED_MAX   0x3f
122
 
123
#define PSUPPLY_FAN_ON  0x1f
124
#define PSUPPLY_FAN_OFF 0x00
125
 
126
static void set_fan_speeds(struct bbc_fan_control *fp)
127
{
128
        /* Put temperatures into range so we don't mis-program
129
         * the hardware.
130
         */
131
        if (fp->cpu_fan_speed < FAN_SPEED_MIN)
132
                fp->cpu_fan_speed = FAN_SPEED_MIN;
133
        if (fp->cpu_fan_speed > FAN_SPEED_MAX)
134
                fp->cpu_fan_speed = FAN_SPEED_MAX;
135
        if (fp->system_fan_speed < FAN_SPEED_MIN)
136
                fp->system_fan_speed = FAN_SPEED_MIN;
137
        if (fp->system_fan_speed > FAN_SPEED_MAX)
138
                fp->system_fan_speed = FAN_SPEED_MAX;
139
#ifdef ENVCTRL_TRACE
140
        printk("fan%d: Changed fan speed to cpu(%02x) sys(%02x)\n",
141
               fp->index,
142
               fp->cpu_fan_speed, fp->system_fan_speed);
143
#endif
144
 
145
        bbc_i2c_writeb(fp->client, fp->cpu_fan_speed, CPU_FAN_REG);
146
        bbc_i2c_writeb(fp->client, fp->system_fan_speed, SYS_FAN_REG);
147
        bbc_i2c_writeb(fp->client,
148
                       (fp->psupply_fan_on ?
149
                        PSUPPLY_FAN_ON : PSUPPLY_FAN_OFF),
150
                       PSUPPLY_FAN_REG);
151
}
152
 
153
static void get_current_temps(struct bbc_cpu_temperature *tp)
154
{
155
        tp->prev_amb_temp = tp->curr_amb_temp;
156
        bbc_i2c_readb(tp->client,
157
                      (unsigned char *) &tp->curr_amb_temp,
158
                      MAX1617_AMB_TEMP);
159
        tp->prev_cpu_temp = tp->curr_cpu_temp;
160
        bbc_i2c_readb(tp->client,
161
                      (unsigned char *) &tp->curr_cpu_temp,
162
                      MAX1617_CPU_TEMP);
163
#ifdef ENVCTRL_TRACE
164
        printk("temp%d: cpu(%d C) amb(%d C)\n",
165
               tp->index,
166
               (int) tp->curr_cpu_temp, (int) tp->curr_amb_temp);
167
#endif
168
}
169
 
170
 
171
static void do_envctrl_shutdown(struct bbc_cpu_temperature *tp)
172
{
173
        static int shutting_down = 0;
174
        char *type = "???";
175
        s8 val = -1;
176
 
177
        if (shutting_down != 0)
178
                return;
179
 
180
        if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
181
            tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
182
                type = "ambient";
183
                val = tp->curr_amb_temp;
184
        } else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
185
                   tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
186
                type = "CPU";
187
                val = tp->curr_cpu_temp;
188
        }
189
 
190
        printk(KERN_CRIT "temp%d: Outside of safe %s "
191
               "operating temperature, %d C.\n",
192
               tp->index, type, val);
193
 
194
        printk(KERN_CRIT "kenvctrld: Shutting down the system now.\n");
195
 
196
        shutting_down = 1;
197
        if (orderly_poweroff(true) < 0)
198
                printk(KERN_CRIT "envctrl: shutdown execution failed\n");
199
}
200
 
201
#define WARN_INTERVAL   (30 * HZ)
202
 
203
static void analyze_ambient_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
204
{
205
        int ret = 0;
206
 
207
        if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
208
                if (tp->curr_amb_temp >=
209
                    amb_temp_limits[tp->index].high_warn) {
210
                        printk(KERN_WARNING "temp%d: "
211
                               "Above safe ambient operating temperature, %d C.\n",
212
                               tp->index, (int) tp->curr_amb_temp);
213
                        ret = 1;
214
                } else if (tp->curr_amb_temp <
215
                           amb_temp_limits[tp->index].low_warn) {
216
                        printk(KERN_WARNING "temp%d: "
217
                               "Below safe ambient operating temperature, %d C.\n",
218
                               tp->index, (int) tp->curr_amb_temp);
219
                        ret = 1;
220
                }
221
                if (ret)
222
                        *last_warn = jiffies;
223
        } else if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_warn ||
224
                   tp->curr_amb_temp < amb_temp_limits[tp->index].low_warn)
225
                ret = 1;
226
 
227
        /* Now check the shutdown limits. */
228
        if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
229
            tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
230
                do_envctrl_shutdown(tp);
231
                ret = 1;
232
        }
233
 
234
        if (ret) {
235
                tp->fan_todo[FAN_AMBIENT] = FAN_FULLBLAST;
236
        } else if ((tick & (8 - 1)) == 0) {
237
                s8 amb_goal_hi = amb_temp_limits[tp->index].high_warn - 10;
238
                s8 amb_goal_lo;
239
 
240
                amb_goal_lo = amb_goal_hi - 3;
241
 
242
                /* We do not try to avoid 'too cold' events.  Basically we
243
                 * only try to deal with over-heating and fan noise reduction.
244
                 */
245
                if (tp->avg_amb_temp < amb_goal_hi) {
246
                        if (tp->avg_amb_temp >= amb_goal_lo)
247
                                tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
248
                        else
249
                                tp->fan_todo[FAN_AMBIENT] = FAN_SLOWER;
250
                } else {
251
                        tp->fan_todo[FAN_AMBIENT] = FAN_FASTER;
252
                }
253
        } else {
254
                tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
255
        }
256
}
257
 
258
static void analyze_cpu_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
259
{
260
        int ret = 0;
261
 
262
        if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
263
                if (tp->curr_cpu_temp >=
264
                    cpu_temp_limits[tp->index].high_warn) {
265
                        printk(KERN_WARNING "temp%d: "
266
                               "Above safe CPU operating temperature, %d C.\n",
267
                               tp->index, (int) tp->curr_cpu_temp);
268
                        ret = 1;
269
                } else if (tp->curr_cpu_temp <
270
                           cpu_temp_limits[tp->index].low_warn) {
271
                        printk(KERN_WARNING "temp%d: "
272
                               "Below safe CPU operating temperature, %d C.\n",
273
                               tp->index, (int) tp->curr_cpu_temp);
274
                        ret = 1;
275
                }
276
                if (ret)
277
                        *last_warn = jiffies;
278
        } else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_warn ||
279
                   tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_warn)
280
                ret = 1;
281
 
282
        /* Now check the shutdown limits. */
283
        if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
284
            tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
285
                do_envctrl_shutdown(tp);
286
                ret = 1;
287
        }
288
 
289
        if (ret) {
290
                tp->fan_todo[FAN_CPU] = FAN_FULLBLAST;
291
        } else if ((tick & (8 - 1)) == 0) {
292
                s8 cpu_goal_hi = cpu_temp_limits[tp->index].high_warn - 10;
293
                s8 cpu_goal_lo;
294
 
295
                cpu_goal_lo = cpu_goal_hi - 3;
296
 
297
                /* We do not try to avoid 'too cold' events.  Basically we
298
                 * only try to deal with over-heating and fan noise reduction.
299
                 */
300
                if (tp->avg_cpu_temp < cpu_goal_hi) {
301
                        if (tp->avg_cpu_temp >= cpu_goal_lo)
302
                                tp->fan_todo[FAN_CPU] = FAN_SAME;
303
                        else
304
                                tp->fan_todo[FAN_CPU] = FAN_SLOWER;
305
                } else {
306
                        tp->fan_todo[FAN_CPU] = FAN_FASTER;
307
                }
308
        } else {
309
                tp->fan_todo[FAN_CPU] = FAN_SAME;
310
        }
311
}
312
 
313
static void analyze_temps(struct bbc_cpu_temperature *tp, unsigned long *last_warn)
314
{
315
        tp->avg_amb_temp = (s8)((int)((int)tp->avg_amb_temp + (int)tp->curr_amb_temp) / 2);
316
        tp->avg_cpu_temp = (s8)((int)((int)tp->avg_cpu_temp + (int)tp->curr_cpu_temp) / 2);
317
 
318
        analyze_ambient_temp(tp, last_warn, tp->sample_tick);
319
        analyze_cpu_temp(tp, last_warn, tp->sample_tick);
320
 
321
        tp->sample_tick++;
322
}
323
 
324
static enum fan_action prioritize_fan_action(int which_fan)
325
{
326
        struct bbc_cpu_temperature *tp;
327
        enum fan_action decision = FAN_STATE_MAX;
328
 
329
        /* Basically, prioritize what the temperature sensors
330
         * recommend we do, and perform that action on all the
331
         * fans.
332
         */
333
        for (tp = all_bbc_temps; tp; tp = tp->next) {
334
                if (tp->fan_todo[which_fan] == FAN_FULLBLAST) {
335
                        decision = FAN_FULLBLAST;
336
                        break;
337
                }
338
                if (tp->fan_todo[which_fan] == FAN_SAME &&
339
                    decision != FAN_FASTER)
340
                        decision = FAN_SAME;
341
                else if (tp->fan_todo[which_fan] == FAN_FASTER)
342
                        decision = FAN_FASTER;
343
                else if (decision != FAN_FASTER &&
344
                         decision != FAN_SAME &&
345
                         tp->fan_todo[which_fan] == FAN_SLOWER)
346
                        decision = FAN_SLOWER;
347
        }
348
        if (decision == FAN_STATE_MAX)
349
                decision = FAN_SAME;
350
 
351
        return decision;
352
}
353
 
354
static int maybe_new_ambient_fan_speed(struct bbc_fan_control *fp)
355
{
356
        enum fan_action decision = prioritize_fan_action(FAN_AMBIENT);
357
        int ret;
358
 
359
        if (decision == FAN_SAME)
360
                return 0;
361
 
362
        ret = 1;
363
        if (decision == FAN_FULLBLAST) {
364
                if (fp->system_fan_speed >= FAN_SPEED_MAX)
365
                        ret = 0;
366
                else
367
                        fp->system_fan_speed = FAN_SPEED_MAX;
368
        } else {
369
                if (decision == FAN_FASTER) {
370
                        if (fp->system_fan_speed >= FAN_SPEED_MAX)
371
                                ret = 0;
372
                        else
373
                                fp->system_fan_speed += 2;
374
                } else {
375
                        int orig_speed = fp->system_fan_speed;
376
 
377
                        if (orig_speed <= FAN_SPEED_MIN ||
378
                            orig_speed <= (fp->cpu_fan_speed - 3))
379
                                ret = 0;
380
                        else
381
                                fp->system_fan_speed -= 1;
382
                }
383
        }
384
 
385
        return ret;
386
}
387
 
388
static int maybe_new_cpu_fan_speed(struct bbc_fan_control *fp)
389
{
390
        enum fan_action decision = prioritize_fan_action(FAN_CPU);
391
        int ret;
392
 
393
        if (decision == FAN_SAME)
394
                return 0;
395
 
396
        ret = 1;
397
        if (decision == FAN_FULLBLAST) {
398
                if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
399
                        ret = 0;
400
                else
401
                        fp->cpu_fan_speed = FAN_SPEED_MAX;
402
        } else {
403
                if (decision == FAN_FASTER) {
404
                        if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
405
                                ret = 0;
406
                        else {
407
                                fp->cpu_fan_speed += 2;
408
                                if (fp->system_fan_speed <
409
                                    (fp->cpu_fan_speed - 3))
410
                                        fp->system_fan_speed =
411
                                                fp->cpu_fan_speed - 3;
412
                        }
413
                } else {
414
                        if (fp->cpu_fan_speed <= FAN_SPEED_MIN)
415
                                ret = 0;
416
                        else
417
                                fp->cpu_fan_speed -= 1;
418
                }
419
        }
420
 
421
        return ret;
422
}
423
 
424
static void maybe_new_fan_speeds(struct bbc_fan_control *fp)
425
{
426
        int new;
427
 
428
        new  = maybe_new_ambient_fan_speed(fp);
429
        new |= maybe_new_cpu_fan_speed(fp);
430
 
431
        if (new)
432
                set_fan_speeds(fp);
433
}
434
 
435
static void fans_full_blast(void)
436
{
437
        struct bbc_fan_control *fp;
438
 
439
        /* Since we will not be monitoring things anymore, put
440
         * the fans on full blast.
441
         */
442
        for (fp = all_bbc_fans; fp; fp = fp->next) {
443
                fp->cpu_fan_speed = FAN_SPEED_MAX;
444
                fp->system_fan_speed = FAN_SPEED_MAX;
445
                fp->psupply_fan_on = 1;
446
                set_fan_speeds(fp);
447
        }
448
}
449
 
450
#define POLL_INTERVAL   (5 * 1000)
451
static unsigned long last_warning_jiffies;
452
static struct task_struct *kenvctrld_task;
453
 
454
static int kenvctrld(void *__unused)
455
{
456
        printk(KERN_INFO "bbc_envctrl: kenvctrld starting...\n");
457
        last_warning_jiffies = jiffies - WARN_INTERVAL;
458
        for (;;) {
459
                struct bbc_cpu_temperature *tp;
460
                struct bbc_fan_control *fp;
461
 
462
                msleep_interruptible(POLL_INTERVAL);
463
                if (kthread_should_stop())
464
                        break;
465
 
466
                for (tp = all_bbc_temps; tp; tp = tp->next) {
467
                        get_current_temps(tp);
468
                        analyze_temps(tp, &last_warning_jiffies);
469
                }
470
                for (fp = all_bbc_fans; fp; fp = fp->next)
471
                        maybe_new_fan_speeds(fp);
472
        }
473
        printk(KERN_INFO "bbc_envctrl: kenvctrld exiting...\n");
474
 
475
        fans_full_blast();
476
 
477
        return 0;
478
}
479
 
480
static void attach_one_temp(struct linux_ebus_child *echild, int temp_idx)
481
{
482
        struct bbc_cpu_temperature *tp;
483
 
484
        tp = kzalloc(sizeof(*tp), GFP_KERNEL);
485
        if (!tp)
486
                return;
487
 
488
        tp->client = bbc_i2c_attach(echild);
489
        if (!tp->client) {
490
                kfree(tp);
491
                return;
492
        }
493
 
494
        tp->index = temp_idx;
495
        {
496
                struct bbc_cpu_temperature **tpp = &all_bbc_temps;
497
                while (*tpp)
498
                        tpp = &((*tpp)->next);
499
                tp->next = NULL;
500
                *tpp = tp;
501
        }
502
 
503
        /* Tell it to convert once every 5 seconds, clear all cfg
504
         * bits.
505
         */
506
        bbc_i2c_writeb(tp->client, 0x00, MAX1617_WR_CFG_BYTE);
507
        bbc_i2c_writeb(tp->client, 0x02, MAX1617_WR_CVRATE_BYTE);
508
 
509
        /* Program the hard temperature limits into the chip. */
510
        bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].high_pwroff,
511
                       MAX1617_WR_AMB_HIGHLIM);
512
        bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].low_pwroff,
513
                       MAX1617_WR_AMB_LOWLIM);
514
        bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].high_pwroff,
515
                       MAX1617_WR_CPU_HIGHLIM);
516
        bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].low_pwroff,
517
                       MAX1617_WR_CPU_LOWLIM);
518
 
519
        get_current_temps(tp);
520
        tp->prev_cpu_temp = tp->avg_cpu_temp = tp->curr_cpu_temp;
521
        tp->prev_amb_temp = tp->avg_amb_temp = tp->curr_amb_temp;
522
 
523
        tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
524
        tp->fan_todo[FAN_CPU] = FAN_SAME;
525
}
526
 
527
static void attach_one_fan(struct linux_ebus_child *echild, int fan_idx)
528
{
529
        struct bbc_fan_control *fp;
530
 
531
        fp = kzalloc(sizeof(*fp), GFP_KERNEL);
532
        if (!fp)
533
                return;
534
 
535
        fp->client = bbc_i2c_attach(echild);
536
        if (!fp->client) {
537
                kfree(fp);
538
                return;
539
        }
540
 
541
        fp->index = fan_idx;
542
 
543
        {
544
                struct bbc_fan_control **fpp = &all_bbc_fans;
545
                while (*fpp)
546
                        fpp = &((*fpp)->next);
547
                fp->next = NULL;
548
                *fpp = fp;
549
        }
550
 
551
        /* The i2c device controlling the fans is write-only.
552
         * So the only way to keep track of the current power
553
         * level fed to the fans is via software.  Choose half
554
         * power for cpu/system and 'on' fo the powersupply fan
555
         * and set it now.
556
         */
557
        fp->psupply_fan_on = 1;
558
        fp->cpu_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
559
        fp->cpu_fan_speed += FAN_SPEED_MIN;
560
        fp->system_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
561
        fp->system_fan_speed += FAN_SPEED_MIN;
562
 
563
        set_fan_speeds(fp);
564
}
565
 
566
int bbc_envctrl_init(void)
567
{
568
        struct linux_ebus_child *echild;
569
        int temp_index = 0;
570
        int fan_index = 0;
571
        int devidx = 0;
572
 
573
        while ((echild = bbc_i2c_getdev(devidx++)) != NULL) {
574
                if (!strcmp(echild->prom_node->name, "temperature"))
575
                        attach_one_temp(echild, temp_index++);
576
                if (!strcmp(echild->prom_node->name, "fan-control"))
577
                        attach_one_fan(echild, fan_index++);
578
        }
579
        if (temp_index != 0 && fan_index != 0) {
580
                kenvctrld_task = kthread_run(kenvctrld, NULL, "kenvctrld");
581
                if (IS_ERR(kenvctrld_task))
582
                        return PTR_ERR(kenvctrld_task);
583
        }
584
 
585
        return 0;
586
}
587
 
588
static void destroy_one_temp(struct bbc_cpu_temperature *tp)
589
{
590
        bbc_i2c_detach(tp->client);
591
        kfree(tp);
592
}
593
 
594
static void destroy_one_fan(struct bbc_fan_control *fp)
595
{
596
        bbc_i2c_detach(fp->client);
597
        kfree(fp);
598
}
599
 
600
void bbc_envctrl_cleanup(void)
601
{
602
        struct bbc_cpu_temperature *tp;
603
        struct bbc_fan_control *fp;
604
 
605
        kthread_stop(kenvctrld_task);
606
 
607
        tp = all_bbc_temps;
608
        while (tp != NULL) {
609
                struct bbc_cpu_temperature *next = tp->next;
610
                destroy_one_temp(tp);
611
                tp = next;
612
        }
613
        all_bbc_temps = NULL;
614
 
615
        fp = all_bbc_fans;
616
        while (fp != NULL) {
617
                struct bbc_fan_control *next = fp->next;
618
                destroy_one_fan(fp);
619
                fp = next;
620
        }
621
        all_bbc_fans = NULL;
622
}

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.