OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [fs/] [direct-io.c] - Blame information for rev 82

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 * fs/direct-io.c
3
 *
4
 * Copyright (C) 2002, Linus Torvalds.
5
 *
6
 * O_DIRECT
7
 *
8
 * 04Jul2002    akpm@zip.com.au
9
 *              Initial version
10
 * 11Sep2002    janetinc@us.ibm.com
11
 *              added readv/writev support.
12
 * 29Oct2002    akpm@zip.com.au
13
 *              rewrote bio_add_page() support.
14
 * 30Oct2002    pbadari@us.ibm.com
15
 *              added support for non-aligned IO.
16
 * 06Nov2002    pbadari@us.ibm.com
17
 *              added asynchronous IO support.
18
 * 21Jul2003    nathans@sgi.com
19
 *              added IO completion notifier.
20
 */
21
 
22
#include <linux/kernel.h>
23
#include <linux/module.h>
24
#include <linux/types.h>
25
#include <linux/fs.h>
26
#include <linux/mm.h>
27
#include <linux/slab.h>
28
#include <linux/highmem.h>
29
#include <linux/pagemap.h>
30
#include <linux/task_io_accounting_ops.h>
31
#include <linux/bio.h>
32
#include <linux/wait.h>
33
#include <linux/err.h>
34
#include <linux/blkdev.h>
35
#include <linux/buffer_head.h>
36
#include <linux/rwsem.h>
37
#include <linux/uio.h>
38
#include <asm/atomic.h>
39
 
40
/*
41
 * How many user pages to map in one call to get_user_pages().  This determines
42
 * the size of a structure on the stack.
43
 */
44
#define DIO_PAGES       64
45
 
46
/*
47
 * This code generally works in units of "dio_blocks".  A dio_block is
48
 * somewhere between the hard sector size and the filesystem block size.  it
49
 * is determined on a per-invocation basis.   When talking to the filesystem
50
 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
51
 * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
52
 * to bio_block quantities by shifting left by blkfactor.
53
 *
54
 * If blkfactor is zero then the user's request was aligned to the filesystem's
55
 * blocksize.
56
 *
57
 * lock_type is DIO_LOCKING for regular files on direct-IO-naive filesystems.
58
 * This determines whether we need to do the fancy locking which prevents
59
 * direct-IO from being able to read uninitialised disk blocks.  If its zero
60
 * (blockdev) this locking is not done, and if it is DIO_OWN_LOCKING i_mutex is
61
 * not held for the entire direct write (taken briefly, initially, during a
62
 * direct read though, but its never held for the duration of a direct-IO).
63
 */
64
 
65
struct dio {
66
        /* BIO submission state */
67
        struct bio *bio;                /* bio under assembly */
68
        struct inode *inode;
69
        int rw;
70
        loff_t i_size;                  /* i_size when submitted */
71
        int lock_type;                  /* doesn't change */
72
        unsigned blkbits;               /* doesn't change */
73
        unsigned blkfactor;             /* When we're using an alignment which
74
                                           is finer than the filesystem's soft
75
                                           blocksize, this specifies how much
76
                                           finer.  blkfactor=2 means 1/4-block
77
                                           alignment.  Does not change */
78
        unsigned start_zero_done;       /* flag: sub-blocksize zeroing has
79
                                           been performed at the start of a
80
                                           write */
81
        int pages_in_io;                /* approximate total IO pages */
82
        size_t  size;                   /* total request size (doesn't change)*/
83
        sector_t block_in_file;         /* Current offset into the underlying
84
                                           file in dio_block units. */
85
        unsigned blocks_available;      /* At block_in_file.  changes */
86
        sector_t final_block_in_request;/* doesn't change */
87
        unsigned first_block_in_page;   /* doesn't change, Used only once */
88
        int boundary;                   /* prev block is at a boundary */
89
        int reap_counter;               /* rate limit reaping */
90
        get_block_t *get_block;         /* block mapping function */
91
        dio_iodone_t *end_io;           /* IO completion function */
92
        sector_t final_block_in_bio;    /* current final block in bio + 1 */
93
        sector_t next_block_for_io;     /* next block to be put under IO,
94
                                           in dio_blocks units */
95
        struct buffer_head map_bh;      /* last get_block() result */
96
 
97
        /*
98
         * Deferred addition of a page to the dio.  These variables are
99
         * private to dio_send_cur_page(), submit_page_section() and
100
         * dio_bio_add_page().
101
         */
102
        struct page *cur_page;          /* The page */
103
        unsigned cur_page_offset;       /* Offset into it, in bytes */
104
        unsigned cur_page_len;          /* Nr of bytes at cur_page_offset */
105
        sector_t cur_page_block;        /* Where it starts */
106
 
107
        /*
108
         * Page fetching state. These variables belong to dio_refill_pages().
109
         */
110
        int curr_page;                  /* changes */
111
        int total_pages;                /* doesn't change */
112
        unsigned long curr_user_address;/* changes */
113
 
114
        /*
115
         * Page queue.  These variables belong to dio_refill_pages() and
116
         * dio_get_page().
117
         */
118
        struct page *pages[DIO_PAGES];  /* page buffer */
119
        unsigned head;                  /* next page to process */
120
        unsigned tail;                  /* last valid page + 1 */
121
        int page_errors;                /* errno from get_user_pages() */
122
 
123
        /* BIO completion state */
124
        spinlock_t bio_lock;            /* protects BIO fields below */
125
        unsigned long refcount;         /* direct_io_worker() and bios */
126
        struct bio *bio_list;           /* singly linked via bi_private */
127
        struct task_struct *waiter;     /* waiting task (NULL if none) */
128
 
129
        /* AIO related stuff */
130
        struct kiocb *iocb;             /* kiocb */
131
        int is_async;                   /* is IO async ? */
132
        int io_error;                   /* IO error in completion path */
133
        ssize_t result;                 /* IO result */
134
};
135
 
136
/*
137
 * How many pages are in the queue?
138
 */
139
static inline unsigned dio_pages_present(struct dio *dio)
140
{
141
        return dio->tail - dio->head;
142
}
143
 
144
/*
145
 * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
146
 */
147
static int dio_refill_pages(struct dio *dio)
148
{
149
        int ret;
150
        int nr_pages;
151
 
152
        nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES);
153
        down_read(&current->mm->mmap_sem);
154
        ret = get_user_pages(
155
                current,                        /* Task for fault acounting */
156
                current->mm,                    /* whose pages? */
157
                dio->curr_user_address,         /* Where from? */
158
                nr_pages,                       /* How many pages? */
159
                dio->rw == READ,                /* Write to memory? */
160
                0,                               /* force (?) */
161
                &dio->pages[0],
162
                NULL);                          /* vmas */
163
        up_read(&current->mm->mmap_sem);
164
 
165
        if (ret < 0 && dio->blocks_available && (dio->rw & WRITE)) {
166
                struct page *page = ZERO_PAGE(0);
167
                /*
168
                 * A memory fault, but the filesystem has some outstanding
169
                 * mapped blocks.  We need to use those blocks up to avoid
170
                 * leaking stale data in the file.
171
                 */
172
                if (dio->page_errors == 0)
173
                        dio->page_errors = ret;
174
                page_cache_get(page);
175
                dio->pages[0] = page;
176
                dio->head = 0;
177
                dio->tail = 1;
178
                ret = 0;
179
                goto out;
180
        }
181
 
182
        if (ret >= 0) {
183
                dio->curr_user_address += ret * PAGE_SIZE;
184
                dio->curr_page += ret;
185
                dio->head = 0;
186
                dio->tail = ret;
187
                ret = 0;
188
        }
189
out:
190
        return ret;
191
}
192
 
193
/*
194
 * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
195
 * buffered inside the dio so that we can call get_user_pages() against a
196
 * decent number of pages, less frequently.  To provide nicer use of the
197
 * L1 cache.
198
 */
199
static struct page *dio_get_page(struct dio *dio)
200
{
201
        if (dio_pages_present(dio) == 0) {
202
                int ret;
203
 
204
                ret = dio_refill_pages(dio);
205
                if (ret)
206
                        return ERR_PTR(ret);
207
                BUG_ON(dio_pages_present(dio) == 0);
208
        }
209
        return dio->pages[dio->head++];
210
}
211
 
212
/**
213
 * dio_complete() - called when all DIO BIO I/O has been completed
214
 * @offset: the byte offset in the file of the completed operation
215
 *
216
 * This releases locks as dictated by the locking type, lets interested parties
217
 * know that a DIO operation has completed, and calculates the resulting return
218
 * code for the operation.
219
 *
220
 * It lets the filesystem know if it registered an interest earlier via
221
 * get_block.  Pass the private field of the map buffer_head so that
222
 * filesystems can use it to hold additional state between get_block calls and
223
 * dio_complete.
224
 */
225
static int dio_complete(struct dio *dio, loff_t offset, int ret)
226
{
227
        ssize_t transferred = 0;
228
 
229
        /*
230
         * AIO submission can race with bio completion to get here while
231
         * expecting to have the last io completed by bio completion.
232
         * In that case -EIOCBQUEUED is in fact not an error we want
233
         * to preserve through this call.
234
         */
235
        if (ret == -EIOCBQUEUED)
236
                ret = 0;
237
 
238
        if (dio->result) {
239
                transferred = dio->result;
240
 
241
                /* Check for short read case */
242
                if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
243
                        transferred = dio->i_size - offset;
244
        }
245
 
246
        if (dio->end_io && dio->result)
247
                dio->end_io(dio->iocb, offset, transferred,
248
                            dio->map_bh.b_private);
249
        if (dio->lock_type == DIO_LOCKING)
250
                /* lockdep: non-owner release */
251
                up_read_non_owner(&dio->inode->i_alloc_sem);
252
 
253
        if (ret == 0)
254
                ret = dio->page_errors;
255
        if (ret == 0)
256
                ret = dio->io_error;
257
        if (ret == 0)
258
                ret = transferred;
259
 
260
        return ret;
261
}
262
 
263
static int dio_bio_complete(struct dio *dio, struct bio *bio);
264
/*
265
 * Asynchronous IO callback.
266
 */
267
static void dio_bio_end_aio(struct bio *bio, int error)
268
{
269
        struct dio *dio = bio->bi_private;
270
        unsigned long remaining;
271
        unsigned long flags;
272
 
273
        /* cleanup the bio */
274
        dio_bio_complete(dio, bio);
275
 
276
        spin_lock_irqsave(&dio->bio_lock, flags);
277
        remaining = --dio->refcount;
278
        if (remaining == 1 && dio->waiter)
279
                wake_up_process(dio->waiter);
280
        spin_unlock_irqrestore(&dio->bio_lock, flags);
281
 
282
        if (remaining == 0) {
283
                int ret = dio_complete(dio, dio->iocb->ki_pos, 0);
284
                aio_complete(dio->iocb, ret, 0);
285
                kfree(dio);
286
        }
287
}
288
 
289
/*
290
 * The BIO completion handler simply queues the BIO up for the process-context
291
 * handler.
292
 *
293
 * During I/O bi_private points at the dio.  After I/O, bi_private is used to
294
 * implement a singly-linked list of completed BIOs, at dio->bio_list.
295
 */
296
static void dio_bio_end_io(struct bio *bio, int error)
297
{
298
        struct dio *dio = bio->bi_private;
299
        unsigned long flags;
300
 
301
        spin_lock_irqsave(&dio->bio_lock, flags);
302
        bio->bi_private = dio->bio_list;
303
        dio->bio_list = bio;
304
        if (--dio->refcount == 1 && dio->waiter)
305
                wake_up_process(dio->waiter);
306
        spin_unlock_irqrestore(&dio->bio_lock, flags);
307
}
308
 
309
static int
310
dio_bio_alloc(struct dio *dio, struct block_device *bdev,
311
                sector_t first_sector, int nr_vecs)
312
{
313
        struct bio *bio;
314
 
315
        bio = bio_alloc(GFP_KERNEL, nr_vecs);
316
        if (bio == NULL)
317
                return -ENOMEM;
318
 
319
        bio->bi_bdev = bdev;
320
        bio->bi_sector = first_sector;
321
        if (dio->is_async)
322
                bio->bi_end_io = dio_bio_end_aio;
323
        else
324
                bio->bi_end_io = dio_bio_end_io;
325
 
326
        dio->bio = bio;
327
        return 0;
328
}
329
 
330
/*
331
 * In the AIO read case we speculatively dirty the pages before starting IO.
332
 * During IO completion, any of these pages which happen to have been written
333
 * back will be redirtied by bio_check_pages_dirty().
334
 *
335
 * bios hold a dio reference between submit_bio and ->end_io.
336
 */
337
static void dio_bio_submit(struct dio *dio)
338
{
339
        struct bio *bio = dio->bio;
340
        unsigned long flags;
341
 
342
        bio->bi_private = dio;
343
 
344
        spin_lock_irqsave(&dio->bio_lock, flags);
345
        dio->refcount++;
346
        spin_unlock_irqrestore(&dio->bio_lock, flags);
347
 
348
        if (dio->is_async && dio->rw == READ)
349
                bio_set_pages_dirty(bio);
350
 
351
        submit_bio(dio->rw, bio);
352
 
353
        dio->bio = NULL;
354
        dio->boundary = 0;
355
}
356
 
357
/*
358
 * Release any resources in case of a failure
359
 */
360
static void dio_cleanup(struct dio *dio)
361
{
362
        while (dio_pages_present(dio))
363
                page_cache_release(dio_get_page(dio));
364
}
365
 
366
/*
367
 * Wait for the next BIO to complete.  Remove it and return it.  NULL is
368
 * returned once all BIOs have been completed.  This must only be called once
369
 * all bios have been issued so that dio->refcount can only decrease.  This
370
 * requires that that the caller hold a reference on the dio.
371
 */
372
static struct bio *dio_await_one(struct dio *dio)
373
{
374
        unsigned long flags;
375
        struct bio *bio = NULL;
376
 
377
        spin_lock_irqsave(&dio->bio_lock, flags);
378
 
379
        /*
380
         * Wait as long as the list is empty and there are bios in flight.  bio
381
         * completion drops the count, maybe adds to the list, and wakes while
382
         * holding the bio_lock so we don't need set_current_state()'s barrier
383
         * and can call it after testing our condition.
384
         */
385
        while (dio->refcount > 1 && dio->bio_list == NULL) {
386
                __set_current_state(TASK_UNINTERRUPTIBLE);
387
                dio->waiter = current;
388
                spin_unlock_irqrestore(&dio->bio_lock, flags);
389
                io_schedule();
390
                /* wake up sets us TASK_RUNNING */
391
                spin_lock_irqsave(&dio->bio_lock, flags);
392
                dio->waiter = NULL;
393
        }
394
        if (dio->bio_list) {
395
                bio = dio->bio_list;
396
                dio->bio_list = bio->bi_private;
397
        }
398
        spin_unlock_irqrestore(&dio->bio_lock, flags);
399
        return bio;
400
}
401
 
402
/*
403
 * Process one completed BIO.  No locks are held.
404
 */
405
static int dio_bio_complete(struct dio *dio, struct bio *bio)
406
{
407
        const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
408
        struct bio_vec *bvec = bio->bi_io_vec;
409
        int page_no;
410
 
411
        if (!uptodate)
412
                dio->io_error = -EIO;
413
 
414
        if (dio->is_async && dio->rw == READ) {
415
                bio_check_pages_dirty(bio);     /* transfers ownership */
416
        } else {
417
                for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
418
                        struct page *page = bvec[page_no].bv_page;
419
 
420
                        if (dio->rw == READ && !PageCompound(page))
421
                                set_page_dirty_lock(page);
422
                        page_cache_release(page);
423
                }
424
                bio_put(bio);
425
        }
426
        return uptodate ? 0 : -EIO;
427
}
428
 
429
/*
430
 * Wait on and process all in-flight BIOs.  This must only be called once
431
 * all bios have been issued so that the refcount can only decrease.
432
 * This just waits for all bios to make it through dio_bio_complete.  IO
433
 * errors are propagated through dio->io_error and should be propagated via
434
 * dio_complete().
435
 */
436
static void dio_await_completion(struct dio *dio)
437
{
438
        struct bio *bio;
439
        do {
440
                bio = dio_await_one(dio);
441
                if (bio)
442
                        dio_bio_complete(dio, bio);
443
        } while (bio);
444
}
445
 
446
/*
447
 * A really large O_DIRECT read or write can generate a lot of BIOs.  So
448
 * to keep the memory consumption sane we periodically reap any completed BIOs
449
 * during the BIO generation phase.
450
 *
451
 * This also helps to limit the peak amount of pinned userspace memory.
452
 */
453
static int dio_bio_reap(struct dio *dio)
454
{
455
        int ret = 0;
456
 
457
        if (dio->reap_counter++ >= 64) {
458
                while (dio->bio_list) {
459
                        unsigned long flags;
460
                        struct bio *bio;
461
                        int ret2;
462
 
463
                        spin_lock_irqsave(&dio->bio_lock, flags);
464
                        bio = dio->bio_list;
465
                        dio->bio_list = bio->bi_private;
466
                        spin_unlock_irqrestore(&dio->bio_lock, flags);
467
                        ret2 = dio_bio_complete(dio, bio);
468
                        if (ret == 0)
469
                                ret = ret2;
470
                }
471
                dio->reap_counter = 0;
472
        }
473
        return ret;
474
}
475
 
476
/*
477
 * Call into the fs to map some more disk blocks.  We record the current number
478
 * of available blocks at dio->blocks_available.  These are in units of the
479
 * fs blocksize, (1 << inode->i_blkbits).
480
 *
481
 * The fs is allowed to map lots of blocks at once.  If it wants to do that,
482
 * it uses the passed inode-relative block number as the file offset, as usual.
483
 *
484
 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
485
 * has remaining to do.  The fs should not map more than this number of blocks.
486
 *
487
 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
488
 * indicate how much contiguous disk space has been made available at
489
 * bh->b_blocknr.
490
 *
491
 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
492
 * This isn't very efficient...
493
 *
494
 * In the case of filesystem holes: the fs may return an arbitrarily-large
495
 * hole by returning an appropriate value in b_size and by clearing
496
 * buffer_mapped().  However the direct-io code will only process holes one
497
 * block at a time - it will repeatedly call get_block() as it walks the hole.
498
 */
499
static int get_more_blocks(struct dio *dio)
500
{
501
        int ret;
502
        struct buffer_head *map_bh = &dio->map_bh;
503
        sector_t fs_startblk;   /* Into file, in filesystem-sized blocks */
504
        unsigned long fs_count; /* Number of filesystem-sized blocks */
505
        unsigned long dio_count;/* Number of dio_block-sized blocks */
506
        unsigned long blkmask;
507
        int create;
508
 
509
        /*
510
         * If there was a memory error and we've overwritten all the
511
         * mapped blocks then we can now return that memory error
512
         */
513
        ret = dio->page_errors;
514
        if (ret == 0) {
515
                BUG_ON(dio->block_in_file >= dio->final_block_in_request);
516
                fs_startblk = dio->block_in_file >> dio->blkfactor;
517
                dio_count = dio->final_block_in_request - dio->block_in_file;
518
                fs_count = dio_count >> dio->blkfactor;
519
                blkmask = (1 << dio->blkfactor) - 1;
520
                if (dio_count & blkmask)
521
                        fs_count++;
522
 
523
                map_bh->b_state = 0;
524
                map_bh->b_size = fs_count << dio->inode->i_blkbits;
525
 
526
                create = dio->rw & WRITE;
527
                if (dio->lock_type == DIO_LOCKING) {
528
                        if (dio->block_in_file < (i_size_read(dio->inode) >>
529
                                                        dio->blkbits))
530
                                create = 0;
531
                } else if (dio->lock_type == DIO_NO_LOCKING) {
532
                        create = 0;
533
                }
534
 
535
                /*
536
                 * For writes inside i_size we forbid block creations: only
537
                 * overwrites are permitted.  We fall back to buffered writes
538
                 * at a higher level for inside-i_size block-instantiating
539
                 * writes.
540
                 */
541
                ret = (*dio->get_block)(dio->inode, fs_startblk,
542
                                                map_bh, create);
543
        }
544
        return ret;
545
}
546
 
547
/*
548
 * There is no bio.  Make one now.
549
 */
550
static int dio_new_bio(struct dio *dio, sector_t start_sector)
551
{
552
        sector_t sector;
553
        int ret, nr_pages;
554
 
555
        ret = dio_bio_reap(dio);
556
        if (ret)
557
                goto out;
558
        sector = start_sector << (dio->blkbits - 9);
559
        nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev));
560
        BUG_ON(nr_pages <= 0);
561
        ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages);
562
        dio->boundary = 0;
563
out:
564
        return ret;
565
}
566
 
567
/*
568
 * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
569
 * that was successful then update final_block_in_bio and take a ref against
570
 * the just-added page.
571
 *
572
 * Return zero on success.  Non-zero means the caller needs to start a new BIO.
573
 */
574
static int dio_bio_add_page(struct dio *dio)
575
{
576
        int ret;
577
 
578
        ret = bio_add_page(dio->bio, dio->cur_page,
579
                        dio->cur_page_len, dio->cur_page_offset);
580
        if (ret == dio->cur_page_len) {
581
                /*
582
                 * Decrement count only, if we are done with this page
583
                 */
584
                if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE)
585
                        dio->pages_in_io--;
586
                page_cache_get(dio->cur_page);
587
                dio->final_block_in_bio = dio->cur_page_block +
588
                        (dio->cur_page_len >> dio->blkbits);
589
                ret = 0;
590
        } else {
591
                ret = 1;
592
        }
593
        return ret;
594
}
595
 
596
/*
597
 * Put cur_page under IO.  The section of cur_page which is described by
598
 * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
599
 * starts on-disk at cur_page_block.
600
 *
601
 * We take a ref against the page here (on behalf of its presence in the bio).
602
 *
603
 * The caller of this function is responsible for removing cur_page from the
604
 * dio, and for dropping the refcount which came from that presence.
605
 */
606
static int dio_send_cur_page(struct dio *dio)
607
{
608
        int ret = 0;
609
 
610
        if (dio->bio) {
611
                /*
612
                 * See whether this new request is contiguous with the old
613
                 */
614
                if (dio->final_block_in_bio != dio->cur_page_block)
615
                        dio_bio_submit(dio);
616
                /*
617
                 * Submit now if the underlying fs is about to perform a
618
                 * metadata read
619
                 */
620
                if (dio->boundary)
621
                        dio_bio_submit(dio);
622
        }
623
 
624
        if (dio->bio == NULL) {
625
                ret = dio_new_bio(dio, dio->cur_page_block);
626
                if (ret)
627
                        goto out;
628
        }
629
 
630
        if (dio_bio_add_page(dio) != 0) {
631
                dio_bio_submit(dio);
632
                ret = dio_new_bio(dio, dio->cur_page_block);
633
                if (ret == 0) {
634
                        ret = dio_bio_add_page(dio);
635
                        BUG_ON(ret != 0);
636
                }
637
        }
638
out:
639
        return ret;
640
}
641
 
642
/*
643
 * An autonomous function to put a chunk of a page under deferred IO.
644
 *
645
 * The caller doesn't actually know (or care) whether this piece of page is in
646
 * a BIO, or is under IO or whatever.  We just take care of all possible
647
 * situations here.  The separation between the logic of do_direct_IO() and
648
 * that of submit_page_section() is important for clarity.  Please don't break.
649
 *
650
 * The chunk of page starts on-disk at blocknr.
651
 *
652
 * We perform deferred IO, by recording the last-submitted page inside our
653
 * private part of the dio structure.  If possible, we just expand the IO
654
 * across that page here.
655
 *
656
 * If that doesn't work out then we put the old page into the bio and add this
657
 * page to the dio instead.
658
 */
659
static int
660
submit_page_section(struct dio *dio, struct page *page,
661
                unsigned offset, unsigned len, sector_t blocknr)
662
{
663
        int ret = 0;
664
 
665
        if (dio->rw & WRITE) {
666
                /*
667
                 * Read accounting is performed in submit_bio()
668
                 */
669
                task_io_account_write(len);
670
        }
671
 
672
        /*
673
         * Can we just grow the current page's presence in the dio?
674
         */
675
        if (    (dio->cur_page == page) &&
676
                (dio->cur_page_offset + dio->cur_page_len == offset) &&
677
                (dio->cur_page_block +
678
                        (dio->cur_page_len >> dio->blkbits) == blocknr)) {
679
                dio->cur_page_len += len;
680
 
681
                /*
682
                 * If dio->boundary then we want to schedule the IO now to
683
                 * avoid metadata seeks.
684
                 */
685
                if (dio->boundary) {
686
                        ret = dio_send_cur_page(dio);
687
                        page_cache_release(dio->cur_page);
688
                        dio->cur_page = NULL;
689
                }
690
                goto out;
691
        }
692
 
693
        /*
694
         * If there's a deferred page already there then send it.
695
         */
696
        if (dio->cur_page) {
697
                ret = dio_send_cur_page(dio);
698
                page_cache_release(dio->cur_page);
699
                dio->cur_page = NULL;
700
                if (ret)
701
                        goto out;
702
        }
703
 
704
        page_cache_get(page);           /* It is in dio */
705
        dio->cur_page = page;
706
        dio->cur_page_offset = offset;
707
        dio->cur_page_len = len;
708
        dio->cur_page_block = blocknr;
709
out:
710
        return ret;
711
}
712
 
713
/*
714
 * Clean any dirty buffers in the blockdev mapping which alias newly-created
715
 * file blocks.  Only called for S_ISREG files - blockdevs do not set
716
 * buffer_new
717
 */
718
static void clean_blockdev_aliases(struct dio *dio)
719
{
720
        unsigned i;
721
        unsigned nblocks;
722
 
723
        nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits;
724
 
725
        for (i = 0; i < nblocks; i++) {
726
                unmap_underlying_metadata(dio->map_bh.b_bdev,
727
                                        dio->map_bh.b_blocknr + i);
728
        }
729
}
730
 
731
/*
732
 * If we are not writing the entire block and get_block() allocated
733
 * the block for us, we need to fill-in the unused portion of the
734
 * block with zeros. This happens only if user-buffer, fileoffset or
735
 * io length is not filesystem block-size multiple.
736
 *
737
 * `end' is zero if we're doing the start of the IO, 1 at the end of the
738
 * IO.
739
 */
740
static void dio_zero_block(struct dio *dio, int end)
741
{
742
        unsigned dio_blocks_per_fs_block;
743
        unsigned this_chunk_blocks;     /* In dio_blocks */
744
        unsigned this_chunk_bytes;
745
        struct page *page;
746
 
747
        dio->start_zero_done = 1;
748
        if (!dio->blkfactor || !buffer_new(&dio->map_bh))
749
                return;
750
 
751
        dio_blocks_per_fs_block = 1 << dio->blkfactor;
752
        this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1);
753
 
754
        if (!this_chunk_blocks)
755
                return;
756
 
757
        /*
758
         * We need to zero out part of an fs block.  It is either at the
759
         * beginning or the end of the fs block.
760
         */
761
        if (end)
762
                this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
763
 
764
        this_chunk_bytes = this_chunk_blocks << dio->blkbits;
765
 
766
        page = ZERO_PAGE(0);
767
        if (submit_page_section(dio, page, 0, this_chunk_bytes,
768
                                dio->next_block_for_io))
769
                return;
770
 
771
        dio->next_block_for_io += this_chunk_blocks;
772
}
773
 
774
/*
775
 * Walk the user pages, and the file, mapping blocks to disk and generating
776
 * a sequence of (page,offset,len,block) mappings.  These mappings are injected
777
 * into submit_page_section(), which takes care of the next stage of submission
778
 *
779
 * Direct IO against a blockdev is different from a file.  Because we can
780
 * happily perform page-sized but 512-byte aligned IOs.  It is important that
781
 * blockdev IO be able to have fine alignment and large sizes.
782
 *
783
 * So what we do is to permit the ->get_block function to populate bh.b_size
784
 * with the size of IO which is permitted at this offset and this i_blkbits.
785
 *
786
 * For best results, the blockdev should be set up with 512-byte i_blkbits and
787
 * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
788
 * fine alignment but still allows this function to work in PAGE_SIZE units.
789
 */
790
static int do_direct_IO(struct dio *dio)
791
{
792
        const unsigned blkbits = dio->blkbits;
793
        const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
794
        struct page *page;
795
        unsigned block_in_page;
796
        struct buffer_head *map_bh = &dio->map_bh;
797
        int ret = 0;
798
 
799
        /* The I/O can start at any block offset within the first page */
800
        block_in_page = dio->first_block_in_page;
801
 
802
        while (dio->block_in_file < dio->final_block_in_request) {
803
                page = dio_get_page(dio);
804
                if (IS_ERR(page)) {
805
                        ret = PTR_ERR(page);
806
                        goto out;
807
                }
808
 
809
                while (block_in_page < blocks_per_page) {
810
                        unsigned offset_in_page = block_in_page << blkbits;
811
                        unsigned this_chunk_bytes;      /* # of bytes mapped */
812
                        unsigned this_chunk_blocks;     /* # of blocks */
813
                        unsigned u;
814
 
815
                        if (dio->blocks_available == 0) {
816
                                /*
817
                                 * Need to go and map some more disk
818
                                 */
819
                                unsigned long blkmask;
820
                                unsigned long dio_remainder;
821
 
822
                                ret = get_more_blocks(dio);
823
                                if (ret) {
824
                                        page_cache_release(page);
825
                                        goto out;
826
                                }
827
                                if (!buffer_mapped(map_bh))
828
                                        goto do_holes;
829
 
830
                                dio->blocks_available =
831
                                                map_bh->b_size >> dio->blkbits;
832
                                dio->next_block_for_io =
833
                                        map_bh->b_blocknr << dio->blkfactor;
834
                                if (buffer_new(map_bh))
835
                                        clean_blockdev_aliases(dio);
836
 
837
                                if (!dio->blkfactor)
838
                                        goto do_holes;
839
 
840
                                blkmask = (1 << dio->blkfactor) - 1;
841
                                dio_remainder = (dio->block_in_file & blkmask);
842
 
843
                                /*
844
                                 * If we are at the start of IO and that IO
845
                                 * starts partway into a fs-block,
846
                                 * dio_remainder will be non-zero.  If the IO
847
                                 * is a read then we can simply advance the IO
848
                                 * cursor to the first block which is to be
849
                                 * read.  But if the IO is a write and the
850
                                 * block was newly allocated we cannot do that;
851
                                 * the start of the fs block must be zeroed out
852
                                 * on-disk
853
                                 */
854
                                if (!buffer_new(map_bh))
855
                                        dio->next_block_for_io += dio_remainder;
856
                                dio->blocks_available -= dio_remainder;
857
                        }
858
do_holes:
859
                        /* Handle holes */
860
                        if (!buffer_mapped(map_bh)) {
861
                                loff_t i_size_aligned;
862
 
863
                                /* AKPM: eargh, -ENOTBLK is a hack */
864
                                if (dio->rw & WRITE) {
865
                                        page_cache_release(page);
866
                                        return -ENOTBLK;
867
                                }
868
 
869
                                /*
870
                                 * Be sure to account for a partial block as the
871
                                 * last block in the file
872
                                 */
873
                                i_size_aligned = ALIGN(i_size_read(dio->inode),
874
                                                        1 << blkbits);
875
                                if (dio->block_in_file >=
876
                                                i_size_aligned >> blkbits) {
877
                                        /* We hit eof */
878
                                        page_cache_release(page);
879
                                        goto out;
880
                                }
881
                                zero_user_page(page, block_in_page << blkbits,
882
                                                1 << blkbits, KM_USER0);
883
                                dio->block_in_file++;
884
                                block_in_page++;
885
                                goto next_block;
886
                        }
887
 
888
                        /*
889
                         * If we're performing IO which has an alignment which
890
                         * is finer than the underlying fs, go check to see if
891
                         * we must zero out the start of this block.
892
                         */
893
                        if (unlikely(dio->blkfactor && !dio->start_zero_done))
894
                                dio_zero_block(dio, 0);
895
 
896
                        /*
897
                         * Work out, in this_chunk_blocks, how much disk we
898
                         * can add to this page
899
                         */
900
                        this_chunk_blocks = dio->blocks_available;
901
                        u = (PAGE_SIZE - offset_in_page) >> blkbits;
902
                        if (this_chunk_blocks > u)
903
                                this_chunk_blocks = u;
904
                        u = dio->final_block_in_request - dio->block_in_file;
905
                        if (this_chunk_blocks > u)
906
                                this_chunk_blocks = u;
907
                        this_chunk_bytes = this_chunk_blocks << blkbits;
908
                        BUG_ON(this_chunk_bytes == 0);
909
 
910
                        dio->boundary = buffer_boundary(map_bh);
911
                        ret = submit_page_section(dio, page, offset_in_page,
912
                                this_chunk_bytes, dio->next_block_for_io);
913
                        if (ret) {
914
                                page_cache_release(page);
915
                                goto out;
916
                        }
917
                        dio->next_block_for_io += this_chunk_blocks;
918
 
919
                        dio->block_in_file += this_chunk_blocks;
920
                        block_in_page += this_chunk_blocks;
921
                        dio->blocks_available -= this_chunk_blocks;
922
next_block:
923
                        BUG_ON(dio->block_in_file > dio->final_block_in_request);
924
                        if (dio->block_in_file == dio->final_block_in_request)
925
                                break;
926
                }
927
 
928
                /* Drop the ref which was taken in get_user_pages() */
929
                page_cache_release(page);
930
                block_in_page = 0;
931
        }
932
out:
933
        return ret;
934
}
935
 
936
/*
937
 * Releases both i_mutex and i_alloc_sem
938
 */
939
static ssize_t
940
direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode,
941
        const struct iovec *iov, loff_t offset, unsigned long nr_segs,
942
        unsigned blkbits, get_block_t get_block, dio_iodone_t end_io,
943
        struct dio *dio)
944
{
945
        unsigned long user_addr;
946
        unsigned long flags;
947
        int seg;
948
        ssize_t ret = 0;
949
        ssize_t ret2;
950
        size_t bytes;
951
 
952
        dio->inode = inode;
953
        dio->rw = rw;
954
        dio->blkbits = blkbits;
955
        dio->blkfactor = inode->i_blkbits - blkbits;
956
        dio->block_in_file = offset >> blkbits;
957
 
958
        dio->get_block = get_block;
959
        dio->end_io = end_io;
960
        dio->final_block_in_bio = -1;
961
        dio->next_block_for_io = -1;
962
 
963
        dio->iocb = iocb;
964
        dio->i_size = i_size_read(inode);
965
 
966
        spin_lock_init(&dio->bio_lock);
967
        dio->refcount = 1;
968
 
969
        /*
970
         * In case of non-aligned buffers, we may need 2 more
971
         * pages since we need to zero out first and last block.
972
         */
973
        if (unlikely(dio->blkfactor))
974
                dio->pages_in_io = 2;
975
 
976
        for (seg = 0; seg < nr_segs; seg++) {
977
                user_addr = (unsigned long)iov[seg].iov_base;
978
                dio->pages_in_io +=
979
                        ((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE
980
                                - user_addr/PAGE_SIZE);
981
        }
982
 
983
        for (seg = 0; seg < nr_segs; seg++) {
984
                user_addr = (unsigned long)iov[seg].iov_base;
985
                dio->size += bytes = iov[seg].iov_len;
986
 
987
                /* Index into the first page of the first block */
988
                dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
989
                dio->final_block_in_request = dio->block_in_file +
990
                                                (bytes >> blkbits);
991
                /* Page fetching state */
992
                dio->head = 0;
993
                dio->tail = 0;
994
                dio->curr_page = 0;
995
 
996
                dio->total_pages = 0;
997
                if (user_addr & (PAGE_SIZE-1)) {
998
                        dio->total_pages++;
999
                        bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
1000
                }
1001
                dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1002
                dio->curr_user_address = user_addr;
1003
 
1004
                ret = do_direct_IO(dio);
1005
 
1006
                dio->result += iov[seg].iov_len -
1007
                        ((dio->final_block_in_request - dio->block_in_file) <<
1008
                                        blkbits);
1009
 
1010
                if (ret) {
1011
                        dio_cleanup(dio);
1012
                        break;
1013
                }
1014
        } /* end iovec loop */
1015
 
1016
        if (ret == -ENOTBLK && (rw & WRITE)) {
1017
                /*
1018
                 * The remaining part of the request will be
1019
                 * be handled by buffered I/O when we return
1020
                 */
1021
                ret = 0;
1022
        }
1023
        /*
1024
         * There may be some unwritten disk at the end of a part-written
1025
         * fs-block-sized block.  Go zero that now.
1026
         */
1027
        dio_zero_block(dio, 1);
1028
 
1029
        if (dio->cur_page) {
1030
                ret2 = dio_send_cur_page(dio);
1031
                if (ret == 0)
1032
                        ret = ret2;
1033
                page_cache_release(dio->cur_page);
1034
                dio->cur_page = NULL;
1035
        }
1036
        if (dio->bio)
1037
                dio_bio_submit(dio);
1038
 
1039
        /* All IO is now issued, send it on its way */
1040
        blk_run_address_space(inode->i_mapping);
1041
 
1042
        /*
1043
         * It is possible that, we return short IO due to end of file.
1044
         * In that case, we need to release all the pages we got hold on.
1045
         */
1046
        dio_cleanup(dio);
1047
 
1048
        /*
1049
         * All block lookups have been performed. For READ requests
1050
         * we can let i_mutex go now that its achieved its purpose
1051
         * of protecting us from looking up uninitialized blocks.
1052
         */
1053
        if ((rw == READ) && (dio->lock_type == DIO_LOCKING))
1054
                mutex_unlock(&dio->inode->i_mutex);
1055
 
1056
        /*
1057
         * The only time we want to leave bios in flight is when a successful
1058
         * partial aio read or full aio write have been setup.  In that case
1059
         * bio completion will call aio_complete.  The only time it's safe to
1060
         * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1061
         * This had *better* be the only place that raises -EIOCBQUEUED.
1062
         */
1063
        BUG_ON(ret == -EIOCBQUEUED);
1064
        if (dio->is_async && ret == 0 && dio->result &&
1065
            ((rw & READ) || (dio->result == dio->size)))
1066
                ret = -EIOCBQUEUED;
1067
 
1068
        if (ret != -EIOCBQUEUED)
1069
                dio_await_completion(dio);
1070
 
1071
        /*
1072
         * Sync will always be dropping the final ref and completing the
1073
         * operation.  AIO can if it was a broken operation described above or
1074
         * in fact if all the bios race to complete before we get here.  In
1075
         * that case dio_complete() translates the EIOCBQUEUED into the proper
1076
         * return code that the caller will hand to aio_complete().
1077
         *
1078
         * This is managed by the bio_lock instead of being an atomic_t so that
1079
         * completion paths can drop their ref and use the remaining count to
1080
         * decide to wake the submission path atomically.
1081
         */
1082
        spin_lock_irqsave(&dio->bio_lock, flags);
1083
        ret2 = --dio->refcount;
1084
        spin_unlock_irqrestore(&dio->bio_lock, flags);
1085
 
1086
        if (ret2 == 0) {
1087
                ret = dio_complete(dio, offset, ret);
1088
                kfree(dio);
1089
        } else
1090
                BUG_ON(ret != -EIOCBQUEUED);
1091
 
1092
        return ret;
1093
}
1094
 
1095
/*
1096
 * This is a library function for use by filesystem drivers.
1097
 * The locking rules are governed by the dio_lock_type parameter.
1098
 *
1099
 * DIO_NO_LOCKING (no locking, for raw block device access)
1100
 * For writes, i_mutex is not held on entry; it is never taken.
1101
 *
1102
 * DIO_LOCKING (simple locking for regular files)
1103
 * For writes we are called under i_mutex and return with i_mutex held, even
1104
 * though it is internally dropped.
1105
 * For reads, i_mutex is not held on entry, but it is taken and dropped before
1106
 * returning.
1107
 *
1108
 * DIO_OWN_LOCKING (filesystem provides synchronisation and handling of
1109
 *      uninitialised data, allowing parallel direct readers and writers)
1110
 * For writes we are called without i_mutex, return without it, never touch it.
1111
 * For reads we are called under i_mutex and return with i_mutex held, even
1112
 * though it may be internally dropped.
1113
 *
1114
 * Additional i_alloc_sem locking requirements described inline below.
1115
 */
1116
ssize_t
1117
__blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1118
        struct block_device *bdev, const struct iovec *iov, loff_t offset,
1119
        unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1120
        int dio_lock_type)
1121
{
1122
        int seg;
1123
        size_t size;
1124
        unsigned long addr;
1125
        unsigned blkbits = inode->i_blkbits;
1126
        unsigned bdev_blkbits = 0;
1127
        unsigned blocksize_mask = (1 << blkbits) - 1;
1128
        ssize_t retval = -EINVAL;
1129
        loff_t end = offset;
1130
        struct dio *dio;
1131
        int release_i_mutex = 0;
1132
        int acquire_i_mutex = 0;
1133
 
1134
        if (rw & WRITE)
1135
                rw = WRITE_SYNC;
1136
 
1137
        if (bdev)
1138
                bdev_blkbits = blksize_bits(bdev_hardsect_size(bdev));
1139
 
1140
        if (offset & blocksize_mask) {
1141
                if (bdev)
1142
                         blkbits = bdev_blkbits;
1143
                blocksize_mask = (1 << blkbits) - 1;
1144
                if (offset & blocksize_mask)
1145
                        goto out;
1146
        }
1147
 
1148
        /* Check the memory alignment.  Blocks cannot straddle pages */
1149
        for (seg = 0; seg < nr_segs; seg++) {
1150
                addr = (unsigned long)iov[seg].iov_base;
1151
                size = iov[seg].iov_len;
1152
                end += size;
1153
                if ((addr & blocksize_mask) || (size & blocksize_mask))  {
1154
                        if (bdev)
1155
                                 blkbits = bdev_blkbits;
1156
                        blocksize_mask = (1 << blkbits) - 1;
1157
                        if ((addr & blocksize_mask) || (size & blocksize_mask))
1158
                                goto out;
1159
                }
1160
        }
1161
 
1162
        dio = kzalloc(sizeof(*dio), GFP_KERNEL);
1163
        retval = -ENOMEM;
1164
        if (!dio)
1165
                goto out;
1166
 
1167
        /*
1168
         * For block device access DIO_NO_LOCKING is used,
1169
         *      neither readers nor writers do any locking at all
1170
         * For regular files using DIO_LOCKING,
1171
         *      readers need to grab i_mutex and i_alloc_sem
1172
         *      writers need to grab i_alloc_sem only (i_mutex is already held)
1173
         * For regular files using DIO_OWN_LOCKING,
1174
         *      neither readers nor writers take any locks here
1175
         */
1176
        dio->lock_type = dio_lock_type;
1177
        if (dio_lock_type != DIO_NO_LOCKING) {
1178
                /* watch out for a 0 len io from a tricksy fs */
1179
                if (rw == READ && end > offset) {
1180
                        struct address_space *mapping;
1181
 
1182
                        mapping = iocb->ki_filp->f_mapping;
1183
                        if (dio_lock_type != DIO_OWN_LOCKING) {
1184
                                mutex_lock(&inode->i_mutex);
1185
                                release_i_mutex = 1;
1186
                        }
1187
 
1188
                        retval = filemap_write_and_wait_range(mapping, offset,
1189
                                                              end - 1);
1190
                        if (retval) {
1191
                                kfree(dio);
1192
                                goto out;
1193
                        }
1194
 
1195
                        if (dio_lock_type == DIO_OWN_LOCKING) {
1196
                                mutex_unlock(&inode->i_mutex);
1197
                                acquire_i_mutex = 1;
1198
                        }
1199
                }
1200
 
1201
                if (dio_lock_type == DIO_LOCKING)
1202
                        /* lockdep: not the owner will release it */
1203
                        down_read_non_owner(&inode->i_alloc_sem);
1204
        }
1205
 
1206
        /*
1207
         * For file extending writes updating i_size before data
1208
         * writeouts complete can expose uninitialized blocks. So
1209
         * even for AIO, we need to wait for i/o to complete before
1210
         * returning in this case.
1211
         */
1212
        dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
1213
                (end > i_size_read(inode)));
1214
 
1215
        retval = direct_io_worker(rw, iocb, inode, iov, offset,
1216
                                nr_segs, blkbits, get_block, end_io, dio);
1217
 
1218
        if (rw == READ && dio_lock_type == DIO_LOCKING)
1219
                release_i_mutex = 0;
1220
 
1221
out:
1222
        if (release_i_mutex)
1223
                mutex_unlock(&inode->i_mutex);
1224
        else if (acquire_i_mutex)
1225
                mutex_lock(&inode->i_mutex);
1226
        return retval;
1227
}
1228
EXPORT_SYMBOL(__blockdev_direct_IO);

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.