1 |
62 |
marcus.erl |
/*
|
2 |
|
|
* fs/direct-io.c
|
3 |
|
|
*
|
4 |
|
|
* Copyright (C) 2002, Linus Torvalds.
|
5 |
|
|
*
|
6 |
|
|
* O_DIRECT
|
7 |
|
|
*
|
8 |
|
|
* 04Jul2002 akpm@zip.com.au
|
9 |
|
|
* Initial version
|
10 |
|
|
* 11Sep2002 janetinc@us.ibm.com
|
11 |
|
|
* added readv/writev support.
|
12 |
|
|
* 29Oct2002 akpm@zip.com.au
|
13 |
|
|
* rewrote bio_add_page() support.
|
14 |
|
|
* 30Oct2002 pbadari@us.ibm.com
|
15 |
|
|
* added support for non-aligned IO.
|
16 |
|
|
* 06Nov2002 pbadari@us.ibm.com
|
17 |
|
|
* added asynchronous IO support.
|
18 |
|
|
* 21Jul2003 nathans@sgi.com
|
19 |
|
|
* added IO completion notifier.
|
20 |
|
|
*/
|
21 |
|
|
|
22 |
|
|
#include <linux/kernel.h>
|
23 |
|
|
#include <linux/module.h>
|
24 |
|
|
#include <linux/types.h>
|
25 |
|
|
#include <linux/fs.h>
|
26 |
|
|
#include <linux/mm.h>
|
27 |
|
|
#include <linux/slab.h>
|
28 |
|
|
#include <linux/highmem.h>
|
29 |
|
|
#include <linux/pagemap.h>
|
30 |
|
|
#include <linux/task_io_accounting_ops.h>
|
31 |
|
|
#include <linux/bio.h>
|
32 |
|
|
#include <linux/wait.h>
|
33 |
|
|
#include <linux/err.h>
|
34 |
|
|
#include <linux/blkdev.h>
|
35 |
|
|
#include <linux/buffer_head.h>
|
36 |
|
|
#include <linux/rwsem.h>
|
37 |
|
|
#include <linux/uio.h>
|
38 |
|
|
#include <asm/atomic.h>
|
39 |
|
|
|
40 |
|
|
/*
|
41 |
|
|
* How many user pages to map in one call to get_user_pages(). This determines
|
42 |
|
|
* the size of a structure on the stack.
|
43 |
|
|
*/
|
44 |
|
|
#define DIO_PAGES 64
|
45 |
|
|
|
46 |
|
|
/*
|
47 |
|
|
* This code generally works in units of "dio_blocks". A dio_block is
|
48 |
|
|
* somewhere between the hard sector size and the filesystem block size. it
|
49 |
|
|
* is determined on a per-invocation basis. When talking to the filesystem
|
50 |
|
|
* we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
|
51 |
|
|
* down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
|
52 |
|
|
* to bio_block quantities by shifting left by blkfactor.
|
53 |
|
|
*
|
54 |
|
|
* If blkfactor is zero then the user's request was aligned to the filesystem's
|
55 |
|
|
* blocksize.
|
56 |
|
|
*
|
57 |
|
|
* lock_type is DIO_LOCKING for regular files on direct-IO-naive filesystems.
|
58 |
|
|
* This determines whether we need to do the fancy locking which prevents
|
59 |
|
|
* direct-IO from being able to read uninitialised disk blocks. If its zero
|
60 |
|
|
* (blockdev) this locking is not done, and if it is DIO_OWN_LOCKING i_mutex is
|
61 |
|
|
* not held for the entire direct write (taken briefly, initially, during a
|
62 |
|
|
* direct read though, but its never held for the duration of a direct-IO).
|
63 |
|
|
*/
|
64 |
|
|
|
65 |
|
|
struct dio {
|
66 |
|
|
/* BIO submission state */
|
67 |
|
|
struct bio *bio; /* bio under assembly */
|
68 |
|
|
struct inode *inode;
|
69 |
|
|
int rw;
|
70 |
|
|
loff_t i_size; /* i_size when submitted */
|
71 |
|
|
int lock_type; /* doesn't change */
|
72 |
|
|
unsigned blkbits; /* doesn't change */
|
73 |
|
|
unsigned blkfactor; /* When we're using an alignment which
|
74 |
|
|
is finer than the filesystem's soft
|
75 |
|
|
blocksize, this specifies how much
|
76 |
|
|
finer. blkfactor=2 means 1/4-block
|
77 |
|
|
alignment. Does not change */
|
78 |
|
|
unsigned start_zero_done; /* flag: sub-blocksize zeroing has
|
79 |
|
|
been performed at the start of a
|
80 |
|
|
write */
|
81 |
|
|
int pages_in_io; /* approximate total IO pages */
|
82 |
|
|
size_t size; /* total request size (doesn't change)*/
|
83 |
|
|
sector_t block_in_file; /* Current offset into the underlying
|
84 |
|
|
file in dio_block units. */
|
85 |
|
|
unsigned blocks_available; /* At block_in_file. changes */
|
86 |
|
|
sector_t final_block_in_request;/* doesn't change */
|
87 |
|
|
unsigned first_block_in_page; /* doesn't change, Used only once */
|
88 |
|
|
int boundary; /* prev block is at a boundary */
|
89 |
|
|
int reap_counter; /* rate limit reaping */
|
90 |
|
|
get_block_t *get_block; /* block mapping function */
|
91 |
|
|
dio_iodone_t *end_io; /* IO completion function */
|
92 |
|
|
sector_t final_block_in_bio; /* current final block in bio + 1 */
|
93 |
|
|
sector_t next_block_for_io; /* next block to be put under IO,
|
94 |
|
|
in dio_blocks units */
|
95 |
|
|
struct buffer_head map_bh; /* last get_block() result */
|
96 |
|
|
|
97 |
|
|
/*
|
98 |
|
|
* Deferred addition of a page to the dio. These variables are
|
99 |
|
|
* private to dio_send_cur_page(), submit_page_section() and
|
100 |
|
|
* dio_bio_add_page().
|
101 |
|
|
*/
|
102 |
|
|
struct page *cur_page; /* The page */
|
103 |
|
|
unsigned cur_page_offset; /* Offset into it, in bytes */
|
104 |
|
|
unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
|
105 |
|
|
sector_t cur_page_block; /* Where it starts */
|
106 |
|
|
|
107 |
|
|
/*
|
108 |
|
|
* Page fetching state. These variables belong to dio_refill_pages().
|
109 |
|
|
*/
|
110 |
|
|
int curr_page; /* changes */
|
111 |
|
|
int total_pages; /* doesn't change */
|
112 |
|
|
unsigned long curr_user_address;/* changes */
|
113 |
|
|
|
114 |
|
|
/*
|
115 |
|
|
* Page queue. These variables belong to dio_refill_pages() and
|
116 |
|
|
* dio_get_page().
|
117 |
|
|
*/
|
118 |
|
|
struct page *pages[DIO_PAGES]; /* page buffer */
|
119 |
|
|
unsigned head; /* next page to process */
|
120 |
|
|
unsigned tail; /* last valid page + 1 */
|
121 |
|
|
int page_errors; /* errno from get_user_pages() */
|
122 |
|
|
|
123 |
|
|
/* BIO completion state */
|
124 |
|
|
spinlock_t bio_lock; /* protects BIO fields below */
|
125 |
|
|
unsigned long refcount; /* direct_io_worker() and bios */
|
126 |
|
|
struct bio *bio_list; /* singly linked via bi_private */
|
127 |
|
|
struct task_struct *waiter; /* waiting task (NULL if none) */
|
128 |
|
|
|
129 |
|
|
/* AIO related stuff */
|
130 |
|
|
struct kiocb *iocb; /* kiocb */
|
131 |
|
|
int is_async; /* is IO async ? */
|
132 |
|
|
int io_error; /* IO error in completion path */
|
133 |
|
|
ssize_t result; /* IO result */
|
134 |
|
|
};
|
135 |
|
|
|
136 |
|
|
/*
|
137 |
|
|
* How many pages are in the queue?
|
138 |
|
|
*/
|
139 |
|
|
static inline unsigned dio_pages_present(struct dio *dio)
|
140 |
|
|
{
|
141 |
|
|
return dio->tail - dio->head;
|
142 |
|
|
}
|
143 |
|
|
|
144 |
|
|
/*
|
145 |
|
|
* Go grab and pin some userspace pages. Typically we'll get 64 at a time.
|
146 |
|
|
*/
|
147 |
|
|
static int dio_refill_pages(struct dio *dio)
|
148 |
|
|
{
|
149 |
|
|
int ret;
|
150 |
|
|
int nr_pages;
|
151 |
|
|
|
152 |
|
|
nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES);
|
153 |
|
|
down_read(¤t->mm->mmap_sem);
|
154 |
|
|
ret = get_user_pages(
|
155 |
|
|
current, /* Task for fault acounting */
|
156 |
|
|
current->mm, /* whose pages? */
|
157 |
|
|
dio->curr_user_address, /* Where from? */
|
158 |
|
|
nr_pages, /* How many pages? */
|
159 |
|
|
dio->rw == READ, /* Write to memory? */
|
160 |
|
|
0, /* force (?) */
|
161 |
|
|
&dio->pages[0],
|
162 |
|
|
NULL); /* vmas */
|
163 |
|
|
up_read(¤t->mm->mmap_sem);
|
164 |
|
|
|
165 |
|
|
if (ret < 0 && dio->blocks_available && (dio->rw & WRITE)) {
|
166 |
|
|
struct page *page = ZERO_PAGE(0);
|
167 |
|
|
/*
|
168 |
|
|
* A memory fault, but the filesystem has some outstanding
|
169 |
|
|
* mapped blocks. We need to use those blocks up to avoid
|
170 |
|
|
* leaking stale data in the file.
|
171 |
|
|
*/
|
172 |
|
|
if (dio->page_errors == 0)
|
173 |
|
|
dio->page_errors = ret;
|
174 |
|
|
page_cache_get(page);
|
175 |
|
|
dio->pages[0] = page;
|
176 |
|
|
dio->head = 0;
|
177 |
|
|
dio->tail = 1;
|
178 |
|
|
ret = 0;
|
179 |
|
|
goto out;
|
180 |
|
|
}
|
181 |
|
|
|
182 |
|
|
if (ret >= 0) {
|
183 |
|
|
dio->curr_user_address += ret * PAGE_SIZE;
|
184 |
|
|
dio->curr_page += ret;
|
185 |
|
|
dio->head = 0;
|
186 |
|
|
dio->tail = ret;
|
187 |
|
|
ret = 0;
|
188 |
|
|
}
|
189 |
|
|
out:
|
190 |
|
|
return ret;
|
191 |
|
|
}
|
192 |
|
|
|
193 |
|
|
/*
|
194 |
|
|
* Get another userspace page. Returns an ERR_PTR on error. Pages are
|
195 |
|
|
* buffered inside the dio so that we can call get_user_pages() against a
|
196 |
|
|
* decent number of pages, less frequently. To provide nicer use of the
|
197 |
|
|
* L1 cache.
|
198 |
|
|
*/
|
199 |
|
|
static struct page *dio_get_page(struct dio *dio)
|
200 |
|
|
{
|
201 |
|
|
if (dio_pages_present(dio) == 0) {
|
202 |
|
|
int ret;
|
203 |
|
|
|
204 |
|
|
ret = dio_refill_pages(dio);
|
205 |
|
|
if (ret)
|
206 |
|
|
return ERR_PTR(ret);
|
207 |
|
|
BUG_ON(dio_pages_present(dio) == 0);
|
208 |
|
|
}
|
209 |
|
|
return dio->pages[dio->head++];
|
210 |
|
|
}
|
211 |
|
|
|
212 |
|
|
/**
|
213 |
|
|
* dio_complete() - called when all DIO BIO I/O has been completed
|
214 |
|
|
* @offset: the byte offset in the file of the completed operation
|
215 |
|
|
*
|
216 |
|
|
* This releases locks as dictated by the locking type, lets interested parties
|
217 |
|
|
* know that a DIO operation has completed, and calculates the resulting return
|
218 |
|
|
* code for the operation.
|
219 |
|
|
*
|
220 |
|
|
* It lets the filesystem know if it registered an interest earlier via
|
221 |
|
|
* get_block. Pass the private field of the map buffer_head so that
|
222 |
|
|
* filesystems can use it to hold additional state between get_block calls and
|
223 |
|
|
* dio_complete.
|
224 |
|
|
*/
|
225 |
|
|
static int dio_complete(struct dio *dio, loff_t offset, int ret)
|
226 |
|
|
{
|
227 |
|
|
ssize_t transferred = 0;
|
228 |
|
|
|
229 |
|
|
/*
|
230 |
|
|
* AIO submission can race with bio completion to get here while
|
231 |
|
|
* expecting to have the last io completed by bio completion.
|
232 |
|
|
* In that case -EIOCBQUEUED is in fact not an error we want
|
233 |
|
|
* to preserve through this call.
|
234 |
|
|
*/
|
235 |
|
|
if (ret == -EIOCBQUEUED)
|
236 |
|
|
ret = 0;
|
237 |
|
|
|
238 |
|
|
if (dio->result) {
|
239 |
|
|
transferred = dio->result;
|
240 |
|
|
|
241 |
|
|
/* Check for short read case */
|
242 |
|
|
if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
|
243 |
|
|
transferred = dio->i_size - offset;
|
244 |
|
|
}
|
245 |
|
|
|
246 |
|
|
if (dio->end_io && dio->result)
|
247 |
|
|
dio->end_io(dio->iocb, offset, transferred,
|
248 |
|
|
dio->map_bh.b_private);
|
249 |
|
|
if (dio->lock_type == DIO_LOCKING)
|
250 |
|
|
/* lockdep: non-owner release */
|
251 |
|
|
up_read_non_owner(&dio->inode->i_alloc_sem);
|
252 |
|
|
|
253 |
|
|
if (ret == 0)
|
254 |
|
|
ret = dio->page_errors;
|
255 |
|
|
if (ret == 0)
|
256 |
|
|
ret = dio->io_error;
|
257 |
|
|
if (ret == 0)
|
258 |
|
|
ret = transferred;
|
259 |
|
|
|
260 |
|
|
return ret;
|
261 |
|
|
}
|
262 |
|
|
|
263 |
|
|
static int dio_bio_complete(struct dio *dio, struct bio *bio);
|
264 |
|
|
/*
|
265 |
|
|
* Asynchronous IO callback.
|
266 |
|
|
*/
|
267 |
|
|
static void dio_bio_end_aio(struct bio *bio, int error)
|
268 |
|
|
{
|
269 |
|
|
struct dio *dio = bio->bi_private;
|
270 |
|
|
unsigned long remaining;
|
271 |
|
|
unsigned long flags;
|
272 |
|
|
|
273 |
|
|
/* cleanup the bio */
|
274 |
|
|
dio_bio_complete(dio, bio);
|
275 |
|
|
|
276 |
|
|
spin_lock_irqsave(&dio->bio_lock, flags);
|
277 |
|
|
remaining = --dio->refcount;
|
278 |
|
|
if (remaining == 1 && dio->waiter)
|
279 |
|
|
wake_up_process(dio->waiter);
|
280 |
|
|
spin_unlock_irqrestore(&dio->bio_lock, flags);
|
281 |
|
|
|
282 |
|
|
if (remaining == 0) {
|
283 |
|
|
int ret = dio_complete(dio, dio->iocb->ki_pos, 0);
|
284 |
|
|
aio_complete(dio->iocb, ret, 0);
|
285 |
|
|
kfree(dio);
|
286 |
|
|
}
|
287 |
|
|
}
|
288 |
|
|
|
289 |
|
|
/*
|
290 |
|
|
* The BIO completion handler simply queues the BIO up for the process-context
|
291 |
|
|
* handler.
|
292 |
|
|
*
|
293 |
|
|
* During I/O bi_private points at the dio. After I/O, bi_private is used to
|
294 |
|
|
* implement a singly-linked list of completed BIOs, at dio->bio_list.
|
295 |
|
|
*/
|
296 |
|
|
static void dio_bio_end_io(struct bio *bio, int error)
|
297 |
|
|
{
|
298 |
|
|
struct dio *dio = bio->bi_private;
|
299 |
|
|
unsigned long flags;
|
300 |
|
|
|
301 |
|
|
spin_lock_irqsave(&dio->bio_lock, flags);
|
302 |
|
|
bio->bi_private = dio->bio_list;
|
303 |
|
|
dio->bio_list = bio;
|
304 |
|
|
if (--dio->refcount == 1 && dio->waiter)
|
305 |
|
|
wake_up_process(dio->waiter);
|
306 |
|
|
spin_unlock_irqrestore(&dio->bio_lock, flags);
|
307 |
|
|
}
|
308 |
|
|
|
309 |
|
|
static int
|
310 |
|
|
dio_bio_alloc(struct dio *dio, struct block_device *bdev,
|
311 |
|
|
sector_t first_sector, int nr_vecs)
|
312 |
|
|
{
|
313 |
|
|
struct bio *bio;
|
314 |
|
|
|
315 |
|
|
bio = bio_alloc(GFP_KERNEL, nr_vecs);
|
316 |
|
|
if (bio == NULL)
|
317 |
|
|
return -ENOMEM;
|
318 |
|
|
|
319 |
|
|
bio->bi_bdev = bdev;
|
320 |
|
|
bio->bi_sector = first_sector;
|
321 |
|
|
if (dio->is_async)
|
322 |
|
|
bio->bi_end_io = dio_bio_end_aio;
|
323 |
|
|
else
|
324 |
|
|
bio->bi_end_io = dio_bio_end_io;
|
325 |
|
|
|
326 |
|
|
dio->bio = bio;
|
327 |
|
|
return 0;
|
328 |
|
|
}
|
329 |
|
|
|
330 |
|
|
/*
|
331 |
|
|
* In the AIO read case we speculatively dirty the pages before starting IO.
|
332 |
|
|
* During IO completion, any of these pages which happen to have been written
|
333 |
|
|
* back will be redirtied by bio_check_pages_dirty().
|
334 |
|
|
*
|
335 |
|
|
* bios hold a dio reference between submit_bio and ->end_io.
|
336 |
|
|
*/
|
337 |
|
|
static void dio_bio_submit(struct dio *dio)
|
338 |
|
|
{
|
339 |
|
|
struct bio *bio = dio->bio;
|
340 |
|
|
unsigned long flags;
|
341 |
|
|
|
342 |
|
|
bio->bi_private = dio;
|
343 |
|
|
|
344 |
|
|
spin_lock_irqsave(&dio->bio_lock, flags);
|
345 |
|
|
dio->refcount++;
|
346 |
|
|
spin_unlock_irqrestore(&dio->bio_lock, flags);
|
347 |
|
|
|
348 |
|
|
if (dio->is_async && dio->rw == READ)
|
349 |
|
|
bio_set_pages_dirty(bio);
|
350 |
|
|
|
351 |
|
|
submit_bio(dio->rw, bio);
|
352 |
|
|
|
353 |
|
|
dio->bio = NULL;
|
354 |
|
|
dio->boundary = 0;
|
355 |
|
|
}
|
356 |
|
|
|
357 |
|
|
/*
|
358 |
|
|
* Release any resources in case of a failure
|
359 |
|
|
*/
|
360 |
|
|
static void dio_cleanup(struct dio *dio)
|
361 |
|
|
{
|
362 |
|
|
while (dio_pages_present(dio))
|
363 |
|
|
page_cache_release(dio_get_page(dio));
|
364 |
|
|
}
|
365 |
|
|
|
366 |
|
|
/*
|
367 |
|
|
* Wait for the next BIO to complete. Remove it and return it. NULL is
|
368 |
|
|
* returned once all BIOs have been completed. This must only be called once
|
369 |
|
|
* all bios have been issued so that dio->refcount can only decrease. This
|
370 |
|
|
* requires that that the caller hold a reference on the dio.
|
371 |
|
|
*/
|
372 |
|
|
static struct bio *dio_await_one(struct dio *dio)
|
373 |
|
|
{
|
374 |
|
|
unsigned long flags;
|
375 |
|
|
struct bio *bio = NULL;
|
376 |
|
|
|
377 |
|
|
spin_lock_irqsave(&dio->bio_lock, flags);
|
378 |
|
|
|
379 |
|
|
/*
|
380 |
|
|
* Wait as long as the list is empty and there are bios in flight. bio
|
381 |
|
|
* completion drops the count, maybe adds to the list, and wakes while
|
382 |
|
|
* holding the bio_lock so we don't need set_current_state()'s barrier
|
383 |
|
|
* and can call it after testing our condition.
|
384 |
|
|
*/
|
385 |
|
|
while (dio->refcount > 1 && dio->bio_list == NULL) {
|
386 |
|
|
__set_current_state(TASK_UNINTERRUPTIBLE);
|
387 |
|
|
dio->waiter = current;
|
388 |
|
|
spin_unlock_irqrestore(&dio->bio_lock, flags);
|
389 |
|
|
io_schedule();
|
390 |
|
|
/* wake up sets us TASK_RUNNING */
|
391 |
|
|
spin_lock_irqsave(&dio->bio_lock, flags);
|
392 |
|
|
dio->waiter = NULL;
|
393 |
|
|
}
|
394 |
|
|
if (dio->bio_list) {
|
395 |
|
|
bio = dio->bio_list;
|
396 |
|
|
dio->bio_list = bio->bi_private;
|
397 |
|
|
}
|
398 |
|
|
spin_unlock_irqrestore(&dio->bio_lock, flags);
|
399 |
|
|
return bio;
|
400 |
|
|
}
|
401 |
|
|
|
402 |
|
|
/*
|
403 |
|
|
* Process one completed BIO. No locks are held.
|
404 |
|
|
*/
|
405 |
|
|
static int dio_bio_complete(struct dio *dio, struct bio *bio)
|
406 |
|
|
{
|
407 |
|
|
const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
|
408 |
|
|
struct bio_vec *bvec = bio->bi_io_vec;
|
409 |
|
|
int page_no;
|
410 |
|
|
|
411 |
|
|
if (!uptodate)
|
412 |
|
|
dio->io_error = -EIO;
|
413 |
|
|
|
414 |
|
|
if (dio->is_async && dio->rw == READ) {
|
415 |
|
|
bio_check_pages_dirty(bio); /* transfers ownership */
|
416 |
|
|
} else {
|
417 |
|
|
for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
|
418 |
|
|
struct page *page = bvec[page_no].bv_page;
|
419 |
|
|
|
420 |
|
|
if (dio->rw == READ && !PageCompound(page))
|
421 |
|
|
set_page_dirty_lock(page);
|
422 |
|
|
page_cache_release(page);
|
423 |
|
|
}
|
424 |
|
|
bio_put(bio);
|
425 |
|
|
}
|
426 |
|
|
return uptodate ? 0 : -EIO;
|
427 |
|
|
}
|
428 |
|
|
|
429 |
|
|
/*
|
430 |
|
|
* Wait on and process all in-flight BIOs. This must only be called once
|
431 |
|
|
* all bios have been issued so that the refcount can only decrease.
|
432 |
|
|
* This just waits for all bios to make it through dio_bio_complete. IO
|
433 |
|
|
* errors are propagated through dio->io_error and should be propagated via
|
434 |
|
|
* dio_complete().
|
435 |
|
|
*/
|
436 |
|
|
static void dio_await_completion(struct dio *dio)
|
437 |
|
|
{
|
438 |
|
|
struct bio *bio;
|
439 |
|
|
do {
|
440 |
|
|
bio = dio_await_one(dio);
|
441 |
|
|
if (bio)
|
442 |
|
|
dio_bio_complete(dio, bio);
|
443 |
|
|
} while (bio);
|
444 |
|
|
}
|
445 |
|
|
|
446 |
|
|
/*
|
447 |
|
|
* A really large O_DIRECT read or write can generate a lot of BIOs. So
|
448 |
|
|
* to keep the memory consumption sane we periodically reap any completed BIOs
|
449 |
|
|
* during the BIO generation phase.
|
450 |
|
|
*
|
451 |
|
|
* This also helps to limit the peak amount of pinned userspace memory.
|
452 |
|
|
*/
|
453 |
|
|
static int dio_bio_reap(struct dio *dio)
|
454 |
|
|
{
|
455 |
|
|
int ret = 0;
|
456 |
|
|
|
457 |
|
|
if (dio->reap_counter++ >= 64) {
|
458 |
|
|
while (dio->bio_list) {
|
459 |
|
|
unsigned long flags;
|
460 |
|
|
struct bio *bio;
|
461 |
|
|
int ret2;
|
462 |
|
|
|
463 |
|
|
spin_lock_irqsave(&dio->bio_lock, flags);
|
464 |
|
|
bio = dio->bio_list;
|
465 |
|
|
dio->bio_list = bio->bi_private;
|
466 |
|
|
spin_unlock_irqrestore(&dio->bio_lock, flags);
|
467 |
|
|
ret2 = dio_bio_complete(dio, bio);
|
468 |
|
|
if (ret == 0)
|
469 |
|
|
ret = ret2;
|
470 |
|
|
}
|
471 |
|
|
dio->reap_counter = 0;
|
472 |
|
|
}
|
473 |
|
|
return ret;
|
474 |
|
|
}
|
475 |
|
|
|
476 |
|
|
/*
|
477 |
|
|
* Call into the fs to map some more disk blocks. We record the current number
|
478 |
|
|
* of available blocks at dio->blocks_available. These are in units of the
|
479 |
|
|
* fs blocksize, (1 << inode->i_blkbits).
|
480 |
|
|
*
|
481 |
|
|
* The fs is allowed to map lots of blocks at once. If it wants to do that,
|
482 |
|
|
* it uses the passed inode-relative block number as the file offset, as usual.
|
483 |
|
|
*
|
484 |
|
|
* get_block() is passed the number of i_blkbits-sized blocks which direct_io
|
485 |
|
|
* has remaining to do. The fs should not map more than this number of blocks.
|
486 |
|
|
*
|
487 |
|
|
* If the fs has mapped a lot of blocks, it should populate bh->b_size to
|
488 |
|
|
* indicate how much contiguous disk space has been made available at
|
489 |
|
|
* bh->b_blocknr.
|
490 |
|
|
*
|
491 |
|
|
* If *any* of the mapped blocks are new, then the fs must set buffer_new().
|
492 |
|
|
* This isn't very efficient...
|
493 |
|
|
*
|
494 |
|
|
* In the case of filesystem holes: the fs may return an arbitrarily-large
|
495 |
|
|
* hole by returning an appropriate value in b_size and by clearing
|
496 |
|
|
* buffer_mapped(). However the direct-io code will only process holes one
|
497 |
|
|
* block at a time - it will repeatedly call get_block() as it walks the hole.
|
498 |
|
|
*/
|
499 |
|
|
static int get_more_blocks(struct dio *dio)
|
500 |
|
|
{
|
501 |
|
|
int ret;
|
502 |
|
|
struct buffer_head *map_bh = &dio->map_bh;
|
503 |
|
|
sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
|
504 |
|
|
unsigned long fs_count; /* Number of filesystem-sized blocks */
|
505 |
|
|
unsigned long dio_count;/* Number of dio_block-sized blocks */
|
506 |
|
|
unsigned long blkmask;
|
507 |
|
|
int create;
|
508 |
|
|
|
509 |
|
|
/*
|
510 |
|
|
* If there was a memory error and we've overwritten all the
|
511 |
|
|
* mapped blocks then we can now return that memory error
|
512 |
|
|
*/
|
513 |
|
|
ret = dio->page_errors;
|
514 |
|
|
if (ret == 0) {
|
515 |
|
|
BUG_ON(dio->block_in_file >= dio->final_block_in_request);
|
516 |
|
|
fs_startblk = dio->block_in_file >> dio->blkfactor;
|
517 |
|
|
dio_count = dio->final_block_in_request - dio->block_in_file;
|
518 |
|
|
fs_count = dio_count >> dio->blkfactor;
|
519 |
|
|
blkmask = (1 << dio->blkfactor) - 1;
|
520 |
|
|
if (dio_count & blkmask)
|
521 |
|
|
fs_count++;
|
522 |
|
|
|
523 |
|
|
map_bh->b_state = 0;
|
524 |
|
|
map_bh->b_size = fs_count << dio->inode->i_blkbits;
|
525 |
|
|
|
526 |
|
|
create = dio->rw & WRITE;
|
527 |
|
|
if (dio->lock_type == DIO_LOCKING) {
|
528 |
|
|
if (dio->block_in_file < (i_size_read(dio->inode) >>
|
529 |
|
|
dio->blkbits))
|
530 |
|
|
create = 0;
|
531 |
|
|
} else if (dio->lock_type == DIO_NO_LOCKING) {
|
532 |
|
|
create = 0;
|
533 |
|
|
}
|
534 |
|
|
|
535 |
|
|
/*
|
536 |
|
|
* For writes inside i_size we forbid block creations: only
|
537 |
|
|
* overwrites are permitted. We fall back to buffered writes
|
538 |
|
|
* at a higher level for inside-i_size block-instantiating
|
539 |
|
|
* writes.
|
540 |
|
|
*/
|
541 |
|
|
ret = (*dio->get_block)(dio->inode, fs_startblk,
|
542 |
|
|
map_bh, create);
|
543 |
|
|
}
|
544 |
|
|
return ret;
|
545 |
|
|
}
|
546 |
|
|
|
547 |
|
|
/*
|
548 |
|
|
* There is no bio. Make one now.
|
549 |
|
|
*/
|
550 |
|
|
static int dio_new_bio(struct dio *dio, sector_t start_sector)
|
551 |
|
|
{
|
552 |
|
|
sector_t sector;
|
553 |
|
|
int ret, nr_pages;
|
554 |
|
|
|
555 |
|
|
ret = dio_bio_reap(dio);
|
556 |
|
|
if (ret)
|
557 |
|
|
goto out;
|
558 |
|
|
sector = start_sector << (dio->blkbits - 9);
|
559 |
|
|
nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev));
|
560 |
|
|
BUG_ON(nr_pages <= 0);
|
561 |
|
|
ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages);
|
562 |
|
|
dio->boundary = 0;
|
563 |
|
|
out:
|
564 |
|
|
return ret;
|
565 |
|
|
}
|
566 |
|
|
|
567 |
|
|
/*
|
568 |
|
|
* Attempt to put the current chunk of 'cur_page' into the current BIO. If
|
569 |
|
|
* that was successful then update final_block_in_bio and take a ref against
|
570 |
|
|
* the just-added page.
|
571 |
|
|
*
|
572 |
|
|
* Return zero on success. Non-zero means the caller needs to start a new BIO.
|
573 |
|
|
*/
|
574 |
|
|
static int dio_bio_add_page(struct dio *dio)
|
575 |
|
|
{
|
576 |
|
|
int ret;
|
577 |
|
|
|
578 |
|
|
ret = bio_add_page(dio->bio, dio->cur_page,
|
579 |
|
|
dio->cur_page_len, dio->cur_page_offset);
|
580 |
|
|
if (ret == dio->cur_page_len) {
|
581 |
|
|
/*
|
582 |
|
|
* Decrement count only, if we are done with this page
|
583 |
|
|
*/
|
584 |
|
|
if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE)
|
585 |
|
|
dio->pages_in_io--;
|
586 |
|
|
page_cache_get(dio->cur_page);
|
587 |
|
|
dio->final_block_in_bio = dio->cur_page_block +
|
588 |
|
|
(dio->cur_page_len >> dio->blkbits);
|
589 |
|
|
ret = 0;
|
590 |
|
|
} else {
|
591 |
|
|
ret = 1;
|
592 |
|
|
}
|
593 |
|
|
return ret;
|
594 |
|
|
}
|
595 |
|
|
|
596 |
|
|
/*
|
597 |
|
|
* Put cur_page under IO. The section of cur_page which is described by
|
598 |
|
|
* cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
|
599 |
|
|
* starts on-disk at cur_page_block.
|
600 |
|
|
*
|
601 |
|
|
* We take a ref against the page here (on behalf of its presence in the bio).
|
602 |
|
|
*
|
603 |
|
|
* The caller of this function is responsible for removing cur_page from the
|
604 |
|
|
* dio, and for dropping the refcount which came from that presence.
|
605 |
|
|
*/
|
606 |
|
|
static int dio_send_cur_page(struct dio *dio)
|
607 |
|
|
{
|
608 |
|
|
int ret = 0;
|
609 |
|
|
|
610 |
|
|
if (dio->bio) {
|
611 |
|
|
/*
|
612 |
|
|
* See whether this new request is contiguous with the old
|
613 |
|
|
*/
|
614 |
|
|
if (dio->final_block_in_bio != dio->cur_page_block)
|
615 |
|
|
dio_bio_submit(dio);
|
616 |
|
|
/*
|
617 |
|
|
* Submit now if the underlying fs is about to perform a
|
618 |
|
|
* metadata read
|
619 |
|
|
*/
|
620 |
|
|
if (dio->boundary)
|
621 |
|
|
dio_bio_submit(dio);
|
622 |
|
|
}
|
623 |
|
|
|
624 |
|
|
if (dio->bio == NULL) {
|
625 |
|
|
ret = dio_new_bio(dio, dio->cur_page_block);
|
626 |
|
|
if (ret)
|
627 |
|
|
goto out;
|
628 |
|
|
}
|
629 |
|
|
|
630 |
|
|
if (dio_bio_add_page(dio) != 0) {
|
631 |
|
|
dio_bio_submit(dio);
|
632 |
|
|
ret = dio_new_bio(dio, dio->cur_page_block);
|
633 |
|
|
if (ret == 0) {
|
634 |
|
|
ret = dio_bio_add_page(dio);
|
635 |
|
|
BUG_ON(ret != 0);
|
636 |
|
|
}
|
637 |
|
|
}
|
638 |
|
|
out:
|
639 |
|
|
return ret;
|
640 |
|
|
}
|
641 |
|
|
|
642 |
|
|
/*
|
643 |
|
|
* An autonomous function to put a chunk of a page under deferred IO.
|
644 |
|
|
*
|
645 |
|
|
* The caller doesn't actually know (or care) whether this piece of page is in
|
646 |
|
|
* a BIO, or is under IO or whatever. We just take care of all possible
|
647 |
|
|
* situations here. The separation between the logic of do_direct_IO() and
|
648 |
|
|
* that of submit_page_section() is important for clarity. Please don't break.
|
649 |
|
|
*
|
650 |
|
|
* The chunk of page starts on-disk at blocknr.
|
651 |
|
|
*
|
652 |
|
|
* We perform deferred IO, by recording the last-submitted page inside our
|
653 |
|
|
* private part of the dio structure. If possible, we just expand the IO
|
654 |
|
|
* across that page here.
|
655 |
|
|
*
|
656 |
|
|
* If that doesn't work out then we put the old page into the bio and add this
|
657 |
|
|
* page to the dio instead.
|
658 |
|
|
*/
|
659 |
|
|
static int
|
660 |
|
|
submit_page_section(struct dio *dio, struct page *page,
|
661 |
|
|
unsigned offset, unsigned len, sector_t blocknr)
|
662 |
|
|
{
|
663 |
|
|
int ret = 0;
|
664 |
|
|
|
665 |
|
|
if (dio->rw & WRITE) {
|
666 |
|
|
/*
|
667 |
|
|
* Read accounting is performed in submit_bio()
|
668 |
|
|
*/
|
669 |
|
|
task_io_account_write(len);
|
670 |
|
|
}
|
671 |
|
|
|
672 |
|
|
/*
|
673 |
|
|
* Can we just grow the current page's presence in the dio?
|
674 |
|
|
*/
|
675 |
|
|
if ( (dio->cur_page == page) &&
|
676 |
|
|
(dio->cur_page_offset + dio->cur_page_len == offset) &&
|
677 |
|
|
(dio->cur_page_block +
|
678 |
|
|
(dio->cur_page_len >> dio->blkbits) == blocknr)) {
|
679 |
|
|
dio->cur_page_len += len;
|
680 |
|
|
|
681 |
|
|
/*
|
682 |
|
|
* If dio->boundary then we want to schedule the IO now to
|
683 |
|
|
* avoid metadata seeks.
|
684 |
|
|
*/
|
685 |
|
|
if (dio->boundary) {
|
686 |
|
|
ret = dio_send_cur_page(dio);
|
687 |
|
|
page_cache_release(dio->cur_page);
|
688 |
|
|
dio->cur_page = NULL;
|
689 |
|
|
}
|
690 |
|
|
goto out;
|
691 |
|
|
}
|
692 |
|
|
|
693 |
|
|
/*
|
694 |
|
|
* If there's a deferred page already there then send it.
|
695 |
|
|
*/
|
696 |
|
|
if (dio->cur_page) {
|
697 |
|
|
ret = dio_send_cur_page(dio);
|
698 |
|
|
page_cache_release(dio->cur_page);
|
699 |
|
|
dio->cur_page = NULL;
|
700 |
|
|
if (ret)
|
701 |
|
|
goto out;
|
702 |
|
|
}
|
703 |
|
|
|
704 |
|
|
page_cache_get(page); /* It is in dio */
|
705 |
|
|
dio->cur_page = page;
|
706 |
|
|
dio->cur_page_offset = offset;
|
707 |
|
|
dio->cur_page_len = len;
|
708 |
|
|
dio->cur_page_block = blocknr;
|
709 |
|
|
out:
|
710 |
|
|
return ret;
|
711 |
|
|
}
|
712 |
|
|
|
713 |
|
|
/*
|
714 |
|
|
* Clean any dirty buffers in the blockdev mapping which alias newly-created
|
715 |
|
|
* file blocks. Only called for S_ISREG files - blockdevs do not set
|
716 |
|
|
* buffer_new
|
717 |
|
|
*/
|
718 |
|
|
static void clean_blockdev_aliases(struct dio *dio)
|
719 |
|
|
{
|
720 |
|
|
unsigned i;
|
721 |
|
|
unsigned nblocks;
|
722 |
|
|
|
723 |
|
|
nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits;
|
724 |
|
|
|
725 |
|
|
for (i = 0; i < nblocks; i++) {
|
726 |
|
|
unmap_underlying_metadata(dio->map_bh.b_bdev,
|
727 |
|
|
dio->map_bh.b_blocknr + i);
|
728 |
|
|
}
|
729 |
|
|
}
|
730 |
|
|
|
731 |
|
|
/*
|
732 |
|
|
* If we are not writing the entire block and get_block() allocated
|
733 |
|
|
* the block for us, we need to fill-in the unused portion of the
|
734 |
|
|
* block with zeros. This happens only if user-buffer, fileoffset or
|
735 |
|
|
* io length is not filesystem block-size multiple.
|
736 |
|
|
*
|
737 |
|
|
* `end' is zero if we're doing the start of the IO, 1 at the end of the
|
738 |
|
|
* IO.
|
739 |
|
|
*/
|
740 |
|
|
static void dio_zero_block(struct dio *dio, int end)
|
741 |
|
|
{
|
742 |
|
|
unsigned dio_blocks_per_fs_block;
|
743 |
|
|
unsigned this_chunk_blocks; /* In dio_blocks */
|
744 |
|
|
unsigned this_chunk_bytes;
|
745 |
|
|
struct page *page;
|
746 |
|
|
|
747 |
|
|
dio->start_zero_done = 1;
|
748 |
|
|
if (!dio->blkfactor || !buffer_new(&dio->map_bh))
|
749 |
|
|
return;
|
750 |
|
|
|
751 |
|
|
dio_blocks_per_fs_block = 1 << dio->blkfactor;
|
752 |
|
|
this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1);
|
753 |
|
|
|
754 |
|
|
if (!this_chunk_blocks)
|
755 |
|
|
return;
|
756 |
|
|
|
757 |
|
|
/*
|
758 |
|
|
* We need to zero out part of an fs block. It is either at the
|
759 |
|
|
* beginning or the end of the fs block.
|
760 |
|
|
*/
|
761 |
|
|
if (end)
|
762 |
|
|
this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
|
763 |
|
|
|
764 |
|
|
this_chunk_bytes = this_chunk_blocks << dio->blkbits;
|
765 |
|
|
|
766 |
|
|
page = ZERO_PAGE(0);
|
767 |
|
|
if (submit_page_section(dio, page, 0, this_chunk_bytes,
|
768 |
|
|
dio->next_block_for_io))
|
769 |
|
|
return;
|
770 |
|
|
|
771 |
|
|
dio->next_block_for_io += this_chunk_blocks;
|
772 |
|
|
}
|
773 |
|
|
|
774 |
|
|
/*
|
775 |
|
|
* Walk the user pages, and the file, mapping blocks to disk and generating
|
776 |
|
|
* a sequence of (page,offset,len,block) mappings. These mappings are injected
|
777 |
|
|
* into submit_page_section(), which takes care of the next stage of submission
|
778 |
|
|
*
|
779 |
|
|
* Direct IO against a blockdev is different from a file. Because we can
|
780 |
|
|
* happily perform page-sized but 512-byte aligned IOs. It is important that
|
781 |
|
|
* blockdev IO be able to have fine alignment and large sizes.
|
782 |
|
|
*
|
783 |
|
|
* So what we do is to permit the ->get_block function to populate bh.b_size
|
784 |
|
|
* with the size of IO which is permitted at this offset and this i_blkbits.
|
785 |
|
|
*
|
786 |
|
|
* For best results, the blockdev should be set up with 512-byte i_blkbits and
|
787 |
|
|
* it should set b_size to PAGE_SIZE or more inside get_block(). This gives
|
788 |
|
|
* fine alignment but still allows this function to work in PAGE_SIZE units.
|
789 |
|
|
*/
|
790 |
|
|
static int do_direct_IO(struct dio *dio)
|
791 |
|
|
{
|
792 |
|
|
const unsigned blkbits = dio->blkbits;
|
793 |
|
|
const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
|
794 |
|
|
struct page *page;
|
795 |
|
|
unsigned block_in_page;
|
796 |
|
|
struct buffer_head *map_bh = &dio->map_bh;
|
797 |
|
|
int ret = 0;
|
798 |
|
|
|
799 |
|
|
/* The I/O can start at any block offset within the first page */
|
800 |
|
|
block_in_page = dio->first_block_in_page;
|
801 |
|
|
|
802 |
|
|
while (dio->block_in_file < dio->final_block_in_request) {
|
803 |
|
|
page = dio_get_page(dio);
|
804 |
|
|
if (IS_ERR(page)) {
|
805 |
|
|
ret = PTR_ERR(page);
|
806 |
|
|
goto out;
|
807 |
|
|
}
|
808 |
|
|
|
809 |
|
|
while (block_in_page < blocks_per_page) {
|
810 |
|
|
unsigned offset_in_page = block_in_page << blkbits;
|
811 |
|
|
unsigned this_chunk_bytes; /* # of bytes mapped */
|
812 |
|
|
unsigned this_chunk_blocks; /* # of blocks */
|
813 |
|
|
unsigned u;
|
814 |
|
|
|
815 |
|
|
if (dio->blocks_available == 0) {
|
816 |
|
|
/*
|
817 |
|
|
* Need to go and map some more disk
|
818 |
|
|
*/
|
819 |
|
|
unsigned long blkmask;
|
820 |
|
|
unsigned long dio_remainder;
|
821 |
|
|
|
822 |
|
|
ret = get_more_blocks(dio);
|
823 |
|
|
if (ret) {
|
824 |
|
|
page_cache_release(page);
|
825 |
|
|
goto out;
|
826 |
|
|
}
|
827 |
|
|
if (!buffer_mapped(map_bh))
|
828 |
|
|
goto do_holes;
|
829 |
|
|
|
830 |
|
|
dio->blocks_available =
|
831 |
|
|
map_bh->b_size >> dio->blkbits;
|
832 |
|
|
dio->next_block_for_io =
|
833 |
|
|
map_bh->b_blocknr << dio->blkfactor;
|
834 |
|
|
if (buffer_new(map_bh))
|
835 |
|
|
clean_blockdev_aliases(dio);
|
836 |
|
|
|
837 |
|
|
if (!dio->blkfactor)
|
838 |
|
|
goto do_holes;
|
839 |
|
|
|
840 |
|
|
blkmask = (1 << dio->blkfactor) - 1;
|
841 |
|
|
dio_remainder = (dio->block_in_file & blkmask);
|
842 |
|
|
|
843 |
|
|
/*
|
844 |
|
|
* If we are at the start of IO and that IO
|
845 |
|
|
* starts partway into a fs-block,
|
846 |
|
|
* dio_remainder will be non-zero. If the IO
|
847 |
|
|
* is a read then we can simply advance the IO
|
848 |
|
|
* cursor to the first block which is to be
|
849 |
|
|
* read. But if the IO is a write and the
|
850 |
|
|
* block was newly allocated we cannot do that;
|
851 |
|
|
* the start of the fs block must be zeroed out
|
852 |
|
|
* on-disk
|
853 |
|
|
*/
|
854 |
|
|
if (!buffer_new(map_bh))
|
855 |
|
|
dio->next_block_for_io += dio_remainder;
|
856 |
|
|
dio->blocks_available -= dio_remainder;
|
857 |
|
|
}
|
858 |
|
|
do_holes:
|
859 |
|
|
/* Handle holes */
|
860 |
|
|
if (!buffer_mapped(map_bh)) {
|
861 |
|
|
loff_t i_size_aligned;
|
862 |
|
|
|
863 |
|
|
/* AKPM: eargh, -ENOTBLK is a hack */
|
864 |
|
|
if (dio->rw & WRITE) {
|
865 |
|
|
page_cache_release(page);
|
866 |
|
|
return -ENOTBLK;
|
867 |
|
|
}
|
868 |
|
|
|
869 |
|
|
/*
|
870 |
|
|
* Be sure to account for a partial block as the
|
871 |
|
|
* last block in the file
|
872 |
|
|
*/
|
873 |
|
|
i_size_aligned = ALIGN(i_size_read(dio->inode),
|
874 |
|
|
1 << blkbits);
|
875 |
|
|
if (dio->block_in_file >=
|
876 |
|
|
i_size_aligned >> blkbits) {
|
877 |
|
|
/* We hit eof */
|
878 |
|
|
page_cache_release(page);
|
879 |
|
|
goto out;
|
880 |
|
|
}
|
881 |
|
|
zero_user_page(page, block_in_page << blkbits,
|
882 |
|
|
1 << blkbits, KM_USER0);
|
883 |
|
|
dio->block_in_file++;
|
884 |
|
|
block_in_page++;
|
885 |
|
|
goto next_block;
|
886 |
|
|
}
|
887 |
|
|
|
888 |
|
|
/*
|
889 |
|
|
* If we're performing IO which has an alignment which
|
890 |
|
|
* is finer than the underlying fs, go check to see if
|
891 |
|
|
* we must zero out the start of this block.
|
892 |
|
|
*/
|
893 |
|
|
if (unlikely(dio->blkfactor && !dio->start_zero_done))
|
894 |
|
|
dio_zero_block(dio, 0);
|
895 |
|
|
|
896 |
|
|
/*
|
897 |
|
|
* Work out, in this_chunk_blocks, how much disk we
|
898 |
|
|
* can add to this page
|
899 |
|
|
*/
|
900 |
|
|
this_chunk_blocks = dio->blocks_available;
|
901 |
|
|
u = (PAGE_SIZE - offset_in_page) >> blkbits;
|
902 |
|
|
if (this_chunk_blocks > u)
|
903 |
|
|
this_chunk_blocks = u;
|
904 |
|
|
u = dio->final_block_in_request - dio->block_in_file;
|
905 |
|
|
if (this_chunk_blocks > u)
|
906 |
|
|
this_chunk_blocks = u;
|
907 |
|
|
this_chunk_bytes = this_chunk_blocks << blkbits;
|
908 |
|
|
BUG_ON(this_chunk_bytes == 0);
|
909 |
|
|
|
910 |
|
|
dio->boundary = buffer_boundary(map_bh);
|
911 |
|
|
ret = submit_page_section(dio, page, offset_in_page,
|
912 |
|
|
this_chunk_bytes, dio->next_block_for_io);
|
913 |
|
|
if (ret) {
|
914 |
|
|
page_cache_release(page);
|
915 |
|
|
goto out;
|
916 |
|
|
}
|
917 |
|
|
dio->next_block_for_io += this_chunk_blocks;
|
918 |
|
|
|
919 |
|
|
dio->block_in_file += this_chunk_blocks;
|
920 |
|
|
block_in_page += this_chunk_blocks;
|
921 |
|
|
dio->blocks_available -= this_chunk_blocks;
|
922 |
|
|
next_block:
|
923 |
|
|
BUG_ON(dio->block_in_file > dio->final_block_in_request);
|
924 |
|
|
if (dio->block_in_file == dio->final_block_in_request)
|
925 |
|
|
break;
|
926 |
|
|
}
|
927 |
|
|
|
928 |
|
|
/* Drop the ref which was taken in get_user_pages() */
|
929 |
|
|
page_cache_release(page);
|
930 |
|
|
block_in_page = 0;
|
931 |
|
|
}
|
932 |
|
|
out:
|
933 |
|
|
return ret;
|
934 |
|
|
}
|
935 |
|
|
|
936 |
|
|
/*
|
937 |
|
|
* Releases both i_mutex and i_alloc_sem
|
938 |
|
|
*/
|
939 |
|
|
static ssize_t
|
940 |
|
|
direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode,
|
941 |
|
|
const struct iovec *iov, loff_t offset, unsigned long nr_segs,
|
942 |
|
|
unsigned blkbits, get_block_t get_block, dio_iodone_t end_io,
|
943 |
|
|
struct dio *dio)
|
944 |
|
|
{
|
945 |
|
|
unsigned long user_addr;
|
946 |
|
|
unsigned long flags;
|
947 |
|
|
int seg;
|
948 |
|
|
ssize_t ret = 0;
|
949 |
|
|
ssize_t ret2;
|
950 |
|
|
size_t bytes;
|
951 |
|
|
|
952 |
|
|
dio->inode = inode;
|
953 |
|
|
dio->rw = rw;
|
954 |
|
|
dio->blkbits = blkbits;
|
955 |
|
|
dio->blkfactor = inode->i_blkbits - blkbits;
|
956 |
|
|
dio->block_in_file = offset >> blkbits;
|
957 |
|
|
|
958 |
|
|
dio->get_block = get_block;
|
959 |
|
|
dio->end_io = end_io;
|
960 |
|
|
dio->final_block_in_bio = -1;
|
961 |
|
|
dio->next_block_for_io = -1;
|
962 |
|
|
|
963 |
|
|
dio->iocb = iocb;
|
964 |
|
|
dio->i_size = i_size_read(inode);
|
965 |
|
|
|
966 |
|
|
spin_lock_init(&dio->bio_lock);
|
967 |
|
|
dio->refcount = 1;
|
968 |
|
|
|
969 |
|
|
/*
|
970 |
|
|
* In case of non-aligned buffers, we may need 2 more
|
971 |
|
|
* pages since we need to zero out first and last block.
|
972 |
|
|
*/
|
973 |
|
|
if (unlikely(dio->blkfactor))
|
974 |
|
|
dio->pages_in_io = 2;
|
975 |
|
|
|
976 |
|
|
for (seg = 0; seg < nr_segs; seg++) {
|
977 |
|
|
user_addr = (unsigned long)iov[seg].iov_base;
|
978 |
|
|
dio->pages_in_io +=
|
979 |
|
|
((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE
|
980 |
|
|
- user_addr/PAGE_SIZE);
|
981 |
|
|
}
|
982 |
|
|
|
983 |
|
|
for (seg = 0; seg < nr_segs; seg++) {
|
984 |
|
|
user_addr = (unsigned long)iov[seg].iov_base;
|
985 |
|
|
dio->size += bytes = iov[seg].iov_len;
|
986 |
|
|
|
987 |
|
|
/* Index into the first page of the first block */
|
988 |
|
|
dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
|
989 |
|
|
dio->final_block_in_request = dio->block_in_file +
|
990 |
|
|
(bytes >> blkbits);
|
991 |
|
|
/* Page fetching state */
|
992 |
|
|
dio->head = 0;
|
993 |
|
|
dio->tail = 0;
|
994 |
|
|
dio->curr_page = 0;
|
995 |
|
|
|
996 |
|
|
dio->total_pages = 0;
|
997 |
|
|
if (user_addr & (PAGE_SIZE-1)) {
|
998 |
|
|
dio->total_pages++;
|
999 |
|
|
bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
|
1000 |
|
|
}
|
1001 |
|
|
dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
|
1002 |
|
|
dio->curr_user_address = user_addr;
|
1003 |
|
|
|
1004 |
|
|
ret = do_direct_IO(dio);
|
1005 |
|
|
|
1006 |
|
|
dio->result += iov[seg].iov_len -
|
1007 |
|
|
((dio->final_block_in_request - dio->block_in_file) <<
|
1008 |
|
|
blkbits);
|
1009 |
|
|
|
1010 |
|
|
if (ret) {
|
1011 |
|
|
dio_cleanup(dio);
|
1012 |
|
|
break;
|
1013 |
|
|
}
|
1014 |
|
|
} /* end iovec loop */
|
1015 |
|
|
|
1016 |
|
|
if (ret == -ENOTBLK && (rw & WRITE)) {
|
1017 |
|
|
/*
|
1018 |
|
|
* The remaining part of the request will be
|
1019 |
|
|
* be handled by buffered I/O when we return
|
1020 |
|
|
*/
|
1021 |
|
|
ret = 0;
|
1022 |
|
|
}
|
1023 |
|
|
/*
|
1024 |
|
|
* There may be some unwritten disk at the end of a part-written
|
1025 |
|
|
* fs-block-sized block. Go zero that now.
|
1026 |
|
|
*/
|
1027 |
|
|
dio_zero_block(dio, 1);
|
1028 |
|
|
|
1029 |
|
|
if (dio->cur_page) {
|
1030 |
|
|
ret2 = dio_send_cur_page(dio);
|
1031 |
|
|
if (ret == 0)
|
1032 |
|
|
ret = ret2;
|
1033 |
|
|
page_cache_release(dio->cur_page);
|
1034 |
|
|
dio->cur_page = NULL;
|
1035 |
|
|
}
|
1036 |
|
|
if (dio->bio)
|
1037 |
|
|
dio_bio_submit(dio);
|
1038 |
|
|
|
1039 |
|
|
/* All IO is now issued, send it on its way */
|
1040 |
|
|
blk_run_address_space(inode->i_mapping);
|
1041 |
|
|
|
1042 |
|
|
/*
|
1043 |
|
|
* It is possible that, we return short IO due to end of file.
|
1044 |
|
|
* In that case, we need to release all the pages we got hold on.
|
1045 |
|
|
*/
|
1046 |
|
|
dio_cleanup(dio);
|
1047 |
|
|
|
1048 |
|
|
/*
|
1049 |
|
|
* All block lookups have been performed. For READ requests
|
1050 |
|
|
* we can let i_mutex go now that its achieved its purpose
|
1051 |
|
|
* of protecting us from looking up uninitialized blocks.
|
1052 |
|
|
*/
|
1053 |
|
|
if ((rw == READ) && (dio->lock_type == DIO_LOCKING))
|
1054 |
|
|
mutex_unlock(&dio->inode->i_mutex);
|
1055 |
|
|
|
1056 |
|
|
/*
|
1057 |
|
|
* The only time we want to leave bios in flight is when a successful
|
1058 |
|
|
* partial aio read or full aio write have been setup. In that case
|
1059 |
|
|
* bio completion will call aio_complete. The only time it's safe to
|
1060 |
|
|
* call aio_complete is when we return -EIOCBQUEUED, so we key on that.
|
1061 |
|
|
* This had *better* be the only place that raises -EIOCBQUEUED.
|
1062 |
|
|
*/
|
1063 |
|
|
BUG_ON(ret == -EIOCBQUEUED);
|
1064 |
|
|
if (dio->is_async && ret == 0 && dio->result &&
|
1065 |
|
|
((rw & READ) || (dio->result == dio->size)))
|
1066 |
|
|
ret = -EIOCBQUEUED;
|
1067 |
|
|
|
1068 |
|
|
if (ret != -EIOCBQUEUED)
|
1069 |
|
|
dio_await_completion(dio);
|
1070 |
|
|
|
1071 |
|
|
/*
|
1072 |
|
|
* Sync will always be dropping the final ref and completing the
|
1073 |
|
|
* operation. AIO can if it was a broken operation described above or
|
1074 |
|
|
* in fact if all the bios race to complete before we get here. In
|
1075 |
|
|
* that case dio_complete() translates the EIOCBQUEUED into the proper
|
1076 |
|
|
* return code that the caller will hand to aio_complete().
|
1077 |
|
|
*
|
1078 |
|
|
* This is managed by the bio_lock instead of being an atomic_t so that
|
1079 |
|
|
* completion paths can drop their ref and use the remaining count to
|
1080 |
|
|
* decide to wake the submission path atomically.
|
1081 |
|
|
*/
|
1082 |
|
|
spin_lock_irqsave(&dio->bio_lock, flags);
|
1083 |
|
|
ret2 = --dio->refcount;
|
1084 |
|
|
spin_unlock_irqrestore(&dio->bio_lock, flags);
|
1085 |
|
|
|
1086 |
|
|
if (ret2 == 0) {
|
1087 |
|
|
ret = dio_complete(dio, offset, ret);
|
1088 |
|
|
kfree(dio);
|
1089 |
|
|
} else
|
1090 |
|
|
BUG_ON(ret != -EIOCBQUEUED);
|
1091 |
|
|
|
1092 |
|
|
return ret;
|
1093 |
|
|
}
|
1094 |
|
|
|
1095 |
|
|
/*
|
1096 |
|
|
* This is a library function for use by filesystem drivers.
|
1097 |
|
|
* The locking rules are governed by the dio_lock_type parameter.
|
1098 |
|
|
*
|
1099 |
|
|
* DIO_NO_LOCKING (no locking, for raw block device access)
|
1100 |
|
|
* For writes, i_mutex is not held on entry; it is never taken.
|
1101 |
|
|
*
|
1102 |
|
|
* DIO_LOCKING (simple locking for regular files)
|
1103 |
|
|
* For writes we are called under i_mutex and return with i_mutex held, even
|
1104 |
|
|
* though it is internally dropped.
|
1105 |
|
|
* For reads, i_mutex is not held on entry, but it is taken and dropped before
|
1106 |
|
|
* returning.
|
1107 |
|
|
*
|
1108 |
|
|
* DIO_OWN_LOCKING (filesystem provides synchronisation and handling of
|
1109 |
|
|
* uninitialised data, allowing parallel direct readers and writers)
|
1110 |
|
|
* For writes we are called without i_mutex, return without it, never touch it.
|
1111 |
|
|
* For reads we are called under i_mutex and return with i_mutex held, even
|
1112 |
|
|
* though it may be internally dropped.
|
1113 |
|
|
*
|
1114 |
|
|
* Additional i_alloc_sem locking requirements described inline below.
|
1115 |
|
|
*/
|
1116 |
|
|
ssize_t
|
1117 |
|
|
__blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
|
1118 |
|
|
struct block_device *bdev, const struct iovec *iov, loff_t offset,
|
1119 |
|
|
unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
|
1120 |
|
|
int dio_lock_type)
|
1121 |
|
|
{
|
1122 |
|
|
int seg;
|
1123 |
|
|
size_t size;
|
1124 |
|
|
unsigned long addr;
|
1125 |
|
|
unsigned blkbits = inode->i_blkbits;
|
1126 |
|
|
unsigned bdev_blkbits = 0;
|
1127 |
|
|
unsigned blocksize_mask = (1 << blkbits) - 1;
|
1128 |
|
|
ssize_t retval = -EINVAL;
|
1129 |
|
|
loff_t end = offset;
|
1130 |
|
|
struct dio *dio;
|
1131 |
|
|
int release_i_mutex = 0;
|
1132 |
|
|
int acquire_i_mutex = 0;
|
1133 |
|
|
|
1134 |
|
|
if (rw & WRITE)
|
1135 |
|
|
rw = WRITE_SYNC;
|
1136 |
|
|
|
1137 |
|
|
if (bdev)
|
1138 |
|
|
bdev_blkbits = blksize_bits(bdev_hardsect_size(bdev));
|
1139 |
|
|
|
1140 |
|
|
if (offset & blocksize_mask) {
|
1141 |
|
|
if (bdev)
|
1142 |
|
|
blkbits = bdev_blkbits;
|
1143 |
|
|
blocksize_mask = (1 << blkbits) - 1;
|
1144 |
|
|
if (offset & blocksize_mask)
|
1145 |
|
|
goto out;
|
1146 |
|
|
}
|
1147 |
|
|
|
1148 |
|
|
/* Check the memory alignment. Blocks cannot straddle pages */
|
1149 |
|
|
for (seg = 0; seg < nr_segs; seg++) {
|
1150 |
|
|
addr = (unsigned long)iov[seg].iov_base;
|
1151 |
|
|
size = iov[seg].iov_len;
|
1152 |
|
|
end += size;
|
1153 |
|
|
if ((addr & blocksize_mask) || (size & blocksize_mask)) {
|
1154 |
|
|
if (bdev)
|
1155 |
|
|
blkbits = bdev_blkbits;
|
1156 |
|
|
blocksize_mask = (1 << blkbits) - 1;
|
1157 |
|
|
if ((addr & blocksize_mask) || (size & blocksize_mask))
|
1158 |
|
|
goto out;
|
1159 |
|
|
}
|
1160 |
|
|
}
|
1161 |
|
|
|
1162 |
|
|
dio = kzalloc(sizeof(*dio), GFP_KERNEL);
|
1163 |
|
|
retval = -ENOMEM;
|
1164 |
|
|
if (!dio)
|
1165 |
|
|
goto out;
|
1166 |
|
|
|
1167 |
|
|
/*
|
1168 |
|
|
* For block device access DIO_NO_LOCKING is used,
|
1169 |
|
|
* neither readers nor writers do any locking at all
|
1170 |
|
|
* For regular files using DIO_LOCKING,
|
1171 |
|
|
* readers need to grab i_mutex and i_alloc_sem
|
1172 |
|
|
* writers need to grab i_alloc_sem only (i_mutex is already held)
|
1173 |
|
|
* For regular files using DIO_OWN_LOCKING,
|
1174 |
|
|
* neither readers nor writers take any locks here
|
1175 |
|
|
*/
|
1176 |
|
|
dio->lock_type = dio_lock_type;
|
1177 |
|
|
if (dio_lock_type != DIO_NO_LOCKING) {
|
1178 |
|
|
/* watch out for a 0 len io from a tricksy fs */
|
1179 |
|
|
if (rw == READ && end > offset) {
|
1180 |
|
|
struct address_space *mapping;
|
1181 |
|
|
|
1182 |
|
|
mapping = iocb->ki_filp->f_mapping;
|
1183 |
|
|
if (dio_lock_type != DIO_OWN_LOCKING) {
|
1184 |
|
|
mutex_lock(&inode->i_mutex);
|
1185 |
|
|
release_i_mutex = 1;
|
1186 |
|
|
}
|
1187 |
|
|
|
1188 |
|
|
retval = filemap_write_and_wait_range(mapping, offset,
|
1189 |
|
|
end - 1);
|
1190 |
|
|
if (retval) {
|
1191 |
|
|
kfree(dio);
|
1192 |
|
|
goto out;
|
1193 |
|
|
}
|
1194 |
|
|
|
1195 |
|
|
if (dio_lock_type == DIO_OWN_LOCKING) {
|
1196 |
|
|
mutex_unlock(&inode->i_mutex);
|
1197 |
|
|
acquire_i_mutex = 1;
|
1198 |
|
|
}
|
1199 |
|
|
}
|
1200 |
|
|
|
1201 |
|
|
if (dio_lock_type == DIO_LOCKING)
|
1202 |
|
|
/* lockdep: not the owner will release it */
|
1203 |
|
|
down_read_non_owner(&inode->i_alloc_sem);
|
1204 |
|
|
}
|
1205 |
|
|
|
1206 |
|
|
/*
|
1207 |
|
|
* For file extending writes updating i_size before data
|
1208 |
|
|
* writeouts complete can expose uninitialized blocks. So
|
1209 |
|
|
* even for AIO, we need to wait for i/o to complete before
|
1210 |
|
|
* returning in this case.
|
1211 |
|
|
*/
|
1212 |
|
|
dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
|
1213 |
|
|
(end > i_size_read(inode)));
|
1214 |
|
|
|
1215 |
|
|
retval = direct_io_worker(rw, iocb, inode, iov, offset,
|
1216 |
|
|
nr_segs, blkbits, get_block, end_io, dio);
|
1217 |
|
|
|
1218 |
|
|
if (rw == READ && dio_lock_type == DIO_LOCKING)
|
1219 |
|
|
release_i_mutex = 0;
|
1220 |
|
|
|
1221 |
|
|
out:
|
1222 |
|
|
if (release_i_mutex)
|
1223 |
|
|
mutex_unlock(&inode->i_mutex);
|
1224 |
|
|
else if (acquire_i_mutex)
|
1225 |
|
|
mutex_lock(&inode->i_mutex);
|
1226 |
|
|
return retval;
|
1227 |
|
|
}
|
1228 |
|
|
EXPORT_SYMBOL(__blockdev_direct_IO);
|