OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [fs/] [ext3/] [inode.c] - Blame information for rev 78

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 *  linux/fs/ext3/inode.c
3
 *
4
 * Copyright (C) 1992, 1993, 1994, 1995
5
 * Remy Card (card@masi.ibp.fr)
6
 * Laboratoire MASI - Institut Blaise Pascal
7
 * Universite Pierre et Marie Curie (Paris VI)
8
 *
9
 *  from
10
 *
11
 *  linux/fs/minix/inode.c
12
 *
13
 *  Copyright (C) 1991, 1992  Linus Torvalds
14
 *
15
 *  Goal-directed block allocation by Stephen Tweedie
16
 *      (sct@redhat.com), 1993, 1998
17
 *  Big-endian to little-endian byte-swapping/bitmaps by
18
 *        David S. Miller (davem@caip.rutgers.edu), 1995
19
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
20
 *      (jj@sunsite.ms.mff.cuni.cz)
21
 *
22
 *  Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23
 */
24
 
25
#include <linux/module.h>
26
#include <linux/fs.h>
27
#include <linux/time.h>
28
#include <linux/ext3_jbd.h>
29
#include <linux/jbd.h>
30
#include <linux/highuid.h>
31
#include <linux/pagemap.h>
32
#include <linux/quotaops.h>
33
#include <linux/string.h>
34
#include <linux/buffer_head.h>
35
#include <linux/writeback.h>
36
#include <linux/mpage.h>
37
#include <linux/uio.h>
38
#include <linux/bio.h>
39
#include "xattr.h"
40
#include "acl.h"
41
 
42
static int ext3_writepage_trans_blocks(struct inode *inode);
43
 
44
/*
45
 * Test whether an inode is a fast symlink.
46
 */
47
static int ext3_inode_is_fast_symlink(struct inode *inode)
48
{
49
        int ea_blocks = EXT3_I(inode)->i_file_acl ?
50
                (inode->i_sb->s_blocksize >> 9) : 0;
51
 
52
        return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
53
}
54
 
55
/*
56
 * The ext3 forget function must perform a revoke if we are freeing data
57
 * which has been journaled.  Metadata (eg. indirect blocks) must be
58
 * revoked in all cases.
59
 *
60
 * "bh" may be NULL: a metadata block may have been freed from memory
61
 * but there may still be a record of it in the journal, and that record
62
 * still needs to be revoked.
63
 */
64
int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
65
                        struct buffer_head *bh, ext3_fsblk_t blocknr)
66
{
67
        int err;
68
 
69
        might_sleep();
70
 
71
        BUFFER_TRACE(bh, "enter");
72
 
73
        jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
74
                  "data mode %lx\n",
75
                  bh, is_metadata, inode->i_mode,
76
                  test_opt(inode->i_sb, DATA_FLAGS));
77
 
78
        /* Never use the revoke function if we are doing full data
79
         * journaling: there is no need to, and a V1 superblock won't
80
         * support it.  Otherwise, only skip the revoke on un-journaled
81
         * data blocks. */
82
 
83
        if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
84
            (!is_metadata && !ext3_should_journal_data(inode))) {
85
                if (bh) {
86
                        BUFFER_TRACE(bh, "call journal_forget");
87
                        return ext3_journal_forget(handle, bh);
88
                }
89
                return 0;
90
        }
91
 
92
        /*
93
         * data!=journal && (is_metadata || should_journal_data(inode))
94
         */
95
        BUFFER_TRACE(bh, "call ext3_journal_revoke");
96
        err = ext3_journal_revoke(handle, blocknr, bh);
97
        if (err)
98
                ext3_abort(inode->i_sb, __FUNCTION__,
99
                           "error %d when attempting revoke", err);
100
        BUFFER_TRACE(bh, "exit");
101
        return err;
102
}
103
 
104
/*
105
 * Work out how many blocks we need to proceed with the next chunk of a
106
 * truncate transaction.
107
 */
108
static unsigned long blocks_for_truncate(struct inode *inode)
109
{
110
        unsigned long needed;
111
 
112
        needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
113
 
114
        /* Give ourselves just enough room to cope with inodes in which
115
         * i_blocks is corrupt: we've seen disk corruptions in the past
116
         * which resulted in random data in an inode which looked enough
117
         * like a regular file for ext3 to try to delete it.  Things
118
         * will go a bit crazy if that happens, but at least we should
119
         * try not to panic the whole kernel. */
120
        if (needed < 2)
121
                needed = 2;
122
 
123
        /* But we need to bound the transaction so we don't overflow the
124
         * journal. */
125
        if (needed > EXT3_MAX_TRANS_DATA)
126
                needed = EXT3_MAX_TRANS_DATA;
127
 
128
        return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
129
}
130
 
131
/*
132
 * Truncate transactions can be complex and absolutely huge.  So we need to
133
 * be able to restart the transaction at a conventient checkpoint to make
134
 * sure we don't overflow the journal.
135
 *
136
 * start_transaction gets us a new handle for a truncate transaction,
137
 * and extend_transaction tries to extend the existing one a bit.  If
138
 * extend fails, we need to propagate the failure up and restart the
139
 * transaction in the top-level truncate loop. --sct
140
 */
141
static handle_t *start_transaction(struct inode *inode)
142
{
143
        handle_t *result;
144
 
145
        result = ext3_journal_start(inode, blocks_for_truncate(inode));
146
        if (!IS_ERR(result))
147
                return result;
148
 
149
        ext3_std_error(inode->i_sb, PTR_ERR(result));
150
        return result;
151
}
152
 
153
/*
154
 * Try to extend this transaction for the purposes of truncation.
155
 *
156
 * Returns 0 if we managed to create more room.  If we can't create more
157
 * room, and the transaction must be restarted we return 1.
158
 */
159
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
160
{
161
        if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
162
                return 0;
163
        if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
164
                return 0;
165
        return 1;
166
}
167
 
168
/*
169
 * Restart the transaction associated with *handle.  This does a commit,
170
 * so before we call here everything must be consistently dirtied against
171
 * this transaction.
172
 */
173
static int ext3_journal_test_restart(handle_t *handle, struct inode *inode)
174
{
175
        jbd_debug(2, "restarting handle %p\n", handle);
176
        return ext3_journal_restart(handle, blocks_for_truncate(inode));
177
}
178
 
179
/*
180
 * Called at the last iput() if i_nlink is zero.
181
 */
182
void ext3_delete_inode (struct inode * inode)
183
{
184
        handle_t *handle;
185
 
186
        truncate_inode_pages(&inode->i_data, 0);
187
 
188
        if (is_bad_inode(inode))
189
                goto no_delete;
190
 
191
        handle = start_transaction(inode);
192
        if (IS_ERR(handle)) {
193
                /*
194
                 * If we're going to skip the normal cleanup, we still need to
195
                 * make sure that the in-core orphan linked list is properly
196
                 * cleaned up.
197
                 */
198
                ext3_orphan_del(NULL, inode);
199
                goto no_delete;
200
        }
201
 
202
        if (IS_SYNC(inode))
203
                handle->h_sync = 1;
204
        inode->i_size = 0;
205
        if (inode->i_blocks)
206
                ext3_truncate(inode);
207
        /*
208
         * Kill off the orphan record which ext3_truncate created.
209
         * AKPM: I think this can be inside the above `if'.
210
         * Note that ext3_orphan_del() has to be able to cope with the
211
         * deletion of a non-existent orphan - this is because we don't
212
         * know if ext3_truncate() actually created an orphan record.
213
         * (Well, we could do this if we need to, but heck - it works)
214
         */
215
        ext3_orphan_del(handle, inode);
216
        EXT3_I(inode)->i_dtime  = get_seconds();
217
 
218
        /*
219
         * One subtle ordering requirement: if anything has gone wrong
220
         * (transaction abort, IO errors, whatever), then we can still
221
         * do these next steps (the fs will already have been marked as
222
         * having errors), but we can't free the inode if the mark_dirty
223
         * fails.
224
         */
225
        if (ext3_mark_inode_dirty(handle, inode))
226
                /* If that failed, just do the required in-core inode clear. */
227
                clear_inode(inode);
228
        else
229
                ext3_free_inode(handle, inode);
230
        ext3_journal_stop(handle);
231
        return;
232
no_delete:
233
        clear_inode(inode);     /* We must guarantee clearing of inode... */
234
}
235
 
236
typedef struct {
237
        __le32  *p;
238
        __le32  key;
239
        struct buffer_head *bh;
240
} Indirect;
241
 
242
static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
243
{
244
        p->key = *(p->p = v);
245
        p->bh = bh;
246
}
247
 
248
static int verify_chain(Indirect *from, Indirect *to)
249
{
250
        while (from <= to && from->key == *from->p)
251
                from++;
252
        return (from > to);
253
}
254
 
255
/**
256
 *      ext3_block_to_path - parse the block number into array of offsets
257
 *      @inode: inode in question (we are only interested in its superblock)
258
 *      @i_block: block number to be parsed
259
 *      @offsets: array to store the offsets in
260
 *      @boundary: set this non-zero if the referred-to block is likely to be
261
 *             followed (on disk) by an indirect block.
262
 *
263
 *      To store the locations of file's data ext3 uses a data structure common
264
 *      for UNIX filesystems - tree of pointers anchored in the inode, with
265
 *      data blocks at leaves and indirect blocks in intermediate nodes.
266
 *      This function translates the block number into path in that tree -
267
 *      return value is the path length and @offsets[n] is the offset of
268
 *      pointer to (n+1)th node in the nth one. If @block is out of range
269
 *      (negative or too large) warning is printed and zero returned.
270
 *
271
 *      Note: function doesn't find node addresses, so no IO is needed. All
272
 *      we need to know is the capacity of indirect blocks (taken from the
273
 *      inode->i_sb).
274
 */
275
 
276
/*
277
 * Portability note: the last comparison (check that we fit into triple
278
 * indirect block) is spelled differently, because otherwise on an
279
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
280
 * if our filesystem had 8Kb blocks. We might use long long, but that would
281
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
282
 * i_block would have to be negative in the very beginning, so we would not
283
 * get there at all.
284
 */
285
 
286
static int ext3_block_to_path(struct inode *inode,
287
                        long i_block, int offsets[4], int *boundary)
288
{
289
        int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
290
        int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
291
        const long direct_blocks = EXT3_NDIR_BLOCKS,
292
                indirect_blocks = ptrs,
293
                double_blocks = (1 << (ptrs_bits * 2));
294
        int n = 0;
295
        int final = 0;
296
 
297
        if (i_block < 0) {
298
                ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
299
        } else if (i_block < direct_blocks) {
300
                offsets[n++] = i_block;
301
                final = direct_blocks;
302
        } else if ( (i_block -= direct_blocks) < indirect_blocks) {
303
                offsets[n++] = EXT3_IND_BLOCK;
304
                offsets[n++] = i_block;
305
                final = ptrs;
306
        } else if ((i_block -= indirect_blocks) < double_blocks) {
307
                offsets[n++] = EXT3_DIND_BLOCK;
308
                offsets[n++] = i_block >> ptrs_bits;
309
                offsets[n++] = i_block & (ptrs - 1);
310
                final = ptrs;
311
        } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
312
                offsets[n++] = EXT3_TIND_BLOCK;
313
                offsets[n++] = i_block >> (ptrs_bits * 2);
314
                offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
315
                offsets[n++] = i_block & (ptrs - 1);
316
                final = ptrs;
317
        } else {
318
                ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
319
        }
320
        if (boundary)
321
                *boundary = final - 1 - (i_block & (ptrs - 1));
322
        return n;
323
}
324
 
325
/**
326
 *      ext3_get_branch - read the chain of indirect blocks leading to data
327
 *      @inode: inode in question
328
 *      @depth: depth of the chain (1 - direct pointer, etc.)
329
 *      @offsets: offsets of pointers in inode/indirect blocks
330
 *      @chain: place to store the result
331
 *      @err: here we store the error value
332
 *
333
 *      Function fills the array of triples <key, p, bh> and returns %NULL
334
 *      if everything went OK or the pointer to the last filled triple
335
 *      (incomplete one) otherwise. Upon the return chain[i].key contains
336
 *      the number of (i+1)-th block in the chain (as it is stored in memory,
337
 *      i.e. little-endian 32-bit), chain[i].p contains the address of that
338
 *      number (it points into struct inode for i==0 and into the bh->b_data
339
 *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
340
 *      block for i>0 and NULL for i==0. In other words, it holds the block
341
 *      numbers of the chain, addresses they were taken from (and where we can
342
 *      verify that chain did not change) and buffer_heads hosting these
343
 *      numbers.
344
 *
345
 *      Function stops when it stumbles upon zero pointer (absent block)
346
 *              (pointer to last triple returned, *@err == 0)
347
 *      or when it gets an IO error reading an indirect block
348
 *              (ditto, *@err == -EIO)
349
 *      or when it notices that chain had been changed while it was reading
350
 *              (ditto, *@err == -EAGAIN)
351
 *      or when it reads all @depth-1 indirect blocks successfully and finds
352
 *      the whole chain, all way to the data (returns %NULL, *err == 0).
353
 */
354
static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
355
                                 Indirect chain[4], int *err)
356
{
357
        struct super_block *sb = inode->i_sb;
358
        Indirect *p = chain;
359
        struct buffer_head *bh;
360
 
361
        *err = 0;
362
        /* i_data is not going away, no lock needed */
363
        add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
364
        if (!p->key)
365
                goto no_block;
366
        while (--depth) {
367
                bh = sb_bread(sb, le32_to_cpu(p->key));
368
                if (!bh)
369
                        goto failure;
370
                /* Reader: pointers */
371
                if (!verify_chain(chain, p))
372
                        goto changed;
373
                add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
374
                /* Reader: end */
375
                if (!p->key)
376
                        goto no_block;
377
        }
378
        return NULL;
379
 
380
changed:
381
        brelse(bh);
382
        *err = -EAGAIN;
383
        goto no_block;
384
failure:
385
        *err = -EIO;
386
no_block:
387
        return p;
388
}
389
 
390
/**
391
 *      ext3_find_near - find a place for allocation with sufficient locality
392
 *      @inode: owner
393
 *      @ind: descriptor of indirect block.
394
 *
395
 *      This function returns the prefered place for block allocation.
396
 *      It is used when heuristic for sequential allocation fails.
397
 *      Rules are:
398
 *        + if there is a block to the left of our position - allocate near it.
399
 *        + if pointer will live in indirect block - allocate near that block.
400
 *        + if pointer will live in inode - allocate in the same
401
 *          cylinder group.
402
 *
403
 * In the latter case we colour the starting block by the callers PID to
404
 * prevent it from clashing with concurrent allocations for a different inode
405
 * in the same block group.   The PID is used here so that functionally related
406
 * files will be close-by on-disk.
407
 *
408
 *      Caller must make sure that @ind is valid and will stay that way.
409
 */
410
static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
411
{
412
        struct ext3_inode_info *ei = EXT3_I(inode);
413
        __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
414
        __le32 *p;
415
        ext3_fsblk_t bg_start;
416
        ext3_grpblk_t colour;
417
 
418
        /* Try to find previous block */
419
        for (p = ind->p - 1; p >= start; p--) {
420
                if (*p)
421
                        return le32_to_cpu(*p);
422
        }
423
 
424
        /* No such thing, so let's try location of indirect block */
425
        if (ind->bh)
426
                return ind->bh->b_blocknr;
427
 
428
        /*
429
         * It is going to be referred to from the inode itself? OK, just put it
430
         * into the same cylinder group then.
431
         */
432
        bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
433
        colour = (current->pid % 16) *
434
                        (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
435
        return bg_start + colour;
436
}
437
 
438
/**
439
 *      ext3_find_goal - find a prefered place for allocation.
440
 *      @inode: owner
441
 *      @block:  block we want
442
 *      @chain:  chain of indirect blocks
443
 *      @partial: pointer to the last triple within a chain
444
 *      @goal:  place to store the result.
445
 *
446
 *      Normally this function find the prefered place for block allocation,
447
 *      stores it in *@goal and returns zero.
448
 */
449
 
450
static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
451
                Indirect chain[4], Indirect *partial)
452
{
453
        struct ext3_block_alloc_info *block_i;
454
 
455
        block_i =  EXT3_I(inode)->i_block_alloc_info;
456
 
457
        /*
458
         * try the heuristic for sequential allocation,
459
         * failing that at least try to get decent locality.
460
         */
461
        if (block_i && (block == block_i->last_alloc_logical_block + 1)
462
                && (block_i->last_alloc_physical_block != 0)) {
463
                return block_i->last_alloc_physical_block + 1;
464
        }
465
 
466
        return ext3_find_near(inode, partial);
467
}
468
 
469
/**
470
 *      ext3_blks_to_allocate: Look up the block map and count the number
471
 *      of direct blocks need to be allocated for the given branch.
472
 *
473
 *      @branch: chain of indirect blocks
474
 *      @k: number of blocks need for indirect blocks
475
 *      @blks: number of data blocks to be mapped.
476
 *      @blocks_to_boundary:  the offset in the indirect block
477
 *
478
 *      return the total number of blocks to be allocate, including the
479
 *      direct and indirect blocks.
480
 */
481
static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
482
                int blocks_to_boundary)
483
{
484
        unsigned long count = 0;
485
 
486
        /*
487
         * Simple case, [t,d]Indirect block(s) has not allocated yet
488
         * then it's clear blocks on that path have not allocated
489
         */
490
        if (k > 0) {
491
                /* right now we don't handle cross boundary allocation */
492
                if (blks < blocks_to_boundary + 1)
493
                        count += blks;
494
                else
495
                        count += blocks_to_boundary + 1;
496
                return count;
497
        }
498
 
499
        count++;
500
        while (count < blks && count <= blocks_to_boundary &&
501
                le32_to_cpu(*(branch[0].p + count)) == 0) {
502
                count++;
503
        }
504
        return count;
505
}
506
 
507
/**
508
 *      ext3_alloc_blocks: multiple allocate blocks needed for a branch
509
 *      @indirect_blks: the number of blocks need to allocate for indirect
510
 *                      blocks
511
 *
512
 *      @new_blocks: on return it will store the new block numbers for
513
 *      the indirect blocks(if needed) and the first direct block,
514
 *      @blks:  on return it will store the total number of allocated
515
 *              direct blocks
516
 */
517
static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
518
                        ext3_fsblk_t goal, int indirect_blks, int blks,
519
                        ext3_fsblk_t new_blocks[4], int *err)
520
{
521
        int target, i;
522
        unsigned long count = 0;
523
        int index = 0;
524
        ext3_fsblk_t current_block = 0;
525
        int ret = 0;
526
 
527
        /*
528
         * Here we try to allocate the requested multiple blocks at once,
529
         * on a best-effort basis.
530
         * To build a branch, we should allocate blocks for
531
         * the indirect blocks(if not allocated yet), and at least
532
         * the first direct block of this branch.  That's the
533
         * minimum number of blocks need to allocate(required)
534
         */
535
        target = blks + indirect_blks;
536
 
537
        while (1) {
538
                count = target;
539
                /* allocating blocks for indirect blocks and direct blocks */
540
                current_block = ext3_new_blocks(handle,inode,goal,&count,err);
541
                if (*err)
542
                        goto failed_out;
543
 
544
                target -= count;
545
                /* allocate blocks for indirect blocks */
546
                while (index < indirect_blks && count) {
547
                        new_blocks[index++] = current_block++;
548
                        count--;
549
                }
550
 
551
                if (count > 0)
552
                        break;
553
        }
554
 
555
        /* save the new block number for the first direct block */
556
        new_blocks[index] = current_block;
557
 
558
        /* total number of blocks allocated for direct blocks */
559
        ret = count;
560
        *err = 0;
561
        return ret;
562
failed_out:
563
        for (i = 0; i <index; i++)
564
                ext3_free_blocks(handle, inode, new_blocks[i], 1);
565
        return ret;
566
}
567
 
568
/**
569
 *      ext3_alloc_branch - allocate and set up a chain of blocks.
570
 *      @inode: owner
571
 *      @indirect_blks: number of allocated indirect blocks
572
 *      @blks: number of allocated direct blocks
573
 *      @offsets: offsets (in the blocks) to store the pointers to next.
574
 *      @branch: place to store the chain in.
575
 *
576
 *      This function allocates blocks, zeroes out all but the last one,
577
 *      links them into chain and (if we are synchronous) writes them to disk.
578
 *      In other words, it prepares a branch that can be spliced onto the
579
 *      inode. It stores the information about that chain in the branch[], in
580
 *      the same format as ext3_get_branch() would do. We are calling it after
581
 *      we had read the existing part of chain and partial points to the last
582
 *      triple of that (one with zero ->key). Upon the exit we have the same
583
 *      picture as after the successful ext3_get_block(), except that in one
584
 *      place chain is disconnected - *branch->p is still zero (we did not
585
 *      set the last link), but branch->key contains the number that should
586
 *      be placed into *branch->p to fill that gap.
587
 *
588
 *      If allocation fails we free all blocks we've allocated (and forget
589
 *      their buffer_heads) and return the error value the from failed
590
 *      ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
591
 *      as described above and return 0.
592
 */
593
static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
594
                        int indirect_blks, int *blks, ext3_fsblk_t goal,
595
                        int *offsets, Indirect *branch)
596
{
597
        int blocksize = inode->i_sb->s_blocksize;
598
        int i, n = 0;
599
        int err = 0;
600
        struct buffer_head *bh;
601
        int num;
602
        ext3_fsblk_t new_blocks[4];
603
        ext3_fsblk_t current_block;
604
 
605
        num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
606
                                *blks, new_blocks, &err);
607
        if (err)
608
                return err;
609
 
610
        branch[0].key = cpu_to_le32(new_blocks[0]);
611
        /*
612
         * metadata blocks and data blocks are allocated.
613
         */
614
        for (n = 1; n <= indirect_blks;  n++) {
615
                /*
616
                 * Get buffer_head for parent block, zero it out
617
                 * and set the pointer to new one, then send
618
                 * parent to disk.
619
                 */
620
                bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
621
                branch[n].bh = bh;
622
                lock_buffer(bh);
623
                BUFFER_TRACE(bh, "call get_create_access");
624
                err = ext3_journal_get_create_access(handle, bh);
625
                if (err) {
626
                        unlock_buffer(bh);
627
                        brelse(bh);
628
                        goto failed;
629
                }
630
 
631
                memset(bh->b_data, 0, blocksize);
632
                branch[n].p = (__le32 *) bh->b_data + offsets[n];
633
                branch[n].key = cpu_to_le32(new_blocks[n]);
634
                *branch[n].p = branch[n].key;
635
                if ( n == indirect_blks) {
636
                        current_block = new_blocks[n];
637
                        /*
638
                         * End of chain, update the last new metablock of
639
                         * the chain to point to the new allocated
640
                         * data blocks numbers
641
                         */
642
                        for (i=1; i < num; i++)
643
                                *(branch[n].p + i) = cpu_to_le32(++current_block);
644
                }
645
                BUFFER_TRACE(bh, "marking uptodate");
646
                set_buffer_uptodate(bh);
647
                unlock_buffer(bh);
648
 
649
                BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
650
                err = ext3_journal_dirty_metadata(handle, bh);
651
                if (err)
652
                        goto failed;
653
        }
654
        *blks = num;
655
        return err;
656
failed:
657
        /* Allocation failed, free what we already allocated */
658
        for (i = 1; i <= n ; i++) {
659
                BUFFER_TRACE(branch[i].bh, "call journal_forget");
660
                ext3_journal_forget(handle, branch[i].bh);
661
        }
662
        for (i = 0; i <indirect_blks; i++)
663
                ext3_free_blocks(handle, inode, new_blocks[i], 1);
664
 
665
        ext3_free_blocks(handle, inode, new_blocks[i], num);
666
 
667
        return err;
668
}
669
 
670
/**
671
 * ext3_splice_branch - splice the allocated branch onto inode.
672
 * @inode: owner
673
 * @block: (logical) number of block we are adding
674
 * @chain: chain of indirect blocks (with a missing link - see
675
 *      ext3_alloc_branch)
676
 * @where: location of missing link
677
 * @num:   number of indirect blocks we are adding
678
 * @blks:  number of direct blocks we are adding
679
 *
680
 * This function fills the missing link and does all housekeeping needed in
681
 * inode (->i_blocks, etc.). In case of success we end up with the full
682
 * chain to new block and return 0.
683
 */
684
static int ext3_splice_branch(handle_t *handle, struct inode *inode,
685
                        long block, Indirect *where, int num, int blks)
686
{
687
        int i;
688
        int err = 0;
689
        struct ext3_block_alloc_info *block_i;
690
        ext3_fsblk_t current_block;
691
 
692
        block_i = EXT3_I(inode)->i_block_alloc_info;
693
        /*
694
         * If we're splicing into a [td]indirect block (as opposed to the
695
         * inode) then we need to get write access to the [td]indirect block
696
         * before the splice.
697
         */
698
        if (where->bh) {
699
                BUFFER_TRACE(where->bh, "get_write_access");
700
                err = ext3_journal_get_write_access(handle, where->bh);
701
                if (err)
702
                        goto err_out;
703
        }
704
        /* That's it */
705
 
706
        *where->p = where->key;
707
 
708
        /*
709
         * Update the host buffer_head or inode to point to more just allocated
710
         * direct blocks blocks
711
         */
712
        if (num == 0 && blks > 1) {
713
                current_block = le32_to_cpu(where->key) + 1;
714
                for (i = 1; i < blks; i++)
715
                        *(where->p + i ) = cpu_to_le32(current_block++);
716
        }
717
 
718
        /*
719
         * update the most recently allocated logical & physical block
720
         * in i_block_alloc_info, to assist find the proper goal block for next
721
         * allocation
722
         */
723
        if (block_i) {
724
                block_i->last_alloc_logical_block = block + blks - 1;
725
                block_i->last_alloc_physical_block =
726
                                le32_to_cpu(where[num].key) + blks - 1;
727
        }
728
 
729
        /* We are done with atomic stuff, now do the rest of housekeeping */
730
 
731
        inode->i_ctime = CURRENT_TIME_SEC;
732
        ext3_mark_inode_dirty(handle, inode);
733
 
734
        /* had we spliced it onto indirect block? */
735
        if (where->bh) {
736
                /*
737
                 * If we spliced it onto an indirect block, we haven't
738
                 * altered the inode.  Note however that if it is being spliced
739
                 * onto an indirect block at the very end of the file (the
740
                 * file is growing) then we *will* alter the inode to reflect
741
                 * the new i_size.  But that is not done here - it is done in
742
                 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
743
                 */
744
                jbd_debug(5, "splicing indirect only\n");
745
                BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
746
                err = ext3_journal_dirty_metadata(handle, where->bh);
747
                if (err)
748
                        goto err_out;
749
        } else {
750
                /*
751
                 * OK, we spliced it into the inode itself on a direct block.
752
                 * Inode was dirtied above.
753
                 */
754
                jbd_debug(5, "splicing direct\n");
755
        }
756
        return err;
757
 
758
err_out:
759
        for (i = 1; i <= num; i++) {
760
                BUFFER_TRACE(where[i].bh, "call journal_forget");
761
                ext3_journal_forget(handle, where[i].bh);
762
                ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
763
        }
764
        ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
765
 
766
        return err;
767
}
768
 
769
/*
770
 * Allocation strategy is simple: if we have to allocate something, we will
771
 * have to go the whole way to leaf. So let's do it before attaching anything
772
 * to tree, set linkage between the newborn blocks, write them if sync is
773
 * required, recheck the path, free and repeat if check fails, otherwise
774
 * set the last missing link (that will protect us from any truncate-generated
775
 * removals - all blocks on the path are immune now) and possibly force the
776
 * write on the parent block.
777
 * That has a nice additional property: no special recovery from the failed
778
 * allocations is needed - we simply release blocks and do not touch anything
779
 * reachable from inode.
780
 *
781
 * `handle' can be NULL if create == 0.
782
 *
783
 * The BKL may not be held on entry here.  Be sure to take it early.
784
 * return > 0, # of blocks mapped or allocated.
785
 * return = 0, if plain lookup failed.
786
 * return < 0, error case.
787
 */
788
int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
789
                sector_t iblock, unsigned long maxblocks,
790
                struct buffer_head *bh_result,
791
                int create, int extend_disksize)
792
{
793
        int err = -EIO;
794
        int offsets[4];
795
        Indirect chain[4];
796
        Indirect *partial;
797
        ext3_fsblk_t goal;
798
        int indirect_blks;
799
        int blocks_to_boundary = 0;
800
        int depth;
801
        struct ext3_inode_info *ei = EXT3_I(inode);
802
        int count = 0;
803
        ext3_fsblk_t first_block = 0;
804
 
805
 
806
        J_ASSERT(handle != NULL || create == 0);
807
        depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
808
 
809
        if (depth == 0)
810
                goto out;
811
 
812
        partial = ext3_get_branch(inode, depth, offsets, chain, &err);
813
 
814
        /* Simplest case - block found, no allocation needed */
815
        if (!partial) {
816
                first_block = le32_to_cpu(chain[depth - 1].key);
817
                clear_buffer_new(bh_result);
818
                count++;
819
                /*map more blocks*/
820
                while (count < maxblocks && count <= blocks_to_boundary) {
821
                        ext3_fsblk_t blk;
822
 
823
                        if (!verify_chain(chain, partial)) {
824
                                /*
825
                                 * Indirect block might be removed by
826
                                 * truncate while we were reading it.
827
                                 * Handling of that case: forget what we've
828
                                 * got now. Flag the err as EAGAIN, so it
829
                                 * will reread.
830
                                 */
831
                                err = -EAGAIN;
832
                                count = 0;
833
                                break;
834
                        }
835
                        blk = le32_to_cpu(*(chain[depth-1].p + count));
836
 
837
                        if (blk == first_block + count)
838
                                count++;
839
                        else
840
                                break;
841
                }
842
                if (err != -EAGAIN)
843
                        goto got_it;
844
        }
845
 
846
        /* Next simple case - plain lookup or failed read of indirect block */
847
        if (!create || err == -EIO)
848
                goto cleanup;
849
 
850
        mutex_lock(&ei->truncate_mutex);
851
 
852
        /*
853
         * If the indirect block is missing while we are reading
854
         * the chain(ext3_get_branch() returns -EAGAIN err), or
855
         * if the chain has been changed after we grab the semaphore,
856
         * (either because another process truncated this branch, or
857
         * another get_block allocated this branch) re-grab the chain to see if
858
         * the request block has been allocated or not.
859
         *
860
         * Since we already block the truncate/other get_block
861
         * at this point, we will have the current copy of the chain when we
862
         * splice the branch into the tree.
863
         */
864
        if (err == -EAGAIN || !verify_chain(chain, partial)) {
865
                while (partial > chain) {
866
                        brelse(partial->bh);
867
                        partial--;
868
                }
869
                partial = ext3_get_branch(inode, depth, offsets, chain, &err);
870
                if (!partial) {
871
                        count++;
872
                        mutex_unlock(&ei->truncate_mutex);
873
                        if (err)
874
                                goto cleanup;
875
                        clear_buffer_new(bh_result);
876
                        goto got_it;
877
                }
878
        }
879
 
880
        /*
881
         * Okay, we need to do block allocation.  Lazily initialize the block
882
         * allocation info here if necessary
883
        */
884
        if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
885
                ext3_init_block_alloc_info(inode);
886
 
887
        goal = ext3_find_goal(inode, iblock, chain, partial);
888
 
889
        /* the number of blocks need to allocate for [d,t]indirect blocks */
890
        indirect_blks = (chain + depth) - partial - 1;
891
 
892
        /*
893
         * Next look up the indirect map to count the totoal number of
894
         * direct blocks to allocate for this branch.
895
         */
896
        count = ext3_blks_to_allocate(partial, indirect_blks,
897
                                        maxblocks, blocks_to_boundary);
898
        /*
899
         * Block out ext3_truncate while we alter the tree
900
         */
901
        err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
902
                                offsets + (partial - chain), partial);
903
 
904
        /*
905
         * The ext3_splice_branch call will free and forget any buffers
906
         * on the new chain if there is a failure, but that risks using
907
         * up transaction credits, especially for bitmaps where the
908
         * credits cannot be returned.  Can we handle this somehow?  We
909
         * may need to return -EAGAIN upwards in the worst case.  --sct
910
         */
911
        if (!err)
912
                err = ext3_splice_branch(handle, inode, iblock,
913
                                        partial, indirect_blks, count);
914
        /*
915
         * i_disksize growing is protected by truncate_mutex.  Don't forget to
916
         * protect it if you're about to implement concurrent
917
         * ext3_get_block() -bzzz
918
        */
919
        if (!err && extend_disksize && inode->i_size > ei->i_disksize)
920
                ei->i_disksize = inode->i_size;
921
        mutex_unlock(&ei->truncate_mutex);
922
        if (err)
923
                goto cleanup;
924
 
925
        set_buffer_new(bh_result);
926
got_it:
927
        map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
928
        if (count > blocks_to_boundary)
929
                set_buffer_boundary(bh_result);
930
        err = count;
931
        /* Clean up and exit */
932
        partial = chain + depth - 1;    /* the whole chain */
933
cleanup:
934
        while (partial > chain) {
935
                BUFFER_TRACE(partial->bh, "call brelse");
936
                brelse(partial->bh);
937
                partial--;
938
        }
939
        BUFFER_TRACE(bh_result, "returned");
940
out:
941
        return err;
942
}
943
 
944
#define DIO_CREDITS (EXT3_RESERVE_TRANS_BLOCKS + 32)
945
 
946
static int ext3_get_block(struct inode *inode, sector_t iblock,
947
                        struct buffer_head *bh_result, int create)
948
{
949
        handle_t *handle = ext3_journal_current_handle();
950
        int ret = 0;
951
        unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
952
 
953
        if (!create)
954
                goto get_block;         /* A read */
955
 
956
        if (max_blocks == 1)
957
                goto get_block;         /* A single block get */
958
 
959
        if (handle->h_transaction->t_state == T_LOCKED) {
960
                /*
961
                 * Huge direct-io writes can hold off commits for long
962
                 * periods of time.  Let this commit run.
963
                 */
964
                ext3_journal_stop(handle);
965
                handle = ext3_journal_start(inode, DIO_CREDITS);
966
                if (IS_ERR(handle))
967
                        ret = PTR_ERR(handle);
968
                goto get_block;
969
        }
970
 
971
        if (handle->h_buffer_credits <= EXT3_RESERVE_TRANS_BLOCKS) {
972
                /*
973
                 * Getting low on buffer credits...
974
                 */
975
                ret = ext3_journal_extend(handle, DIO_CREDITS);
976
                if (ret > 0) {
977
                        /*
978
                         * Couldn't extend the transaction.  Start a new one.
979
                         */
980
                        ret = ext3_journal_restart(handle, DIO_CREDITS);
981
                }
982
        }
983
 
984
get_block:
985
        if (ret == 0) {
986
                ret = ext3_get_blocks_handle(handle, inode, iblock,
987
                                        max_blocks, bh_result, create, 0);
988
                if (ret > 0) {
989
                        bh_result->b_size = (ret << inode->i_blkbits);
990
                        ret = 0;
991
                }
992
        }
993
        return ret;
994
}
995
 
996
/*
997
 * `handle' can be NULL if create is zero
998
 */
999
struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
1000
                                long block, int create, int *errp)
1001
{
1002
        struct buffer_head dummy;
1003
        int fatal = 0, err;
1004
 
1005
        J_ASSERT(handle != NULL || create == 0);
1006
 
1007
        dummy.b_state = 0;
1008
        dummy.b_blocknr = -1000;
1009
        buffer_trace_init(&dummy.b_history);
1010
        err = ext3_get_blocks_handle(handle, inode, block, 1,
1011
                                        &dummy, create, 1);
1012
        /*
1013
         * ext3_get_blocks_handle() returns number of blocks
1014
         * mapped. 0 in case of a HOLE.
1015
         */
1016
        if (err > 0) {
1017
                if (err > 1)
1018
                        WARN_ON(1);
1019
                err = 0;
1020
        }
1021
        *errp = err;
1022
        if (!err && buffer_mapped(&dummy)) {
1023
                struct buffer_head *bh;
1024
                bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1025
                if (!bh) {
1026
                        *errp = -EIO;
1027
                        goto err;
1028
                }
1029
                if (buffer_new(&dummy)) {
1030
                        J_ASSERT(create != 0);
1031
                        J_ASSERT(handle != NULL);
1032
 
1033
                        /*
1034
                         * Now that we do not always journal data, we should
1035
                         * keep in mind whether this should always journal the
1036
                         * new buffer as metadata.  For now, regular file
1037
                         * writes use ext3_get_block instead, so it's not a
1038
                         * problem.
1039
                         */
1040
                        lock_buffer(bh);
1041
                        BUFFER_TRACE(bh, "call get_create_access");
1042
                        fatal = ext3_journal_get_create_access(handle, bh);
1043
                        if (!fatal && !buffer_uptodate(bh)) {
1044
                                memset(bh->b_data,0,inode->i_sb->s_blocksize);
1045
                                set_buffer_uptodate(bh);
1046
                        }
1047
                        unlock_buffer(bh);
1048
                        BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1049
                        err = ext3_journal_dirty_metadata(handle, bh);
1050
                        if (!fatal)
1051
                                fatal = err;
1052
                } else {
1053
                        BUFFER_TRACE(bh, "not a new buffer");
1054
                }
1055
                if (fatal) {
1056
                        *errp = fatal;
1057
                        brelse(bh);
1058
                        bh = NULL;
1059
                }
1060
                return bh;
1061
        }
1062
err:
1063
        return NULL;
1064
}
1065
 
1066
struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1067
                               int block, int create, int *err)
1068
{
1069
        struct buffer_head * bh;
1070
 
1071
        bh = ext3_getblk(handle, inode, block, create, err);
1072
        if (!bh)
1073
                return bh;
1074
        if (buffer_uptodate(bh))
1075
                return bh;
1076
        ll_rw_block(READ_META, 1, &bh);
1077
        wait_on_buffer(bh);
1078
        if (buffer_uptodate(bh))
1079
                return bh;
1080
        put_bh(bh);
1081
        *err = -EIO;
1082
        return NULL;
1083
}
1084
 
1085
static int walk_page_buffers(   handle_t *handle,
1086
                                struct buffer_head *head,
1087
                                unsigned from,
1088
                                unsigned to,
1089
                                int *partial,
1090
                                int (*fn)(      handle_t *handle,
1091
                                                struct buffer_head *bh))
1092
{
1093
        struct buffer_head *bh;
1094
        unsigned block_start, block_end;
1095
        unsigned blocksize = head->b_size;
1096
        int err, ret = 0;
1097
        struct buffer_head *next;
1098
 
1099
        for (   bh = head, block_start = 0;
1100
                ret == 0 && (bh != head || !block_start);
1101
                block_start = block_end, bh = next)
1102
        {
1103
                next = bh->b_this_page;
1104
                block_end = block_start + blocksize;
1105
                if (block_end <= from || block_start >= to) {
1106
                        if (partial && !buffer_uptodate(bh))
1107
                                *partial = 1;
1108
                        continue;
1109
                }
1110
                err = (*fn)(handle, bh);
1111
                if (!ret)
1112
                        ret = err;
1113
        }
1114
        return ret;
1115
}
1116
 
1117
/*
1118
 * To preserve ordering, it is essential that the hole instantiation and
1119
 * the data write be encapsulated in a single transaction.  We cannot
1120
 * close off a transaction and start a new one between the ext3_get_block()
1121
 * and the commit_write().  So doing the journal_start at the start of
1122
 * prepare_write() is the right place.
1123
 *
1124
 * Also, this function can nest inside ext3_writepage() ->
1125
 * block_write_full_page(). In that case, we *know* that ext3_writepage()
1126
 * has generated enough buffer credits to do the whole page.  So we won't
1127
 * block on the journal in that case, which is good, because the caller may
1128
 * be PF_MEMALLOC.
1129
 *
1130
 * By accident, ext3 can be reentered when a transaction is open via
1131
 * quota file writes.  If we were to commit the transaction while thus
1132
 * reentered, there can be a deadlock - we would be holding a quota
1133
 * lock, and the commit would never complete if another thread had a
1134
 * transaction open and was blocking on the quota lock - a ranking
1135
 * violation.
1136
 *
1137
 * So what we do is to rely on the fact that journal_stop/journal_start
1138
 * will _not_ run commit under these circumstances because handle->h_ref
1139
 * is elevated.  We'll still have enough credits for the tiny quotafile
1140
 * write.
1141
 */
1142
static int do_journal_get_write_access(handle_t *handle,
1143
                                        struct buffer_head *bh)
1144
{
1145
        if (!buffer_mapped(bh) || buffer_freed(bh))
1146
                return 0;
1147
        return ext3_journal_get_write_access(handle, bh);
1148
}
1149
 
1150
static int ext3_write_begin(struct file *file, struct address_space *mapping,
1151
                                loff_t pos, unsigned len, unsigned flags,
1152
                                struct page **pagep, void **fsdata)
1153
{
1154
        struct inode *inode = mapping->host;
1155
        int ret, needed_blocks = ext3_writepage_trans_blocks(inode);
1156
        handle_t *handle;
1157
        int retries = 0;
1158
        struct page *page;
1159
        pgoff_t index;
1160
        unsigned from, to;
1161
 
1162
        index = pos >> PAGE_CACHE_SHIFT;
1163
        from = pos & (PAGE_CACHE_SIZE - 1);
1164
        to = from + len;
1165
 
1166
retry:
1167
        page = __grab_cache_page(mapping, index);
1168
        if (!page)
1169
                return -ENOMEM;
1170
        *pagep = page;
1171
 
1172
        handle = ext3_journal_start(inode, needed_blocks);
1173
        if (IS_ERR(handle)) {
1174
                unlock_page(page);
1175
                page_cache_release(page);
1176
                ret = PTR_ERR(handle);
1177
                goto out;
1178
        }
1179
        ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1180
                                                        ext3_get_block);
1181
        if (ret)
1182
                goto write_begin_failed;
1183
 
1184
        if (ext3_should_journal_data(inode)) {
1185
                ret = walk_page_buffers(handle, page_buffers(page),
1186
                                from, to, NULL, do_journal_get_write_access);
1187
        }
1188
write_begin_failed:
1189
        if (ret) {
1190
                ext3_journal_stop(handle);
1191
                unlock_page(page);
1192
                page_cache_release(page);
1193
        }
1194
        if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1195
                goto retry;
1196
out:
1197
        return ret;
1198
}
1199
 
1200
 
1201
int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1202
{
1203
        int err = journal_dirty_data(handle, bh);
1204
        if (err)
1205
                ext3_journal_abort_handle(__FUNCTION__, __FUNCTION__,
1206
                                                bh, handle, err);
1207
        return err;
1208
}
1209
 
1210
/* For write_end() in data=journal mode */
1211
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1212
{
1213
        if (!buffer_mapped(bh) || buffer_freed(bh))
1214
                return 0;
1215
        set_buffer_uptodate(bh);
1216
        return ext3_journal_dirty_metadata(handle, bh);
1217
}
1218
 
1219
/*
1220
 * Generic write_end handler for ordered and writeback ext3 journal modes.
1221
 * We can't use generic_write_end, because that unlocks the page and we need to
1222
 * unlock the page after ext3_journal_stop, but ext3_journal_stop must run
1223
 * after block_write_end.
1224
 */
1225
static int ext3_generic_write_end(struct file *file,
1226
                                struct address_space *mapping,
1227
                                loff_t pos, unsigned len, unsigned copied,
1228
                                struct page *page, void *fsdata)
1229
{
1230
        struct inode *inode = file->f_mapping->host;
1231
 
1232
        copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1233
 
1234
        if (pos+copied > inode->i_size) {
1235
                i_size_write(inode, pos+copied);
1236
                mark_inode_dirty(inode);
1237
        }
1238
 
1239
        return copied;
1240
}
1241
 
1242
/*
1243
 * We need to pick up the new inode size which generic_commit_write gave us
1244
 * `file' can be NULL - eg, when called from page_symlink().
1245
 *
1246
 * ext3 never places buffers on inode->i_mapping->private_list.  metadata
1247
 * buffers are managed internally.
1248
 */
1249
static int ext3_ordered_write_end(struct file *file,
1250
                                struct address_space *mapping,
1251
                                loff_t pos, unsigned len, unsigned copied,
1252
                                struct page *page, void *fsdata)
1253
{
1254
        handle_t *handle = ext3_journal_current_handle();
1255
        struct inode *inode = file->f_mapping->host;
1256
        unsigned from, to;
1257
        int ret = 0, ret2;
1258
 
1259
        from = pos & (PAGE_CACHE_SIZE - 1);
1260
        to = from + len;
1261
 
1262
        ret = walk_page_buffers(handle, page_buffers(page),
1263
                from, to, NULL, ext3_journal_dirty_data);
1264
 
1265
        if (ret == 0) {
1266
                /*
1267
                 * generic_write_end() will run mark_inode_dirty() if i_size
1268
                 * changes.  So let's piggyback the i_disksize mark_inode_dirty
1269
                 * into that.
1270
                 */
1271
                loff_t new_i_size;
1272
 
1273
                new_i_size = pos + copied;
1274
                if (new_i_size > EXT3_I(inode)->i_disksize)
1275
                        EXT3_I(inode)->i_disksize = new_i_size;
1276
                copied = ext3_generic_write_end(file, mapping, pos, len, copied,
1277
                                                        page, fsdata);
1278
                if (copied < 0)
1279
                        ret = copied;
1280
        }
1281
        ret2 = ext3_journal_stop(handle);
1282
        if (!ret)
1283
                ret = ret2;
1284
        unlock_page(page);
1285
        page_cache_release(page);
1286
 
1287
        return ret ? ret : copied;
1288
}
1289
 
1290
static int ext3_writeback_write_end(struct file *file,
1291
                                struct address_space *mapping,
1292
                                loff_t pos, unsigned len, unsigned copied,
1293
                                struct page *page, void *fsdata)
1294
{
1295
        handle_t *handle = ext3_journal_current_handle();
1296
        struct inode *inode = file->f_mapping->host;
1297
        int ret = 0, ret2;
1298
        loff_t new_i_size;
1299
 
1300
        new_i_size = pos + copied;
1301
        if (new_i_size > EXT3_I(inode)->i_disksize)
1302
                EXT3_I(inode)->i_disksize = new_i_size;
1303
 
1304
        copied = ext3_generic_write_end(file, mapping, pos, len, copied,
1305
                                                        page, fsdata);
1306
        if (copied < 0)
1307
                ret = copied;
1308
 
1309
        ret2 = ext3_journal_stop(handle);
1310
        if (!ret)
1311
                ret = ret2;
1312
        unlock_page(page);
1313
        page_cache_release(page);
1314
 
1315
        return ret ? ret : copied;
1316
}
1317
 
1318
static int ext3_journalled_write_end(struct file *file,
1319
                                struct address_space *mapping,
1320
                                loff_t pos, unsigned len, unsigned copied,
1321
                                struct page *page, void *fsdata)
1322
{
1323
        handle_t *handle = ext3_journal_current_handle();
1324
        struct inode *inode = mapping->host;
1325
        int ret = 0, ret2;
1326
        int partial = 0;
1327
        unsigned from, to;
1328
 
1329
        from = pos & (PAGE_CACHE_SIZE - 1);
1330
        to = from + len;
1331
 
1332
        if (copied < len) {
1333
                if (!PageUptodate(page))
1334
                        copied = 0;
1335
                page_zero_new_buffers(page, from+copied, to);
1336
        }
1337
 
1338
        ret = walk_page_buffers(handle, page_buffers(page), from,
1339
                                to, &partial, write_end_fn);
1340
        if (!partial)
1341
                SetPageUptodate(page);
1342
        if (pos+copied > inode->i_size)
1343
                i_size_write(inode, pos+copied);
1344
        EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1345
        if (inode->i_size > EXT3_I(inode)->i_disksize) {
1346
                EXT3_I(inode)->i_disksize = inode->i_size;
1347
                ret2 = ext3_mark_inode_dirty(handle, inode);
1348
                if (!ret)
1349
                        ret = ret2;
1350
        }
1351
 
1352
        ret2 = ext3_journal_stop(handle);
1353
        if (!ret)
1354
                ret = ret2;
1355
        unlock_page(page);
1356
        page_cache_release(page);
1357
 
1358
        return ret ? ret : copied;
1359
}
1360
 
1361
/*
1362
 * bmap() is special.  It gets used by applications such as lilo and by
1363
 * the swapper to find the on-disk block of a specific piece of data.
1364
 *
1365
 * Naturally, this is dangerous if the block concerned is still in the
1366
 * journal.  If somebody makes a swapfile on an ext3 data-journaling
1367
 * filesystem and enables swap, then they may get a nasty shock when the
1368
 * data getting swapped to that swapfile suddenly gets overwritten by
1369
 * the original zero's written out previously to the journal and
1370
 * awaiting writeback in the kernel's buffer cache.
1371
 *
1372
 * So, if we see any bmap calls here on a modified, data-journaled file,
1373
 * take extra steps to flush any blocks which might be in the cache.
1374
 */
1375
static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1376
{
1377
        struct inode *inode = mapping->host;
1378
        journal_t *journal;
1379
        int err;
1380
 
1381
        if (EXT3_I(inode)->i_state & EXT3_STATE_JDATA) {
1382
                /*
1383
                 * This is a REALLY heavyweight approach, but the use of
1384
                 * bmap on dirty files is expected to be extremely rare:
1385
                 * only if we run lilo or swapon on a freshly made file
1386
                 * do we expect this to happen.
1387
                 *
1388
                 * (bmap requires CAP_SYS_RAWIO so this does not
1389
                 * represent an unprivileged user DOS attack --- we'd be
1390
                 * in trouble if mortal users could trigger this path at
1391
                 * will.)
1392
                 *
1393
                 * NB. EXT3_STATE_JDATA is not set on files other than
1394
                 * regular files.  If somebody wants to bmap a directory
1395
                 * or symlink and gets confused because the buffer
1396
                 * hasn't yet been flushed to disk, they deserve
1397
                 * everything they get.
1398
                 */
1399
 
1400
                EXT3_I(inode)->i_state &= ~EXT3_STATE_JDATA;
1401
                journal = EXT3_JOURNAL(inode);
1402
                journal_lock_updates(journal);
1403
                err = journal_flush(journal);
1404
                journal_unlock_updates(journal);
1405
 
1406
                if (err)
1407
                        return 0;
1408
        }
1409
 
1410
        return generic_block_bmap(mapping,block,ext3_get_block);
1411
}
1412
 
1413
static int bget_one(handle_t *handle, struct buffer_head *bh)
1414
{
1415
        get_bh(bh);
1416
        return 0;
1417
}
1418
 
1419
static int bput_one(handle_t *handle, struct buffer_head *bh)
1420
{
1421
        put_bh(bh);
1422
        return 0;
1423
}
1424
 
1425
static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1426
{
1427
        if (buffer_mapped(bh))
1428
                return ext3_journal_dirty_data(handle, bh);
1429
        return 0;
1430
}
1431
 
1432
/*
1433
 * Note that we always start a transaction even if we're not journalling
1434
 * data.  This is to preserve ordering: any hole instantiation within
1435
 * __block_write_full_page -> ext3_get_block() should be journalled
1436
 * along with the data so we don't crash and then get metadata which
1437
 * refers to old data.
1438
 *
1439
 * In all journalling modes block_write_full_page() will start the I/O.
1440
 *
1441
 * Problem:
1442
 *
1443
 *      ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1444
 *              ext3_writepage()
1445
 *
1446
 * Similar for:
1447
 *
1448
 *      ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1449
 *
1450
 * Same applies to ext3_get_block().  We will deadlock on various things like
1451
 * lock_journal and i_truncate_mutex.
1452
 *
1453
 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1454
 * allocations fail.
1455
 *
1456
 * 16May01: If we're reentered then journal_current_handle() will be
1457
 *          non-zero. We simply *return*.
1458
 *
1459
 * 1 July 2001: @@@ FIXME:
1460
 *   In journalled data mode, a data buffer may be metadata against the
1461
 *   current transaction.  But the same file is part of a shared mapping
1462
 *   and someone does a writepage() on it.
1463
 *
1464
 *   We will move the buffer onto the async_data list, but *after* it has
1465
 *   been dirtied. So there's a small window where we have dirty data on
1466
 *   BJ_Metadata.
1467
 *
1468
 *   Note that this only applies to the last partial page in the file.  The
1469
 *   bit which block_write_full_page() uses prepare/commit for.  (That's
1470
 *   broken code anyway: it's wrong for msync()).
1471
 *
1472
 *   It's a rare case: affects the final partial page, for journalled data
1473
 *   where the file is subject to bith write() and writepage() in the same
1474
 *   transction.  To fix it we'll need a custom block_write_full_page().
1475
 *   We'll probably need that anyway for journalling writepage() output.
1476
 *
1477
 * We don't honour synchronous mounts for writepage().  That would be
1478
 * disastrous.  Any write() or metadata operation will sync the fs for
1479
 * us.
1480
 *
1481
 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1482
 * we don't need to open a transaction here.
1483
 */
1484
static int ext3_ordered_writepage(struct page *page,
1485
                                struct writeback_control *wbc)
1486
{
1487
        struct inode *inode = page->mapping->host;
1488
        struct buffer_head *page_bufs;
1489
        handle_t *handle = NULL;
1490
        int ret = 0;
1491
        int err;
1492
 
1493
        J_ASSERT(PageLocked(page));
1494
 
1495
        /*
1496
         * We give up here if we're reentered, because it might be for a
1497
         * different filesystem.
1498
         */
1499
        if (ext3_journal_current_handle())
1500
                goto out_fail;
1501
 
1502
        handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1503
 
1504
        if (IS_ERR(handle)) {
1505
                ret = PTR_ERR(handle);
1506
                goto out_fail;
1507
        }
1508
 
1509
        if (!page_has_buffers(page)) {
1510
                create_empty_buffers(page, inode->i_sb->s_blocksize,
1511
                                (1 << BH_Dirty)|(1 << BH_Uptodate));
1512
        }
1513
        page_bufs = page_buffers(page);
1514
        walk_page_buffers(handle, page_bufs, 0,
1515
                        PAGE_CACHE_SIZE, NULL, bget_one);
1516
 
1517
        ret = block_write_full_page(page, ext3_get_block, wbc);
1518
 
1519
        /*
1520
         * The page can become unlocked at any point now, and
1521
         * truncate can then come in and change things.  So we
1522
         * can't touch *page from now on.  But *page_bufs is
1523
         * safe due to elevated refcount.
1524
         */
1525
 
1526
        /*
1527
         * And attach them to the current transaction.  But only if
1528
         * block_write_full_page() succeeded.  Otherwise they are unmapped,
1529
         * and generally junk.
1530
         */
1531
        if (ret == 0) {
1532
                err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1533
                                        NULL, journal_dirty_data_fn);
1534
                if (!ret)
1535
                        ret = err;
1536
        }
1537
        walk_page_buffers(handle, page_bufs, 0,
1538
                        PAGE_CACHE_SIZE, NULL, bput_one);
1539
        err = ext3_journal_stop(handle);
1540
        if (!ret)
1541
                ret = err;
1542
        return ret;
1543
 
1544
out_fail:
1545
        redirty_page_for_writepage(wbc, page);
1546
        unlock_page(page);
1547
        return ret;
1548
}
1549
 
1550
static int ext3_writeback_writepage(struct page *page,
1551
                                struct writeback_control *wbc)
1552
{
1553
        struct inode *inode = page->mapping->host;
1554
        handle_t *handle = NULL;
1555
        int ret = 0;
1556
        int err;
1557
 
1558
        if (ext3_journal_current_handle())
1559
                goto out_fail;
1560
 
1561
        handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1562
        if (IS_ERR(handle)) {
1563
                ret = PTR_ERR(handle);
1564
                goto out_fail;
1565
        }
1566
 
1567
        if (test_opt(inode->i_sb, NOBH) && ext3_should_writeback_data(inode))
1568
                ret = nobh_writepage(page, ext3_get_block, wbc);
1569
        else
1570
                ret = block_write_full_page(page, ext3_get_block, wbc);
1571
 
1572
        err = ext3_journal_stop(handle);
1573
        if (!ret)
1574
                ret = err;
1575
        return ret;
1576
 
1577
out_fail:
1578
        redirty_page_for_writepage(wbc, page);
1579
        unlock_page(page);
1580
        return ret;
1581
}
1582
 
1583
static int ext3_journalled_writepage(struct page *page,
1584
                                struct writeback_control *wbc)
1585
{
1586
        struct inode *inode = page->mapping->host;
1587
        handle_t *handle = NULL;
1588
        int ret = 0;
1589
        int err;
1590
 
1591
        if (ext3_journal_current_handle())
1592
                goto no_write;
1593
 
1594
        handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1595
        if (IS_ERR(handle)) {
1596
                ret = PTR_ERR(handle);
1597
                goto no_write;
1598
        }
1599
 
1600
        if (!page_has_buffers(page) || PageChecked(page)) {
1601
                /*
1602
                 * It's mmapped pagecache.  Add buffers and journal it.  There
1603
                 * doesn't seem much point in redirtying the page here.
1604
                 */
1605
                ClearPageChecked(page);
1606
                ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1607
                                        ext3_get_block);
1608
                if (ret != 0) {
1609
                        ext3_journal_stop(handle);
1610
                        goto out_unlock;
1611
                }
1612
                ret = walk_page_buffers(handle, page_buffers(page), 0,
1613
                        PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1614
 
1615
                err = walk_page_buffers(handle, page_buffers(page), 0,
1616
                                PAGE_CACHE_SIZE, NULL, write_end_fn);
1617
                if (ret == 0)
1618
                        ret = err;
1619
                EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1620
                unlock_page(page);
1621
        } else {
1622
                /*
1623
                 * It may be a page full of checkpoint-mode buffers.  We don't
1624
                 * really know unless we go poke around in the buffer_heads.
1625
                 * But block_write_full_page will do the right thing.
1626
                 */
1627
                ret = block_write_full_page(page, ext3_get_block, wbc);
1628
        }
1629
        err = ext3_journal_stop(handle);
1630
        if (!ret)
1631
                ret = err;
1632
out:
1633
        return ret;
1634
 
1635
no_write:
1636
        redirty_page_for_writepage(wbc, page);
1637
out_unlock:
1638
        unlock_page(page);
1639
        goto out;
1640
}
1641
 
1642
static int ext3_readpage(struct file *file, struct page *page)
1643
{
1644
        return mpage_readpage(page, ext3_get_block);
1645
}
1646
 
1647
static int
1648
ext3_readpages(struct file *file, struct address_space *mapping,
1649
                struct list_head *pages, unsigned nr_pages)
1650
{
1651
        return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1652
}
1653
 
1654
static void ext3_invalidatepage(struct page *page, unsigned long offset)
1655
{
1656
        journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1657
 
1658
        /*
1659
         * If it's a full truncate we just forget about the pending dirtying
1660
         */
1661
        if (offset == 0)
1662
                ClearPageChecked(page);
1663
 
1664
        journal_invalidatepage(journal, page, offset);
1665
}
1666
 
1667
static int ext3_releasepage(struct page *page, gfp_t wait)
1668
{
1669
        journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1670
 
1671
        WARN_ON(PageChecked(page));
1672
        if (!page_has_buffers(page))
1673
                return 0;
1674
        return journal_try_to_free_buffers(journal, page, wait);
1675
}
1676
 
1677
/*
1678
 * If the O_DIRECT write will extend the file then add this inode to the
1679
 * orphan list.  So recovery will truncate it back to the original size
1680
 * if the machine crashes during the write.
1681
 *
1682
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1683
 * crashes then stale disk data _may_ be exposed inside the file.
1684
 */
1685
static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1686
                        const struct iovec *iov, loff_t offset,
1687
                        unsigned long nr_segs)
1688
{
1689
        struct file *file = iocb->ki_filp;
1690
        struct inode *inode = file->f_mapping->host;
1691
        struct ext3_inode_info *ei = EXT3_I(inode);
1692
        handle_t *handle = NULL;
1693
        ssize_t ret;
1694
        int orphan = 0;
1695
        size_t count = iov_length(iov, nr_segs);
1696
 
1697
        if (rw == WRITE) {
1698
                loff_t final_size = offset + count;
1699
 
1700
                handle = ext3_journal_start(inode, DIO_CREDITS);
1701
                if (IS_ERR(handle)) {
1702
                        ret = PTR_ERR(handle);
1703
                        goto out;
1704
                }
1705
                if (final_size > inode->i_size) {
1706
                        ret = ext3_orphan_add(handle, inode);
1707
                        if (ret)
1708
                                goto out_stop;
1709
                        orphan = 1;
1710
                        ei->i_disksize = inode->i_size;
1711
                }
1712
        }
1713
 
1714
        ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1715
                                 offset, nr_segs,
1716
                                 ext3_get_block, NULL);
1717
 
1718
        /*
1719
         * Reacquire the handle: ext3_get_block() can restart the transaction
1720
         */
1721
        handle = ext3_journal_current_handle();
1722
 
1723
out_stop:
1724
        if (handle) {
1725
                int err;
1726
 
1727
                if (orphan && inode->i_nlink)
1728
                        ext3_orphan_del(handle, inode);
1729
                if (orphan && ret > 0) {
1730
                        loff_t end = offset + ret;
1731
                        if (end > inode->i_size) {
1732
                                ei->i_disksize = end;
1733
                                i_size_write(inode, end);
1734
                                /*
1735
                                 * We're going to return a positive `ret'
1736
                                 * here due to non-zero-length I/O, so there's
1737
                                 * no way of reporting error returns from
1738
                                 * ext3_mark_inode_dirty() to userspace.  So
1739
                                 * ignore it.
1740
                                 */
1741
                                ext3_mark_inode_dirty(handle, inode);
1742
                        }
1743
                }
1744
                err = ext3_journal_stop(handle);
1745
                if (ret == 0)
1746
                        ret = err;
1747
        }
1748
out:
1749
        return ret;
1750
}
1751
 
1752
/*
1753
 * Pages can be marked dirty completely asynchronously from ext3's journalling
1754
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1755
 * much here because ->set_page_dirty is called under VFS locks.  The page is
1756
 * not necessarily locked.
1757
 *
1758
 * We cannot just dirty the page and leave attached buffers clean, because the
1759
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1760
 * or jbddirty because all the journalling code will explode.
1761
 *
1762
 * So what we do is to mark the page "pending dirty" and next time writepage
1763
 * is called, propagate that into the buffers appropriately.
1764
 */
1765
static int ext3_journalled_set_page_dirty(struct page *page)
1766
{
1767
        SetPageChecked(page);
1768
        return __set_page_dirty_nobuffers(page);
1769
}
1770
 
1771
static const struct address_space_operations ext3_ordered_aops = {
1772
        .readpage       = ext3_readpage,
1773
        .readpages      = ext3_readpages,
1774
        .writepage      = ext3_ordered_writepage,
1775
        .sync_page      = block_sync_page,
1776
        .write_begin    = ext3_write_begin,
1777
        .write_end      = ext3_ordered_write_end,
1778
        .bmap           = ext3_bmap,
1779
        .invalidatepage = ext3_invalidatepage,
1780
        .releasepage    = ext3_releasepage,
1781
        .direct_IO      = ext3_direct_IO,
1782
        .migratepage    = buffer_migrate_page,
1783
};
1784
 
1785
static const struct address_space_operations ext3_writeback_aops = {
1786
        .readpage       = ext3_readpage,
1787
        .readpages      = ext3_readpages,
1788
        .writepage      = ext3_writeback_writepage,
1789
        .sync_page      = block_sync_page,
1790
        .write_begin    = ext3_write_begin,
1791
        .write_end      = ext3_writeback_write_end,
1792
        .bmap           = ext3_bmap,
1793
        .invalidatepage = ext3_invalidatepage,
1794
        .releasepage    = ext3_releasepage,
1795
        .direct_IO      = ext3_direct_IO,
1796
        .migratepage    = buffer_migrate_page,
1797
};
1798
 
1799
static const struct address_space_operations ext3_journalled_aops = {
1800
        .readpage       = ext3_readpage,
1801
        .readpages      = ext3_readpages,
1802
        .writepage      = ext3_journalled_writepage,
1803
        .sync_page      = block_sync_page,
1804
        .write_begin    = ext3_write_begin,
1805
        .write_end      = ext3_journalled_write_end,
1806
        .set_page_dirty = ext3_journalled_set_page_dirty,
1807
        .bmap           = ext3_bmap,
1808
        .invalidatepage = ext3_invalidatepage,
1809
        .releasepage    = ext3_releasepage,
1810
};
1811
 
1812
void ext3_set_aops(struct inode *inode)
1813
{
1814
        if (ext3_should_order_data(inode))
1815
                inode->i_mapping->a_ops = &ext3_ordered_aops;
1816
        else if (ext3_should_writeback_data(inode))
1817
                inode->i_mapping->a_ops = &ext3_writeback_aops;
1818
        else
1819
                inode->i_mapping->a_ops = &ext3_journalled_aops;
1820
}
1821
 
1822
/*
1823
 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1824
 * up to the end of the block which corresponds to `from'.
1825
 * This required during truncate. We need to physically zero the tail end
1826
 * of that block so it doesn't yield old data if the file is later grown.
1827
 */
1828
static int ext3_block_truncate_page(handle_t *handle, struct page *page,
1829
                struct address_space *mapping, loff_t from)
1830
{
1831
        ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1832
        unsigned offset = from & (PAGE_CACHE_SIZE-1);
1833
        unsigned blocksize, iblock, length, pos;
1834
        struct inode *inode = mapping->host;
1835
        struct buffer_head *bh;
1836
        int err = 0;
1837
 
1838
        blocksize = inode->i_sb->s_blocksize;
1839
        length = blocksize - (offset & (blocksize - 1));
1840
        iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1841
 
1842
        /*
1843
         * For "nobh" option,  we can only work if we don't need to
1844
         * read-in the page - otherwise we create buffers to do the IO.
1845
         */
1846
        if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1847
             ext3_should_writeback_data(inode) && PageUptodate(page)) {
1848
                zero_user_page(page, offset, length, KM_USER0);
1849
                set_page_dirty(page);
1850
                goto unlock;
1851
        }
1852
 
1853
        if (!page_has_buffers(page))
1854
                create_empty_buffers(page, blocksize, 0);
1855
 
1856
        /* Find the buffer that contains "offset" */
1857
        bh = page_buffers(page);
1858
        pos = blocksize;
1859
        while (offset >= pos) {
1860
                bh = bh->b_this_page;
1861
                iblock++;
1862
                pos += blocksize;
1863
        }
1864
 
1865
        err = 0;
1866
        if (buffer_freed(bh)) {
1867
                BUFFER_TRACE(bh, "freed: skip");
1868
                goto unlock;
1869
        }
1870
 
1871
        if (!buffer_mapped(bh)) {
1872
                BUFFER_TRACE(bh, "unmapped");
1873
                ext3_get_block(inode, iblock, bh, 0);
1874
                /* unmapped? It's a hole - nothing to do */
1875
                if (!buffer_mapped(bh)) {
1876
                        BUFFER_TRACE(bh, "still unmapped");
1877
                        goto unlock;
1878
                }
1879
        }
1880
 
1881
        /* Ok, it's mapped. Make sure it's up-to-date */
1882
        if (PageUptodate(page))
1883
                set_buffer_uptodate(bh);
1884
 
1885
        if (!buffer_uptodate(bh)) {
1886
                err = -EIO;
1887
                ll_rw_block(READ, 1, &bh);
1888
                wait_on_buffer(bh);
1889
                /* Uhhuh. Read error. Complain and punt. */
1890
                if (!buffer_uptodate(bh))
1891
                        goto unlock;
1892
        }
1893
 
1894
        if (ext3_should_journal_data(inode)) {
1895
                BUFFER_TRACE(bh, "get write access");
1896
                err = ext3_journal_get_write_access(handle, bh);
1897
                if (err)
1898
                        goto unlock;
1899
        }
1900
 
1901
        zero_user_page(page, offset, length, KM_USER0);
1902
        BUFFER_TRACE(bh, "zeroed end of block");
1903
 
1904
        err = 0;
1905
        if (ext3_should_journal_data(inode)) {
1906
                err = ext3_journal_dirty_metadata(handle, bh);
1907
        } else {
1908
                if (ext3_should_order_data(inode))
1909
                        err = ext3_journal_dirty_data(handle, bh);
1910
                mark_buffer_dirty(bh);
1911
        }
1912
 
1913
unlock:
1914
        unlock_page(page);
1915
        page_cache_release(page);
1916
        return err;
1917
}
1918
 
1919
/*
1920
 * Probably it should be a library function... search for first non-zero word
1921
 * or memcmp with zero_page, whatever is better for particular architecture.
1922
 * Linus?
1923
 */
1924
static inline int all_zeroes(__le32 *p, __le32 *q)
1925
{
1926
        while (p < q)
1927
                if (*p++)
1928
                        return 0;
1929
        return 1;
1930
}
1931
 
1932
/**
1933
 *      ext3_find_shared - find the indirect blocks for partial truncation.
1934
 *      @inode:   inode in question
1935
 *      @depth:   depth of the affected branch
1936
 *      @offsets: offsets of pointers in that branch (see ext3_block_to_path)
1937
 *      @chain:   place to store the pointers to partial indirect blocks
1938
 *      @top:     place to the (detached) top of branch
1939
 *
1940
 *      This is a helper function used by ext3_truncate().
1941
 *
1942
 *      When we do truncate() we may have to clean the ends of several
1943
 *      indirect blocks but leave the blocks themselves alive. Block is
1944
 *      partially truncated if some data below the new i_size is refered
1945
 *      from it (and it is on the path to the first completely truncated
1946
 *      data block, indeed).  We have to free the top of that path along
1947
 *      with everything to the right of the path. Since no allocation
1948
 *      past the truncation point is possible until ext3_truncate()
1949
 *      finishes, we may safely do the latter, but top of branch may
1950
 *      require special attention - pageout below the truncation point
1951
 *      might try to populate it.
1952
 *
1953
 *      We atomically detach the top of branch from the tree, store the
1954
 *      block number of its root in *@top, pointers to buffer_heads of
1955
 *      partially truncated blocks - in @chain[].bh and pointers to
1956
 *      their last elements that should not be removed - in
1957
 *      @chain[].p. Return value is the pointer to last filled element
1958
 *      of @chain.
1959
 *
1960
 *      The work left to caller to do the actual freeing of subtrees:
1961
 *              a) free the subtree starting from *@top
1962
 *              b) free the subtrees whose roots are stored in
1963
 *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1964
 *              c) free the subtrees growing from the inode past the @chain[0].
1965
 *                      (no partially truncated stuff there).  */
1966
 
1967
static Indirect *ext3_find_shared(struct inode *inode, int depth,
1968
                        int offsets[4], Indirect chain[4], __le32 *top)
1969
{
1970
        Indirect *partial, *p;
1971
        int k, err;
1972
 
1973
        *top = 0;
1974
        /* Make k index the deepest non-null offest + 1 */
1975
        for (k = depth; k > 1 && !offsets[k-1]; k--)
1976
                ;
1977
        partial = ext3_get_branch(inode, k, offsets, chain, &err);
1978
        /* Writer: pointers */
1979
        if (!partial)
1980
                partial = chain + k-1;
1981
        /*
1982
         * If the branch acquired continuation since we've looked at it -
1983
         * fine, it should all survive and (new) top doesn't belong to us.
1984
         */
1985
        if (!partial->key && *partial->p)
1986
                /* Writer: end */
1987
                goto no_top;
1988
        for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1989
                ;
1990
        /*
1991
         * OK, we've found the last block that must survive. The rest of our
1992
         * branch should be detached before unlocking. However, if that rest
1993
         * of branch is all ours and does not grow immediately from the inode
1994
         * it's easier to cheat and just decrement partial->p.
1995
         */
1996
        if (p == chain + k - 1 && p > chain) {
1997
                p->p--;
1998
        } else {
1999
                *top = *p->p;
2000
                /* Nope, don't do this in ext3.  Must leave the tree intact */
2001
#if 0
2002
                *p->p = 0;
2003
#endif
2004
        }
2005
        /* Writer: end */
2006
 
2007
        while(partial > p) {
2008
                brelse(partial->bh);
2009
                partial--;
2010
        }
2011
no_top:
2012
        return partial;
2013
}
2014
 
2015
/*
2016
 * Zero a number of block pointers in either an inode or an indirect block.
2017
 * If we restart the transaction we must again get write access to the
2018
 * indirect block for further modification.
2019
 *
2020
 * We release `count' blocks on disk, but (last - first) may be greater
2021
 * than `count' because there can be holes in there.
2022
 */
2023
static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
2024
                struct buffer_head *bh, ext3_fsblk_t block_to_free,
2025
                unsigned long count, __le32 *first, __le32 *last)
2026
{
2027
        __le32 *p;
2028
        if (try_to_extend_transaction(handle, inode)) {
2029
                if (bh) {
2030
                        BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2031
                        ext3_journal_dirty_metadata(handle, bh);
2032
                }
2033
                ext3_mark_inode_dirty(handle, inode);
2034
                ext3_journal_test_restart(handle, inode);
2035
                if (bh) {
2036
                        BUFFER_TRACE(bh, "retaking write access");
2037
                        ext3_journal_get_write_access(handle, bh);
2038
                }
2039
        }
2040
 
2041
        /*
2042
         * Any buffers which are on the journal will be in memory. We find
2043
         * them on the hash table so journal_revoke() will run journal_forget()
2044
         * on them.  We've already detached each block from the file, so
2045
         * bforget() in journal_forget() should be safe.
2046
         *
2047
         * AKPM: turn on bforget in journal_forget()!!!
2048
         */
2049
        for (p = first; p < last; p++) {
2050
                u32 nr = le32_to_cpu(*p);
2051
                if (nr) {
2052
                        struct buffer_head *bh;
2053
 
2054
                        *p = 0;
2055
                        bh = sb_find_get_block(inode->i_sb, nr);
2056
                        ext3_forget(handle, 0, inode, bh, nr);
2057
                }
2058
        }
2059
 
2060
        ext3_free_blocks(handle, inode, block_to_free, count);
2061
}
2062
 
2063
/**
2064
 * ext3_free_data - free a list of data blocks
2065
 * @handle:     handle for this transaction
2066
 * @inode:      inode we are dealing with
2067
 * @this_bh:    indirect buffer_head which contains *@first and *@last
2068
 * @first:      array of block numbers
2069
 * @last:       points immediately past the end of array
2070
 *
2071
 * We are freeing all blocks refered from that array (numbers are stored as
2072
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2073
 *
2074
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2075
 * blocks are contiguous then releasing them at one time will only affect one
2076
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2077
 * actually use a lot of journal space.
2078
 *
2079
 * @this_bh will be %NULL if @first and @last point into the inode's direct
2080
 * block pointers.
2081
 */
2082
static void ext3_free_data(handle_t *handle, struct inode *inode,
2083
                           struct buffer_head *this_bh,
2084
                           __le32 *first, __le32 *last)
2085
{
2086
        ext3_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2087
        unsigned long count = 0;     /* Number of blocks in the run */
2088
        __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
2089
                                               corresponding to
2090
                                               block_to_free */
2091
        ext3_fsblk_t nr;                    /* Current block # */
2092
        __le32 *p;                          /* Pointer into inode/ind
2093
                                               for current block */
2094
        int err;
2095
 
2096
        if (this_bh) {                          /* For indirect block */
2097
                BUFFER_TRACE(this_bh, "get_write_access");
2098
                err = ext3_journal_get_write_access(handle, this_bh);
2099
                /* Important: if we can't update the indirect pointers
2100
                 * to the blocks, we can't free them. */
2101
                if (err)
2102
                        return;
2103
        }
2104
 
2105
        for (p = first; p < last; p++) {
2106
                nr = le32_to_cpu(*p);
2107
                if (nr) {
2108
                        /* accumulate blocks to free if they're contiguous */
2109
                        if (count == 0) {
2110
                                block_to_free = nr;
2111
                                block_to_free_p = p;
2112
                                count = 1;
2113
                        } else if (nr == block_to_free + count) {
2114
                                count++;
2115
                        } else {
2116
                                ext3_clear_blocks(handle, inode, this_bh,
2117
                                                  block_to_free,
2118
                                                  count, block_to_free_p, p);
2119
                                block_to_free = nr;
2120
                                block_to_free_p = p;
2121
                                count = 1;
2122
                        }
2123
                }
2124
        }
2125
 
2126
        if (count > 0)
2127
                ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2128
                                  count, block_to_free_p, p);
2129
 
2130
        if (this_bh) {
2131
                BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2132
                ext3_journal_dirty_metadata(handle, this_bh);
2133
        }
2134
}
2135
 
2136
/**
2137
 *      ext3_free_branches - free an array of branches
2138
 *      @handle: JBD handle for this transaction
2139
 *      @inode: inode we are dealing with
2140
 *      @parent_bh: the buffer_head which contains *@first and *@last
2141
 *      @first: array of block numbers
2142
 *      @last:  pointer immediately past the end of array
2143
 *      @depth: depth of the branches to free
2144
 *
2145
 *      We are freeing all blocks refered from these branches (numbers are
2146
 *      stored as little-endian 32-bit) and updating @inode->i_blocks
2147
 *      appropriately.
2148
 */
2149
static void ext3_free_branches(handle_t *handle, struct inode *inode,
2150
                               struct buffer_head *parent_bh,
2151
                               __le32 *first, __le32 *last, int depth)
2152
{
2153
        ext3_fsblk_t nr;
2154
        __le32 *p;
2155
 
2156
        if (is_handle_aborted(handle))
2157
                return;
2158
 
2159
        if (depth--) {
2160
                struct buffer_head *bh;
2161
                int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2162
                p = last;
2163
                while (--p >= first) {
2164
                        nr = le32_to_cpu(*p);
2165
                        if (!nr)
2166
                                continue;               /* A hole */
2167
 
2168
                        /* Go read the buffer for the next level down */
2169
                        bh = sb_bread(inode->i_sb, nr);
2170
 
2171
                        /*
2172
                         * A read failure? Report error and clear slot
2173
                         * (should be rare).
2174
                         */
2175
                        if (!bh) {
2176
                                ext3_error(inode->i_sb, "ext3_free_branches",
2177
                                           "Read failure, inode=%lu, block="E3FSBLK,
2178
                                           inode->i_ino, nr);
2179
                                continue;
2180
                        }
2181
 
2182
                        /* This zaps the entire block.  Bottom up. */
2183
                        BUFFER_TRACE(bh, "free child branches");
2184
                        ext3_free_branches(handle, inode, bh,
2185
                                           (__le32*)bh->b_data,
2186
                                           (__le32*)bh->b_data + addr_per_block,
2187
                                           depth);
2188
 
2189
                        /*
2190
                         * We've probably journalled the indirect block several
2191
                         * times during the truncate.  But it's no longer
2192
                         * needed and we now drop it from the transaction via
2193
                         * journal_revoke().
2194
                         *
2195
                         * That's easy if it's exclusively part of this
2196
                         * transaction.  But if it's part of the committing
2197
                         * transaction then journal_forget() will simply
2198
                         * brelse() it.  That means that if the underlying
2199
                         * block is reallocated in ext3_get_block(),
2200
                         * unmap_underlying_metadata() will find this block
2201
                         * and will try to get rid of it.  damn, damn.
2202
                         *
2203
                         * If this block has already been committed to the
2204
                         * journal, a revoke record will be written.  And
2205
                         * revoke records must be emitted *before* clearing
2206
                         * this block's bit in the bitmaps.
2207
                         */
2208
                        ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2209
 
2210
                        /*
2211
                         * Everything below this this pointer has been
2212
                         * released.  Now let this top-of-subtree go.
2213
                         *
2214
                         * We want the freeing of this indirect block to be
2215
                         * atomic in the journal with the updating of the
2216
                         * bitmap block which owns it.  So make some room in
2217
                         * the journal.
2218
                         *
2219
                         * We zero the parent pointer *after* freeing its
2220
                         * pointee in the bitmaps, so if extend_transaction()
2221
                         * for some reason fails to put the bitmap changes and
2222
                         * the release into the same transaction, recovery
2223
                         * will merely complain about releasing a free block,
2224
                         * rather than leaking blocks.
2225
                         */
2226
                        if (is_handle_aborted(handle))
2227
                                return;
2228
                        if (try_to_extend_transaction(handle, inode)) {
2229
                                ext3_mark_inode_dirty(handle, inode);
2230
                                ext3_journal_test_restart(handle, inode);
2231
                        }
2232
 
2233
                        ext3_free_blocks(handle, inode, nr, 1);
2234
 
2235
                        if (parent_bh) {
2236
                                /*
2237
                                 * The block which we have just freed is
2238
                                 * pointed to by an indirect block: journal it
2239
                                 */
2240
                                BUFFER_TRACE(parent_bh, "get_write_access");
2241
                                if (!ext3_journal_get_write_access(handle,
2242
                                                                   parent_bh)){
2243
                                        *p = 0;
2244
                                        BUFFER_TRACE(parent_bh,
2245
                                        "call ext3_journal_dirty_metadata");
2246
                                        ext3_journal_dirty_metadata(handle,
2247
                                                                    parent_bh);
2248
                                }
2249
                        }
2250
                }
2251
        } else {
2252
                /* We have reached the bottom of the tree. */
2253
                BUFFER_TRACE(parent_bh, "free data blocks");
2254
                ext3_free_data(handle, inode, parent_bh, first, last);
2255
        }
2256
}
2257
 
2258
/*
2259
 * ext3_truncate()
2260
 *
2261
 * We block out ext3_get_block() block instantiations across the entire
2262
 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2263
 * simultaneously on behalf of the same inode.
2264
 *
2265
 * As we work through the truncate and commmit bits of it to the journal there
2266
 * is one core, guiding principle: the file's tree must always be consistent on
2267
 * disk.  We must be able to restart the truncate after a crash.
2268
 *
2269
 * The file's tree may be transiently inconsistent in memory (although it
2270
 * probably isn't), but whenever we close off and commit a journal transaction,
2271
 * the contents of (the filesystem + the journal) must be consistent and
2272
 * restartable.  It's pretty simple, really: bottom up, right to left (although
2273
 * left-to-right works OK too).
2274
 *
2275
 * Note that at recovery time, journal replay occurs *before* the restart of
2276
 * truncate against the orphan inode list.
2277
 *
2278
 * The committed inode has the new, desired i_size (which is the same as
2279
 * i_disksize in this case).  After a crash, ext3_orphan_cleanup() will see
2280
 * that this inode's truncate did not complete and it will again call
2281
 * ext3_truncate() to have another go.  So there will be instantiated blocks
2282
 * to the right of the truncation point in a crashed ext3 filesystem.  But
2283
 * that's fine - as long as they are linked from the inode, the post-crash
2284
 * ext3_truncate() run will find them and release them.
2285
 */
2286
void ext3_truncate(struct inode *inode)
2287
{
2288
        handle_t *handle;
2289
        struct ext3_inode_info *ei = EXT3_I(inode);
2290
        __le32 *i_data = ei->i_data;
2291
        int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2292
        struct address_space *mapping = inode->i_mapping;
2293
        int offsets[4];
2294
        Indirect chain[4];
2295
        Indirect *partial;
2296
        __le32 nr = 0;
2297
        int n;
2298
        long last_block;
2299
        unsigned blocksize = inode->i_sb->s_blocksize;
2300
        struct page *page;
2301
 
2302
        if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2303
            S_ISLNK(inode->i_mode)))
2304
                return;
2305
        if (ext3_inode_is_fast_symlink(inode))
2306
                return;
2307
        if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2308
                return;
2309
 
2310
        /*
2311
         * We have to lock the EOF page here, because lock_page() nests
2312
         * outside journal_start().
2313
         */
2314
        if ((inode->i_size & (blocksize - 1)) == 0) {
2315
                /* Block boundary? Nothing to do */
2316
                page = NULL;
2317
        } else {
2318
                page = grab_cache_page(mapping,
2319
                                inode->i_size >> PAGE_CACHE_SHIFT);
2320
                if (!page)
2321
                        return;
2322
        }
2323
 
2324
        handle = start_transaction(inode);
2325
        if (IS_ERR(handle)) {
2326
                if (page) {
2327
                        clear_highpage(page);
2328
                        flush_dcache_page(page);
2329
                        unlock_page(page);
2330
                        page_cache_release(page);
2331
                }
2332
                return;         /* AKPM: return what? */
2333
        }
2334
 
2335
        last_block = (inode->i_size + blocksize-1)
2336
                                        >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2337
 
2338
        if (page)
2339
                ext3_block_truncate_page(handle, page, mapping, inode->i_size);
2340
 
2341
        n = ext3_block_to_path(inode, last_block, offsets, NULL);
2342
        if (n == 0)
2343
                goto out_stop;  /* error */
2344
 
2345
        /*
2346
         * OK.  This truncate is going to happen.  We add the inode to the
2347
         * orphan list, so that if this truncate spans multiple transactions,
2348
         * and we crash, we will resume the truncate when the filesystem
2349
         * recovers.  It also marks the inode dirty, to catch the new size.
2350
         *
2351
         * Implication: the file must always be in a sane, consistent
2352
         * truncatable state while each transaction commits.
2353
         */
2354
        if (ext3_orphan_add(handle, inode))
2355
                goto out_stop;
2356
 
2357
        /*
2358
         * The orphan list entry will now protect us from any crash which
2359
         * occurs before the truncate completes, so it is now safe to propagate
2360
         * the new, shorter inode size (held for now in i_size) into the
2361
         * on-disk inode. We do this via i_disksize, which is the value which
2362
         * ext3 *really* writes onto the disk inode.
2363
         */
2364
        ei->i_disksize = inode->i_size;
2365
 
2366
        /*
2367
         * From here we block out all ext3_get_block() callers who want to
2368
         * modify the block allocation tree.
2369
         */
2370
        mutex_lock(&ei->truncate_mutex);
2371
 
2372
        if (n == 1) {           /* direct blocks */
2373
                ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2374
                               i_data + EXT3_NDIR_BLOCKS);
2375
                goto do_indirects;
2376
        }
2377
 
2378
        partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2379
        /* Kill the top of shared branch (not detached) */
2380
        if (nr) {
2381
                if (partial == chain) {
2382
                        /* Shared branch grows from the inode */
2383
                        ext3_free_branches(handle, inode, NULL,
2384
                                           &nr, &nr+1, (chain+n-1) - partial);
2385
                        *partial->p = 0;
2386
                        /*
2387
                         * We mark the inode dirty prior to restart,
2388
                         * and prior to stop.  No need for it here.
2389
                         */
2390
                } else {
2391
                        /* Shared branch grows from an indirect block */
2392
                        BUFFER_TRACE(partial->bh, "get_write_access");
2393
                        ext3_free_branches(handle, inode, partial->bh,
2394
                                        partial->p,
2395
                                        partial->p+1, (chain+n-1) - partial);
2396
                }
2397
        }
2398
        /* Clear the ends of indirect blocks on the shared branch */
2399
        while (partial > chain) {
2400
                ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2401
                                   (__le32*)partial->bh->b_data+addr_per_block,
2402
                                   (chain+n-1) - partial);
2403
                BUFFER_TRACE(partial->bh, "call brelse");
2404
                brelse (partial->bh);
2405
                partial--;
2406
        }
2407
do_indirects:
2408
        /* Kill the remaining (whole) subtrees */
2409
        switch (offsets[0]) {
2410
        default:
2411
                nr = i_data[EXT3_IND_BLOCK];
2412
                if (nr) {
2413
                        ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2414
                        i_data[EXT3_IND_BLOCK] = 0;
2415
                }
2416
        case EXT3_IND_BLOCK:
2417
                nr = i_data[EXT3_DIND_BLOCK];
2418
                if (nr) {
2419
                        ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2420
                        i_data[EXT3_DIND_BLOCK] = 0;
2421
                }
2422
        case EXT3_DIND_BLOCK:
2423
                nr = i_data[EXT3_TIND_BLOCK];
2424
                if (nr) {
2425
                        ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2426
                        i_data[EXT3_TIND_BLOCK] = 0;
2427
                }
2428
        case EXT3_TIND_BLOCK:
2429
                ;
2430
        }
2431
 
2432
        ext3_discard_reservation(inode);
2433
 
2434
        mutex_unlock(&ei->truncate_mutex);
2435
        inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2436
        ext3_mark_inode_dirty(handle, inode);
2437
 
2438
        /*
2439
         * In a multi-transaction truncate, we only make the final transaction
2440
         * synchronous
2441
         */
2442
        if (IS_SYNC(inode))
2443
                handle->h_sync = 1;
2444
out_stop:
2445
        /*
2446
         * If this was a simple ftruncate(), and the file will remain alive
2447
         * then we need to clear up the orphan record which we created above.
2448
         * However, if this was a real unlink then we were called by
2449
         * ext3_delete_inode(), and we allow that function to clean up the
2450
         * orphan info for us.
2451
         */
2452
        if (inode->i_nlink)
2453
                ext3_orphan_del(handle, inode);
2454
 
2455
        ext3_journal_stop(handle);
2456
}
2457
 
2458
static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
2459
                unsigned long ino, struct ext3_iloc *iloc)
2460
{
2461
        unsigned long desc, group_desc, block_group;
2462
        unsigned long offset;
2463
        ext3_fsblk_t block;
2464
        struct buffer_head *bh;
2465
        struct ext3_group_desc * gdp;
2466
 
2467
        if (!ext3_valid_inum(sb, ino)) {
2468
                /*
2469
                 * This error is already checked for in namei.c unless we are
2470
                 * looking at an NFS filehandle, in which case no error
2471
                 * report is needed
2472
                 */
2473
                return 0;
2474
        }
2475
 
2476
        block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2477
        if (block_group >= EXT3_SB(sb)->s_groups_count) {
2478
                ext3_error(sb,"ext3_get_inode_block","group >= groups count");
2479
                return 0;
2480
        }
2481
        smp_rmb();
2482
        group_desc = block_group >> EXT3_DESC_PER_BLOCK_BITS(sb);
2483
        desc = block_group & (EXT3_DESC_PER_BLOCK(sb) - 1);
2484
        bh = EXT3_SB(sb)->s_group_desc[group_desc];
2485
        if (!bh) {
2486
                ext3_error (sb, "ext3_get_inode_block",
2487
                            "Descriptor not loaded");
2488
                return 0;
2489
        }
2490
 
2491
        gdp = (struct ext3_group_desc *)bh->b_data;
2492
        /*
2493
         * Figure out the offset within the block group inode table
2494
         */
2495
        offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2496
                EXT3_INODE_SIZE(sb);
2497
        block = le32_to_cpu(gdp[desc].bg_inode_table) +
2498
                (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2499
 
2500
        iloc->block_group = block_group;
2501
        iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2502
        return block;
2503
}
2504
 
2505
/*
2506
 * ext3_get_inode_loc returns with an extra refcount against the inode's
2507
 * underlying buffer_head on success. If 'in_mem' is true, we have all
2508
 * data in memory that is needed to recreate the on-disk version of this
2509
 * inode.
2510
 */
2511
static int __ext3_get_inode_loc(struct inode *inode,
2512
                                struct ext3_iloc *iloc, int in_mem)
2513
{
2514
        ext3_fsblk_t block;
2515
        struct buffer_head *bh;
2516
 
2517
        block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2518
        if (!block)
2519
                return -EIO;
2520
 
2521
        bh = sb_getblk(inode->i_sb, block);
2522
        if (!bh) {
2523
                ext3_error (inode->i_sb, "ext3_get_inode_loc",
2524
                                "unable to read inode block - "
2525
                                "inode=%lu, block="E3FSBLK,
2526
                                 inode->i_ino, block);
2527
                return -EIO;
2528
        }
2529
        if (!buffer_uptodate(bh)) {
2530
                lock_buffer(bh);
2531
                if (buffer_uptodate(bh)) {
2532
                        /* someone brought it uptodate while we waited */
2533
                        unlock_buffer(bh);
2534
                        goto has_buffer;
2535
                }
2536
 
2537
                /*
2538
                 * If we have all information of the inode in memory and this
2539
                 * is the only valid inode in the block, we need not read the
2540
                 * block.
2541
                 */
2542
                if (in_mem) {
2543
                        struct buffer_head *bitmap_bh;
2544
                        struct ext3_group_desc *desc;
2545
                        int inodes_per_buffer;
2546
                        int inode_offset, i;
2547
                        int block_group;
2548
                        int start;
2549
 
2550
                        block_group = (inode->i_ino - 1) /
2551
                                        EXT3_INODES_PER_GROUP(inode->i_sb);
2552
                        inodes_per_buffer = bh->b_size /
2553
                                EXT3_INODE_SIZE(inode->i_sb);
2554
                        inode_offset = ((inode->i_ino - 1) %
2555
                                        EXT3_INODES_PER_GROUP(inode->i_sb));
2556
                        start = inode_offset & ~(inodes_per_buffer - 1);
2557
 
2558
                        /* Is the inode bitmap in cache? */
2559
                        desc = ext3_get_group_desc(inode->i_sb,
2560
                                                block_group, NULL);
2561
                        if (!desc)
2562
                                goto make_io;
2563
 
2564
                        bitmap_bh = sb_getblk(inode->i_sb,
2565
                                        le32_to_cpu(desc->bg_inode_bitmap));
2566
                        if (!bitmap_bh)
2567
                                goto make_io;
2568
 
2569
                        /*
2570
                         * If the inode bitmap isn't in cache then the
2571
                         * optimisation may end up performing two reads instead
2572
                         * of one, so skip it.
2573
                         */
2574
                        if (!buffer_uptodate(bitmap_bh)) {
2575
                                brelse(bitmap_bh);
2576
                                goto make_io;
2577
                        }
2578
                        for (i = start; i < start + inodes_per_buffer; i++) {
2579
                                if (i == inode_offset)
2580
                                        continue;
2581
                                if (ext3_test_bit(i, bitmap_bh->b_data))
2582
                                        break;
2583
                        }
2584
                        brelse(bitmap_bh);
2585
                        if (i == start + inodes_per_buffer) {
2586
                                /* all other inodes are free, so skip I/O */
2587
                                memset(bh->b_data, 0, bh->b_size);
2588
                                set_buffer_uptodate(bh);
2589
                                unlock_buffer(bh);
2590
                                goto has_buffer;
2591
                        }
2592
                }
2593
 
2594
make_io:
2595
                /*
2596
                 * There are other valid inodes in the buffer, this inode
2597
                 * has in-inode xattrs, or we don't have this inode in memory.
2598
                 * Read the block from disk.
2599
                 */
2600
                get_bh(bh);
2601
                bh->b_end_io = end_buffer_read_sync;
2602
                submit_bh(READ_META, bh);
2603
                wait_on_buffer(bh);
2604
                if (!buffer_uptodate(bh)) {
2605
                        ext3_error(inode->i_sb, "ext3_get_inode_loc",
2606
                                        "unable to read inode block - "
2607
                                        "inode=%lu, block="E3FSBLK,
2608
                                        inode->i_ino, block);
2609
                        brelse(bh);
2610
                        return -EIO;
2611
                }
2612
        }
2613
has_buffer:
2614
        iloc->bh = bh;
2615
        return 0;
2616
}
2617
 
2618
int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2619
{
2620
        /* We have all inode data except xattrs in memory here. */
2621
        return __ext3_get_inode_loc(inode, iloc,
2622
                !(EXT3_I(inode)->i_state & EXT3_STATE_XATTR));
2623
}
2624
 
2625
void ext3_set_inode_flags(struct inode *inode)
2626
{
2627
        unsigned int flags = EXT3_I(inode)->i_flags;
2628
 
2629
        inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2630
        if (flags & EXT3_SYNC_FL)
2631
                inode->i_flags |= S_SYNC;
2632
        if (flags & EXT3_APPEND_FL)
2633
                inode->i_flags |= S_APPEND;
2634
        if (flags & EXT3_IMMUTABLE_FL)
2635
                inode->i_flags |= S_IMMUTABLE;
2636
        if (flags & EXT3_NOATIME_FL)
2637
                inode->i_flags |= S_NOATIME;
2638
        if (flags & EXT3_DIRSYNC_FL)
2639
                inode->i_flags |= S_DIRSYNC;
2640
}
2641
 
2642
/* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2643
void ext3_get_inode_flags(struct ext3_inode_info *ei)
2644
{
2645
        unsigned int flags = ei->vfs_inode.i_flags;
2646
 
2647
        ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2648
                        EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2649
        if (flags & S_SYNC)
2650
                ei->i_flags |= EXT3_SYNC_FL;
2651
        if (flags & S_APPEND)
2652
                ei->i_flags |= EXT3_APPEND_FL;
2653
        if (flags & S_IMMUTABLE)
2654
                ei->i_flags |= EXT3_IMMUTABLE_FL;
2655
        if (flags & S_NOATIME)
2656
                ei->i_flags |= EXT3_NOATIME_FL;
2657
        if (flags & S_DIRSYNC)
2658
                ei->i_flags |= EXT3_DIRSYNC_FL;
2659
}
2660
 
2661
void ext3_read_inode(struct inode * inode)
2662
{
2663
        struct ext3_iloc iloc;
2664
        struct ext3_inode *raw_inode;
2665
        struct ext3_inode_info *ei = EXT3_I(inode);
2666
        struct buffer_head *bh;
2667
        int block;
2668
 
2669
#ifdef CONFIG_EXT3_FS_POSIX_ACL
2670
        ei->i_acl = EXT3_ACL_NOT_CACHED;
2671
        ei->i_default_acl = EXT3_ACL_NOT_CACHED;
2672
#endif
2673
        ei->i_block_alloc_info = NULL;
2674
 
2675
        if (__ext3_get_inode_loc(inode, &iloc, 0))
2676
                goto bad_inode;
2677
        bh = iloc.bh;
2678
        raw_inode = ext3_raw_inode(&iloc);
2679
        inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2680
        inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2681
        inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2682
        if(!(test_opt (inode->i_sb, NO_UID32))) {
2683
                inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2684
                inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2685
        }
2686
        inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2687
        inode->i_size = le32_to_cpu(raw_inode->i_size);
2688
        inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2689
        inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2690
        inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
2691
        inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2692
 
2693
        ei->i_state = 0;
2694
        ei->i_dir_start_lookup = 0;
2695
        ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2696
        /* We now have enough fields to check if the inode was active or not.
2697
         * This is needed because nfsd might try to access dead inodes
2698
         * the test is that same one that e2fsck uses
2699
         * NeilBrown 1999oct15
2700
         */
2701
        if (inode->i_nlink == 0) {
2702
                if (inode->i_mode == 0 ||
2703
                    !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2704
                        /* this inode is deleted */
2705
                        brelse (bh);
2706
                        goto bad_inode;
2707
                }
2708
                /* The only unlinked inodes we let through here have
2709
                 * valid i_mode and are being read by the orphan
2710
                 * recovery code: that's fine, we're about to complete
2711
                 * the process of deleting those. */
2712
        }
2713
        inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2714
        ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2715
#ifdef EXT3_FRAGMENTS
2716
        ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2717
        ei->i_frag_no = raw_inode->i_frag;
2718
        ei->i_frag_size = raw_inode->i_fsize;
2719
#endif
2720
        ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2721
        if (!S_ISREG(inode->i_mode)) {
2722
                ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2723
        } else {
2724
                inode->i_size |=
2725
                        ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2726
        }
2727
        ei->i_disksize = inode->i_size;
2728
        inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2729
        ei->i_block_group = iloc.block_group;
2730
        /*
2731
         * NOTE! The in-memory inode i_data array is in little-endian order
2732
         * even on big-endian machines: we do NOT byteswap the block numbers!
2733
         */
2734
        for (block = 0; block < EXT3_N_BLOCKS; block++)
2735
                ei->i_data[block] = raw_inode->i_block[block];
2736
        INIT_LIST_HEAD(&ei->i_orphan);
2737
 
2738
        if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2739
            EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2740
                /*
2741
                 * When mke2fs creates big inodes it does not zero out
2742
                 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2743
                 * so ignore those first few inodes.
2744
                 */
2745
                ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2746
                if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2747
                    EXT3_INODE_SIZE(inode->i_sb)) {
2748
                        brelse (bh);
2749
                        goto bad_inode;
2750
                }
2751
                if (ei->i_extra_isize == 0) {
2752
                        /* The extra space is currently unused. Use it. */
2753
                        ei->i_extra_isize = sizeof(struct ext3_inode) -
2754
                                            EXT3_GOOD_OLD_INODE_SIZE;
2755
                } else {
2756
                        __le32 *magic = (void *)raw_inode +
2757
                                        EXT3_GOOD_OLD_INODE_SIZE +
2758
                                        ei->i_extra_isize;
2759
                        if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
2760
                                 ei->i_state |= EXT3_STATE_XATTR;
2761
                }
2762
        } else
2763
                ei->i_extra_isize = 0;
2764
 
2765
        if (S_ISREG(inode->i_mode)) {
2766
                inode->i_op = &ext3_file_inode_operations;
2767
                inode->i_fop = &ext3_file_operations;
2768
                ext3_set_aops(inode);
2769
        } else if (S_ISDIR(inode->i_mode)) {
2770
                inode->i_op = &ext3_dir_inode_operations;
2771
                inode->i_fop = &ext3_dir_operations;
2772
        } else if (S_ISLNK(inode->i_mode)) {
2773
                if (ext3_inode_is_fast_symlink(inode))
2774
                        inode->i_op = &ext3_fast_symlink_inode_operations;
2775
                else {
2776
                        inode->i_op = &ext3_symlink_inode_operations;
2777
                        ext3_set_aops(inode);
2778
                }
2779
        } else {
2780
                inode->i_op = &ext3_special_inode_operations;
2781
                if (raw_inode->i_block[0])
2782
                        init_special_inode(inode, inode->i_mode,
2783
                           old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2784
                else
2785
                        init_special_inode(inode, inode->i_mode,
2786
                           new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2787
        }
2788
        brelse (iloc.bh);
2789
        ext3_set_inode_flags(inode);
2790
        return;
2791
 
2792
bad_inode:
2793
        make_bad_inode(inode);
2794
        return;
2795
}
2796
 
2797
/*
2798
 * Post the struct inode info into an on-disk inode location in the
2799
 * buffer-cache.  This gobbles the caller's reference to the
2800
 * buffer_head in the inode location struct.
2801
 *
2802
 * The caller must have write access to iloc->bh.
2803
 */
2804
static int ext3_do_update_inode(handle_t *handle,
2805
                                struct inode *inode,
2806
                                struct ext3_iloc *iloc)
2807
{
2808
        struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
2809
        struct ext3_inode_info *ei = EXT3_I(inode);
2810
        struct buffer_head *bh = iloc->bh;
2811
        int err = 0, rc, block;
2812
 
2813
        /* For fields not not tracking in the in-memory inode,
2814
         * initialise them to zero for new inodes. */
2815
        if (ei->i_state & EXT3_STATE_NEW)
2816
                memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
2817
 
2818
        ext3_get_inode_flags(ei);
2819
        raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2820
        if(!(test_opt(inode->i_sb, NO_UID32))) {
2821
                raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2822
                raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2823
/*
2824
 * Fix up interoperability with old kernels. Otherwise, old inodes get
2825
 * re-used with the upper 16 bits of the uid/gid intact
2826
 */
2827
                if(!ei->i_dtime) {
2828
                        raw_inode->i_uid_high =
2829
                                cpu_to_le16(high_16_bits(inode->i_uid));
2830
                        raw_inode->i_gid_high =
2831
                                cpu_to_le16(high_16_bits(inode->i_gid));
2832
                } else {
2833
                        raw_inode->i_uid_high = 0;
2834
                        raw_inode->i_gid_high = 0;
2835
                }
2836
        } else {
2837
                raw_inode->i_uid_low =
2838
                        cpu_to_le16(fs_high2lowuid(inode->i_uid));
2839
                raw_inode->i_gid_low =
2840
                        cpu_to_le16(fs_high2lowgid(inode->i_gid));
2841
                raw_inode->i_uid_high = 0;
2842
                raw_inode->i_gid_high = 0;
2843
        }
2844
        raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2845
        raw_inode->i_size = cpu_to_le32(ei->i_disksize);
2846
        raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
2847
        raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
2848
        raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
2849
        raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
2850
        raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2851
        raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2852
#ifdef EXT3_FRAGMENTS
2853
        raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
2854
        raw_inode->i_frag = ei->i_frag_no;
2855
        raw_inode->i_fsize = ei->i_frag_size;
2856
#endif
2857
        raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
2858
        if (!S_ISREG(inode->i_mode)) {
2859
                raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
2860
        } else {
2861
                raw_inode->i_size_high =
2862
                        cpu_to_le32(ei->i_disksize >> 32);
2863
                if (ei->i_disksize > 0x7fffffffULL) {
2864
                        struct super_block *sb = inode->i_sb;
2865
                        if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
2866
                                        EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
2867
                            EXT3_SB(sb)->s_es->s_rev_level ==
2868
                                        cpu_to_le32(EXT3_GOOD_OLD_REV)) {
2869
                               /* If this is the first large file
2870
                                * created, add a flag to the superblock.
2871
                                */
2872
                                err = ext3_journal_get_write_access(handle,
2873
                                                EXT3_SB(sb)->s_sbh);
2874
                                if (err)
2875
                                        goto out_brelse;
2876
                                ext3_update_dynamic_rev(sb);
2877
                                EXT3_SET_RO_COMPAT_FEATURE(sb,
2878
                                        EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
2879
                                sb->s_dirt = 1;
2880
                                handle->h_sync = 1;
2881
                                err = ext3_journal_dirty_metadata(handle,
2882
                                                EXT3_SB(sb)->s_sbh);
2883
                        }
2884
                }
2885
        }
2886
        raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2887
        if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2888
                if (old_valid_dev(inode->i_rdev)) {
2889
                        raw_inode->i_block[0] =
2890
                                cpu_to_le32(old_encode_dev(inode->i_rdev));
2891
                        raw_inode->i_block[1] = 0;
2892
                } else {
2893
                        raw_inode->i_block[0] = 0;
2894
                        raw_inode->i_block[1] =
2895
                                cpu_to_le32(new_encode_dev(inode->i_rdev));
2896
                        raw_inode->i_block[2] = 0;
2897
                }
2898
        } else for (block = 0; block < EXT3_N_BLOCKS; block++)
2899
                raw_inode->i_block[block] = ei->i_data[block];
2900
 
2901
        if (ei->i_extra_isize)
2902
                raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
2903
 
2904
        BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2905
        rc = ext3_journal_dirty_metadata(handle, bh);
2906
        if (!err)
2907
                err = rc;
2908
        ei->i_state &= ~EXT3_STATE_NEW;
2909
 
2910
out_brelse:
2911
        brelse (bh);
2912
        ext3_std_error(inode->i_sb, err);
2913
        return err;
2914
}
2915
 
2916
/*
2917
 * ext3_write_inode()
2918
 *
2919
 * We are called from a few places:
2920
 *
2921
 * - Within generic_file_write() for O_SYNC files.
2922
 *   Here, there will be no transaction running. We wait for any running
2923
 *   trasnaction to commit.
2924
 *
2925
 * - Within sys_sync(), kupdate and such.
2926
 *   We wait on commit, if tol to.
2927
 *
2928
 * - Within prune_icache() (PF_MEMALLOC == true)
2929
 *   Here we simply return.  We can't afford to block kswapd on the
2930
 *   journal commit.
2931
 *
2932
 * In all cases it is actually safe for us to return without doing anything,
2933
 * because the inode has been copied into a raw inode buffer in
2934
 * ext3_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
2935
 * knfsd.
2936
 *
2937
 * Note that we are absolutely dependent upon all inode dirtiers doing the
2938
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
2939
 * which we are interested.
2940
 *
2941
 * It would be a bug for them to not do this.  The code:
2942
 *
2943
 *      mark_inode_dirty(inode)
2944
 *      stuff();
2945
 *      inode->i_size = expr;
2946
 *
2947
 * is in error because a kswapd-driven write_inode() could occur while
2948
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
2949
 * will no longer be on the superblock's dirty inode list.
2950
 */
2951
int ext3_write_inode(struct inode *inode, int wait)
2952
{
2953
        if (current->flags & PF_MEMALLOC)
2954
                return 0;
2955
 
2956
        if (ext3_journal_current_handle()) {
2957
                jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
2958
                dump_stack();
2959
                return -EIO;
2960
        }
2961
 
2962
        if (!wait)
2963
                return 0;
2964
 
2965
        return ext3_force_commit(inode->i_sb);
2966
}
2967
 
2968
/*
2969
 * ext3_setattr()
2970
 *
2971
 * Called from notify_change.
2972
 *
2973
 * We want to trap VFS attempts to truncate the file as soon as
2974
 * possible.  In particular, we want to make sure that when the VFS
2975
 * shrinks i_size, we put the inode on the orphan list and modify
2976
 * i_disksize immediately, so that during the subsequent flushing of
2977
 * dirty pages and freeing of disk blocks, we can guarantee that any
2978
 * commit will leave the blocks being flushed in an unused state on
2979
 * disk.  (On recovery, the inode will get truncated and the blocks will
2980
 * be freed, so we have a strong guarantee that no future commit will
2981
 * leave these blocks visible to the user.)
2982
 *
2983
 * Called with inode->sem down.
2984
 */
2985
int ext3_setattr(struct dentry *dentry, struct iattr *attr)
2986
{
2987
        struct inode *inode = dentry->d_inode;
2988
        int error, rc = 0;
2989
        const unsigned int ia_valid = attr->ia_valid;
2990
 
2991
        error = inode_change_ok(inode, attr);
2992
        if (error)
2993
                return error;
2994
 
2995
        if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
2996
                (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
2997
                handle_t *handle;
2998
 
2999
                /* (user+group)*(old+new) structure, inode write (sb,
3000
                 * inode block, ? - but truncate inode update has it) */
3001
                handle = ext3_journal_start(inode, 2*(EXT3_QUOTA_INIT_BLOCKS(inode->i_sb)+
3002
                                        EXT3_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3003
                if (IS_ERR(handle)) {
3004
                        error = PTR_ERR(handle);
3005
                        goto err_out;
3006
                }
3007
                error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3008
                if (error) {
3009
                        ext3_journal_stop(handle);
3010
                        return error;
3011
                }
3012
                /* Update corresponding info in inode so that everything is in
3013
                 * one transaction */
3014
                if (attr->ia_valid & ATTR_UID)
3015
                        inode->i_uid = attr->ia_uid;
3016
                if (attr->ia_valid & ATTR_GID)
3017
                        inode->i_gid = attr->ia_gid;
3018
                error = ext3_mark_inode_dirty(handle, inode);
3019
                ext3_journal_stop(handle);
3020
        }
3021
 
3022
        if (S_ISREG(inode->i_mode) &&
3023
            attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3024
                handle_t *handle;
3025
 
3026
                handle = ext3_journal_start(inode, 3);
3027
                if (IS_ERR(handle)) {
3028
                        error = PTR_ERR(handle);
3029
                        goto err_out;
3030
                }
3031
 
3032
                error = ext3_orphan_add(handle, inode);
3033
                EXT3_I(inode)->i_disksize = attr->ia_size;
3034
                rc = ext3_mark_inode_dirty(handle, inode);
3035
                if (!error)
3036
                        error = rc;
3037
                ext3_journal_stop(handle);
3038
        }
3039
 
3040
        rc = inode_setattr(inode, attr);
3041
 
3042
        /* If inode_setattr's call to ext3_truncate failed to get a
3043
         * transaction handle at all, we need to clean up the in-core
3044
         * orphan list manually. */
3045
        if (inode->i_nlink)
3046
                ext3_orphan_del(NULL, inode);
3047
 
3048
        if (!rc && (ia_valid & ATTR_MODE))
3049
                rc = ext3_acl_chmod(inode);
3050
 
3051
err_out:
3052
        ext3_std_error(inode->i_sb, error);
3053
        if (!error)
3054
                error = rc;
3055
        return error;
3056
}
3057
 
3058
 
3059
/*
3060
 * How many blocks doth make a writepage()?
3061
 *
3062
 * With N blocks per page, it may be:
3063
 * N data blocks
3064
 * 2 indirect block
3065
 * 2 dindirect
3066
 * 1 tindirect
3067
 * N+5 bitmap blocks (from the above)
3068
 * N+5 group descriptor summary blocks
3069
 * 1 inode block
3070
 * 1 superblock.
3071
 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3072
 *
3073
 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3074
 *
3075
 * With ordered or writeback data it's the same, less the N data blocks.
3076
 *
3077
 * If the inode's direct blocks can hold an integral number of pages then a
3078
 * page cannot straddle two indirect blocks, and we can only touch one indirect
3079
 * and dindirect block, and the "5" above becomes "3".
3080
 *
3081
 * This still overestimates under most circumstances.  If we were to pass the
3082
 * start and end offsets in here as well we could do block_to_path() on each
3083
 * block and work out the exact number of indirects which are touched.  Pah.
3084
 */
3085
 
3086
static int ext3_writepage_trans_blocks(struct inode *inode)
3087
{
3088
        int bpp = ext3_journal_blocks_per_page(inode);
3089
        int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3090
        int ret;
3091
 
3092
        if (ext3_should_journal_data(inode))
3093
                ret = 3 * (bpp + indirects) + 2;
3094
        else
3095
                ret = 2 * (bpp + indirects) + 2;
3096
 
3097
#ifdef CONFIG_QUOTA
3098
        /* We know that structure was already allocated during DQUOT_INIT so
3099
         * we will be updating only the data blocks + inodes */
3100
        ret += 2*EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb);
3101
#endif
3102
 
3103
        return ret;
3104
}
3105
 
3106
/*
3107
 * The caller must have previously called ext3_reserve_inode_write().
3108
 * Give this, we know that the caller already has write access to iloc->bh.
3109
 */
3110
int ext3_mark_iloc_dirty(handle_t *handle,
3111
                struct inode *inode, struct ext3_iloc *iloc)
3112
{
3113
        int err = 0;
3114
 
3115
        /* the do_update_inode consumes one bh->b_count */
3116
        get_bh(iloc->bh);
3117
 
3118
        /* ext3_do_update_inode() does journal_dirty_metadata */
3119
        err = ext3_do_update_inode(handle, inode, iloc);
3120
        put_bh(iloc->bh);
3121
        return err;
3122
}
3123
 
3124
/*
3125
 * On success, We end up with an outstanding reference count against
3126
 * iloc->bh.  This _must_ be cleaned up later.
3127
 */
3128
 
3129
int
3130
ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3131
                         struct ext3_iloc *iloc)
3132
{
3133
        int err = 0;
3134
        if (handle) {
3135
                err = ext3_get_inode_loc(inode, iloc);
3136
                if (!err) {
3137
                        BUFFER_TRACE(iloc->bh, "get_write_access");
3138
                        err = ext3_journal_get_write_access(handle, iloc->bh);
3139
                        if (err) {
3140
                                brelse(iloc->bh);
3141
                                iloc->bh = NULL;
3142
                        }
3143
                }
3144
        }
3145
        ext3_std_error(inode->i_sb, err);
3146
        return err;
3147
}
3148
 
3149
/*
3150
 * What we do here is to mark the in-core inode as clean with respect to inode
3151
 * dirtiness (it may still be data-dirty).
3152
 * This means that the in-core inode may be reaped by prune_icache
3153
 * without having to perform any I/O.  This is a very good thing,
3154
 * because *any* task may call prune_icache - even ones which
3155
 * have a transaction open against a different journal.
3156
 *
3157
 * Is this cheating?  Not really.  Sure, we haven't written the
3158
 * inode out, but prune_icache isn't a user-visible syncing function.
3159
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3160
 * we start and wait on commits.
3161
 *
3162
 * Is this efficient/effective?  Well, we're being nice to the system
3163
 * by cleaning up our inodes proactively so they can be reaped
3164
 * without I/O.  But we are potentially leaving up to five seconds'
3165
 * worth of inodes floating about which prune_icache wants us to
3166
 * write out.  One way to fix that would be to get prune_icache()
3167
 * to do a write_super() to free up some memory.  It has the desired
3168
 * effect.
3169
 */
3170
int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3171
{
3172
        struct ext3_iloc iloc;
3173
        int err;
3174
 
3175
        might_sleep();
3176
        err = ext3_reserve_inode_write(handle, inode, &iloc);
3177
        if (!err)
3178
                err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3179
        return err;
3180
}
3181
 
3182
/*
3183
 * ext3_dirty_inode() is called from __mark_inode_dirty()
3184
 *
3185
 * We're really interested in the case where a file is being extended.
3186
 * i_size has been changed by generic_commit_write() and we thus need
3187
 * to include the updated inode in the current transaction.
3188
 *
3189
 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3190
 * are allocated to the file.
3191
 *
3192
 * If the inode is marked synchronous, we don't honour that here - doing
3193
 * so would cause a commit on atime updates, which we don't bother doing.
3194
 * We handle synchronous inodes at the highest possible level.
3195
 */
3196
void ext3_dirty_inode(struct inode *inode)
3197
{
3198
        handle_t *current_handle = ext3_journal_current_handle();
3199
        handle_t *handle;
3200
 
3201
        handle = ext3_journal_start(inode, 2);
3202
        if (IS_ERR(handle))
3203
                goto out;
3204
        if (current_handle &&
3205
                current_handle->h_transaction != handle->h_transaction) {
3206
                /* This task has a transaction open against a different fs */
3207
                printk(KERN_EMERG "%s: transactions do not match!\n",
3208
                       __FUNCTION__);
3209
        } else {
3210
                jbd_debug(5, "marking dirty.  outer handle=%p\n",
3211
                                current_handle);
3212
                ext3_mark_inode_dirty(handle, inode);
3213
        }
3214
        ext3_journal_stop(handle);
3215
out:
3216
        return;
3217
}
3218
 
3219
#if 0
3220
/*
3221
 * Bind an inode's backing buffer_head into this transaction, to prevent
3222
 * it from being flushed to disk early.  Unlike
3223
 * ext3_reserve_inode_write, this leaves behind no bh reference and
3224
 * returns no iloc structure, so the caller needs to repeat the iloc
3225
 * lookup to mark the inode dirty later.
3226
 */
3227
static int ext3_pin_inode(handle_t *handle, struct inode *inode)
3228
{
3229
        struct ext3_iloc iloc;
3230
 
3231
        int err = 0;
3232
        if (handle) {
3233
                err = ext3_get_inode_loc(inode, &iloc);
3234
                if (!err) {
3235
                        BUFFER_TRACE(iloc.bh, "get_write_access");
3236
                        err = journal_get_write_access(handle, iloc.bh);
3237
                        if (!err)
3238
                                err = ext3_journal_dirty_metadata(handle,
3239
                                                                  iloc.bh);
3240
                        brelse(iloc.bh);
3241
                }
3242
        }
3243
        ext3_std_error(inode->i_sb, err);
3244
        return err;
3245
}
3246
#endif
3247
 
3248
int ext3_change_inode_journal_flag(struct inode *inode, int val)
3249
{
3250
        journal_t *journal;
3251
        handle_t *handle;
3252
        int err;
3253
 
3254
        /*
3255
         * We have to be very careful here: changing a data block's
3256
         * journaling status dynamically is dangerous.  If we write a
3257
         * data block to the journal, change the status and then delete
3258
         * that block, we risk forgetting to revoke the old log record
3259
         * from the journal and so a subsequent replay can corrupt data.
3260
         * So, first we make sure that the journal is empty and that
3261
         * nobody is changing anything.
3262
         */
3263
 
3264
        journal = EXT3_JOURNAL(inode);
3265
        if (is_journal_aborted(journal))
3266
                return -EROFS;
3267
 
3268
        journal_lock_updates(journal);
3269
        journal_flush(journal);
3270
 
3271
        /*
3272
         * OK, there are no updates running now, and all cached data is
3273
         * synced to disk.  We are now in a completely consistent state
3274
         * which doesn't have anything in the journal, and we know that
3275
         * no filesystem updates are running, so it is safe to modify
3276
         * the inode's in-core data-journaling state flag now.
3277
         */
3278
 
3279
        if (val)
3280
                EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3281
        else
3282
                EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3283
        ext3_set_aops(inode);
3284
 
3285
        journal_unlock_updates(journal);
3286
 
3287
        /* Finally we can mark the inode as dirty. */
3288
 
3289
        handle = ext3_journal_start(inode, 1);
3290
        if (IS_ERR(handle))
3291
                return PTR_ERR(handle);
3292
 
3293
        err = ext3_mark_inode_dirty(handle, inode);
3294
        handle->h_sync = 1;
3295
        ext3_journal_stop(handle);
3296
        ext3_std_error(inode->i_sb, err);
3297
 
3298
        return err;
3299
}

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.