OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [fs/] [namespace.c] - Blame information for rev 79

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 *  linux/fs/namespace.c
3
 *
4
 * (C) Copyright Al Viro 2000, 2001
5
 *      Released under GPL v2.
6
 *
7
 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8
 * Heavily rewritten.
9
 */
10
 
11
#include <linux/syscalls.h>
12
#include <linux/slab.h>
13
#include <linux/sched.h>
14
#include <linux/smp_lock.h>
15
#include <linux/init.h>
16
#include <linux/kernel.h>
17
#include <linux/quotaops.h>
18
#include <linux/acct.h>
19
#include <linux/capability.h>
20
#include <linux/module.h>
21
#include <linux/sysfs.h>
22
#include <linux/seq_file.h>
23
#include <linux/mnt_namespace.h>
24
#include <linux/namei.h>
25
#include <linux/security.h>
26
#include <linux/mount.h>
27
#include <linux/ramfs.h>
28
#include <asm/uaccess.h>
29
#include <asm/unistd.h>
30
#include "pnode.h"
31
#include "internal.h"
32
 
33
/* spinlock for vfsmount related operations, inplace of dcache_lock */
34
__cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
35
 
36
static int event;
37
 
38
static struct list_head *mount_hashtable __read_mostly;
39
static int hash_mask __read_mostly, hash_bits __read_mostly;
40
static struct kmem_cache *mnt_cache __read_mostly;
41
static struct rw_semaphore namespace_sem;
42
 
43
/* /sys/fs */
44
decl_subsys(fs, NULL, NULL);
45
EXPORT_SYMBOL_GPL(fs_subsys);
46
 
47
static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
48
{
49
        unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
50
        tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
51
        tmp = tmp + (tmp >> hash_bits);
52
        return tmp & hash_mask;
53
}
54
 
55
struct vfsmount *alloc_vfsmnt(const char *name)
56
{
57
        struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
58
        if (mnt) {
59
                atomic_set(&mnt->mnt_count, 1);
60
                INIT_LIST_HEAD(&mnt->mnt_hash);
61
                INIT_LIST_HEAD(&mnt->mnt_child);
62
                INIT_LIST_HEAD(&mnt->mnt_mounts);
63
                INIT_LIST_HEAD(&mnt->mnt_list);
64
                INIT_LIST_HEAD(&mnt->mnt_expire);
65
                INIT_LIST_HEAD(&mnt->mnt_share);
66
                INIT_LIST_HEAD(&mnt->mnt_slave_list);
67
                INIT_LIST_HEAD(&mnt->mnt_slave);
68
                if (name) {
69
                        int size = strlen(name) + 1;
70
                        char *newname = kmalloc(size, GFP_KERNEL);
71
                        if (newname) {
72
                                memcpy(newname, name, size);
73
                                mnt->mnt_devname = newname;
74
                        }
75
                }
76
        }
77
        return mnt;
78
}
79
 
80
int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
81
{
82
        mnt->mnt_sb = sb;
83
        mnt->mnt_root = dget(sb->s_root);
84
        return 0;
85
}
86
 
87
EXPORT_SYMBOL(simple_set_mnt);
88
 
89
void free_vfsmnt(struct vfsmount *mnt)
90
{
91
        kfree(mnt->mnt_devname);
92
        kmem_cache_free(mnt_cache, mnt);
93
}
94
 
95
/*
96
 * find the first or last mount at @dentry on vfsmount @mnt depending on
97
 * @dir. If @dir is set return the first mount else return the last mount.
98
 */
99
struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
100
                              int dir)
101
{
102
        struct list_head *head = mount_hashtable + hash(mnt, dentry);
103
        struct list_head *tmp = head;
104
        struct vfsmount *p, *found = NULL;
105
 
106
        for (;;) {
107
                tmp = dir ? tmp->next : tmp->prev;
108
                p = NULL;
109
                if (tmp == head)
110
                        break;
111
                p = list_entry(tmp, struct vfsmount, mnt_hash);
112
                if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
113
                        found = p;
114
                        break;
115
                }
116
        }
117
        return found;
118
}
119
 
120
/*
121
 * lookup_mnt increments the ref count before returning
122
 * the vfsmount struct.
123
 */
124
struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
125
{
126
        struct vfsmount *child_mnt;
127
        spin_lock(&vfsmount_lock);
128
        if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
129
                mntget(child_mnt);
130
        spin_unlock(&vfsmount_lock);
131
        return child_mnt;
132
}
133
 
134
static inline int check_mnt(struct vfsmount *mnt)
135
{
136
        return mnt->mnt_ns == current->nsproxy->mnt_ns;
137
}
138
 
139
static void touch_mnt_namespace(struct mnt_namespace *ns)
140
{
141
        if (ns) {
142
                ns->event = ++event;
143
                wake_up_interruptible(&ns->poll);
144
        }
145
}
146
 
147
static void __touch_mnt_namespace(struct mnt_namespace *ns)
148
{
149
        if (ns && ns->event != event) {
150
                ns->event = event;
151
                wake_up_interruptible(&ns->poll);
152
        }
153
}
154
 
155
static void detach_mnt(struct vfsmount *mnt, struct nameidata *old_nd)
156
{
157
        old_nd->dentry = mnt->mnt_mountpoint;
158
        old_nd->mnt = mnt->mnt_parent;
159
        mnt->mnt_parent = mnt;
160
        mnt->mnt_mountpoint = mnt->mnt_root;
161
        list_del_init(&mnt->mnt_child);
162
        list_del_init(&mnt->mnt_hash);
163
        old_nd->dentry->d_mounted--;
164
}
165
 
166
void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
167
                        struct vfsmount *child_mnt)
168
{
169
        child_mnt->mnt_parent = mntget(mnt);
170
        child_mnt->mnt_mountpoint = dget(dentry);
171
        dentry->d_mounted++;
172
}
173
 
174
static void attach_mnt(struct vfsmount *mnt, struct nameidata *nd)
175
{
176
        mnt_set_mountpoint(nd->mnt, nd->dentry, mnt);
177
        list_add_tail(&mnt->mnt_hash, mount_hashtable +
178
                        hash(nd->mnt, nd->dentry));
179
        list_add_tail(&mnt->mnt_child, &nd->mnt->mnt_mounts);
180
}
181
 
182
/*
183
 * the caller must hold vfsmount_lock
184
 */
185
static void commit_tree(struct vfsmount *mnt)
186
{
187
        struct vfsmount *parent = mnt->mnt_parent;
188
        struct vfsmount *m;
189
        LIST_HEAD(head);
190
        struct mnt_namespace *n = parent->mnt_ns;
191
 
192
        BUG_ON(parent == mnt);
193
 
194
        list_add_tail(&head, &mnt->mnt_list);
195
        list_for_each_entry(m, &head, mnt_list)
196
                m->mnt_ns = n;
197
        list_splice(&head, n->list.prev);
198
 
199
        list_add_tail(&mnt->mnt_hash, mount_hashtable +
200
                                hash(parent, mnt->mnt_mountpoint));
201
        list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
202
        touch_mnt_namespace(n);
203
}
204
 
205
static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
206
{
207
        struct list_head *next = p->mnt_mounts.next;
208
        if (next == &p->mnt_mounts) {
209
                while (1) {
210
                        if (p == root)
211
                                return NULL;
212
                        next = p->mnt_child.next;
213
                        if (next != &p->mnt_parent->mnt_mounts)
214
                                break;
215
                        p = p->mnt_parent;
216
                }
217
        }
218
        return list_entry(next, struct vfsmount, mnt_child);
219
}
220
 
221
static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
222
{
223
        struct list_head *prev = p->mnt_mounts.prev;
224
        while (prev != &p->mnt_mounts) {
225
                p = list_entry(prev, struct vfsmount, mnt_child);
226
                prev = p->mnt_mounts.prev;
227
        }
228
        return p;
229
}
230
 
231
static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
232
                                        int flag)
233
{
234
        struct super_block *sb = old->mnt_sb;
235
        struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
236
 
237
        if (mnt) {
238
                mnt->mnt_flags = old->mnt_flags;
239
                atomic_inc(&sb->s_active);
240
                mnt->mnt_sb = sb;
241
                mnt->mnt_root = dget(root);
242
                mnt->mnt_mountpoint = mnt->mnt_root;
243
                mnt->mnt_parent = mnt;
244
 
245
                if (flag & CL_SLAVE) {
246
                        list_add(&mnt->mnt_slave, &old->mnt_slave_list);
247
                        mnt->mnt_master = old;
248
                        CLEAR_MNT_SHARED(mnt);
249
                } else if (!(flag & CL_PRIVATE)) {
250
                        if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
251
                                list_add(&mnt->mnt_share, &old->mnt_share);
252
                        if (IS_MNT_SLAVE(old))
253
                                list_add(&mnt->mnt_slave, &old->mnt_slave);
254
                        mnt->mnt_master = old->mnt_master;
255
                }
256
                if (flag & CL_MAKE_SHARED)
257
                        set_mnt_shared(mnt);
258
 
259
                /* stick the duplicate mount on the same expiry list
260
                 * as the original if that was on one */
261
                if (flag & CL_EXPIRE) {
262
                        spin_lock(&vfsmount_lock);
263
                        if (!list_empty(&old->mnt_expire))
264
                                list_add(&mnt->mnt_expire, &old->mnt_expire);
265
                        spin_unlock(&vfsmount_lock);
266
                }
267
        }
268
        return mnt;
269
}
270
 
271
static inline void __mntput(struct vfsmount *mnt)
272
{
273
        struct super_block *sb = mnt->mnt_sb;
274
        dput(mnt->mnt_root);
275
        free_vfsmnt(mnt);
276
        deactivate_super(sb);
277
}
278
 
279
void mntput_no_expire(struct vfsmount *mnt)
280
{
281
repeat:
282
        if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
283
                if (likely(!mnt->mnt_pinned)) {
284
                        spin_unlock(&vfsmount_lock);
285
                        __mntput(mnt);
286
                        return;
287
                }
288
                atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
289
                mnt->mnt_pinned = 0;
290
                spin_unlock(&vfsmount_lock);
291
                acct_auto_close_mnt(mnt);
292
                security_sb_umount_close(mnt);
293
                goto repeat;
294
        }
295
}
296
 
297
EXPORT_SYMBOL(mntput_no_expire);
298
 
299
void mnt_pin(struct vfsmount *mnt)
300
{
301
        spin_lock(&vfsmount_lock);
302
        mnt->mnt_pinned++;
303
        spin_unlock(&vfsmount_lock);
304
}
305
 
306
EXPORT_SYMBOL(mnt_pin);
307
 
308
void mnt_unpin(struct vfsmount *mnt)
309
{
310
        spin_lock(&vfsmount_lock);
311
        if (mnt->mnt_pinned) {
312
                atomic_inc(&mnt->mnt_count);
313
                mnt->mnt_pinned--;
314
        }
315
        spin_unlock(&vfsmount_lock);
316
}
317
 
318
EXPORT_SYMBOL(mnt_unpin);
319
 
320
/* iterator */
321
static void *m_start(struct seq_file *m, loff_t *pos)
322
{
323
        struct mnt_namespace *n = m->private;
324
 
325
        down_read(&namespace_sem);
326
        return seq_list_start(&n->list, *pos);
327
}
328
 
329
static void *m_next(struct seq_file *m, void *v, loff_t *pos)
330
{
331
        struct mnt_namespace *n = m->private;
332
 
333
        return seq_list_next(v, &n->list, pos);
334
}
335
 
336
static void m_stop(struct seq_file *m, void *v)
337
{
338
        up_read(&namespace_sem);
339
}
340
 
341
static inline void mangle(struct seq_file *m, const char *s)
342
{
343
        seq_escape(m, s, " \t\n\\");
344
}
345
 
346
static int show_vfsmnt(struct seq_file *m, void *v)
347
{
348
        struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
349
        int err = 0;
350
        static struct proc_fs_info {
351
                int flag;
352
                char *str;
353
        } fs_info[] = {
354
                { MS_SYNCHRONOUS, ",sync" },
355
                { MS_DIRSYNC, ",dirsync" },
356
                { MS_MANDLOCK, ",mand" },
357
                { 0, NULL }
358
        };
359
        static struct proc_fs_info mnt_info[] = {
360
                { MNT_NOSUID, ",nosuid" },
361
                { MNT_NODEV, ",nodev" },
362
                { MNT_NOEXEC, ",noexec" },
363
                { MNT_NOATIME, ",noatime" },
364
                { MNT_NODIRATIME, ",nodiratime" },
365
                { MNT_RELATIME, ",relatime" },
366
                { 0, NULL }
367
        };
368
        struct proc_fs_info *fs_infop;
369
 
370
        mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
371
        seq_putc(m, ' ');
372
        seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
373
        seq_putc(m, ' ');
374
        mangle(m, mnt->mnt_sb->s_type->name);
375
        if (mnt->mnt_sb->s_subtype && mnt->mnt_sb->s_subtype[0]) {
376
                seq_putc(m, '.');
377
                mangle(m, mnt->mnt_sb->s_subtype);
378
        }
379
        seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
380
        for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
381
                if (mnt->mnt_sb->s_flags & fs_infop->flag)
382
                        seq_puts(m, fs_infop->str);
383
        }
384
        for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
385
                if (mnt->mnt_flags & fs_infop->flag)
386
                        seq_puts(m, fs_infop->str);
387
        }
388
        if (mnt->mnt_sb->s_op->show_options)
389
                err = mnt->mnt_sb->s_op->show_options(m, mnt);
390
        seq_puts(m, " 0 0\n");
391
        return err;
392
}
393
 
394
struct seq_operations mounts_op = {
395
        .start  = m_start,
396
        .next   = m_next,
397
        .stop   = m_stop,
398
        .show   = show_vfsmnt
399
};
400
 
401
static int show_vfsstat(struct seq_file *m, void *v)
402
{
403
        struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
404
        int err = 0;
405
 
406
        /* device */
407
        if (mnt->mnt_devname) {
408
                seq_puts(m, "device ");
409
                mangle(m, mnt->mnt_devname);
410
        } else
411
                seq_puts(m, "no device");
412
 
413
        /* mount point */
414
        seq_puts(m, " mounted on ");
415
        seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
416
        seq_putc(m, ' ');
417
 
418
        /* file system type */
419
        seq_puts(m, "with fstype ");
420
        mangle(m, mnt->mnt_sb->s_type->name);
421
 
422
        /* optional statistics */
423
        if (mnt->mnt_sb->s_op->show_stats) {
424
                seq_putc(m, ' ');
425
                err = mnt->mnt_sb->s_op->show_stats(m, mnt);
426
        }
427
 
428
        seq_putc(m, '\n');
429
        return err;
430
}
431
 
432
struct seq_operations mountstats_op = {
433
        .start  = m_start,
434
        .next   = m_next,
435
        .stop   = m_stop,
436
        .show   = show_vfsstat,
437
};
438
 
439
/**
440
 * may_umount_tree - check if a mount tree is busy
441
 * @mnt: root of mount tree
442
 *
443
 * This is called to check if a tree of mounts has any
444
 * open files, pwds, chroots or sub mounts that are
445
 * busy.
446
 */
447
int may_umount_tree(struct vfsmount *mnt)
448
{
449
        int actual_refs = 0;
450
        int minimum_refs = 0;
451
        struct vfsmount *p;
452
 
453
        spin_lock(&vfsmount_lock);
454
        for (p = mnt; p; p = next_mnt(p, mnt)) {
455
                actual_refs += atomic_read(&p->mnt_count);
456
                minimum_refs += 2;
457
        }
458
        spin_unlock(&vfsmount_lock);
459
 
460
        if (actual_refs > minimum_refs)
461
                return 0;
462
 
463
        return 1;
464
}
465
 
466
EXPORT_SYMBOL(may_umount_tree);
467
 
468
/**
469
 * may_umount - check if a mount point is busy
470
 * @mnt: root of mount
471
 *
472
 * This is called to check if a mount point has any
473
 * open files, pwds, chroots or sub mounts. If the
474
 * mount has sub mounts this will return busy
475
 * regardless of whether the sub mounts are busy.
476
 *
477
 * Doesn't take quota and stuff into account. IOW, in some cases it will
478
 * give false negatives. The main reason why it's here is that we need
479
 * a non-destructive way to look for easily umountable filesystems.
480
 */
481
int may_umount(struct vfsmount *mnt)
482
{
483
        int ret = 1;
484
        spin_lock(&vfsmount_lock);
485
        if (propagate_mount_busy(mnt, 2))
486
                ret = 0;
487
        spin_unlock(&vfsmount_lock);
488
        return ret;
489
}
490
 
491
EXPORT_SYMBOL(may_umount);
492
 
493
void release_mounts(struct list_head *head)
494
{
495
        struct vfsmount *mnt;
496
        while (!list_empty(head)) {
497
                mnt = list_first_entry(head, struct vfsmount, mnt_hash);
498
                list_del_init(&mnt->mnt_hash);
499
                if (mnt->mnt_parent != mnt) {
500
                        struct dentry *dentry;
501
                        struct vfsmount *m;
502
                        spin_lock(&vfsmount_lock);
503
                        dentry = mnt->mnt_mountpoint;
504
                        m = mnt->mnt_parent;
505
                        mnt->mnt_mountpoint = mnt->mnt_root;
506
                        mnt->mnt_parent = mnt;
507
                        spin_unlock(&vfsmount_lock);
508
                        dput(dentry);
509
                        mntput(m);
510
                }
511
                mntput(mnt);
512
        }
513
}
514
 
515
void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
516
{
517
        struct vfsmount *p;
518
 
519
        for (p = mnt; p; p = next_mnt(p, mnt))
520
                list_move(&p->mnt_hash, kill);
521
 
522
        if (propagate)
523
                propagate_umount(kill);
524
 
525
        list_for_each_entry(p, kill, mnt_hash) {
526
                list_del_init(&p->mnt_expire);
527
                list_del_init(&p->mnt_list);
528
                __touch_mnt_namespace(p->mnt_ns);
529
                p->mnt_ns = NULL;
530
                list_del_init(&p->mnt_child);
531
                if (p->mnt_parent != p)
532
                        p->mnt_mountpoint->d_mounted--;
533
                change_mnt_propagation(p, MS_PRIVATE);
534
        }
535
}
536
 
537
static int do_umount(struct vfsmount *mnt, int flags)
538
{
539
        struct super_block *sb = mnt->mnt_sb;
540
        int retval;
541
        LIST_HEAD(umount_list);
542
 
543
        retval = security_sb_umount(mnt, flags);
544
        if (retval)
545
                return retval;
546
 
547
        /*
548
         * Allow userspace to request a mountpoint be expired rather than
549
         * unmounting unconditionally. Unmount only happens if:
550
         *  (1) the mark is already set (the mark is cleared by mntput())
551
         *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
552
         */
553
        if (flags & MNT_EXPIRE) {
554
                if (mnt == current->fs->rootmnt ||
555
                    flags & (MNT_FORCE | MNT_DETACH))
556
                        return -EINVAL;
557
 
558
                if (atomic_read(&mnt->mnt_count) != 2)
559
                        return -EBUSY;
560
 
561
                if (!xchg(&mnt->mnt_expiry_mark, 1))
562
                        return -EAGAIN;
563
        }
564
 
565
        /*
566
         * If we may have to abort operations to get out of this
567
         * mount, and they will themselves hold resources we must
568
         * allow the fs to do things. In the Unix tradition of
569
         * 'Gee thats tricky lets do it in userspace' the umount_begin
570
         * might fail to complete on the first run through as other tasks
571
         * must return, and the like. Thats for the mount program to worry
572
         * about for the moment.
573
         */
574
 
575
        lock_kernel();
576
        if (sb->s_op->umount_begin)
577
                sb->s_op->umount_begin(mnt, flags);
578
        unlock_kernel();
579
 
580
        /*
581
         * No sense to grab the lock for this test, but test itself looks
582
         * somewhat bogus. Suggestions for better replacement?
583
         * Ho-hum... In principle, we might treat that as umount + switch
584
         * to rootfs. GC would eventually take care of the old vfsmount.
585
         * Actually it makes sense, especially if rootfs would contain a
586
         * /reboot - static binary that would close all descriptors and
587
         * call reboot(9). Then init(8) could umount root and exec /reboot.
588
         */
589
        if (mnt == current->fs->rootmnt && !(flags & MNT_DETACH)) {
590
                /*
591
                 * Special case for "unmounting" root ...
592
                 * we just try to remount it readonly.
593
                 */
594
                down_write(&sb->s_umount);
595
                if (!(sb->s_flags & MS_RDONLY)) {
596
                        lock_kernel();
597
                        DQUOT_OFF(sb);
598
                        retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
599
                        unlock_kernel();
600
                }
601
                up_write(&sb->s_umount);
602
                return retval;
603
        }
604
 
605
        down_write(&namespace_sem);
606
        spin_lock(&vfsmount_lock);
607
        event++;
608
 
609
        retval = -EBUSY;
610
        if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
611
                if (!list_empty(&mnt->mnt_list))
612
                        umount_tree(mnt, 1, &umount_list);
613
                retval = 0;
614
        }
615
        spin_unlock(&vfsmount_lock);
616
        if (retval)
617
                security_sb_umount_busy(mnt);
618
        up_write(&namespace_sem);
619
        release_mounts(&umount_list);
620
        return retval;
621
}
622
 
623
/*
624
 * Now umount can handle mount points as well as block devices.
625
 * This is important for filesystems which use unnamed block devices.
626
 *
627
 * We now support a flag for forced unmount like the other 'big iron'
628
 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
629
 */
630
 
631
asmlinkage long sys_umount(char __user * name, int flags)
632
{
633
        struct nameidata nd;
634
        int retval;
635
 
636
        retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
637
        if (retval)
638
                goto out;
639
        retval = -EINVAL;
640
        if (nd.dentry != nd.mnt->mnt_root)
641
                goto dput_and_out;
642
        if (!check_mnt(nd.mnt))
643
                goto dput_and_out;
644
 
645
        retval = -EPERM;
646
        if (!capable(CAP_SYS_ADMIN))
647
                goto dput_and_out;
648
 
649
        retval = do_umount(nd.mnt, flags);
650
dput_and_out:
651
        path_release_on_umount(&nd);
652
out:
653
        return retval;
654
}
655
 
656
#ifdef __ARCH_WANT_SYS_OLDUMOUNT
657
 
658
/*
659
 *      The 2.0 compatible umount. No flags.
660
 */
661
asmlinkage long sys_oldumount(char __user * name)
662
{
663
        return sys_umount(name, 0);
664
}
665
 
666
#endif
667
 
668
static int mount_is_safe(struct nameidata *nd)
669
{
670
        if (capable(CAP_SYS_ADMIN))
671
                return 0;
672
        return -EPERM;
673
#ifdef notyet
674
        if (S_ISLNK(nd->dentry->d_inode->i_mode))
675
                return -EPERM;
676
        if (nd->dentry->d_inode->i_mode & S_ISVTX) {
677
                if (current->uid != nd->dentry->d_inode->i_uid)
678
                        return -EPERM;
679
        }
680
        if (vfs_permission(nd, MAY_WRITE))
681
                return -EPERM;
682
        return 0;
683
#endif
684
}
685
 
686
static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
687
{
688
        while (1) {
689
                if (d == dentry)
690
                        return 1;
691
                if (d == NULL || d == d->d_parent)
692
                        return 0;
693
                d = d->d_parent;
694
        }
695
}
696
 
697
struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
698
                                        int flag)
699
{
700
        struct vfsmount *res, *p, *q, *r, *s;
701
        struct nameidata nd;
702
 
703
        if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
704
                return NULL;
705
 
706
        res = q = clone_mnt(mnt, dentry, flag);
707
        if (!q)
708
                goto Enomem;
709
        q->mnt_mountpoint = mnt->mnt_mountpoint;
710
 
711
        p = mnt;
712
        list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
713
                if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
714
                        continue;
715
 
716
                for (s = r; s; s = next_mnt(s, r)) {
717
                        if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
718
                                s = skip_mnt_tree(s);
719
                                continue;
720
                        }
721
                        while (p != s->mnt_parent) {
722
                                p = p->mnt_parent;
723
                                q = q->mnt_parent;
724
                        }
725
                        p = s;
726
                        nd.mnt = q;
727
                        nd.dentry = p->mnt_mountpoint;
728
                        q = clone_mnt(p, p->mnt_root, flag);
729
                        if (!q)
730
                                goto Enomem;
731
                        spin_lock(&vfsmount_lock);
732
                        list_add_tail(&q->mnt_list, &res->mnt_list);
733
                        attach_mnt(q, &nd);
734
                        spin_unlock(&vfsmount_lock);
735
                }
736
        }
737
        return res;
738
Enomem:
739
        if (res) {
740
                LIST_HEAD(umount_list);
741
                spin_lock(&vfsmount_lock);
742
                umount_tree(res, 0, &umount_list);
743
                spin_unlock(&vfsmount_lock);
744
                release_mounts(&umount_list);
745
        }
746
        return NULL;
747
}
748
 
749
struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
750
{
751
        struct vfsmount *tree;
752
        down_read(&namespace_sem);
753
        tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
754
        up_read(&namespace_sem);
755
        return tree;
756
}
757
 
758
void drop_collected_mounts(struct vfsmount *mnt)
759
{
760
        LIST_HEAD(umount_list);
761
        down_read(&namespace_sem);
762
        spin_lock(&vfsmount_lock);
763
        umount_tree(mnt, 0, &umount_list);
764
        spin_unlock(&vfsmount_lock);
765
        up_read(&namespace_sem);
766
        release_mounts(&umount_list);
767
}
768
 
769
/*
770
 *  @source_mnt : mount tree to be attached
771
 *  @nd         : place the mount tree @source_mnt is attached
772
 *  @parent_nd  : if non-null, detach the source_mnt from its parent and
773
 *                 store the parent mount and mountpoint dentry.
774
 *                 (done when source_mnt is moved)
775
 *
776
 *  NOTE: in the table below explains the semantics when a source mount
777
 *  of a given type is attached to a destination mount of a given type.
778
 * ---------------------------------------------------------------------------
779
 * |         BIND MOUNT OPERATION                                            |
780
 * |**************************************************************************
781
 * | source-->| shared        |       private  |       slave    | unbindable |
782
 * | dest     |               |                |                |            |
783
 * |   |      |               |                |                |            |
784
 * |   v      |               |                |                |            |
785
 * |**************************************************************************
786
 * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
787
 * |          |               |                |                |            |
788
 * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
789
 * ***************************************************************************
790
 * A bind operation clones the source mount and mounts the clone on the
791
 * destination mount.
792
 *
793
 * (++)  the cloned mount is propagated to all the mounts in the propagation
794
 *       tree of the destination mount and the cloned mount is added to
795
 *       the peer group of the source mount.
796
 * (+)   the cloned mount is created under the destination mount and is marked
797
 *       as shared. The cloned mount is added to the peer group of the source
798
 *       mount.
799
 * (+++) the mount is propagated to all the mounts in the propagation tree
800
 *       of the destination mount and the cloned mount is made slave
801
 *       of the same master as that of the source mount. The cloned mount
802
 *       is marked as 'shared and slave'.
803
 * (*)   the cloned mount is made a slave of the same master as that of the
804
 *       source mount.
805
 *
806
 * ---------------------------------------------------------------------------
807
 * |                    MOVE MOUNT OPERATION                                 |
808
 * |**************************************************************************
809
 * | source-->| shared        |       private  |       slave    | unbindable |
810
 * | dest     |               |                |                |            |
811
 * |   |      |               |                |                |            |
812
 * |   v      |               |                |                |            |
813
 * |**************************************************************************
814
 * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
815
 * |          |               |                |                |            |
816
 * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
817
 * ***************************************************************************
818
 *
819
 * (+)  the mount is moved to the destination. And is then propagated to
820
 *      all the mounts in the propagation tree of the destination mount.
821
 * (+*)  the mount is moved to the destination.
822
 * (+++)  the mount is moved to the destination and is then propagated to
823
 *      all the mounts belonging to the destination mount's propagation tree.
824
 *      the mount is marked as 'shared and slave'.
825
 * (*)  the mount continues to be a slave at the new location.
826
 *
827
 * if the source mount is a tree, the operations explained above is
828
 * applied to each mount in the tree.
829
 * Must be called without spinlocks held, since this function can sleep
830
 * in allocations.
831
 */
832
static int attach_recursive_mnt(struct vfsmount *source_mnt,
833
                        struct nameidata *nd, struct nameidata *parent_nd)
834
{
835
        LIST_HEAD(tree_list);
836
        struct vfsmount *dest_mnt = nd->mnt;
837
        struct dentry *dest_dentry = nd->dentry;
838
        struct vfsmount *child, *p;
839
 
840
        if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list))
841
                return -EINVAL;
842
 
843
        if (IS_MNT_SHARED(dest_mnt)) {
844
                for (p = source_mnt; p; p = next_mnt(p, source_mnt))
845
                        set_mnt_shared(p);
846
        }
847
 
848
        spin_lock(&vfsmount_lock);
849
        if (parent_nd) {
850
                detach_mnt(source_mnt, parent_nd);
851
                attach_mnt(source_mnt, nd);
852
                touch_mnt_namespace(current->nsproxy->mnt_ns);
853
        } else {
854
                mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
855
                commit_tree(source_mnt);
856
        }
857
 
858
        list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
859
                list_del_init(&child->mnt_hash);
860
                commit_tree(child);
861
        }
862
        spin_unlock(&vfsmount_lock);
863
        return 0;
864
}
865
 
866
static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
867
{
868
        int err;
869
        if (mnt->mnt_sb->s_flags & MS_NOUSER)
870
                return -EINVAL;
871
 
872
        if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
873
              S_ISDIR(mnt->mnt_root->d_inode->i_mode))
874
                return -ENOTDIR;
875
 
876
        err = -ENOENT;
877
        mutex_lock(&nd->dentry->d_inode->i_mutex);
878
        if (IS_DEADDIR(nd->dentry->d_inode))
879
                goto out_unlock;
880
 
881
        err = security_sb_check_sb(mnt, nd);
882
        if (err)
883
                goto out_unlock;
884
 
885
        err = -ENOENT;
886
        if (IS_ROOT(nd->dentry) || !d_unhashed(nd->dentry))
887
                err = attach_recursive_mnt(mnt, nd, NULL);
888
out_unlock:
889
        mutex_unlock(&nd->dentry->d_inode->i_mutex);
890
        if (!err)
891
                security_sb_post_addmount(mnt, nd);
892
        return err;
893
}
894
 
895
/*
896
 * recursively change the type of the mountpoint.
897
 */
898
static int do_change_type(struct nameidata *nd, int flag)
899
{
900
        struct vfsmount *m, *mnt = nd->mnt;
901
        int recurse = flag & MS_REC;
902
        int type = flag & ~MS_REC;
903
 
904
        if (!capable(CAP_SYS_ADMIN))
905
                return -EPERM;
906
 
907
        if (nd->dentry != nd->mnt->mnt_root)
908
                return -EINVAL;
909
 
910
        down_write(&namespace_sem);
911
        spin_lock(&vfsmount_lock);
912
        for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
913
                change_mnt_propagation(m, type);
914
        spin_unlock(&vfsmount_lock);
915
        up_write(&namespace_sem);
916
        return 0;
917
}
918
 
919
/*
920
 * do loopback mount.
921
 */
922
static int do_loopback(struct nameidata *nd, char *old_name, int recurse)
923
{
924
        struct nameidata old_nd;
925
        struct vfsmount *mnt = NULL;
926
        int err = mount_is_safe(nd);
927
        if (err)
928
                return err;
929
        if (!old_name || !*old_name)
930
                return -EINVAL;
931
        err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
932
        if (err)
933
                return err;
934
 
935
        down_write(&namespace_sem);
936
        err = -EINVAL;
937
        if (IS_MNT_UNBINDABLE(old_nd.mnt))
938
                goto out;
939
 
940
        if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
941
                goto out;
942
 
943
        err = -ENOMEM;
944
        if (recurse)
945
                mnt = copy_tree(old_nd.mnt, old_nd.dentry, 0);
946
        else
947
                mnt = clone_mnt(old_nd.mnt, old_nd.dentry, 0);
948
 
949
        if (!mnt)
950
                goto out;
951
 
952
        err = graft_tree(mnt, nd);
953
        if (err) {
954
                LIST_HEAD(umount_list);
955
                spin_lock(&vfsmount_lock);
956
                umount_tree(mnt, 0, &umount_list);
957
                spin_unlock(&vfsmount_lock);
958
                release_mounts(&umount_list);
959
        }
960
 
961
out:
962
        up_write(&namespace_sem);
963
        path_release(&old_nd);
964
        return err;
965
}
966
 
967
/*
968
 * change filesystem flags. dir should be a physical root of filesystem.
969
 * If you've mounted a non-root directory somewhere and want to do remount
970
 * on it - tough luck.
971
 */
972
static int do_remount(struct nameidata *nd, int flags, int mnt_flags,
973
                      void *data)
974
{
975
        int err;
976
        struct super_block *sb = nd->mnt->mnt_sb;
977
 
978
        if (!capable(CAP_SYS_ADMIN))
979
                return -EPERM;
980
 
981
        if (!check_mnt(nd->mnt))
982
                return -EINVAL;
983
 
984
        if (nd->dentry != nd->mnt->mnt_root)
985
                return -EINVAL;
986
 
987
        down_write(&sb->s_umount);
988
        err = do_remount_sb(sb, flags, data, 0);
989
        if (!err)
990
                nd->mnt->mnt_flags = mnt_flags;
991
        up_write(&sb->s_umount);
992
        if (!err)
993
                security_sb_post_remount(nd->mnt, flags, data);
994
        return err;
995
}
996
 
997
static inline int tree_contains_unbindable(struct vfsmount *mnt)
998
{
999
        struct vfsmount *p;
1000
        for (p = mnt; p; p = next_mnt(p, mnt)) {
1001
                if (IS_MNT_UNBINDABLE(p))
1002
                        return 1;
1003
        }
1004
        return 0;
1005
}
1006
 
1007
static int do_move_mount(struct nameidata *nd, char *old_name)
1008
{
1009
        struct nameidata old_nd, parent_nd;
1010
        struct vfsmount *p;
1011
        int err = 0;
1012
        if (!capable(CAP_SYS_ADMIN))
1013
                return -EPERM;
1014
        if (!old_name || !*old_name)
1015
                return -EINVAL;
1016
        err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1017
        if (err)
1018
                return err;
1019
 
1020
        down_write(&namespace_sem);
1021
        while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
1022
                ;
1023
        err = -EINVAL;
1024
        if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
1025
                goto out;
1026
 
1027
        err = -ENOENT;
1028
        mutex_lock(&nd->dentry->d_inode->i_mutex);
1029
        if (IS_DEADDIR(nd->dentry->d_inode))
1030
                goto out1;
1031
 
1032
        if (!IS_ROOT(nd->dentry) && d_unhashed(nd->dentry))
1033
                goto out1;
1034
 
1035
        err = -EINVAL;
1036
        if (old_nd.dentry != old_nd.mnt->mnt_root)
1037
                goto out1;
1038
 
1039
        if (old_nd.mnt == old_nd.mnt->mnt_parent)
1040
                goto out1;
1041
 
1042
        if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
1043
              S_ISDIR(old_nd.dentry->d_inode->i_mode))
1044
                goto out1;
1045
        /*
1046
         * Don't move a mount residing in a shared parent.
1047
         */
1048
        if (old_nd.mnt->mnt_parent && IS_MNT_SHARED(old_nd.mnt->mnt_parent))
1049
                goto out1;
1050
        /*
1051
         * Don't move a mount tree containing unbindable mounts to a destination
1052
         * mount which is shared.
1053
         */
1054
        if (IS_MNT_SHARED(nd->mnt) && tree_contains_unbindable(old_nd.mnt))
1055
                goto out1;
1056
        err = -ELOOP;
1057
        for (p = nd->mnt; p->mnt_parent != p; p = p->mnt_parent)
1058
                if (p == old_nd.mnt)
1059
                        goto out1;
1060
 
1061
        if ((err = attach_recursive_mnt(old_nd.mnt, nd, &parent_nd)))
1062
                goto out1;
1063
 
1064
        spin_lock(&vfsmount_lock);
1065
        /* if the mount is moved, it should no longer be expire
1066
         * automatically */
1067
        list_del_init(&old_nd.mnt->mnt_expire);
1068
        spin_unlock(&vfsmount_lock);
1069
out1:
1070
        mutex_unlock(&nd->dentry->d_inode->i_mutex);
1071
out:
1072
        up_write(&namespace_sem);
1073
        if (!err)
1074
                path_release(&parent_nd);
1075
        path_release(&old_nd);
1076
        return err;
1077
}
1078
 
1079
/*
1080
 * create a new mount for userspace and request it to be added into the
1081
 * namespace's tree
1082
 */
1083
static int do_new_mount(struct nameidata *nd, char *type, int flags,
1084
                        int mnt_flags, char *name, void *data)
1085
{
1086
        struct vfsmount *mnt;
1087
 
1088
        if (!type || !memchr(type, 0, PAGE_SIZE))
1089
                return -EINVAL;
1090
 
1091
        /* we need capabilities... */
1092
        if (!capable(CAP_SYS_ADMIN))
1093
                return -EPERM;
1094
 
1095
        mnt = do_kern_mount(type, flags, name, data);
1096
        if (IS_ERR(mnt))
1097
                return PTR_ERR(mnt);
1098
 
1099
        return do_add_mount(mnt, nd, mnt_flags, NULL);
1100
}
1101
 
1102
/*
1103
 * add a mount into a namespace's mount tree
1104
 * - provide the option of adding the new mount to an expiration list
1105
 */
1106
int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
1107
                 int mnt_flags, struct list_head *fslist)
1108
{
1109
        int err;
1110
 
1111
        down_write(&namespace_sem);
1112
        /* Something was mounted here while we slept */
1113
        while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
1114
                ;
1115
        err = -EINVAL;
1116
        if (!check_mnt(nd->mnt))
1117
                goto unlock;
1118
 
1119
        /* Refuse the same filesystem on the same mount point */
1120
        err = -EBUSY;
1121
        if (nd->mnt->mnt_sb == newmnt->mnt_sb &&
1122
            nd->mnt->mnt_root == nd->dentry)
1123
                goto unlock;
1124
 
1125
        err = -EINVAL;
1126
        if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1127
                goto unlock;
1128
 
1129
        newmnt->mnt_flags = mnt_flags;
1130
        if ((err = graft_tree(newmnt, nd)))
1131
                goto unlock;
1132
 
1133
        if (fslist) {
1134
                /* add to the specified expiration list */
1135
                spin_lock(&vfsmount_lock);
1136
                list_add_tail(&newmnt->mnt_expire, fslist);
1137
                spin_unlock(&vfsmount_lock);
1138
        }
1139
        up_write(&namespace_sem);
1140
        return 0;
1141
 
1142
unlock:
1143
        up_write(&namespace_sem);
1144
        mntput(newmnt);
1145
        return err;
1146
}
1147
 
1148
EXPORT_SYMBOL_GPL(do_add_mount);
1149
 
1150
static void expire_mount(struct vfsmount *mnt, struct list_head *mounts,
1151
                                struct list_head *umounts)
1152
{
1153
        spin_lock(&vfsmount_lock);
1154
 
1155
        /*
1156
         * Check if mount is still attached, if not, let whoever holds it deal
1157
         * with the sucker
1158
         */
1159
        if (mnt->mnt_parent == mnt) {
1160
                spin_unlock(&vfsmount_lock);
1161
                return;
1162
        }
1163
 
1164
        /*
1165
         * Check that it is still dead: the count should now be 2 - as
1166
         * contributed by the vfsmount parent and the mntget above
1167
         */
1168
        if (!propagate_mount_busy(mnt, 2)) {
1169
                /* delete from the namespace */
1170
                touch_mnt_namespace(mnt->mnt_ns);
1171
                list_del_init(&mnt->mnt_list);
1172
                mnt->mnt_ns = NULL;
1173
                umount_tree(mnt, 1, umounts);
1174
                spin_unlock(&vfsmount_lock);
1175
        } else {
1176
                /*
1177
                 * Someone brought it back to life whilst we didn't have any
1178
                 * locks held so return it to the expiration list
1179
                 */
1180
                list_add_tail(&mnt->mnt_expire, mounts);
1181
                spin_unlock(&vfsmount_lock);
1182
        }
1183
}
1184
 
1185
/*
1186
 * go through the vfsmounts we've just consigned to the graveyard to
1187
 * - check that they're still dead
1188
 * - delete the vfsmount from the appropriate namespace under lock
1189
 * - dispose of the corpse
1190
 */
1191
static void expire_mount_list(struct list_head *graveyard, struct list_head *mounts)
1192
{
1193
        struct mnt_namespace *ns;
1194
        struct vfsmount *mnt;
1195
 
1196
        while (!list_empty(graveyard)) {
1197
                LIST_HEAD(umounts);
1198
                mnt = list_first_entry(graveyard, struct vfsmount, mnt_expire);
1199
                list_del_init(&mnt->mnt_expire);
1200
 
1201
                /* don't do anything if the namespace is dead - all the
1202
                 * vfsmounts from it are going away anyway */
1203
                ns = mnt->mnt_ns;
1204
                if (!ns || !ns->root)
1205
                        continue;
1206
                get_mnt_ns(ns);
1207
 
1208
                spin_unlock(&vfsmount_lock);
1209
                down_write(&namespace_sem);
1210
                expire_mount(mnt, mounts, &umounts);
1211
                up_write(&namespace_sem);
1212
                release_mounts(&umounts);
1213
                mntput(mnt);
1214
                put_mnt_ns(ns);
1215
                spin_lock(&vfsmount_lock);
1216
        }
1217
}
1218
 
1219
/*
1220
 * process a list of expirable mountpoints with the intent of discarding any
1221
 * mountpoints that aren't in use and haven't been touched since last we came
1222
 * here
1223
 */
1224
void mark_mounts_for_expiry(struct list_head *mounts)
1225
{
1226
        struct vfsmount *mnt, *next;
1227
        LIST_HEAD(graveyard);
1228
 
1229
        if (list_empty(mounts))
1230
                return;
1231
 
1232
        spin_lock(&vfsmount_lock);
1233
 
1234
        /* extract from the expiration list every vfsmount that matches the
1235
         * following criteria:
1236
         * - only referenced by its parent vfsmount
1237
         * - still marked for expiry (marked on the last call here; marks are
1238
         *   cleared by mntput())
1239
         */
1240
        list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1241
                if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1242
                    atomic_read(&mnt->mnt_count) != 1)
1243
                        continue;
1244
 
1245
                mntget(mnt);
1246
                list_move(&mnt->mnt_expire, &graveyard);
1247
        }
1248
 
1249
        expire_mount_list(&graveyard, mounts);
1250
 
1251
        spin_unlock(&vfsmount_lock);
1252
}
1253
 
1254
EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1255
 
1256
/*
1257
 * Ripoff of 'select_parent()'
1258
 *
1259
 * search the list of submounts for a given mountpoint, and move any
1260
 * shrinkable submounts to the 'graveyard' list.
1261
 */
1262
static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1263
{
1264
        struct vfsmount *this_parent = parent;
1265
        struct list_head *next;
1266
        int found = 0;
1267
 
1268
repeat:
1269
        next = this_parent->mnt_mounts.next;
1270
resume:
1271
        while (next != &this_parent->mnt_mounts) {
1272
                struct list_head *tmp = next;
1273
                struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1274
 
1275
                next = tmp->next;
1276
                if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1277
                        continue;
1278
                /*
1279
                 * Descend a level if the d_mounts list is non-empty.
1280
                 */
1281
                if (!list_empty(&mnt->mnt_mounts)) {
1282
                        this_parent = mnt;
1283
                        goto repeat;
1284
                }
1285
 
1286
                if (!propagate_mount_busy(mnt, 1)) {
1287
                        mntget(mnt);
1288
                        list_move_tail(&mnt->mnt_expire, graveyard);
1289
                        found++;
1290
                }
1291
        }
1292
        /*
1293
         * All done at this level ... ascend and resume the search
1294
         */
1295
        if (this_parent != parent) {
1296
                next = this_parent->mnt_child.next;
1297
                this_parent = this_parent->mnt_parent;
1298
                goto resume;
1299
        }
1300
        return found;
1301
}
1302
 
1303
/*
1304
 * process a list of expirable mountpoints with the intent of discarding any
1305
 * submounts of a specific parent mountpoint
1306
 */
1307
void shrink_submounts(struct vfsmount *mountpoint, struct list_head *mounts)
1308
{
1309
        LIST_HEAD(graveyard);
1310
        int found;
1311
 
1312
        spin_lock(&vfsmount_lock);
1313
 
1314
        /* extract submounts of 'mountpoint' from the expiration list */
1315
        while ((found = select_submounts(mountpoint, &graveyard)) != 0)
1316
                expire_mount_list(&graveyard, mounts);
1317
 
1318
        spin_unlock(&vfsmount_lock);
1319
}
1320
 
1321
EXPORT_SYMBOL_GPL(shrink_submounts);
1322
 
1323
/*
1324
 * Some copy_from_user() implementations do not return the exact number of
1325
 * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
1326
 * Note that this function differs from copy_from_user() in that it will oops
1327
 * on bad values of `to', rather than returning a short copy.
1328
 */
1329
static long exact_copy_from_user(void *to, const void __user * from,
1330
                                 unsigned long n)
1331
{
1332
        char *t = to;
1333
        const char __user *f = from;
1334
        char c;
1335
 
1336
        if (!access_ok(VERIFY_READ, from, n))
1337
                return n;
1338
 
1339
        while (n) {
1340
                if (__get_user(c, f)) {
1341
                        memset(t, 0, n);
1342
                        break;
1343
                }
1344
                *t++ = c;
1345
                f++;
1346
                n--;
1347
        }
1348
        return n;
1349
}
1350
 
1351
int copy_mount_options(const void __user * data, unsigned long *where)
1352
{
1353
        int i;
1354
        unsigned long page;
1355
        unsigned long size;
1356
 
1357
        *where = 0;
1358
        if (!data)
1359
                return 0;
1360
 
1361
        if (!(page = __get_free_page(GFP_KERNEL)))
1362
                return -ENOMEM;
1363
 
1364
        /* We only care that *some* data at the address the user
1365
         * gave us is valid.  Just in case, we'll zero
1366
         * the remainder of the page.
1367
         */
1368
        /* copy_from_user cannot cross TASK_SIZE ! */
1369
        size = TASK_SIZE - (unsigned long)data;
1370
        if (size > PAGE_SIZE)
1371
                size = PAGE_SIZE;
1372
 
1373
        i = size - exact_copy_from_user((void *)page, data, size);
1374
        if (!i) {
1375
                free_page(page);
1376
                return -EFAULT;
1377
        }
1378
        if (i != PAGE_SIZE)
1379
                memset((char *)page + i, 0, PAGE_SIZE - i);
1380
        *where = page;
1381
        return 0;
1382
}
1383
 
1384
/*
1385
 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1386
 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1387
 *
1388
 * data is a (void *) that can point to any structure up to
1389
 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1390
 * information (or be NULL).
1391
 *
1392
 * Pre-0.97 versions of mount() didn't have a flags word.
1393
 * When the flags word was introduced its top half was required
1394
 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1395
 * Therefore, if this magic number is present, it carries no information
1396
 * and must be discarded.
1397
 */
1398
long do_mount(char *dev_name, char *dir_name, char *type_page,
1399
                  unsigned long flags, void *data_page)
1400
{
1401
        struct nameidata nd;
1402
        int retval = 0;
1403
        int mnt_flags = 0;
1404
 
1405
        /* Discard magic */
1406
        if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1407
                flags &= ~MS_MGC_MSK;
1408
 
1409
        /* Basic sanity checks */
1410
 
1411
        if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1412
                return -EINVAL;
1413
        if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1414
                return -EINVAL;
1415
 
1416
        if (data_page)
1417
                ((char *)data_page)[PAGE_SIZE - 1] = 0;
1418
 
1419
        /* Separate the per-mountpoint flags */
1420
        if (flags & MS_NOSUID)
1421
                mnt_flags |= MNT_NOSUID;
1422
        if (flags & MS_NODEV)
1423
                mnt_flags |= MNT_NODEV;
1424
        if (flags & MS_NOEXEC)
1425
                mnt_flags |= MNT_NOEXEC;
1426
        if (flags & MS_NOATIME)
1427
                mnt_flags |= MNT_NOATIME;
1428
        if (flags & MS_NODIRATIME)
1429
                mnt_flags |= MNT_NODIRATIME;
1430
        if (flags & MS_RELATIME)
1431
                mnt_flags |= MNT_RELATIME;
1432
 
1433
        flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1434
                   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT);
1435
 
1436
        /* ... and get the mountpoint */
1437
        retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1438
        if (retval)
1439
                return retval;
1440
 
1441
        retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page);
1442
        if (retval)
1443
                goto dput_out;
1444
 
1445
        if (flags & MS_REMOUNT)
1446
                retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1447
                                    data_page);
1448
        else if (flags & MS_BIND)
1449
                retval = do_loopback(&nd, dev_name, flags & MS_REC);
1450
        else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1451
                retval = do_change_type(&nd, flags);
1452
        else if (flags & MS_MOVE)
1453
                retval = do_move_mount(&nd, dev_name);
1454
        else
1455
                retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1456
                                      dev_name, data_page);
1457
dput_out:
1458
        path_release(&nd);
1459
        return retval;
1460
}
1461
 
1462
/*
1463
 * Allocate a new namespace structure and populate it with contents
1464
 * copied from the namespace of the passed in task structure.
1465
 */
1466
static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
1467
                struct fs_struct *fs)
1468
{
1469
        struct mnt_namespace *new_ns;
1470
        struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1471
        struct vfsmount *p, *q;
1472
 
1473
        new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1474
        if (!new_ns)
1475
                return ERR_PTR(-ENOMEM);
1476
 
1477
        atomic_set(&new_ns->count, 1);
1478
        INIT_LIST_HEAD(&new_ns->list);
1479
        init_waitqueue_head(&new_ns->poll);
1480
        new_ns->event = 0;
1481
 
1482
        down_write(&namespace_sem);
1483
        /* First pass: copy the tree topology */
1484
        new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
1485
                                        CL_COPY_ALL | CL_EXPIRE);
1486
        if (!new_ns->root) {
1487
                up_write(&namespace_sem);
1488
                kfree(new_ns);
1489
                return ERR_PTR(-ENOMEM);;
1490
        }
1491
        spin_lock(&vfsmount_lock);
1492
        list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1493
        spin_unlock(&vfsmount_lock);
1494
 
1495
        /*
1496
         * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1497
         * as belonging to new namespace.  We have already acquired a private
1498
         * fs_struct, so tsk->fs->lock is not needed.
1499
         */
1500
        p = mnt_ns->root;
1501
        q = new_ns->root;
1502
        while (p) {
1503
                q->mnt_ns = new_ns;
1504
                if (fs) {
1505
                        if (p == fs->rootmnt) {
1506
                                rootmnt = p;
1507
                                fs->rootmnt = mntget(q);
1508
                        }
1509
                        if (p == fs->pwdmnt) {
1510
                                pwdmnt = p;
1511
                                fs->pwdmnt = mntget(q);
1512
                        }
1513
                        if (p == fs->altrootmnt) {
1514
                                altrootmnt = p;
1515
                                fs->altrootmnt = mntget(q);
1516
                        }
1517
                }
1518
                p = next_mnt(p, mnt_ns->root);
1519
                q = next_mnt(q, new_ns->root);
1520
        }
1521
        up_write(&namespace_sem);
1522
 
1523
        if (rootmnt)
1524
                mntput(rootmnt);
1525
        if (pwdmnt)
1526
                mntput(pwdmnt);
1527
        if (altrootmnt)
1528
                mntput(altrootmnt);
1529
 
1530
        return new_ns;
1531
}
1532
 
1533
struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
1534
                struct fs_struct *new_fs)
1535
{
1536
        struct mnt_namespace *new_ns;
1537
 
1538
        BUG_ON(!ns);
1539
        get_mnt_ns(ns);
1540
 
1541
        if (!(flags & CLONE_NEWNS))
1542
                return ns;
1543
 
1544
        new_ns = dup_mnt_ns(ns, new_fs);
1545
 
1546
        put_mnt_ns(ns);
1547
        return new_ns;
1548
}
1549
 
1550
asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
1551
                          char __user * type, unsigned long flags,
1552
                          void __user * data)
1553
{
1554
        int retval;
1555
        unsigned long data_page;
1556
        unsigned long type_page;
1557
        unsigned long dev_page;
1558
        char *dir_page;
1559
 
1560
        retval = copy_mount_options(type, &type_page);
1561
        if (retval < 0)
1562
                return retval;
1563
 
1564
        dir_page = getname(dir_name);
1565
        retval = PTR_ERR(dir_page);
1566
        if (IS_ERR(dir_page))
1567
                goto out1;
1568
 
1569
        retval = copy_mount_options(dev_name, &dev_page);
1570
        if (retval < 0)
1571
                goto out2;
1572
 
1573
        retval = copy_mount_options(data, &data_page);
1574
        if (retval < 0)
1575
                goto out3;
1576
 
1577
        lock_kernel();
1578
        retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
1579
                          flags, (void *)data_page);
1580
        unlock_kernel();
1581
        free_page(data_page);
1582
 
1583
out3:
1584
        free_page(dev_page);
1585
out2:
1586
        putname(dir_page);
1587
out1:
1588
        free_page(type_page);
1589
        return retval;
1590
}
1591
 
1592
/*
1593
 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
1594
 * It can block. Requires the big lock held.
1595
 */
1596
void set_fs_root(struct fs_struct *fs, struct vfsmount *mnt,
1597
                 struct dentry *dentry)
1598
{
1599
        struct dentry *old_root;
1600
        struct vfsmount *old_rootmnt;
1601
        write_lock(&fs->lock);
1602
        old_root = fs->root;
1603
        old_rootmnt = fs->rootmnt;
1604
        fs->rootmnt = mntget(mnt);
1605
        fs->root = dget(dentry);
1606
        write_unlock(&fs->lock);
1607
        if (old_root) {
1608
                dput(old_root);
1609
                mntput(old_rootmnt);
1610
        }
1611
}
1612
 
1613
/*
1614
 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
1615
 * It can block. Requires the big lock held.
1616
 */
1617
void set_fs_pwd(struct fs_struct *fs, struct vfsmount *mnt,
1618
                struct dentry *dentry)
1619
{
1620
        struct dentry *old_pwd;
1621
        struct vfsmount *old_pwdmnt;
1622
 
1623
        write_lock(&fs->lock);
1624
        old_pwd = fs->pwd;
1625
        old_pwdmnt = fs->pwdmnt;
1626
        fs->pwdmnt = mntget(mnt);
1627
        fs->pwd = dget(dentry);
1628
        write_unlock(&fs->lock);
1629
 
1630
        if (old_pwd) {
1631
                dput(old_pwd);
1632
                mntput(old_pwdmnt);
1633
        }
1634
}
1635
 
1636
static void chroot_fs_refs(struct nameidata *old_nd, struct nameidata *new_nd)
1637
{
1638
        struct task_struct *g, *p;
1639
        struct fs_struct *fs;
1640
 
1641
        read_lock(&tasklist_lock);
1642
        do_each_thread(g, p) {
1643
                task_lock(p);
1644
                fs = p->fs;
1645
                if (fs) {
1646
                        atomic_inc(&fs->count);
1647
                        task_unlock(p);
1648
                        if (fs->root == old_nd->dentry
1649
                            && fs->rootmnt == old_nd->mnt)
1650
                                set_fs_root(fs, new_nd->mnt, new_nd->dentry);
1651
                        if (fs->pwd == old_nd->dentry
1652
                            && fs->pwdmnt == old_nd->mnt)
1653
                                set_fs_pwd(fs, new_nd->mnt, new_nd->dentry);
1654
                        put_fs_struct(fs);
1655
                } else
1656
                        task_unlock(p);
1657
        } while_each_thread(g, p);
1658
        read_unlock(&tasklist_lock);
1659
}
1660
 
1661
/*
1662
 * pivot_root Semantics:
1663
 * Moves the root file system of the current process to the directory put_old,
1664
 * makes new_root as the new root file system of the current process, and sets
1665
 * root/cwd of all processes which had them on the current root to new_root.
1666
 *
1667
 * Restrictions:
1668
 * The new_root and put_old must be directories, and  must not be on the
1669
 * same file  system as the current process root. The put_old  must  be
1670
 * underneath new_root,  i.e. adding a non-zero number of /.. to the string
1671
 * pointed to by put_old must yield the same directory as new_root. No other
1672
 * file system may be mounted on put_old. After all, new_root is a mountpoint.
1673
 *
1674
 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
1675
 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
1676
 * in this situation.
1677
 *
1678
 * Notes:
1679
 *  - we don't move root/cwd if they are not at the root (reason: if something
1680
 *    cared enough to change them, it's probably wrong to force them elsewhere)
1681
 *  - it's okay to pick a root that isn't the root of a file system, e.g.
1682
 *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
1683
 *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
1684
 *    first.
1685
 */
1686
asmlinkage long sys_pivot_root(const char __user * new_root,
1687
                               const char __user * put_old)
1688
{
1689
        struct vfsmount *tmp;
1690
        struct nameidata new_nd, old_nd, parent_nd, root_parent, user_nd;
1691
        int error;
1692
 
1693
        if (!capable(CAP_SYS_ADMIN))
1694
                return -EPERM;
1695
 
1696
        lock_kernel();
1697
 
1698
        error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
1699
                            &new_nd);
1700
        if (error)
1701
                goto out0;
1702
        error = -EINVAL;
1703
        if (!check_mnt(new_nd.mnt))
1704
                goto out1;
1705
 
1706
        error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
1707
        if (error)
1708
                goto out1;
1709
 
1710
        error = security_sb_pivotroot(&old_nd, &new_nd);
1711
        if (error) {
1712
                path_release(&old_nd);
1713
                goto out1;
1714
        }
1715
 
1716
        read_lock(&current->fs->lock);
1717
        user_nd.mnt = mntget(current->fs->rootmnt);
1718
        user_nd.dentry = dget(current->fs->root);
1719
        read_unlock(&current->fs->lock);
1720
        down_write(&namespace_sem);
1721
        mutex_lock(&old_nd.dentry->d_inode->i_mutex);
1722
        error = -EINVAL;
1723
        if (IS_MNT_SHARED(old_nd.mnt) ||
1724
                IS_MNT_SHARED(new_nd.mnt->mnt_parent) ||
1725
                IS_MNT_SHARED(user_nd.mnt->mnt_parent))
1726
                goto out2;
1727
        if (!check_mnt(user_nd.mnt))
1728
                goto out2;
1729
        error = -ENOENT;
1730
        if (IS_DEADDIR(new_nd.dentry->d_inode))
1731
                goto out2;
1732
        if (d_unhashed(new_nd.dentry) && !IS_ROOT(new_nd.dentry))
1733
                goto out2;
1734
        if (d_unhashed(old_nd.dentry) && !IS_ROOT(old_nd.dentry))
1735
                goto out2;
1736
        error = -EBUSY;
1737
        if (new_nd.mnt == user_nd.mnt || old_nd.mnt == user_nd.mnt)
1738
                goto out2; /* loop, on the same file system  */
1739
        error = -EINVAL;
1740
        if (user_nd.mnt->mnt_root != user_nd.dentry)
1741
                goto out2; /* not a mountpoint */
1742
        if (user_nd.mnt->mnt_parent == user_nd.mnt)
1743
                goto out2; /* not attached */
1744
        if (new_nd.mnt->mnt_root != new_nd.dentry)
1745
                goto out2; /* not a mountpoint */
1746
        if (new_nd.mnt->mnt_parent == new_nd.mnt)
1747
                goto out2; /* not attached */
1748
        tmp = old_nd.mnt; /* make sure we can reach put_old from new_root */
1749
        spin_lock(&vfsmount_lock);
1750
        if (tmp != new_nd.mnt) {
1751
                for (;;) {
1752
                        if (tmp->mnt_parent == tmp)
1753
                                goto out3; /* already mounted on put_old */
1754
                        if (tmp->mnt_parent == new_nd.mnt)
1755
                                break;
1756
                        tmp = tmp->mnt_parent;
1757
                }
1758
                if (!is_subdir(tmp->mnt_mountpoint, new_nd.dentry))
1759
                        goto out3;
1760
        } else if (!is_subdir(old_nd.dentry, new_nd.dentry))
1761
                goto out3;
1762
        detach_mnt(new_nd.mnt, &parent_nd);
1763
        detach_mnt(user_nd.mnt, &root_parent);
1764
        attach_mnt(user_nd.mnt, &old_nd);     /* mount old root on put_old */
1765
        attach_mnt(new_nd.mnt, &root_parent); /* mount new_root on / */
1766
        touch_mnt_namespace(current->nsproxy->mnt_ns);
1767
        spin_unlock(&vfsmount_lock);
1768
        chroot_fs_refs(&user_nd, &new_nd);
1769
        security_sb_post_pivotroot(&user_nd, &new_nd);
1770
        error = 0;
1771
        path_release(&root_parent);
1772
        path_release(&parent_nd);
1773
out2:
1774
        mutex_unlock(&old_nd.dentry->d_inode->i_mutex);
1775
        up_write(&namespace_sem);
1776
        path_release(&user_nd);
1777
        path_release(&old_nd);
1778
out1:
1779
        path_release(&new_nd);
1780
out0:
1781
        unlock_kernel();
1782
        return error;
1783
out3:
1784
        spin_unlock(&vfsmount_lock);
1785
        goto out2;
1786
}
1787
 
1788
static void __init init_mount_tree(void)
1789
{
1790
        struct vfsmount *mnt;
1791
        struct mnt_namespace *ns;
1792
 
1793
        mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
1794
        if (IS_ERR(mnt))
1795
                panic("Can't create rootfs");
1796
        ns = kmalloc(sizeof(*ns), GFP_KERNEL);
1797
        if (!ns)
1798
                panic("Can't allocate initial namespace");
1799
        atomic_set(&ns->count, 1);
1800
        INIT_LIST_HEAD(&ns->list);
1801
        init_waitqueue_head(&ns->poll);
1802
        ns->event = 0;
1803
        list_add(&mnt->mnt_list, &ns->list);
1804
        ns->root = mnt;
1805
        mnt->mnt_ns = ns;
1806
 
1807
        init_task.nsproxy->mnt_ns = ns;
1808
        get_mnt_ns(ns);
1809
 
1810
        set_fs_pwd(current->fs, ns->root, ns->root->mnt_root);
1811
        set_fs_root(current->fs, ns->root, ns->root->mnt_root);
1812
}
1813
 
1814
void __init mnt_init(void)
1815
{
1816
        struct list_head *d;
1817
        unsigned int nr_hash;
1818
        int i;
1819
        int err;
1820
 
1821
        init_rwsem(&namespace_sem);
1822
 
1823
        mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
1824
                        0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1825
 
1826
        mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1827
 
1828
        if (!mount_hashtable)
1829
                panic("Failed to allocate mount hash table\n");
1830
 
1831
        /*
1832
         * Find the power-of-two list-heads that can fit into the allocation..
1833
         * We don't guarantee that "sizeof(struct list_head)" is necessarily
1834
         * a power-of-two.
1835
         */
1836
        nr_hash = PAGE_SIZE / sizeof(struct list_head);
1837
        hash_bits = 0;
1838
        do {
1839
                hash_bits++;
1840
        } while ((nr_hash >> hash_bits) != 0);
1841
        hash_bits--;
1842
 
1843
        /*
1844
         * Re-calculate the actual number of entries and the mask
1845
         * from the number of bits we can fit.
1846
         */
1847
        nr_hash = 1UL << hash_bits;
1848
        hash_mask = nr_hash - 1;
1849
 
1850
        printk("Mount-cache hash table entries: %d\n", nr_hash);
1851
 
1852
        /* And initialize the newly allocated array */
1853
        d = mount_hashtable;
1854
        i = nr_hash;
1855
        do {
1856
                INIT_LIST_HEAD(d);
1857
                d++;
1858
                i--;
1859
        } while (i);
1860
        err = sysfs_init();
1861
        if (err)
1862
                printk(KERN_WARNING "%s: sysfs_init error: %d\n",
1863
                        __FUNCTION__, err);
1864
        err = subsystem_register(&fs_subsys);
1865
        if (err)
1866
                printk(KERN_WARNING "%s: subsystem_register error: %d\n",
1867
                        __FUNCTION__, err);
1868
        init_rootfs();
1869
        init_mount_tree();
1870
}
1871
 
1872
void __put_mnt_ns(struct mnt_namespace *ns)
1873
{
1874
        struct vfsmount *root = ns->root;
1875
        LIST_HEAD(umount_list);
1876
        ns->root = NULL;
1877
        spin_unlock(&vfsmount_lock);
1878
        down_write(&namespace_sem);
1879
        spin_lock(&vfsmount_lock);
1880
        umount_tree(root, 0, &umount_list);
1881
        spin_unlock(&vfsmount_lock);
1882
        up_write(&namespace_sem);
1883
        release_mounts(&umount_list);
1884
        kfree(ns);
1885
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.