OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [fs/] [ocfs2/] [aops.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/* -*- mode: c; c-basic-offset: 8; -*-
2
 * vim: noexpandtab sw=8 ts=8 sts=0:
3
 *
4
 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5
 *
6
 * This program is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This program is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU General Public
17
 * License along with this program; if not, write to the
18
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19
 * Boston, MA 021110-1307, USA.
20
 */
21
 
22
#include <linux/fs.h>
23
#include <linux/slab.h>
24
#include <linux/highmem.h>
25
#include <linux/pagemap.h>
26
#include <asm/byteorder.h>
27
#include <linux/swap.h>
28
#include <linux/pipe_fs_i.h>
29
 
30
#define MLOG_MASK_PREFIX ML_FILE_IO
31
#include <cluster/masklog.h>
32
 
33
#include "ocfs2.h"
34
 
35
#include "alloc.h"
36
#include "aops.h"
37
#include "dlmglue.h"
38
#include "extent_map.h"
39
#include "file.h"
40
#include "inode.h"
41
#include "journal.h"
42
#include "suballoc.h"
43
#include "super.h"
44
#include "symlink.h"
45
 
46
#include "buffer_head_io.h"
47
 
48
static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
49
                                   struct buffer_head *bh_result, int create)
50
{
51
        int err = -EIO;
52
        int status;
53
        struct ocfs2_dinode *fe = NULL;
54
        struct buffer_head *bh = NULL;
55
        struct buffer_head *buffer_cache_bh = NULL;
56
        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
57
        void *kaddr;
58
 
59
        mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
60
                   (unsigned long long)iblock, bh_result, create);
61
 
62
        BUG_ON(ocfs2_inode_is_fast_symlink(inode));
63
 
64
        if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
65
                mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
66
                     (unsigned long long)iblock);
67
                goto bail;
68
        }
69
 
70
        status = ocfs2_read_block(OCFS2_SB(inode->i_sb),
71
                                  OCFS2_I(inode)->ip_blkno,
72
                                  &bh, OCFS2_BH_CACHED, inode);
73
        if (status < 0) {
74
                mlog_errno(status);
75
                goto bail;
76
        }
77
        fe = (struct ocfs2_dinode *) bh->b_data;
78
 
79
        if (!OCFS2_IS_VALID_DINODE(fe)) {
80
                mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
81
                     (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
82
                     fe->i_signature);
83
                goto bail;
84
        }
85
 
86
        if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87
                                                    le32_to_cpu(fe->i_clusters))) {
88
                mlog(ML_ERROR, "block offset is outside the allocated size: "
89
                     "%llu\n", (unsigned long long)iblock);
90
                goto bail;
91
        }
92
 
93
        /* We don't use the page cache to create symlink data, so if
94
         * need be, copy it over from the buffer cache. */
95
        if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
96
                u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
97
                            iblock;
98
                buffer_cache_bh = sb_getblk(osb->sb, blkno);
99
                if (!buffer_cache_bh) {
100
                        mlog(ML_ERROR, "couldn't getblock for symlink!\n");
101
                        goto bail;
102
                }
103
 
104
                /* we haven't locked out transactions, so a commit
105
                 * could've happened. Since we've got a reference on
106
                 * the bh, even if it commits while we're doing the
107
                 * copy, the data is still good. */
108
                if (buffer_jbd(buffer_cache_bh)
109
                    && ocfs2_inode_is_new(inode)) {
110
                        kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
111
                        if (!kaddr) {
112
                                mlog(ML_ERROR, "couldn't kmap!\n");
113
                                goto bail;
114
                        }
115
                        memcpy(kaddr + (bh_result->b_size * iblock),
116
                               buffer_cache_bh->b_data,
117
                               bh_result->b_size);
118
                        kunmap_atomic(kaddr, KM_USER0);
119
                        set_buffer_uptodate(bh_result);
120
                }
121
                brelse(buffer_cache_bh);
122
        }
123
 
124
        map_bh(bh_result, inode->i_sb,
125
               le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
126
 
127
        err = 0;
128
 
129
bail:
130
        if (bh)
131
                brelse(bh);
132
 
133
        mlog_exit(err);
134
        return err;
135
}
136
 
137
static int ocfs2_get_block(struct inode *inode, sector_t iblock,
138
                           struct buffer_head *bh_result, int create)
139
{
140
        int err = 0;
141
        unsigned int ext_flags;
142
        u64 p_blkno, past_eof;
143
        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
144
 
145
        mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
146
                   (unsigned long long)iblock, bh_result, create);
147
 
148
        if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
149
                mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
150
                     inode, inode->i_ino);
151
 
152
        if (S_ISLNK(inode->i_mode)) {
153
                /* this always does I/O for some reason. */
154
                err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
155
                goto bail;
156
        }
157
 
158
        err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, NULL,
159
                                          &ext_flags);
160
        if (err) {
161
                mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
162
                     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
163
                     (unsigned long long)p_blkno);
164
                goto bail;
165
        }
166
 
167
        /*
168
         * ocfs2 never allocates in this function - the only time we
169
         * need to use BH_New is when we're extending i_size on a file
170
         * system which doesn't support holes, in which case BH_New
171
         * allows block_prepare_write() to zero.
172
         */
173
        mlog_bug_on_msg(create && p_blkno == 0 && ocfs2_sparse_alloc(osb),
174
                        "ino %lu, iblock %llu\n", inode->i_ino,
175
                        (unsigned long long)iblock);
176
 
177
        /* Treat the unwritten extent as a hole for zeroing purposes. */
178
        if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
179
                map_bh(bh_result, inode->i_sb, p_blkno);
180
 
181
        if (!ocfs2_sparse_alloc(osb)) {
182
                if (p_blkno == 0) {
183
                        err = -EIO;
184
                        mlog(ML_ERROR,
185
                             "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
186
                             (unsigned long long)iblock,
187
                             (unsigned long long)p_blkno,
188
                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
189
                        mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
190
                        dump_stack();
191
                }
192
 
193
                past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
194
                mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
195
                     (unsigned long long)past_eof);
196
 
197
                if (create && (iblock >= past_eof))
198
                        set_buffer_new(bh_result);
199
        }
200
 
201
bail:
202
        if (err < 0)
203
                err = -EIO;
204
 
205
        mlog_exit(err);
206
        return err;
207
}
208
 
209
int ocfs2_read_inline_data(struct inode *inode, struct page *page,
210
                           struct buffer_head *di_bh)
211
{
212
        void *kaddr;
213
        unsigned int size;
214
        struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
215
 
216
        if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
217
                ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
218
                            (unsigned long long)OCFS2_I(inode)->ip_blkno);
219
                return -EROFS;
220
        }
221
 
222
        size = i_size_read(inode);
223
 
224
        if (size > PAGE_CACHE_SIZE ||
225
            size > ocfs2_max_inline_data(inode->i_sb)) {
226
                ocfs2_error(inode->i_sb,
227
                            "Inode %llu has with inline data has bad size: %u",
228
                            (unsigned long long)OCFS2_I(inode)->ip_blkno, size);
229
                return -EROFS;
230
        }
231
 
232
        kaddr = kmap_atomic(page, KM_USER0);
233
        if (size)
234
                memcpy(kaddr, di->id2.i_data.id_data, size);
235
        /* Clear the remaining part of the page */
236
        memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
237
        flush_dcache_page(page);
238
        kunmap_atomic(kaddr, KM_USER0);
239
 
240
        SetPageUptodate(page);
241
 
242
        return 0;
243
}
244
 
245
static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
246
{
247
        int ret;
248
        struct buffer_head *di_bh = NULL;
249
        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
250
 
251
        BUG_ON(!PageLocked(page));
252
        BUG_ON(!OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
253
 
254
        ret = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &di_bh,
255
                               OCFS2_BH_CACHED, inode);
256
        if (ret) {
257
                mlog_errno(ret);
258
                goto out;
259
        }
260
 
261
        ret = ocfs2_read_inline_data(inode, page, di_bh);
262
out:
263
        unlock_page(page);
264
 
265
        brelse(di_bh);
266
        return ret;
267
}
268
 
269
static int ocfs2_readpage(struct file *file, struct page *page)
270
{
271
        struct inode *inode = page->mapping->host;
272
        struct ocfs2_inode_info *oi = OCFS2_I(inode);
273
        loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
274
        int ret, unlock = 1;
275
 
276
        mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
277
 
278
        ret = ocfs2_meta_lock_with_page(inode, NULL, 0, page);
279
        if (ret != 0) {
280
                if (ret == AOP_TRUNCATED_PAGE)
281
                        unlock = 0;
282
                mlog_errno(ret);
283
                goto out;
284
        }
285
 
286
        if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
287
                ret = AOP_TRUNCATED_PAGE;
288
                goto out_meta_unlock;
289
        }
290
 
291
        /*
292
         * i_size might have just been updated as we grabed the meta lock.  We
293
         * might now be discovering a truncate that hit on another node.
294
         * block_read_full_page->get_block freaks out if it is asked to read
295
         * beyond the end of a file, so we check here.  Callers
296
         * (generic_file_read, vm_ops->fault) are clever enough to check i_size
297
         * and notice that the page they just read isn't needed.
298
         *
299
         * XXX sys_readahead() seems to get that wrong?
300
         */
301
        if (start >= i_size_read(inode)) {
302
                zero_user_page(page, 0, PAGE_SIZE, KM_USER0);
303
                SetPageUptodate(page);
304
                ret = 0;
305
                goto out_alloc;
306
        }
307
 
308
        ret = ocfs2_data_lock_with_page(inode, 0, page);
309
        if (ret != 0) {
310
                if (ret == AOP_TRUNCATED_PAGE)
311
                        unlock = 0;
312
                mlog_errno(ret);
313
                goto out_alloc;
314
        }
315
 
316
        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
317
                ret = ocfs2_readpage_inline(inode, page);
318
        else
319
                ret = block_read_full_page(page, ocfs2_get_block);
320
        unlock = 0;
321
 
322
        ocfs2_data_unlock(inode, 0);
323
out_alloc:
324
        up_read(&OCFS2_I(inode)->ip_alloc_sem);
325
out_meta_unlock:
326
        ocfs2_meta_unlock(inode, 0);
327
out:
328
        if (unlock)
329
                unlock_page(page);
330
        mlog_exit(ret);
331
        return ret;
332
}
333
 
334
/* Note: Because we don't support holes, our allocation has
335
 * already happened (allocation writes zeros to the file data)
336
 * so we don't have to worry about ordered writes in
337
 * ocfs2_writepage.
338
 *
339
 * ->writepage is called during the process of invalidating the page cache
340
 * during blocked lock processing.  It can't block on any cluster locks
341
 * to during block mapping.  It's relying on the fact that the block
342
 * mapping can't have disappeared under the dirty pages that it is
343
 * being asked to write back.
344
 */
345
static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
346
{
347
        int ret;
348
 
349
        mlog_entry("(0x%p)\n", page);
350
 
351
        ret = block_write_full_page(page, ocfs2_get_block, wbc);
352
 
353
        mlog_exit(ret);
354
 
355
        return ret;
356
}
357
 
358
/*
359
 * This is called from ocfs2_write_zero_page() which has handled it's
360
 * own cluster locking and has ensured allocation exists for those
361
 * blocks to be written.
362
 */
363
int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
364
                               unsigned from, unsigned to)
365
{
366
        int ret;
367
 
368
        ret = block_prepare_write(page, from, to, ocfs2_get_block);
369
 
370
        return ret;
371
}
372
 
373
/* Taken from ext3. We don't necessarily need the full blown
374
 * functionality yet, but IMHO it's better to cut and paste the whole
375
 * thing so we can avoid introducing our own bugs (and easily pick up
376
 * their fixes when they happen) --Mark */
377
int walk_page_buffers(  handle_t *handle,
378
                        struct buffer_head *head,
379
                        unsigned from,
380
                        unsigned to,
381
                        int *partial,
382
                        int (*fn)(      handle_t *handle,
383
                                        struct buffer_head *bh))
384
{
385
        struct buffer_head *bh;
386
        unsigned block_start, block_end;
387
        unsigned blocksize = head->b_size;
388
        int err, ret = 0;
389
        struct buffer_head *next;
390
 
391
        for (   bh = head, block_start = 0;
392
                ret == 0 && (bh != head || !block_start);
393
                block_start = block_end, bh = next)
394
        {
395
                next = bh->b_this_page;
396
                block_end = block_start + blocksize;
397
                if (block_end <= from || block_start >= to) {
398
                        if (partial && !buffer_uptodate(bh))
399
                                *partial = 1;
400
                        continue;
401
                }
402
                err = (*fn)(handle, bh);
403
                if (!ret)
404
                        ret = err;
405
        }
406
        return ret;
407
}
408
 
409
handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
410
                                                         struct page *page,
411
                                                         unsigned from,
412
                                                         unsigned to)
413
{
414
        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
415
        handle_t *handle = NULL;
416
        int ret = 0;
417
 
418
        handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
419
        if (!handle) {
420
                ret = -ENOMEM;
421
                mlog_errno(ret);
422
                goto out;
423
        }
424
 
425
        if (ocfs2_should_order_data(inode)) {
426
                ret = walk_page_buffers(handle,
427
                                        page_buffers(page),
428
                                        from, to, NULL,
429
                                        ocfs2_journal_dirty_data);
430
                if (ret < 0)
431
                        mlog_errno(ret);
432
        }
433
out:
434
        if (ret) {
435
                if (handle)
436
                        ocfs2_commit_trans(osb, handle);
437
                handle = ERR_PTR(ret);
438
        }
439
        return handle;
440
}
441
 
442
static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
443
{
444
        sector_t status;
445
        u64 p_blkno = 0;
446
        int err = 0;
447
        struct inode *inode = mapping->host;
448
 
449
        mlog_entry("(block = %llu)\n", (unsigned long long)block);
450
 
451
        /* We don't need to lock journal system files, since they aren't
452
         * accessed concurrently from multiple nodes.
453
         */
454
        if (!INODE_JOURNAL(inode)) {
455
                err = ocfs2_meta_lock(inode, NULL, 0);
456
                if (err) {
457
                        if (err != -ENOENT)
458
                                mlog_errno(err);
459
                        goto bail;
460
                }
461
                down_read(&OCFS2_I(inode)->ip_alloc_sem);
462
        }
463
 
464
        if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
465
                err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
466
                                                  NULL);
467
 
468
        if (!INODE_JOURNAL(inode)) {
469
                up_read(&OCFS2_I(inode)->ip_alloc_sem);
470
                ocfs2_meta_unlock(inode, 0);
471
        }
472
 
473
        if (err) {
474
                mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
475
                     (unsigned long long)block);
476
                mlog_errno(err);
477
                goto bail;
478
        }
479
 
480
bail:
481
        status = err ? 0 : p_blkno;
482
 
483
        mlog_exit((int)status);
484
 
485
        return status;
486
}
487
 
488
/*
489
 * TODO: Make this into a generic get_blocks function.
490
 *
491
 * From do_direct_io in direct-io.c:
492
 *  "So what we do is to permit the ->get_blocks function to populate
493
 *   bh.b_size with the size of IO which is permitted at this offset and
494
 *   this i_blkbits."
495
 *
496
 * This function is called directly from get_more_blocks in direct-io.c.
497
 *
498
 * called like this: dio->get_blocks(dio->inode, fs_startblk,
499
 *                                      fs_count, map_bh, dio->rw == WRITE);
500
 */
501
static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
502
                                     struct buffer_head *bh_result, int create)
503
{
504
        int ret;
505
        u64 p_blkno, inode_blocks, contig_blocks;
506
        unsigned int ext_flags;
507
        unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
508
        unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
509
 
510
        /* This function won't even be called if the request isn't all
511
         * nicely aligned and of the right size, so there's no need
512
         * for us to check any of that. */
513
 
514
        inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
515
 
516
        /*
517
         * Any write past EOF is not allowed because we'd be extending.
518
         */
519
        if (create && (iblock + max_blocks) > inode_blocks) {
520
                ret = -EIO;
521
                goto bail;
522
        }
523
 
524
        /* This figures out the size of the next contiguous block, and
525
         * our logical offset */
526
        ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
527
                                          &contig_blocks, &ext_flags);
528
        if (ret) {
529
                mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
530
                     (unsigned long long)iblock);
531
                ret = -EIO;
532
                goto bail;
533
        }
534
 
535
        if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno) {
536
                ocfs2_error(inode->i_sb,
537
                            "Inode %llu has a hole at block %llu\n",
538
                            (unsigned long long)OCFS2_I(inode)->ip_blkno,
539
                            (unsigned long long)iblock);
540
                ret = -EROFS;
541
                goto bail;
542
        }
543
 
544
        /*
545
         * get_more_blocks() expects us to describe a hole by clearing
546
         * the mapped bit on bh_result().
547
         *
548
         * Consider an unwritten extent as a hole.
549
         */
550
        if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
551
                map_bh(bh_result, inode->i_sb, p_blkno);
552
        else {
553
                /*
554
                 * ocfs2_prepare_inode_for_write() should have caught
555
                 * the case where we'd be filling a hole and triggered
556
                 * a buffered write instead.
557
                 */
558
                if (create) {
559
                        ret = -EIO;
560
                        mlog_errno(ret);
561
                        goto bail;
562
                }
563
 
564
                clear_buffer_mapped(bh_result);
565
        }
566
 
567
        /* make sure we don't map more than max_blocks blocks here as
568
           that's all the kernel will handle at this point. */
569
        if (max_blocks < contig_blocks)
570
                contig_blocks = max_blocks;
571
        bh_result->b_size = contig_blocks << blocksize_bits;
572
bail:
573
        return ret;
574
}
575
 
576
/*
577
 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
578
 * particularly interested in the aio/dio case.  Like the core uses
579
 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
580
 * truncation on another.
581
 */
582
static void ocfs2_dio_end_io(struct kiocb *iocb,
583
                             loff_t offset,
584
                             ssize_t bytes,
585
                             void *private)
586
{
587
        struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
588
        int level;
589
 
590
        /* this io's submitter should not have unlocked this before we could */
591
        BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
592
 
593
        ocfs2_iocb_clear_rw_locked(iocb);
594
 
595
        level = ocfs2_iocb_rw_locked_level(iocb);
596
        if (!level)
597
                up_read(&inode->i_alloc_sem);
598
        ocfs2_rw_unlock(inode, level);
599
}
600
 
601
/*
602
 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
603
 * from ext3.  PageChecked() bits have been removed as OCFS2 does not
604
 * do journalled data.
605
 */
606
static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
607
{
608
        journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
609
 
610
        journal_invalidatepage(journal, page, offset);
611
}
612
 
613
static int ocfs2_releasepage(struct page *page, gfp_t wait)
614
{
615
        journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
616
 
617
        if (!page_has_buffers(page))
618
                return 0;
619
        return journal_try_to_free_buffers(journal, page, wait);
620
}
621
 
622
static ssize_t ocfs2_direct_IO(int rw,
623
                               struct kiocb *iocb,
624
                               const struct iovec *iov,
625
                               loff_t offset,
626
                               unsigned long nr_segs)
627
{
628
        struct file *file = iocb->ki_filp;
629
        struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
630
        int ret;
631
 
632
        mlog_entry_void();
633
 
634
        /*
635
         * Fallback to buffered I/O if we see an inode without
636
         * extents.
637
         */
638
        if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
639
                return 0;
640
 
641
        if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
642
                /*
643
                 * We get PR data locks even for O_DIRECT.  This
644
                 * allows concurrent O_DIRECT I/O but doesn't let
645
                 * O_DIRECT with extending and buffered zeroing writes
646
                 * race.  If they did race then the buffered zeroing
647
                 * could be written back after the O_DIRECT I/O.  It's
648
                 * one thing to tell people not to mix buffered and
649
                 * O_DIRECT writes, but expecting them to understand
650
                 * that file extension is also an implicit buffered
651
                 * write is too much.  By getting the PR we force
652
                 * writeback of the buffered zeroing before
653
                 * proceeding.
654
                 */
655
                ret = ocfs2_data_lock(inode, 0);
656
                if (ret < 0) {
657
                        mlog_errno(ret);
658
                        goto out;
659
                }
660
                ocfs2_data_unlock(inode, 0);
661
        }
662
 
663
        ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
664
                                            inode->i_sb->s_bdev, iov, offset,
665
                                            nr_segs,
666
                                            ocfs2_direct_IO_get_blocks,
667
                                            ocfs2_dio_end_io);
668
out:
669
        mlog_exit(ret);
670
        return ret;
671
}
672
 
673
static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
674
                                            u32 cpos,
675
                                            unsigned int *start,
676
                                            unsigned int *end)
677
{
678
        unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
679
 
680
        if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
681
                unsigned int cpp;
682
 
683
                cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
684
 
685
                cluster_start = cpos % cpp;
686
                cluster_start = cluster_start << osb->s_clustersize_bits;
687
 
688
                cluster_end = cluster_start + osb->s_clustersize;
689
        }
690
 
691
        BUG_ON(cluster_start > PAGE_SIZE);
692
        BUG_ON(cluster_end > PAGE_SIZE);
693
 
694
        if (start)
695
                *start = cluster_start;
696
        if (end)
697
                *end = cluster_end;
698
}
699
 
700
/*
701
 * 'from' and 'to' are the region in the page to avoid zeroing.
702
 *
703
 * If pagesize > clustersize, this function will avoid zeroing outside
704
 * of the cluster boundary.
705
 *
706
 * from == to == 0 is code for "zero the entire cluster region"
707
 */
708
static void ocfs2_clear_page_regions(struct page *page,
709
                                     struct ocfs2_super *osb, u32 cpos,
710
                                     unsigned from, unsigned to)
711
{
712
        void *kaddr;
713
        unsigned int cluster_start, cluster_end;
714
 
715
        ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
716
 
717
        kaddr = kmap_atomic(page, KM_USER0);
718
 
719
        if (from || to) {
720
                if (from > cluster_start)
721
                        memset(kaddr + cluster_start, 0, from - cluster_start);
722
                if (to < cluster_end)
723
                        memset(kaddr + to, 0, cluster_end - to);
724
        } else {
725
                memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
726
        }
727
 
728
        kunmap_atomic(kaddr, KM_USER0);
729
}
730
 
731
/*
732
 * Nonsparse file systems fully allocate before we get to the write
733
 * code. This prevents ocfs2_write() from tagging the write as an
734
 * allocating one, which means ocfs2_map_page_blocks() might try to
735
 * read-in the blocks at the tail of our file. Avoid reading them by
736
 * testing i_size against each block offset.
737
 */
738
static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
739
                                 unsigned int block_start)
740
{
741
        u64 offset = page_offset(page) + block_start;
742
 
743
        if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
744
                return 1;
745
 
746
        if (i_size_read(inode) > offset)
747
                return 1;
748
 
749
        return 0;
750
}
751
 
752
/*
753
 * Some of this taken from block_prepare_write(). We already have our
754
 * mapping by now though, and the entire write will be allocating or
755
 * it won't, so not much need to use BH_New.
756
 *
757
 * This will also skip zeroing, which is handled externally.
758
 */
759
int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
760
                          struct inode *inode, unsigned int from,
761
                          unsigned int to, int new)
762
{
763
        int ret = 0;
764
        struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
765
        unsigned int block_end, block_start;
766
        unsigned int bsize = 1 << inode->i_blkbits;
767
 
768
        if (!page_has_buffers(page))
769
                create_empty_buffers(page, bsize, 0);
770
 
771
        head = page_buffers(page);
772
        for (bh = head, block_start = 0; bh != head || !block_start;
773
             bh = bh->b_this_page, block_start += bsize) {
774
                block_end = block_start + bsize;
775
 
776
                clear_buffer_new(bh);
777
 
778
                /*
779
                 * Ignore blocks outside of our i/o range -
780
                 * they may belong to unallocated clusters.
781
                 */
782
                if (block_start >= to || block_end <= from) {
783
                        if (PageUptodate(page))
784
                                set_buffer_uptodate(bh);
785
                        continue;
786
                }
787
 
788
                /*
789
                 * For an allocating write with cluster size >= page
790
                 * size, we always write the entire page.
791
                 */
792
                if (new)
793
                        set_buffer_new(bh);
794
 
795
                if (!buffer_mapped(bh)) {
796
                        map_bh(bh, inode->i_sb, *p_blkno);
797
                        unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
798
                }
799
 
800
                if (PageUptodate(page)) {
801
                        if (!buffer_uptodate(bh))
802
                                set_buffer_uptodate(bh);
803
                } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
804
                           !buffer_new(bh) &&
805
                           ocfs2_should_read_blk(inode, page, block_start) &&
806
                           (block_start < from || block_end > to)) {
807
                        ll_rw_block(READ, 1, &bh);
808
                        *wait_bh++=bh;
809
                }
810
 
811
                *p_blkno = *p_blkno + 1;
812
        }
813
 
814
        /*
815
         * If we issued read requests - let them complete.
816
         */
817
        while(wait_bh > wait) {
818
                wait_on_buffer(*--wait_bh);
819
                if (!buffer_uptodate(*wait_bh))
820
                        ret = -EIO;
821
        }
822
 
823
        if (ret == 0 || !new)
824
                return ret;
825
 
826
        /*
827
         * If we get -EIO above, zero out any newly allocated blocks
828
         * to avoid exposing stale data.
829
         */
830
        bh = head;
831
        block_start = 0;
832
        do {
833
                block_end = block_start + bsize;
834
                if (block_end <= from)
835
                        goto next_bh;
836
                if (block_start >= to)
837
                        break;
838
 
839
                zero_user_page(page, block_start, bh->b_size, KM_USER0);
840
                set_buffer_uptodate(bh);
841
                mark_buffer_dirty(bh);
842
 
843
next_bh:
844
                block_start = block_end;
845
                bh = bh->b_this_page;
846
        } while (bh != head);
847
 
848
        return ret;
849
}
850
 
851
#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
852
#define OCFS2_MAX_CTXT_PAGES    1
853
#else
854
#define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
855
#endif
856
 
857
#define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
858
 
859
/*
860
 * Describe the state of a single cluster to be written to.
861
 */
862
struct ocfs2_write_cluster_desc {
863
        u32             c_cpos;
864
        u32             c_phys;
865
        /*
866
         * Give this a unique field because c_phys eventually gets
867
         * filled.
868
         */
869
        unsigned        c_new;
870
        unsigned        c_unwritten;
871
};
872
 
873
static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d)
874
{
875
        return d->c_new || d->c_unwritten;
876
}
877
 
878
struct ocfs2_write_ctxt {
879
        /* Logical cluster position / len of write */
880
        u32                             w_cpos;
881
        u32                             w_clen;
882
 
883
        struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
884
 
885
        /*
886
         * This is true if page_size > cluster_size.
887
         *
888
         * It triggers a set of special cases during write which might
889
         * have to deal with allocating writes to partial pages.
890
         */
891
        unsigned int                    w_large_pages;
892
 
893
        /*
894
         * Pages involved in this write.
895
         *
896
         * w_target_page is the page being written to by the user.
897
         *
898
         * w_pages is an array of pages which always contains
899
         * w_target_page, and in the case of an allocating write with
900
         * page_size < cluster size, it will contain zero'd and mapped
901
         * pages adjacent to w_target_page which need to be written
902
         * out in so that future reads from that region will get
903
         * zero's.
904
         */
905
        struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
906
        unsigned int                    w_num_pages;
907
        struct page                     *w_target_page;
908
 
909
        /*
910
         * ocfs2_write_end() uses this to know what the real range to
911
         * write in the target should be.
912
         */
913
        unsigned int                    w_target_from;
914
        unsigned int                    w_target_to;
915
 
916
        /*
917
         * We could use journal_current_handle() but this is cleaner,
918
         * IMHO -Mark
919
         */
920
        handle_t                        *w_handle;
921
 
922
        struct buffer_head              *w_di_bh;
923
 
924
        struct ocfs2_cached_dealloc_ctxt w_dealloc;
925
};
926
 
927
void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
928
{
929
        int i;
930
 
931
        for(i = 0; i < num_pages; i++) {
932
                if (pages[i]) {
933
                        unlock_page(pages[i]);
934
                        mark_page_accessed(pages[i]);
935
                        page_cache_release(pages[i]);
936
                }
937
        }
938
}
939
 
940
static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
941
{
942
        ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
943
 
944
        brelse(wc->w_di_bh);
945
        kfree(wc);
946
}
947
 
948
static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
949
                                  struct ocfs2_super *osb, loff_t pos,
950
                                  unsigned len, struct buffer_head *di_bh)
951
{
952
        u32 cend;
953
        struct ocfs2_write_ctxt *wc;
954
 
955
        wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
956
        if (!wc)
957
                return -ENOMEM;
958
 
959
        wc->w_cpos = pos >> osb->s_clustersize_bits;
960
        cend = (pos + len - 1) >> osb->s_clustersize_bits;
961
        wc->w_clen = cend - wc->w_cpos + 1;
962
        get_bh(di_bh);
963
        wc->w_di_bh = di_bh;
964
 
965
        if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
966
                wc->w_large_pages = 1;
967
        else
968
                wc->w_large_pages = 0;
969
 
970
        ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
971
 
972
        *wcp = wc;
973
 
974
        return 0;
975
}
976
 
977
/*
978
 * If a page has any new buffers, zero them out here, and mark them uptodate
979
 * and dirty so they'll be written out (in order to prevent uninitialised
980
 * block data from leaking). And clear the new bit.
981
 */
982
static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
983
{
984
        unsigned int block_start, block_end;
985
        struct buffer_head *head, *bh;
986
 
987
        BUG_ON(!PageLocked(page));
988
        if (!page_has_buffers(page))
989
                return;
990
 
991
        bh = head = page_buffers(page);
992
        block_start = 0;
993
        do {
994
                block_end = block_start + bh->b_size;
995
 
996
                if (buffer_new(bh)) {
997
                        if (block_end > from && block_start < to) {
998
                                if (!PageUptodate(page)) {
999
                                        unsigned start, end;
1000
 
1001
                                        start = max(from, block_start);
1002
                                        end = min(to, block_end);
1003
 
1004
                                        zero_user_page(page, start, end - start, KM_USER0);
1005
                                        set_buffer_uptodate(bh);
1006
                                }
1007
 
1008
                                clear_buffer_new(bh);
1009
                                mark_buffer_dirty(bh);
1010
                        }
1011
                }
1012
 
1013
                block_start = block_end;
1014
                bh = bh->b_this_page;
1015
        } while (bh != head);
1016
}
1017
 
1018
/*
1019
 * Only called when we have a failure during allocating write to write
1020
 * zero's to the newly allocated region.
1021
 */
1022
static void ocfs2_write_failure(struct inode *inode,
1023
                                struct ocfs2_write_ctxt *wc,
1024
                                loff_t user_pos, unsigned user_len)
1025
{
1026
        int i;
1027
        unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1028
                to = user_pos + user_len;
1029
        struct page *tmppage;
1030
 
1031
        ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1032
 
1033
        for(i = 0; i < wc->w_num_pages; i++) {
1034
                tmppage = wc->w_pages[i];
1035
 
1036
                if (ocfs2_should_order_data(inode))
1037
                        walk_page_buffers(wc->w_handle, page_buffers(tmppage),
1038
                                          from, to, NULL,
1039
                                          ocfs2_journal_dirty_data);
1040
 
1041
                block_commit_write(tmppage, from, to);
1042
        }
1043
}
1044
 
1045
static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1046
                                        struct ocfs2_write_ctxt *wc,
1047
                                        struct page *page, u32 cpos,
1048
                                        loff_t user_pos, unsigned user_len,
1049
                                        int new)
1050
{
1051
        int ret;
1052
        unsigned int map_from = 0, map_to = 0;
1053
        unsigned int cluster_start, cluster_end;
1054
        unsigned int user_data_from = 0, user_data_to = 0;
1055
 
1056
        ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1057
                                        &cluster_start, &cluster_end);
1058
 
1059
        if (page == wc->w_target_page) {
1060
                map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1061
                map_to = map_from + user_len;
1062
 
1063
                if (new)
1064
                        ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1065
                                                    cluster_start, cluster_end,
1066
                                                    new);
1067
                else
1068
                        ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1069
                                                    map_from, map_to, new);
1070
                if (ret) {
1071
                        mlog_errno(ret);
1072
                        goto out;
1073
                }
1074
 
1075
                user_data_from = map_from;
1076
                user_data_to = map_to;
1077
                if (new) {
1078
                        map_from = cluster_start;
1079
                        map_to = cluster_end;
1080
                }
1081
        } else {
1082
                /*
1083
                 * If we haven't allocated the new page yet, we
1084
                 * shouldn't be writing it out without copying user
1085
                 * data. This is likely a math error from the caller.
1086
                 */
1087
                BUG_ON(!new);
1088
 
1089
                map_from = cluster_start;
1090
                map_to = cluster_end;
1091
 
1092
                ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1093
                                            cluster_start, cluster_end, new);
1094
                if (ret) {
1095
                        mlog_errno(ret);
1096
                        goto out;
1097
                }
1098
        }
1099
 
1100
        /*
1101
         * Parts of newly allocated pages need to be zero'd.
1102
         *
1103
         * Above, we have also rewritten 'to' and 'from' - as far as
1104
         * the rest of the function is concerned, the entire cluster
1105
         * range inside of a page needs to be written.
1106
         *
1107
         * We can skip this if the page is up to date - it's already
1108
         * been zero'd from being read in as a hole.
1109
         */
1110
        if (new && !PageUptodate(page))
1111
                ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1112
                                         cpos, user_data_from, user_data_to);
1113
 
1114
        flush_dcache_page(page);
1115
 
1116
out:
1117
        return ret;
1118
}
1119
 
1120
/*
1121
 * This function will only grab one clusters worth of pages.
1122
 */
1123
static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1124
                                      struct ocfs2_write_ctxt *wc,
1125
                                      u32 cpos, loff_t user_pos, int new,
1126
                                      struct page *mmap_page)
1127
{
1128
        int ret = 0, i;
1129
        unsigned long start, target_index, index;
1130
        struct inode *inode = mapping->host;
1131
 
1132
        target_index = user_pos >> PAGE_CACHE_SHIFT;
1133
 
1134
        /*
1135
         * Figure out how many pages we'll be manipulating here. For
1136
         * non allocating write, we just change the one
1137
         * page. Otherwise, we'll need a whole clusters worth.
1138
         */
1139
        if (new) {
1140
                wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1141
                start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1142
        } else {
1143
                wc->w_num_pages = 1;
1144
                start = target_index;
1145
        }
1146
 
1147
        for(i = 0; i < wc->w_num_pages; i++) {
1148
                index = start + i;
1149
 
1150
                if (index == target_index && mmap_page) {
1151
                        /*
1152
                         * ocfs2_pagemkwrite() is a little different
1153
                         * and wants us to directly use the page
1154
                         * passed in.
1155
                         */
1156
                        lock_page(mmap_page);
1157
 
1158
                        if (mmap_page->mapping != mapping) {
1159
                                unlock_page(mmap_page);
1160
                                /*
1161
                                 * Sanity check - the locking in
1162
                                 * ocfs2_pagemkwrite() should ensure
1163
                                 * that this code doesn't trigger.
1164
                                 */
1165
                                ret = -EINVAL;
1166
                                mlog_errno(ret);
1167
                                goto out;
1168
                        }
1169
 
1170
                        page_cache_get(mmap_page);
1171
                        wc->w_pages[i] = mmap_page;
1172
                } else {
1173
                        wc->w_pages[i] = find_or_create_page(mapping, index,
1174
                                                             GFP_NOFS);
1175
                        if (!wc->w_pages[i]) {
1176
                                ret = -ENOMEM;
1177
                                mlog_errno(ret);
1178
                                goto out;
1179
                        }
1180
                }
1181
 
1182
                if (index == target_index)
1183
                        wc->w_target_page = wc->w_pages[i];
1184
        }
1185
out:
1186
        return ret;
1187
}
1188
 
1189
/*
1190
 * Prepare a single cluster for write one cluster into the file.
1191
 */
1192
static int ocfs2_write_cluster(struct address_space *mapping,
1193
                               u32 phys, unsigned int unwritten,
1194
                               struct ocfs2_alloc_context *data_ac,
1195
                               struct ocfs2_alloc_context *meta_ac,
1196
                               struct ocfs2_write_ctxt *wc, u32 cpos,
1197
                               loff_t user_pos, unsigned user_len)
1198
{
1199
        int ret, i, new, should_zero = 0;
1200
        u64 v_blkno, p_blkno;
1201
        struct inode *inode = mapping->host;
1202
 
1203
        new = phys == 0 ? 1 : 0;
1204
        if (new || unwritten)
1205
                should_zero = 1;
1206
 
1207
        if (new) {
1208
                u32 tmp_pos;
1209
 
1210
                /*
1211
                 * This is safe to call with the page locks - it won't take
1212
                 * any additional semaphores or cluster locks.
1213
                 */
1214
                tmp_pos = cpos;
1215
                ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
1216
                                                 &tmp_pos, 1, 0, wc->w_di_bh,
1217
                                                 wc->w_handle, data_ac,
1218
                                                 meta_ac, NULL);
1219
                /*
1220
                 * This shouldn't happen because we must have already
1221
                 * calculated the correct meta data allocation required. The
1222
                 * internal tree allocation code should know how to increase
1223
                 * transaction credits itself.
1224
                 *
1225
                 * If need be, we could handle -EAGAIN for a
1226
                 * RESTART_TRANS here.
1227
                 */
1228
                mlog_bug_on_msg(ret == -EAGAIN,
1229
                                "Inode %llu: EAGAIN return during allocation.\n",
1230
                                (unsigned long long)OCFS2_I(inode)->ip_blkno);
1231
                if (ret < 0) {
1232
                        mlog_errno(ret);
1233
                        goto out;
1234
                }
1235
        } else if (unwritten) {
1236
                ret = ocfs2_mark_extent_written(inode, wc->w_di_bh,
1237
                                                wc->w_handle, cpos, 1, phys,
1238
                                                meta_ac, &wc->w_dealloc);
1239
                if (ret < 0) {
1240
                        mlog_errno(ret);
1241
                        goto out;
1242
                }
1243
        }
1244
 
1245
        if (should_zero)
1246
                v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1247
        else
1248
                v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1249
 
1250
        /*
1251
         * The only reason this should fail is due to an inability to
1252
         * find the extent added.
1253
         */
1254
        ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1255
                                          NULL);
1256
        if (ret < 0) {
1257
                ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1258
                            "at logical block %llu",
1259
                            (unsigned long long)OCFS2_I(inode)->ip_blkno,
1260
                            (unsigned long long)v_blkno);
1261
                goto out;
1262
        }
1263
 
1264
        BUG_ON(p_blkno == 0);
1265
 
1266
        for(i = 0; i < wc->w_num_pages; i++) {
1267
                int tmpret;
1268
 
1269
                tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1270
                                                      wc->w_pages[i], cpos,
1271
                                                      user_pos, user_len,
1272
                                                      should_zero);
1273
                if (tmpret) {
1274
                        mlog_errno(tmpret);
1275
                        if (ret == 0)
1276
                                tmpret = ret;
1277
                }
1278
        }
1279
 
1280
        /*
1281
         * We only have cleanup to do in case of allocating write.
1282
         */
1283
        if (ret && new)
1284
                ocfs2_write_failure(inode, wc, user_pos, user_len);
1285
 
1286
out:
1287
 
1288
        return ret;
1289
}
1290
 
1291
static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1292
                                       struct ocfs2_alloc_context *data_ac,
1293
                                       struct ocfs2_alloc_context *meta_ac,
1294
                                       struct ocfs2_write_ctxt *wc,
1295
                                       loff_t pos, unsigned len)
1296
{
1297
        int ret, i;
1298
        loff_t cluster_off;
1299
        unsigned int local_len = len;
1300
        struct ocfs2_write_cluster_desc *desc;
1301
        struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1302
 
1303
        for (i = 0; i < wc->w_clen; i++) {
1304
                desc = &wc->w_desc[i];
1305
 
1306
                /*
1307
                 * We have to make sure that the total write passed in
1308
                 * doesn't extend past a single cluster.
1309
                 */
1310
                local_len = len;
1311
                cluster_off = pos & (osb->s_clustersize - 1);
1312
                if ((cluster_off + local_len) > osb->s_clustersize)
1313
                        local_len = osb->s_clustersize - cluster_off;
1314
 
1315
                ret = ocfs2_write_cluster(mapping, desc->c_phys,
1316
                                          desc->c_unwritten, data_ac, meta_ac,
1317
                                          wc, desc->c_cpos, pos, local_len);
1318
                if (ret) {
1319
                        mlog_errno(ret);
1320
                        goto out;
1321
                }
1322
 
1323
                len -= local_len;
1324
                pos += local_len;
1325
        }
1326
 
1327
        ret = 0;
1328
out:
1329
        return ret;
1330
}
1331
 
1332
/*
1333
 * ocfs2_write_end() wants to know which parts of the target page it
1334
 * should complete the write on. It's easiest to compute them ahead of
1335
 * time when a more complete view of the write is available.
1336
 */
1337
static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1338
                                        struct ocfs2_write_ctxt *wc,
1339
                                        loff_t pos, unsigned len, int alloc)
1340
{
1341
        struct ocfs2_write_cluster_desc *desc;
1342
 
1343
        wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1344
        wc->w_target_to = wc->w_target_from + len;
1345
 
1346
        if (alloc == 0)
1347
                return;
1348
 
1349
        /*
1350
         * Allocating write - we may have different boundaries based
1351
         * on page size and cluster size.
1352
         *
1353
         * NOTE: We can no longer compute one value from the other as
1354
         * the actual write length and user provided length may be
1355
         * different.
1356
         */
1357
 
1358
        if (wc->w_large_pages) {
1359
                /*
1360
                 * We only care about the 1st and last cluster within
1361
                 * our range and whether they should be zero'd or not. Either
1362
                 * value may be extended out to the start/end of a
1363
                 * newly allocated cluster.
1364
                 */
1365
                desc = &wc->w_desc[0];
1366
                if (ocfs2_should_zero_cluster(desc))
1367
                        ocfs2_figure_cluster_boundaries(osb,
1368
                                                        desc->c_cpos,
1369
                                                        &wc->w_target_from,
1370
                                                        NULL);
1371
 
1372
                desc = &wc->w_desc[wc->w_clen - 1];
1373
                if (ocfs2_should_zero_cluster(desc))
1374
                        ocfs2_figure_cluster_boundaries(osb,
1375
                                                        desc->c_cpos,
1376
                                                        NULL,
1377
                                                        &wc->w_target_to);
1378
        } else {
1379
                wc->w_target_from = 0;
1380
                wc->w_target_to = PAGE_CACHE_SIZE;
1381
        }
1382
}
1383
 
1384
/*
1385
 * Populate each single-cluster write descriptor in the write context
1386
 * with information about the i/o to be done.
1387
 *
1388
 * Returns the number of clusters that will have to be allocated, as
1389
 * well as a worst case estimate of the number of extent records that
1390
 * would have to be created during a write to an unwritten region.
1391
 */
1392
static int ocfs2_populate_write_desc(struct inode *inode,
1393
                                     struct ocfs2_write_ctxt *wc,
1394
                                     unsigned int *clusters_to_alloc,
1395
                                     unsigned int *extents_to_split)
1396
{
1397
        int ret;
1398
        struct ocfs2_write_cluster_desc *desc;
1399
        unsigned int num_clusters = 0;
1400
        unsigned int ext_flags = 0;
1401
        u32 phys = 0;
1402
        int i;
1403
 
1404
        *clusters_to_alloc = 0;
1405
        *extents_to_split = 0;
1406
 
1407
        for (i = 0; i < wc->w_clen; i++) {
1408
                desc = &wc->w_desc[i];
1409
                desc->c_cpos = wc->w_cpos + i;
1410
 
1411
                if (num_clusters == 0) {
1412
                        /*
1413
                         * Need to look up the next extent record.
1414
                         */
1415
                        ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1416
                                                 &num_clusters, &ext_flags);
1417
                        if (ret) {
1418
                                mlog_errno(ret);
1419
                                goto out;
1420
                        }
1421
 
1422
                        /*
1423
                         * Assume worst case - that we're writing in
1424
                         * the middle of the extent.
1425
                         *
1426
                         * We can assume that the write proceeds from
1427
                         * left to right, in which case the extent
1428
                         * insert code is smart enough to coalesce the
1429
                         * next splits into the previous records created.
1430
                         */
1431
                        if (ext_flags & OCFS2_EXT_UNWRITTEN)
1432
                                *extents_to_split = *extents_to_split + 2;
1433
                } else if (phys) {
1434
                        /*
1435
                         * Only increment phys if it doesn't describe
1436
                         * a hole.
1437
                         */
1438
                        phys++;
1439
                }
1440
 
1441
                desc->c_phys = phys;
1442
                if (phys == 0) {
1443
                        desc->c_new = 1;
1444
                        *clusters_to_alloc = *clusters_to_alloc + 1;
1445
                }
1446
                if (ext_flags & OCFS2_EXT_UNWRITTEN)
1447
                        desc->c_unwritten = 1;
1448
 
1449
                num_clusters--;
1450
        }
1451
 
1452
        ret = 0;
1453
out:
1454
        return ret;
1455
}
1456
 
1457
static int ocfs2_write_begin_inline(struct address_space *mapping,
1458
                                    struct inode *inode,
1459
                                    struct ocfs2_write_ctxt *wc)
1460
{
1461
        int ret;
1462
        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1463
        struct page *page;
1464
        handle_t *handle;
1465
        struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1466
 
1467
        page = find_or_create_page(mapping, 0, GFP_NOFS);
1468
        if (!page) {
1469
                ret = -ENOMEM;
1470
                mlog_errno(ret);
1471
                goto out;
1472
        }
1473
        /*
1474
         * If we don't set w_num_pages then this page won't get unlocked
1475
         * and freed on cleanup of the write context.
1476
         */
1477
        wc->w_pages[0] = wc->w_target_page = page;
1478
        wc->w_num_pages = 1;
1479
 
1480
        handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1481
        if (IS_ERR(handle)) {
1482
                ret = PTR_ERR(handle);
1483
                mlog_errno(ret);
1484
                goto out;
1485
        }
1486
 
1487
        ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1488
                                   OCFS2_JOURNAL_ACCESS_WRITE);
1489
        if (ret) {
1490
                ocfs2_commit_trans(osb, handle);
1491
 
1492
                mlog_errno(ret);
1493
                goto out;
1494
        }
1495
 
1496
        if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1497
                ocfs2_set_inode_data_inline(inode, di);
1498
 
1499
        if (!PageUptodate(page)) {
1500
                ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1501
                if (ret) {
1502
                        ocfs2_commit_trans(osb, handle);
1503
 
1504
                        goto out;
1505
                }
1506
        }
1507
 
1508
        wc->w_handle = handle;
1509
out:
1510
        return ret;
1511
}
1512
 
1513
int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1514
{
1515
        struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1516
 
1517
        if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1518
                return 1;
1519
        return 0;
1520
}
1521
 
1522
static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1523
                                          struct inode *inode, loff_t pos,
1524
                                          unsigned len, struct page *mmap_page,
1525
                                          struct ocfs2_write_ctxt *wc)
1526
{
1527
        int ret, written = 0;
1528
        loff_t end = pos + len;
1529
        struct ocfs2_inode_info *oi = OCFS2_I(inode);
1530
 
1531
        mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1532
             (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1533
             oi->ip_dyn_features);
1534
 
1535
        /*
1536
         * Handle inodes which already have inline data 1st.
1537
         */
1538
        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1539
                if (mmap_page == NULL &&
1540
                    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1541
                        goto do_inline_write;
1542
 
1543
                /*
1544
                 * The write won't fit - we have to give this inode an
1545
                 * inline extent list now.
1546
                 */
1547
                ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1548
                if (ret)
1549
                        mlog_errno(ret);
1550
                goto out;
1551
        }
1552
 
1553
        /*
1554
         * Check whether the inode can accept inline data.
1555
         */
1556
        if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1557
                return 0;
1558
 
1559
        /*
1560
         * Check whether the write can fit.
1561
         */
1562
        if (mmap_page || end > ocfs2_max_inline_data(inode->i_sb))
1563
                return 0;
1564
 
1565
do_inline_write:
1566
        ret = ocfs2_write_begin_inline(mapping, inode, wc);
1567
        if (ret) {
1568
                mlog_errno(ret);
1569
                goto out;
1570
        }
1571
 
1572
        /*
1573
         * This signals to the caller that the data can be written
1574
         * inline.
1575
         */
1576
        written = 1;
1577
out:
1578
        return written ? written : ret;
1579
}
1580
 
1581
/*
1582
 * This function only does anything for file systems which can't
1583
 * handle sparse files.
1584
 *
1585
 * What we want to do here is fill in any hole between the current end
1586
 * of allocation and the end of our write. That way the rest of the
1587
 * write path can treat it as an non-allocating write, which has no
1588
 * special case code for sparse/nonsparse files.
1589
 */
1590
static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1591
                                        unsigned len,
1592
                                        struct ocfs2_write_ctxt *wc)
1593
{
1594
        int ret;
1595
        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1596
        loff_t newsize = pos + len;
1597
 
1598
        if (ocfs2_sparse_alloc(osb))
1599
                return 0;
1600
 
1601
        if (newsize <= i_size_read(inode))
1602
                return 0;
1603
 
1604
        ret = ocfs2_extend_no_holes(inode, newsize, newsize - len);
1605
        if (ret)
1606
                mlog_errno(ret);
1607
 
1608
        return ret;
1609
}
1610
 
1611
int ocfs2_write_begin_nolock(struct address_space *mapping,
1612
                             loff_t pos, unsigned len, unsigned flags,
1613
                             struct page **pagep, void **fsdata,
1614
                             struct buffer_head *di_bh, struct page *mmap_page)
1615
{
1616
        int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
1617
        unsigned int clusters_to_alloc, extents_to_split;
1618
        struct ocfs2_write_ctxt *wc;
1619
        struct inode *inode = mapping->host;
1620
        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1621
        struct ocfs2_dinode *di;
1622
        struct ocfs2_alloc_context *data_ac = NULL;
1623
        struct ocfs2_alloc_context *meta_ac = NULL;
1624
        handle_t *handle;
1625
 
1626
        ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1627
        if (ret) {
1628
                mlog_errno(ret);
1629
                return ret;
1630
        }
1631
 
1632
        if (ocfs2_supports_inline_data(osb)) {
1633
                ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1634
                                                     mmap_page, wc);
1635
                if (ret == 1) {
1636
                        ret = 0;
1637
                        goto success;
1638
                }
1639
                if (ret < 0) {
1640
                        mlog_errno(ret);
1641
                        goto out;
1642
                }
1643
        }
1644
 
1645
        ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1646
        if (ret) {
1647
                mlog_errno(ret);
1648
                goto out;
1649
        }
1650
 
1651
        ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1652
                                        &extents_to_split);
1653
        if (ret) {
1654
                mlog_errno(ret);
1655
                goto out;
1656
        }
1657
 
1658
        di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1659
 
1660
        /*
1661
         * We set w_target_from, w_target_to here so that
1662
         * ocfs2_write_end() knows which range in the target page to
1663
         * write out. An allocation requires that we write the entire
1664
         * cluster range.
1665
         */
1666
        if (clusters_to_alloc || extents_to_split) {
1667
                /*
1668
                 * XXX: We are stretching the limits of
1669
                 * ocfs2_lock_allocators(). It greatly over-estimates
1670
                 * the work to be done.
1671
                 */
1672
                ret = ocfs2_lock_allocators(inode, di, clusters_to_alloc,
1673
                                            extents_to_split, &data_ac, &meta_ac);
1674
                if (ret) {
1675
                        mlog_errno(ret);
1676
                        goto out;
1677
                }
1678
 
1679
                credits = ocfs2_calc_extend_credits(inode->i_sb, di,
1680
                                                    clusters_to_alloc);
1681
 
1682
        }
1683
 
1684
        ocfs2_set_target_boundaries(osb, wc, pos, len,
1685
                                    clusters_to_alloc + extents_to_split);
1686
 
1687
        handle = ocfs2_start_trans(osb, credits);
1688
        if (IS_ERR(handle)) {
1689
                ret = PTR_ERR(handle);
1690
                mlog_errno(ret);
1691
                goto out;
1692
        }
1693
 
1694
        wc->w_handle = handle;
1695
 
1696
        /*
1697
         * We don't want this to fail in ocfs2_write_end(), so do it
1698
         * here.
1699
         */
1700
        ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1701
                                   OCFS2_JOURNAL_ACCESS_WRITE);
1702
        if (ret) {
1703
                mlog_errno(ret);
1704
                goto out_commit;
1705
        }
1706
 
1707
        /*
1708
         * Fill our page array first. That way we've grabbed enough so
1709
         * that we can zero and flush if we error after adding the
1710
         * extent.
1711
         */
1712
        ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1713
                                         clusters_to_alloc + extents_to_split,
1714
                                         mmap_page);
1715
        if (ret) {
1716
                mlog_errno(ret);
1717
                goto out_commit;
1718
        }
1719
 
1720
        ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1721
                                          len);
1722
        if (ret) {
1723
                mlog_errno(ret);
1724
                goto out_commit;
1725
        }
1726
 
1727
        if (data_ac)
1728
                ocfs2_free_alloc_context(data_ac);
1729
        if (meta_ac)
1730
                ocfs2_free_alloc_context(meta_ac);
1731
 
1732
success:
1733
        *pagep = wc->w_target_page;
1734
        *fsdata = wc;
1735
        return 0;
1736
out_commit:
1737
        ocfs2_commit_trans(osb, handle);
1738
 
1739
out:
1740
        ocfs2_free_write_ctxt(wc);
1741
 
1742
        if (data_ac)
1743
                ocfs2_free_alloc_context(data_ac);
1744
        if (meta_ac)
1745
                ocfs2_free_alloc_context(meta_ac);
1746
        return ret;
1747
}
1748
 
1749
static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1750
                             loff_t pos, unsigned len, unsigned flags,
1751
                             struct page **pagep, void **fsdata)
1752
{
1753
        int ret;
1754
        struct buffer_head *di_bh = NULL;
1755
        struct inode *inode = mapping->host;
1756
 
1757
        ret = ocfs2_meta_lock(inode, &di_bh, 1);
1758
        if (ret) {
1759
                mlog_errno(ret);
1760
                return ret;
1761
        }
1762
 
1763
        /*
1764
         * Take alloc sem here to prevent concurrent lookups. That way
1765
         * the mapping, zeroing and tree manipulation within
1766
         * ocfs2_write() will be safe against ->readpage(). This
1767
         * should also serve to lock out allocation from a shared
1768
         * writeable region.
1769
         */
1770
        down_write(&OCFS2_I(inode)->ip_alloc_sem);
1771
 
1772
        ret = ocfs2_data_lock(inode, 1);
1773
        if (ret) {
1774
                mlog_errno(ret);
1775
                goto out_fail;
1776
        }
1777
 
1778
        ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1779
                                       fsdata, di_bh, NULL);
1780
        if (ret) {
1781
                mlog_errno(ret);
1782
                goto out_fail_data;
1783
        }
1784
 
1785
        brelse(di_bh);
1786
 
1787
        return 0;
1788
 
1789
out_fail_data:
1790
        ocfs2_data_unlock(inode, 1);
1791
out_fail:
1792
        up_write(&OCFS2_I(inode)->ip_alloc_sem);
1793
 
1794
        brelse(di_bh);
1795
        ocfs2_meta_unlock(inode, 1);
1796
 
1797
        return ret;
1798
}
1799
 
1800
static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1801
                                   unsigned len, unsigned *copied,
1802
                                   struct ocfs2_dinode *di,
1803
                                   struct ocfs2_write_ctxt *wc)
1804
{
1805
        void *kaddr;
1806
 
1807
        if (unlikely(*copied < len)) {
1808
                if (!PageUptodate(wc->w_target_page)) {
1809
                        *copied = 0;
1810
                        return;
1811
                }
1812
        }
1813
 
1814
        kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1815
        memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1816
        kunmap_atomic(kaddr, KM_USER0);
1817
 
1818
        mlog(0, "Data written to inode at offset %llu. "
1819
             "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1820
             (unsigned long long)pos, *copied,
1821
             le16_to_cpu(di->id2.i_data.id_count),
1822
             le16_to_cpu(di->i_dyn_features));
1823
}
1824
 
1825
int ocfs2_write_end_nolock(struct address_space *mapping,
1826
                           loff_t pos, unsigned len, unsigned copied,
1827
                           struct page *page, void *fsdata)
1828
{
1829
        int i;
1830
        unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1831
        struct inode *inode = mapping->host;
1832
        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1833
        struct ocfs2_write_ctxt *wc = fsdata;
1834
        struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1835
        handle_t *handle = wc->w_handle;
1836
        struct page *tmppage;
1837
 
1838
        if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1839
                ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1840
                goto out_write_size;
1841
        }
1842
 
1843
        if (unlikely(copied < len)) {
1844
                if (!PageUptodate(wc->w_target_page))
1845
                        copied = 0;
1846
 
1847
                ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1848
                                       start+len);
1849
        }
1850
        flush_dcache_page(wc->w_target_page);
1851
 
1852
        for(i = 0; i < wc->w_num_pages; i++) {
1853
                tmppage = wc->w_pages[i];
1854
 
1855
                if (tmppage == wc->w_target_page) {
1856
                        from = wc->w_target_from;
1857
                        to = wc->w_target_to;
1858
 
1859
                        BUG_ON(from > PAGE_CACHE_SIZE ||
1860
                               to > PAGE_CACHE_SIZE ||
1861
                               to < from);
1862
                } else {
1863
                        /*
1864
                         * Pages adjacent to the target (if any) imply
1865
                         * a hole-filling write in which case we want
1866
                         * to flush their entire range.
1867
                         */
1868
                        from = 0;
1869
                        to = PAGE_CACHE_SIZE;
1870
                }
1871
 
1872
                if (ocfs2_should_order_data(inode))
1873
                        walk_page_buffers(wc->w_handle, page_buffers(tmppage),
1874
                                          from, to, NULL,
1875
                                          ocfs2_journal_dirty_data);
1876
 
1877
                block_commit_write(tmppage, from, to);
1878
        }
1879
 
1880
out_write_size:
1881
        pos += copied;
1882
        if (pos > inode->i_size) {
1883
                i_size_write(inode, pos);
1884
                mark_inode_dirty(inode);
1885
        }
1886
        inode->i_blocks = ocfs2_inode_sector_count(inode);
1887
        di->i_size = cpu_to_le64((u64)i_size_read(inode));
1888
        inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1889
        di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1890
        di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1891
        ocfs2_journal_dirty(handle, wc->w_di_bh);
1892
 
1893
        ocfs2_commit_trans(osb, handle);
1894
 
1895
        ocfs2_run_deallocs(osb, &wc->w_dealloc);
1896
 
1897
        ocfs2_free_write_ctxt(wc);
1898
 
1899
        return copied;
1900
}
1901
 
1902
static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1903
                           loff_t pos, unsigned len, unsigned copied,
1904
                           struct page *page, void *fsdata)
1905
{
1906
        int ret;
1907
        struct inode *inode = mapping->host;
1908
 
1909
        ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1910
 
1911
        ocfs2_data_unlock(inode, 1);
1912
        up_write(&OCFS2_I(inode)->ip_alloc_sem);
1913
        ocfs2_meta_unlock(inode, 1);
1914
 
1915
        return ret;
1916
}
1917
 
1918
const struct address_space_operations ocfs2_aops = {
1919
        .readpage       = ocfs2_readpage,
1920
        .writepage      = ocfs2_writepage,
1921
        .write_begin    = ocfs2_write_begin,
1922
        .write_end      = ocfs2_write_end,
1923
        .bmap           = ocfs2_bmap,
1924
        .sync_page      = block_sync_page,
1925
        .direct_IO      = ocfs2_direct_IO,
1926
        .invalidatepage = ocfs2_invalidatepage,
1927
        .releasepage    = ocfs2_releasepage,
1928
        .migratepage    = buffer_migrate_page,
1929
};

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.