1 |
62 |
marcus.erl |
/*
|
2 |
|
|
* balloc.c
|
3 |
|
|
*
|
4 |
|
|
* PURPOSE
|
5 |
|
|
* Block allocation handling routines for the OSTA-UDF(tm) filesystem.
|
6 |
|
|
*
|
7 |
|
|
* COPYRIGHT
|
8 |
|
|
* This file is distributed under the terms of the GNU General Public
|
9 |
|
|
* License (GPL). Copies of the GPL can be obtained from:
|
10 |
|
|
* ftp://prep.ai.mit.edu/pub/gnu/GPL
|
11 |
|
|
* Each contributing author retains all rights to their own work.
|
12 |
|
|
*
|
13 |
|
|
* (C) 1999-2001 Ben Fennema
|
14 |
|
|
* (C) 1999 Stelias Computing Inc
|
15 |
|
|
*
|
16 |
|
|
* HISTORY
|
17 |
|
|
*
|
18 |
|
|
* 02/24/99 blf Created.
|
19 |
|
|
*
|
20 |
|
|
*/
|
21 |
|
|
|
22 |
|
|
#include "udfdecl.h"
|
23 |
|
|
|
24 |
|
|
#include <linux/quotaops.h>
|
25 |
|
|
#include <linux/buffer_head.h>
|
26 |
|
|
#include <linux/bitops.h>
|
27 |
|
|
|
28 |
|
|
#include "udf_i.h"
|
29 |
|
|
#include "udf_sb.h"
|
30 |
|
|
|
31 |
|
|
#define udf_clear_bit(nr,addr) ext2_clear_bit(nr,addr)
|
32 |
|
|
#define udf_set_bit(nr,addr) ext2_set_bit(nr,addr)
|
33 |
|
|
#define udf_test_bit(nr, addr) ext2_test_bit(nr, addr)
|
34 |
|
|
#define udf_find_first_one_bit(addr, size) find_first_one_bit(addr, size)
|
35 |
|
|
#define udf_find_next_one_bit(addr, size, offset) find_next_one_bit(addr, size, offset)
|
36 |
|
|
|
37 |
|
|
#define leBPL_to_cpup(x) leNUM_to_cpup(BITS_PER_LONG, x)
|
38 |
|
|
#define leNUM_to_cpup(x,y) xleNUM_to_cpup(x,y)
|
39 |
|
|
#define xleNUM_to_cpup(x,y) (le ## x ## _to_cpup(y))
|
40 |
|
|
#define uintBPL_t uint(BITS_PER_LONG)
|
41 |
|
|
#define uint(x) xuint(x)
|
42 |
|
|
#define xuint(x) __le ## x
|
43 |
|
|
|
44 |
|
|
static inline int find_next_one_bit(void *addr, int size, int offset)
|
45 |
|
|
{
|
46 |
|
|
uintBPL_t *p = ((uintBPL_t *) addr) + (offset / BITS_PER_LONG);
|
47 |
|
|
int result = offset & ~(BITS_PER_LONG - 1);
|
48 |
|
|
unsigned long tmp;
|
49 |
|
|
|
50 |
|
|
if (offset >= size)
|
51 |
|
|
return size;
|
52 |
|
|
size -= result;
|
53 |
|
|
offset &= (BITS_PER_LONG - 1);
|
54 |
|
|
if (offset) {
|
55 |
|
|
tmp = leBPL_to_cpup(p++);
|
56 |
|
|
tmp &= ~0UL << offset;
|
57 |
|
|
if (size < BITS_PER_LONG)
|
58 |
|
|
goto found_first;
|
59 |
|
|
if (tmp)
|
60 |
|
|
goto found_middle;
|
61 |
|
|
size -= BITS_PER_LONG;
|
62 |
|
|
result += BITS_PER_LONG;
|
63 |
|
|
}
|
64 |
|
|
while (size & ~(BITS_PER_LONG - 1)) {
|
65 |
|
|
if ((tmp = leBPL_to_cpup(p++)))
|
66 |
|
|
goto found_middle;
|
67 |
|
|
result += BITS_PER_LONG;
|
68 |
|
|
size -= BITS_PER_LONG;
|
69 |
|
|
}
|
70 |
|
|
if (!size)
|
71 |
|
|
return result;
|
72 |
|
|
tmp = leBPL_to_cpup(p);
|
73 |
|
|
found_first:
|
74 |
|
|
tmp &= ~0UL >> (BITS_PER_LONG - size);
|
75 |
|
|
found_middle:
|
76 |
|
|
return result + ffz(~tmp);
|
77 |
|
|
}
|
78 |
|
|
|
79 |
|
|
#define find_first_one_bit(addr, size)\
|
80 |
|
|
find_next_one_bit((addr), (size), 0)
|
81 |
|
|
|
82 |
|
|
static int read_block_bitmap(struct super_block *sb,
|
83 |
|
|
struct udf_bitmap *bitmap, unsigned int block,
|
84 |
|
|
unsigned long bitmap_nr)
|
85 |
|
|
{
|
86 |
|
|
struct buffer_head *bh = NULL;
|
87 |
|
|
int retval = 0;
|
88 |
|
|
kernel_lb_addr loc;
|
89 |
|
|
|
90 |
|
|
loc.logicalBlockNum = bitmap->s_extPosition;
|
91 |
|
|
loc.partitionReferenceNum = UDF_SB_PARTITION(sb);
|
92 |
|
|
|
93 |
|
|
bh = udf_tread(sb, udf_get_lb_pblock(sb, loc, block));
|
94 |
|
|
if (!bh) {
|
95 |
|
|
retval = -EIO;
|
96 |
|
|
}
|
97 |
|
|
bitmap->s_block_bitmap[bitmap_nr] = bh;
|
98 |
|
|
return retval;
|
99 |
|
|
}
|
100 |
|
|
|
101 |
|
|
static int __load_block_bitmap(struct super_block *sb,
|
102 |
|
|
struct udf_bitmap *bitmap,
|
103 |
|
|
unsigned int block_group)
|
104 |
|
|
{
|
105 |
|
|
int retval = 0;
|
106 |
|
|
int nr_groups = bitmap->s_nr_groups;
|
107 |
|
|
|
108 |
|
|
if (block_group >= nr_groups) {
|
109 |
|
|
udf_debug("block_group (%d) > nr_groups (%d)\n", block_group,
|
110 |
|
|
nr_groups);
|
111 |
|
|
}
|
112 |
|
|
|
113 |
|
|
if (bitmap->s_block_bitmap[block_group]) {
|
114 |
|
|
return block_group;
|
115 |
|
|
} else {
|
116 |
|
|
retval = read_block_bitmap(sb, bitmap, block_group,
|
117 |
|
|
block_group);
|
118 |
|
|
if (retval < 0)
|
119 |
|
|
return retval;
|
120 |
|
|
return block_group;
|
121 |
|
|
}
|
122 |
|
|
}
|
123 |
|
|
|
124 |
|
|
static inline int load_block_bitmap(struct super_block *sb,
|
125 |
|
|
struct udf_bitmap *bitmap,
|
126 |
|
|
unsigned int block_group)
|
127 |
|
|
{
|
128 |
|
|
int slot;
|
129 |
|
|
|
130 |
|
|
slot = __load_block_bitmap(sb, bitmap, block_group);
|
131 |
|
|
|
132 |
|
|
if (slot < 0)
|
133 |
|
|
return slot;
|
134 |
|
|
|
135 |
|
|
if (!bitmap->s_block_bitmap[slot])
|
136 |
|
|
return -EIO;
|
137 |
|
|
|
138 |
|
|
return slot;
|
139 |
|
|
}
|
140 |
|
|
|
141 |
|
|
static void udf_bitmap_free_blocks(struct super_block *sb,
|
142 |
|
|
struct inode *inode,
|
143 |
|
|
struct udf_bitmap *bitmap,
|
144 |
|
|
kernel_lb_addr bloc, uint32_t offset,
|
145 |
|
|
uint32_t count)
|
146 |
|
|
{
|
147 |
|
|
struct udf_sb_info *sbi = UDF_SB(sb);
|
148 |
|
|
struct buffer_head *bh = NULL;
|
149 |
|
|
unsigned long block;
|
150 |
|
|
unsigned long block_group;
|
151 |
|
|
unsigned long bit;
|
152 |
|
|
unsigned long i;
|
153 |
|
|
int bitmap_nr;
|
154 |
|
|
unsigned long overflow;
|
155 |
|
|
|
156 |
|
|
mutex_lock(&sbi->s_alloc_mutex);
|
157 |
|
|
if (bloc.logicalBlockNum < 0 ||
|
158 |
|
|
(bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum)) {
|
159 |
|
|
udf_debug("%d < %d || %d + %d > %d\n",
|
160 |
|
|
bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count,
|
161 |
|
|
UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum));
|
162 |
|
|
goto error_return;
|
163 |
|
|
}
|
164 |
|
|
|
165 |
|
|
block = bloc.logicalBlockNum + offset + (sizeof(struct spaceBitmapDesc) << 3);
|
166 |
|
|
|
167 |
|
|
do_more:
|
168 |
|
|
overflow = 0;
|
169 |
|
|
block_group = block >> (sb->s_blocksize_bits + 3);
|
170 |
|
|
bit = block % (sb->s_blocksize << 3);
|
171 |
|
|
|
172 |
|
|
/*
|
173 |
|
|
* Check to see if we are freeing blocks across a group boundary.
|
174 |
|
|
*/
|
175 |
|
|
if (bit + count > (sb->s_blocksize << 3)) {
|
176 |
|
|
overflow = bit + count - (sb->s_blocksize << 3);
|
177 |
|
|
count -= overflow;
|
178 |
|
|
}
|
179 |
|
|
bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
|
180 |
|
|
if (bitmap_nr < 0)
|
181 |
|
|
goto error_return;
|
182 |
|
|
|
183 |
|
|
bh = bitmap->s_block_bitmap[bitmap_nr];
|
184 |
|
|
for (i = 0; i < count; i++) {
|
185 |
|
|
if (udf_set_bit(bit + i, bh->b_data)) {
|
186 |
|
|
udf_debug("bit %ld already set\n", bit + i);
|
187 |
|
|
udf_debug("byte=%2x\n", ((char *)bh->b_data)[(bit + i) >> 3]);
|
188 |
|
|
} else {
|
189 |
|
|
if (inode)
|
190 |
|
|
DQUOT_FREE_BLOCK(inode, 1);
|
191 |
|
|
if (UDF_SB_LVIDBH(sb)) {
|
192 |
|
|
UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] =
|
193 |
|
|
cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)]) + 1);
|
194 |
|
|
}
|
195 |
|
|
}
|
196 |
|
|
}
|
197 |
|
|
mark_buffer_dirty(bh);
|
198 |
|
|
if (overflow) {
|
199 |
|
|
block += count;
|
200 |
|
|
count = overflow;
|
201 |
|
|
goto do_more;
|
202 |
|
|
}
|
203 |
|
|
error_return:
|
204 |
|
|
sb->s_dirt = 1;
|
205 |
|
|
if (UDF_SB_LVIDBH(sb))
|
206 |
|
|
mark_buffer_dirty(UDF_SB_LVIDBH(sb));
|
207 |
|
|
mutex_unlock(&sbi->s_alloc_mutex);
|
208 |
|
|
return;
|
209 |
|
|
}
|
210 |
|
|
|
211 |
|
|
static int udf_bitmap_prealloc_blocks(struct super_block *sb,
|
212 |
|
|
struct inode *inode,
|
213 |
|
|
struct udf_bitmap *bitmap,
|
214 |
|
|
uint16_t partition, uint32_t first_block,
|
215 |
|
|
uint32_t block_count)
|
216 |
|
|
{
|
217 |
|
|
struct udf_sb_info *sbi = UDF_SB(sb);
|
218 |
|
|
int alloc_count = 0;
|
219 |
|
|
int bit, block, block_group, group_start;
|
220 |
|
|
int nr_groups, bitmap_nr;
|
221 |
|
|
struct buffer_head *bh;
|
222 |
|
|
|
223 |
|
|
mutex_lock(&sbi->s_alloc_mutex);
|
224 |
|
|
if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition))
|
225 |
|
|
goto out;
|
226 |
|
|
|
227 |
|
|
if (first_block + block_count > UDF_SB_PARTLEN(sb, partition))
|
228 |
|
|
block_count = UDF_SB_PARTLEN(sb, partition) - first_block;
|
229 |
|
|
|
230 |
|
|
repeat:
|
231 |
|
|
nr_groups = (UDF_SB_PARTLEN(sb, partition) +
|
232 |
|
|
(sizeof(struct spaceBitmapDesc) << 3) +
|
233 |
|
|
(sb->s_blocksize * 8) - 1) / (sb->s_blocksize * 8);
|
234 |
|
|
block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
|
235 |
|
|
block_group = block >> (sb->s_blocksize_bits + 3);
|
236 |
|
|
group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
|
237 |
|
|
|
238 |
|
|
bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
|
239 |
|
|
if (bitmap_nr < 0)
|
240 |
|
|
goto out;
|
241 |
|
|
bh = bitmap->s_block_bitmap[bitmap_nr];
|
242 |
|
|
|
243 |
|
|
bit = block % (sb->s_blocksize << 3);
|
244 |
|
|
|
245 |
|
|
while (bit < (sb->s_blocksize << 3) && block_count > 0) {
|
246 |
|
|
if (!udf_test_bit(bit, bh->b_data)) {
|
247 |
|
|
goto out;
|
248 |
|
|
} else if (DQUOT_PREALLOC_BLOCK(inode, 1)) {
|
249 |
|
|
goto out;
|
250 |
|
|
} else if (!udf_clear_bit(bit, bh->b_data)) {
|
251 |
|
|
udf_debug("bit already cleared for block %d\n", bit);
|
252 |
|
|
DQUOT_FREE_BLOCK(inode, 1);
|
253 |
|
|
goto out;
|
254 |
|
|
}
|
255 |
|
|
block_count--;
|
256 |
|
|
alloc_count++;
|
257 |
|
|
bit++;
|
258 |
|
|
block++;
|
259 |
|
|
}
|
260 |
|
|
mark_buffer_dirty(bh);
|
261 |
|
|
if (block_count > 0)
|
262 |
|
|
goto repeat;
|
263 |
|
|
out:
|
264 |
|
|
if (UDF_SB_LVIDBH(sb)) {
|
265 |
|
|
UDF_SB_LVID(sb)->freeSpaceTable[partition] =
|
266 |
|
|
cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition]) - alloc_count);
|
267 |
|
|
mark_buffer_dirty(UDF_SB_LVIDBH(sb));
|
268 |
|
|
}
|
269 |
|
|
sb->s_dirt = 1;
|
270 |
|
|
mutex_unlock(&sbi->s_alloc_mutex);
|
271 |
|
|
return alloc_count;
|
272 |
|
|
}
|
273 |
|
|
|
274 |
|
|
static int udf_bitmap_new_block(struct super_block *sb,
|
275 |
|
|
struct inode *inode,
|
276 |
|
|
struct udf_bitmap *bitmap, uint16_t partition,
|
277 |
|
|
uint32_t goal, int *err)
|
278 |
|
|
{
|
279 |
|
|
struct udf_sb_info *sbi = UDF_SB(sb);
|
280 |
|
|
int newbit, bit = 0, block, block_group, group_start;
|
281 |
|
|
int end_goal, nr_groups, bitmap_nr, i;
|
282 |
|
|
struct buffer_head *bh = NULL;
|
283 |
|
|
char *ptr;
|
284 |
|
|
int newblock = 0;
|
285 |
|
|
|
286 |
|
|
*err = -ENOSPC;
|
287 |
|
|
mutex_lock(&sbi->s_alloc_mutex);
|
288 |
|
|
|
289 |
|
|
repeat:
|
290 |
|
|
if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition))
|
291 |
|
|
goal = 0;
|
292 |
|
|
|
293 |
|
|
nr_groups = bitmap->s_nr_groups;
|
294 |
|
|
block = goal + (sizeof(struct spaceBitmapDesc) << 3);
|
295 |
|
|
block_group = block >> (sb->s_blocksize_bits + 3);
|
296 |
|
|
group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
|
297 |
|
|
|
298 |
|
|
bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
|
299 |
|
|
if (bitmap_nr < 0)
|
300 |
|
|
goto error_return;
|
301 |
|
|
bh = bitmap->s_block_bitmap[bitmap_nr];
|
302 |
|
|
ptr = memscan((char *)bh->b_data + group_start, 0xFF,
|
303 |
|
|
sb->s_blocksize - group_start);
|
304 |
|
|
|
305 |
|
|
if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
|
306 |
|
|
bit = block % (sb->s_blocksize << 3);
|
307 |
|
|
if (udf_test_bit(bit, bh->b_data))
|
308 |
|
|
goto got_block;
|
309 |
|
|
|
310 |
|
|
end_goal = (bit + 63) & ~63;
|
311 |
|
|
bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
|
312 |
|
|
if (bit < end_goal)
|
313 |
|
|
goto got_block;
|
314 |
|
|
|
315 |
|
|
ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF, sb->s_blocksize - ((bit + 7) >> 3));
|
316 |
|
|
newbit = (ptr - ((char *)bh->b_data)) << 3;
|
317 |
|
|
if (newbit < sb->s_blocksize << 3) {
|
318 |
|
|
bit = newbit;
|
319 |
|
|
goto search_back;
|
320 |
|
|
}
|
321 |
|
|
|
322 |
|
|
newbit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, bit);
|
323 |
|
|
if (newbit < sb->s_blocksize << 3) {
|
324 |
|
|
bit = newbit;
|
325 |
|
|
goto got_block;
|
326 |
|
|
}
|
327 |
|
|
}
|
328 |
|
|
|
329 |
|
|
for (i = 0; i < (nr_groups * 2); i++) {
|
330 |
|
|
block_group++;
|
331 |
|
|
if (block_group >= nr_groups)
|
332 |
|
|
block_group = 0;
|
333 |
|
|
group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
|
334 |
|
|
|
335 |
|
|
bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
|
336 |
|
|
if (bitmap_nr < 0)
|
337 |
|
|
goto error_return;
|
338 |
|
|
bh = bitmap->s_block_bitmap[bitmap_nr];
|
339 |
|
|
if (i < nr_groups) {
|
340 |
|
|
ptr = memscan((char *)bh->b_data + group_start, 0xFF,
|
341 |
|
|
sb->s_blocksize - group_start);
|
342 |
|
|
if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
|
343 |
|
|
bit = (ptr - ((char *)bh->b_data)) << 3;
|
344 |
|
|
break;
|
345 |
|
|
}
|
346 |
|
|
} else {
|
347 |
|
|
bit = udf_find_next_one_bit((char *)bh->b_data,
|
348 |
|
|
sb->s_blocksize << 3,
|
349 |
|
|
group_start << 3);
|
350 |
|
|
if (bit < sb->s_blocksize << 3)
|
351 |
|
|
break;
|
352 |
|
|
}
|
353 |
|
|
}
|
354 |
|
|
if (i >= (nr_groups * 2)) {
|
355 |
|
|
mutex_unlock(&sbi->s_alloc_mutex);
|
356 |
|
|
return newblock;
|
357 |
|
|
}
|
358 |
|
|
if (bit < sb->s_blocksize << 3)
|
359 |
|
|
goto search_back;
|
360 |
|
|
else
|
361 |
|
|
bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, group_start << 3);
|
362 |
|
|
if (bit >= sb->s_blocksize << 3) {
|
363 |
|
|
mutex_unlock(&sbi->s_alloc_mutex);
|
364 |
|
|
return 0;
|
365 |
|
|
}
|
366 |
|
|
|
367 |
|
|
search_back:
|
368 |
|
|
for (i = 0; i < 7 && bit > (group_start << 3) && udf_test_bit(bit - 1, bh->b_data); i++, bit--)
|
369 |
|
|
; /* empty loop */
|
370 |
|
|
|
371 |
|
|
got_block:
|
372 |
|
|
|
373 |
|
|
/*
|
374 |
|
|
* Check quota for allocation of this block.
|
375 |
|
|
*/
|
376 |
|
|
if (inode && DQUOT_ALLOC_BLOCK(inode, 1)) {
|
377 |
|
|
mutex_unlock(&sbi->s_alloc_mutex);
|
378 |
|
|
*err = -EDQUOT;
|
379 |
|
|
return 0;
|
380 |
|
|
}
|
381 |
|
|
|
382 |
|
|
newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
|
383 |
|
|
(sizeof(struct spaceBitmapDesc) << 3);
|
384 |
|
|
|
385 |
|
|
if (!udf_clear_bit(bit, bh->b_data)) {
|
386 |
|
|
udf_debug("bit already cleared for block %d\n", bit);
|
387 |
|
|
goto repeat;
|
388 |
|
|
}
|
389 |
|
|
|
390 |
|
|
mark_buffer_dirty(bh);
|
391 |
|
|
|
392 |
|
|
if (UDF_SB_LVIDBH(sb)) {
|
393 |
|
|
UDF_SB_LVID(sb)->freeSpaceTable[partition] =
|
394 |
|
|
cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition]) - 1);
|
395 |
|
|
mark_buffer_dirty(UDF_SB_LVIDBH(sb));
|
396 |
|
|
}
|
397 |
|
|
sb->s_dirt = 1;
|
398 |
|
|
mutex_unlock(&sbi->s_alloc_mutex);
|
399 |
|
|
*err = 0;
|
400 |
|
|
return newblock;
|
401 |
|
|
|
402 |
|
|
error_return:
|
403 |
|
|
*err = -EIO;
|
404 |
|
|
mutex_unlock(&sbi->s_alloc_mutex);
|
405 |
|
|
return 0;
|
406 |
|
|
}
|
407 |
|
|
|
408 |
|
|
static void udf_table_free_blocks(struct super_block *sb,
|
409 |
|
|
struct inode *inode,
|
410 |
|
|
struct inode *table,
|
411 |
|
|
kernel_lb_addr bloc, uint32_t offset,
|
412 |
|
|
uint32_t count)
|
413 |
|
|
{
|
414 |
|
|
struct udf_sb_info *sbi = UDF_SB(sb);
|
415 |
|
|
uint32_t start, end;
|
416 |
|
|
uint32_t elen;
|
417 |
|
|
kernel_lb_addr eloc;
|
418 |
|
|
struct extent_position oepos, epos;
|
419 |
|
|
int8_t etype;
|
420 |
|
|
int i;
|
421 |
|
|
|
422 |
|
|
mutex_lock(&sbi->s_alloc_mutex);
|
423 |
|
|
if (bloc.logicalBlockNum < 0 ||
|
424 |
|
|
(bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum)) {
|
425 |
|
|
udf_debug("%d < %d || %d + %d > %d\n",
|
426 |
|
|
bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count,
|
427 |
|
|
UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum));
|
428 |
|
|
goto error_return;
|
429 |
|
|
}
|
430 |
|
|
|
431 |
|
|
/* We do this up front - There are some error conditions that could occure,
|
432 |
|
|
but.. oh well */
|
433 |
|
|
if (inode)
|
434 |
|
|
DQUOT_FREE_BLOCK(inode, count);
|
435 |
|
|
if (UDF_SB_LVIDBH(sb)) {
|
436 |
|
|
UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] =
|
437 |
|
|
cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)]) + count);
|
438 |
|
|
mark_buffer_dirty(UDF_SB_LVIDBH(sb));
|
439 |
|
|
}
|
440 |
|
|
|
441 |
|
|
start = bloc.logicalBlockNum + offset;
|
442 |
|
|
end = bloc.logicalBlockNum + offset + count - 1;
|
443 |
|
|
|
444 |
|
|
epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
|
445 |
|
|
elen = 0;
|
446 |
|
|
epos.block = oepos.block = UDF_I_LOCATION(table);
|
447 |
|
|
epos.bh = oepos.bh = NULL;
|
448 |
|
|
|
449 |
|
|
while (count &&
|
450 |
|
|
(etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
|
451 |
|
|
if (((eloc.logicalBlockNum + (elen >> sb->s_blocksize_bits)) == start)) {
|
452 |
|
|
if ((0x3FFFFFFF - elen) < (count << sb->s_blocksize_bits)) {
|
453 |
|
|
count -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
|
454 |
|
|
start += ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
|
455 |
|
|
elen = (etype << 30) | (0x40000000 - sb->s_blocksize);
|
456 |
|
|
} else {
|
457 |
|
|
elen = (etype << 30) | (elen + (count << sb->s_blocksize_bits));
|
458 |
|
|
start += count;
|
459 |
|
|
count = 0;
|
460 |
|
|
}
|
461 |
|
|
udf_write_aext(table, &oepos, eloc, elen, 1);
|
462 |
|
|
} else if (eloc.logicalBlockNum == (end + 1)) {
|
463 |
|
|
if ((0x3FFFFFFF - elen) < (count << sb->s_blocksize_bits)) {
|
464 |
|
|
count -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
|
465 |
|
|
end -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
|
466 |
|
|
eloc.logicalBlockNum -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
|
467 |
|
|
elen = (etype << 30) | (0x40000000 - sb->s_blocksize);
|
468 |
|
|
} else {
|
469 |
|
|
eloc.logicalBlockNum = start;
|
470 |
|
|
elen = (etype << 30) | (elen + (count << sb->s_blocksize_bits));
|
471 |
|
|
end -= count;
|
472 |
|
|
count = 0;
|
473 |
|
|
}
|
474 |
|
|
udf_write_aext(table, &oepos, eloc, elen, 1);
|
475 |
|
|
}
|
476 |
|
|
|
477 |
|
|
if (epos.bh != oepos.bh) {
|
478 |
|
|
i = -1;
|
479 |
|
|
oepos.block = epos.block;
|
480 |
|
|
brelse(oepos.bh);
|
481 |
|
|
get_bh(epos.bh);
|
482 |
|
|
oepos.bh = epos.bh;
|
483 |
|
|
oepos.offset = 0;
|
484 |
|
|
} else {
|
485 |
|
|
oepos.offset = epos.offset;
|
486 |
|
|
}
|
487 |
|
|
}
|
488 |
|
|
|
489 |
|
|
if (count) {
|
490 |
|
|
/*
|
491 |
|
|
* NOTE: we CANNOT use udf_add_aext here, as it can try to allocate
|
492 |
|
|
* a new block, and since we hold the super block lock already
|
493 |
|
|
* very bad things would happen :)
|
494 |
|
|
*
|
495 |
|
|
* We copy the behavior of udf_add_aext, but instead of
|
496 |
|
|
* trying to allocate a new block close to the existing one,
|
497 |
|
|
* we just steal a block from the extent we are trying to add.
|
498 |
|
|
*
|
499 |
|
|
* It would be nice if the blocks were close together, but it
|
500 |
|
|
* isn't required.
|
501 |
|
|
*/
|
502 |
|
|
|
503 |
|
|
int adsize;
|
504 |
|
|
short_ad *sad = NULL;
|
505 |
|
|
long_ad *lad = NULL;
|
506 |
|
|
struct allocExtDesc *aed;
|
507 |
|
|
|
508 |
|
|
eloc.logicalBlockNum = start;
|
509 |
|
|
elen = EXT_RECORDED_ALLOCATED |
|
510 |
|
|
(count << sb->s_blocksize_bits);
|
511 |
|
|
|
512 |
|
|
if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT) {
|
513 |
|
|
adsize = sizeof(short_ad);
|
514 |
|
|
} else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG) {
|
515 |
|
|
adsize = sizeof(long_ad);
|
516 |
|
|
} else {
|
517 |
|
|
brelse(oepos.bh);
|
518 |
|
|
brelse(epos.bh);
|
519 |
|
|
goto error_return;
|
520 |
|
|
}
|
521 |
|
|
|
522 |
|
|
if (epos.offset + (2 * adsize) > sb->s_blocksize) {
|
523 |
|
|
char *sptr, *dptr;
|
524 |
|
|
int loffset;
|
525 |
|
|
|
526 |
|
|
brelse(oepos.bh);
|
527 |
|
|
oepos = epos;
|
528 |
|
|
|
529 |
|
|
/* Steal a block from the extent being free'd */
|
530 |
|
|
epos.block.logicalBlockNum = eloc.logicalBlockNum;
|
531 |
|
|
eloc.logicalBlockNum++;
|
532 |
|
|
elen -= sb->s_blocksize;
|
533 |
|
|
|
534 |
|
|
if (!(epos.bh = udf_tread(sb, udf_get_lb_pblock(sb, epos.block, 0)))) {
|
535 |
|
|
brelse(oepos.bh);
|
536 |
|
|
goto error_return;
|
537 |
|
|
}
|
538 |
|
|
aed = (struct allocExtDesc *)(epos.bh->b_data);
|
539 |
|
|
aed->previousAllocExtLocation = cpu_to_le32(oepos.block.logicalBlockNum);
|
540 |
|
|
if (epos.offset + adsize > sb->s_blocksize) {
|
541 |
|
|
loffset = epos.offset;
|
542 |
|
|
aed->lengthAllocDescs = cpu_to_le32(adsize);
|
543 |
|
|
sptr = UDF_I_DATA(table) + epos.offset - adsize;
|
544 |
|
|
dptr = epos.bh->b_data + sizeof(struct allocExtDesc);
|
545 |
|
|
memcpy(dptr, sptr, adsize);
|
546 |
|
|
epos.offset = sizeof(struct allocExtDesc) + adsize;
|
547 |
|
|
} else {
|
548 |
|
|
loffset = epos.offset + adsize;
|
549 |
|
|
aed->lengthAllocDescs = cpu_to_le32(0);
|
550 |
|
|
if (oepos.bh) {
|
551 |
|
|
sptr = oepos.bh->b_data + epos.offset;
|
552 |
|
|
aed = (struct allocExtDesc *)oepos.bh->b_data;
|
553 |
|
|
aed->lengthAllocDescs =
|
554 |
|
|
cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
|
555 |
|
|
} else {
|
556 |
|
|
sptr = UDF_I_DATA(table) + epos.offset;
|
557 |
|
|
UDF_I_LENALLOC(table) += adsize;
|
558 |
|
|
mark_inode_dirty(table);
|
559 |
|
|
}
|
560 |
|
|
epos.offset = sizeof(struct allocExtDesc);
|
561 |
|
|
}
|
562 |
|
|
if (UDF_SB_UDFREV(sb) >= 0x0200)
|
563 |
|
|
udf_new_tag(epos.bh->b_data, TAG_IDENT_AED, 3, 1,
|
564 |
|
|
epos.block.logicalBlockNum, sizeof(tag));
|
565 |
|
|
else
|
566 |
|
|
udf_new_tag(epos.bh->b_data, TAG_IDENT_AED, 2, 1,
|
567 |
|
|
epos.block.logicalBlockNum, sizeof(tag));
|
568 |
|
|
|
569 |
|
|
switch (UDF_I_ALLOCTYPE(table)) {
|
570 |
|
|
case ICBTAG_FLAG_AD_SHORT:
|
571 |
|
|
sad = (short_ad *)sptr;
|
572 |
|
|
sad->extLength = cpu_to_le32(
|
573 |
|
|
EXT_NEXT_EXTENT_ALLOCDECS |
|
574 |
|
|
sb->s_blocksize);
|
575 |
|
|
sad->extPosition = cpu_to_le32(epos.block.logicalBlockNum);
|
576 |
|
|
break;
|
577 |
|
|
case ICBTAG_FLAG_AD_LONG:
|
578 |
|
|
lad = (long_ad *)sptr;
|
579 |
|
|
lad->extLength = cpu_to_le32(
|
580 |
|
|
EXT_NEXT_EXTENT_ALLOCDECS |
|
581 |
|
|
sb->s_blocksize);
|
582 |
|
|
lad->extLocation = cpu_to_lelb(epos.block);
|
583 |
|
|
break;
|
584 |
|
|
}
|
585 |
|
|
if (oepos.bh) {
|
586 |
|
|
udf_update_tag(oepos.bh->b_data, loffset);
|
587 |
|
|
mark_buffer_dirty(oepos.bh);
|
588 |
|
|
} else {
|
589 |
|
|
mark_inode_dirty(table);
|
590 |
|
|
}
|
591 |
|
|
}
|
592 |
|
|
|
593 |
|
|
if (elen) { /* It's possible that stealing the block emptied the extent */
|
594 |
|
|
udf_write_aext(table, &epos, eloc, elen, 1);
|
595 |
|
|
|
596 |
|
|
if (!epos.bh) {
|
597 |
|
|
UDF_I_LENALLOC(table) += adsize;
|
598 |
|
|
mark_inode_dirty(table);
|
599 |
|
|
} else {
|
600 |
|
|
aed = (struct allocExtDesc *)epos.bh->b_data;
|
601 |
|
|
aed->lengthAllocDescs =
|
602 |
|
|
cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
|
603 |
|
|
udf_update_tag(epos.bh->b_data, epos.offset);
|
604 |
|
|
mark_buffer_dirty(epos.bh);
|
605 |
|
|
}
|
606 |
|
|
}
|
607 |
|
|
}
|
608 |
|
|
|
609 |
|
|
brelse(epos.bh);
|
610 |
|
|
brelse(oepos.bh);
|
611 |
|
|
|
612 |
|
|
error_return:
|
613 |
|
|
sb->s_dirt = 1;
|
614 |
|
|
mutex_unlock(&sbi->s_alloc_mutex);
|
615 |
|
|
return;
|
616 |
|
|
}
|
617 |
|
|
|
618 |
|
|
static int udf_table_prealloc_blocks(struct super_block *sb,
|
619 |
|
|
struct inode *inode,
|
620 |
|
|
struct inode *table, uint16_t partition,
|
621 |
|
|
uint32_t first_block, uint32_t block_count)
|
622 |
|
|
{
|
623 |
|
|
struct udf_sb_info *sbi = UDF_SB(sb);
|
624 |
|
|
int alloc_count = 0;
|
625 |
|
|
uint32_t elen, adsize;
|
626 |
|
|
kernel_lb_addr eloc;
|
627 |
|
|
struct extent_position epos;
|
628 |
|
|
int8_t etype = -1;
|
629 |
|
|
|
630 |
|
|
if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition))
|
631 |
|
|
return 0;
|
632 |
|
|
|
633 |
|
|
if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT)
|
634 |
|
|
adsize = sizeof(short_ad);
|
635 |
|
|
else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG)
|
636 |
|
|
adsize = sizeof(long_ad);
|
637 |
|
|
else
|
638 |
|
|
return 0;
|
639 |
|
|
|
640 |
|
|
mutex_lock(&sbi->s_alloc_mutex);
|
641 |
|
|
epos.offset = sizeof(struct unallocSpaceEntry);
|
642 |
|
|
epos.block = UDF_I_LOCATION(table);
|
643 |
|
|
epos.bh = NULL;
|
644 |
|
|
eloc.logicalBlockNum = 0xFFFFFFFF;
|
645 |
|
|
|
646 |
|
|
while (first_block != eloc.logicalBlockNum &&
|
647 |
|
|
(etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
|
648 |
|
|
udf_debug("eloc=%d, elen=%d, first_block=%d\n",
|
649 |
|
|
eloc.logicalBlockNum, elen, first_block);
|
650 |
|
|
; /* empty loop body */
|
651 |
|
|
}
|
652 |
|
|
|
653 |
|
|
if (first_block == eloc.logicalBlockNum) {
|
654 |
|
|
epos.offset -= adsize;
|
655 |
|
|
|
656 |
|
|
alloc_count = (elen >> sb->s_blocksize_bits);
|
657 |
|
|
if (inode && DQUOT_PREALLOC_BLOCK(inode, alloc_count > block_count ? block_count : alloc_count)) {
|
658 |
|
|
alloc_count = 0;
|
659 |
|
|
} else if (alloc_count > block_count) {
|
660 |
|
|
alloc_count = block_count;
|
661 |
|
|
eloc.logicalBlockNum += alloc_count;
|
662 |
|
|
elen -= (alloc_count << sb->s_blocksize_bits);
|
663 |
|
|
udf_write_aext(table, &epos, eloc, (etype << 30) | elen, 1);
|
664 |
|
|
} else {
|
665 |
|
|
udf_delete_aext(table, epos, eloc, (etype << 30) | elen);
|
666 |
|
|
}
|
667 |
|
|
} else {
|
668 |
|
|
alloc_count = 0;
|
669 |
|
|
}
|
670 |
|
|
|
671 |
|
|
brelse(epos.bh);
|
672 |
|
|
|
673 |
|
|
if (alloc_count && UDF_SB_LVIDBH(sb)) {
|
674 |
|
|
UDF_SB_LVID(sb)->freeSpaceTable[partition] =
|
675 |
|
|
cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition]) - alloc_count);
|
676 |
|
|
mark_buffer_dirty(UDF_SB_LVIDBH(sb));
|
677 |
|
|
sb->s_dirt = 1;
|
678 |
|
|
}
|
679 |
|
|
mutex_unlock(&sbi->s_alloc_mutex);
|
680 |
|
|
return alloc_count;
|
681 |
|
|
}
|
682 |
|
|
|
683 |
|
|
static int udf_table_new_block(struct super_block *sb,
|
684 |
|
|
struct inode *inode,
|
685 |
|
|
struct inode *table, uint16_t partition,
|
686 |
|
|
uint32_t goal, int *err)
|
687 |
|
|
{
|
688 |
|
|
struct udf_sb_info *sbi = UDF_SB(sb);
|
689 |
|
|
uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
|
690 |
|
|
uint32_t newblock = 0, adsize;
|
691 |
|
|
uint32_t elen, goal_elen = 0;
|
692 |
|
|
kernel_lb_addr eloc, uninitialized_var(goal_eloc);
|
693 |
|
|
struct extent_position epos, goal_epos;
|
694 |
|
|
int8_t etype;
|
695 |
|
|
|
696 |
|
|
*err = -ENOSPC;
|
697 |
|
|
|
698 |
|
|
if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT)
|
699 |
|
|
adsize = sizeof(short_ad);
|
700 |
|
|
else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG)
|
701 |
|
|
adsize = sizeof(long_ad);
|
702 |
|
|
else
|
703 |
|
|
return newblock;
|
704 |
|
|
|
705 |
|
|
mutex_lock(&sbi->s_alloc_mutex);
|
706 |
|
|
if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition))
|
707 |
|
|
goal = 0;
|
708 |
|
|
|
709 |
|
|
/* We search for the closest matching block to goal. If we find a exact hit,
|
710 |
|
|
we stop. Otherwise we keep going till we run out of extents.
|
711 |
|
|
We store the buffer_head, bloc, and extoffset of the current closest
|
712 |
|
|
match and use that when we are done.
|
713 |
|
|
*/
|
714 |
|
|
epos.offset = sizeof(struct unallocSpaceEntry);
|
715 |
|
|
epos.block = UDF_I_LOCATION(table);
|
716 |
|
|
epos.bh = goal_epos.bh = NULL;
|
717 |
|
|
|
718 |
|
|
while (spread &&
|
719 |
|
|
(etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
|
720 |
|
|
if (goal >= eloc.logicalBlockNum) {
|
721 |
|
|
if (goal < eloc.logicalBlockNum + (elen >> sb->s_blocksize_bits))
|
722 |
|
|
nspread = 0;
|
723 |
|
|
else
|
724 |
|
|
nspread = goal - eloc.logicalBlockNum -
|
725 |
|
|
(elen >> sb->s_blocksize_bits);
|
726 |
|
|
} else {
|
727 |
|
|
nspread = eloc.logicalBlockNum - goal;
|
728 |
|
|
}
|
729 |
|
|
|
730 |
|
|
if (nspread < spread) {
|
731 |
|
|
spread = nspread;
|
732 |
|
|
if (goal_epos.bh != epos.bh) {
|
733 |
|
|
brelse(goal_epos.bh);
|
734 |
|
|
goal_epos.bh = epos.bh;
|
735 |
|
|
get_bh(goal_epos.bh);
|
736 |
|
|
}
|
737 |
|
|
goal_epos.block = epos.block;
|
738 |
|
|
goal_epos.offset = epos.offset - adsize;
|
739 |
|
|
goal_eloc = eloc;
|
740 |
|
|
goal_elen = (etype << 30) | elen;
|
741 |
|
|
}
|
742 |
|
|
}
|
743 |
|
|
|
744 |
|
|
brelse(epos.bh);
|
745 |
|
|
|
746 |
|
|
if (spread == 0xFFFFFFFF) {
|
747 |
|
|
brelse(goal_epos.bh);
|
748 |
|
|
mutex_unlock(&sbi->s_alloc_mutex);
|
749 |
|
|
return 0;
|
750 |
|
|
}
|
751 |
|
|
|
752 |
|
|
/* Only allocate blocks from the beginning of the extent.
|
753 |
|
|
That way, we only delete (empty) extents, never have to insert an
|
754 |
|
|
extent because of splitting */
|
755 |
|
|
/* This works, but very poorly.... */
|
756 |
|
|
|
757 |
|
|
newblock = goal_eloc.logicalBlockNum;
|
758 |
|
|
goal_eloc.logicalBlockNum++;
|
759 |
|
|
goal_elen -= sb->s_blocksize;
|
760 |
|
|
|
761 |
|
|
if (inode && DQUOT_ALLOC_BLOCK(inode, 1)) {
|
762 |
|
|
brelse(goal_epos.bh);
|
763 |
|
|
mutex_unlock(&sbi->s_alloc_mutex);
|
764 |
|
|
*err = -EDQUOT;
|
765 |
|
|
return 0;
|
766 |
|
|
}
|
767 |
|
|
|
768 |
|
|
if (goal_elen)
|
769 |
|
|
udf_write_aext(table, &goal_epos, goal_eloc, goal_elen, 1);
|
770 |
|
|
else
|
771 |
|
|
udf_delete_aext(table, goal_epos, goal_eloc, goal_elen);
|
772 |
|
|
brelse(goal_epos.bh);
|
773 |
|
|
|
774 |
|
|
if (UDF_SB_LVIDBH(sb)) {
|
775 |
|
|
UDF_SB_LVID(sb)->freeSpaceTable[partition] =
|
776 |
|
|
cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition]) - 1);
|
777 |
|
|
mark_buffer_dirty(UDF_SB_LVIDBH(sb));
|
778 |
|
|
}
|
779 |
|
|
|
780 |
|
|
sb->s_dirt = 1;
|
781 |
|
|
mutex_unlock(&sbi->s_alloc_mutex);
|
782 |
|
|
*err = 0;
|
783 |
|
|
return newblock;
|
784 |
|
|
}
|
785 |
|
|
|
786 |
|
|
inline void udf_free_blocks(struct super_block *sb,
|
787 |
|
|
struct inode *inode,
|
788 |
|
|
kernel_lb_addr bloc, uint32_t offset,
|
789 |
|
|
uint32_t count)
|
790 |
|
|
{
|
791 |
|
|
uint16_t partition = bloc.partitionReferenceNum;
|
792 |
|
|
|
793 |
|
|
if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP) {
|
794 |
|
|
return udf_bitmap_free_blocks(sb, inode,
|
795 |
|
|
UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap,
|
796 |
|
|
bloc, offset, count);
|
797 |
|
|
} else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE) {
|
798 |
|
|
return udf_table_free_blocks(sb, inode,
|
799 |
|
|
UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table,
|
800 |
|
|
bloc, offset, count);
|
801 |
|
|
} else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP) {
|
802 |
|
|
return udf_bitmap_free_blocks(sb, inode,
|
803 |
|
|
UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap,
|
804 |
|
|
bloc, offset, count);
|
805 |
|
|
} else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE) {
|
806 |
|
|
return udf_table_free_blocks(sb, inode,
|
807 |
|
|
UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table,
|
808 |
|
|
bloc, offset, count);
|
809 |
|
|
} else {
|
810 |
|
|
return;
|
811 |
|
|
}
|
812 |
|
|
}
|
813 |
|
|
|
814 |
|
|
inline int udf_prealloc_blocks(struct super_block *sb,
|
815 |
|
|
struct inode *inode,
|
816 |
|
|
uint16_t partition, uint32_t first_block,
|
817 |
|
|
uint32_t block_count)
|
818 |
|
|
{
|
819 |
|
|
if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP) {
|
820 |
|
|
return udf_bitmap_prealloc_blocks(sb, inode,
|
821 |
|
|
UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap,
|
822 |
|
|
partition, first_block, block_count);
|
823 |
|
|
} else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE) {
|
824 |
|
|
return udf_table_prealloc_blocks(sb, inode,
|
825 |
|
|
UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table,
|
826 |
|
|
partition, first_block, block_count);
|
827 |
|
|
} else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP) {
|
828 |
|
|
return udf_bitmap_prealloc_blocks(sb, inode,
|
829 |
|
|
UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap,
|
830 |
|
|
partition, first_block, block_count);
|
831 |
|
|
} else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE) {
|
832 |
|
|
return udf_table_prealloc_blocks(sb, inode,
|
833 |
|
|
UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table,
|
834 |
|
|
partition, first_block, block_count);
|
835 |
|
|
} else {
|
836 |
|
|
return 0;
|
837 |
|
|
}
|
838 |
|
|
}
|
839 |
|
|
|
840 |
|
|
inline int udf_new_block(struct super_block *sb,
|
841 |
|
|
struct inode *inode,
|
842 |
|
|
uint16_t partition, uint32_t goal, int *err)
|
843 |
|
|
{
|
844 |
|
|
int ret;
|
845 |
|
|
|
846 |
|
|
if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP) {
|
847 |
|
|
ret = udf_bitmap_new_block(sb, inode,
|
848 |
|
|
UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap,
|
849 |
|
|
partition, goal, err);
|
850 |
|
|
return ret;
|
851 |
|
|
} else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE) {
|
852 |
|
|
return udf_table_new_block(sb, inode,
|
853 |
|
|
UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table,
|
854 |
|
|
partition, goal, err);
|
855 |
|
|
} else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP) {
|
856 |
|
|
return udf_bitmap_new_block(sb, inode,
|
857 |
|
|
UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap,
|
858 |
|
|
partition, goal, err);
|
859 |
|
|
} else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE) {
|
860 |
|
|
return udf_table_new_block(sb, inode,
|
861 |
|
|
UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table,
|
862 |
|
|
partition, goal, err);
|
863 |
|
|
} else {
|
864 |
|
|
*err = -EIO;
|
865 |
|
|
return 0;
|
866 |
|
|
}
|
867 |
|
|
}
|