1 |
62 |
marcus.erl |
/*
|
2 |
|
|
* Copyright (c) 2000-2006 Silicon Graphics, Inc.
|
3 |
|
|
* All Rights Reserved.
|
4 |
|
|
*
|
5 |
|
|
* This program is free software; you can redistribute it and/or
|
6 |
|
|
* modify it under the terms of the GNU General Public License as
|
7 |
|
|
* published by the Free Software Foundation.
|
8 |
|
|
*
|
9 |
|
|
* This program is distributed in the hope that it would be useful,
|
10 |
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
11 |
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
12 |
|
|
* GNU General Public License for more details.
|
13 |
|
|
*
|
14 |
|
|
* You should have received a copy of the GNU General Public License
|
15 |
|
|
* along with this program; if not, write the Free Software Foundation,
|
16 |
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
17 |
|
|
*/
|
18 |
|
|
#include "xfs.h"
|
19 |
|
|
#include "xfs_fs.h"
|
20 |
|
|
#include "xfs_types.h"
|
21 |
|
|
#include "xfs_bit.h"
|
22 |
|
|
#include "xfs_log.h"
|
23 |
|
|
#include "xfs_inum.h"
|
24 |
|
|
#include "xfs_imap.h"
|
25 |
|
|
#include "xfs_trans.h"
|
26 |
|
|
#include "xfs_trans_priv.h"
|
27 |
|
|
#include "xfs_sb.h"
|
28 |
|
|
#include "xfs_ag.h"
|
29 |
|
|
#include "xfs_dir2.h"
|
30 |
|
|
#include "xfs_dmapi.h"
|
31 |
|
|
#include "xfs_mount.h"
|
32 |
|
|
#include "xfs_bmap_btree.h"
|
33 |
|
|
#include "xfs_alloc_btree.h"
|
34 |
|
|
#include "xfs_ialloc_btree.h"
|
35 |
|
|
#include "xfs_dir2_sf.h"
|
36 |
|
|
#include "xfs_attr_sf.h"
|
37 |
|
|
#include "xfs_dinode.h"
|
38 |
|
|
#include "xfs_inode.h"
|
39 |
|
|
#include "xfs_buf_item.h"
|
40 |
|
|
#include "xfs_inode_item.h"
|
41 |
|
|
#include "xfs_btree.h"
|
42 |
|
|
#include "xfs_alloc.h"
|
43 |
|
|
#include "xfs_ialloc.h"
|
44 |
|
|
#include "xfs_bmap.h"
|
45 |
|
|
#include "xfs_rw.h"
|
46 |
|
|
#include "xfs_error.h"
|
47 |
|
|
#include "xfs_utils.h"
|
48 |
|
|
#include "xfs_dir2_trace.h"
|
49 |
|
|
#include "xfs_quota.h"
|
50 |
|
|
#include "xfs_acl.h"
|
51 |
|
|
#include "xfs_filestream.h"
|
52 |
|
|
#include "xfs_vnodeops.h"
|
53 |
|
|
|
54 |
|
|
kmem_zone_t *xfs_ifork_zone;
|
55 |
|
|
kmem_zone_t *xfs_inode_zone;
|
56 |
|
|
kmem_zone_t *xfs_icluster_zone;
|
57 |
|
|
|
58 |
|
|
/*
|
59 |
|
|
* Used in xfs_itruncate(). This is the maximum number of extents
|
60 |
|
|
* freed from a file in a single transaction.
|
61 |
|
|
*/
|
62 |
|
|
#define XFS_ITRUNC_MAX_EXTENTS 2
|
63 |
|
|
|
64 |
|
|
STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
|
65 |
|
|
STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
|
66 |
|
|
STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
|
67 |
|
|
STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
|
68 |
|
|
|
69 |
|
|
#ifdef DEBUG
|
70 |
|
|
/*
|
71 |
|
|
* Make sure that the extents in the given memory buffer
|
72 |
|
|
* are valid.
|
73 |
|
|
*/
|
74 |
|
|
STATIC void
|
75 |
|
|
xfs_validate_extents(
|
76 |
|
|
xfs_ifork_t *ifp,
|
77 |
|
|
int nrecs,
|
78 |
|
|
xfs_exntfmt_t fmt)
|
79 |
|
|
{
|
80 |
|
|
xfs_bmbt_irec_t irec;
|
81 |
|
|
xfs_bmbt_rec_host_t rec;
|
82 |
|
|
int i;
|
83 |
|
|
|
84 |
|
|
for (i = 0; i < nrecs; i++) {
|
85 |
|
|
xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
|
86 |
|
|
rec.l0 = get_unaligned(&ep->l0);
|
87 |
|
|
rec.l1 = get_unaligned(&ep->l1);
|
88 |
|
|
xfs_bmbt_get_all(&rec, &irec);
|
89 |
|
|
if (fmt == XFS_EXTFMT_NOSTATE)
|
90 |
|
|
ASSERT(irec.br_state == XFS_EXT_NORM);
|
91 |
|
|
}
|
92 |
|
|
}
|
93 |
|
|
#else /* DEBUG */
|
94 |
|
|
#define xfs_validate_extents(ifp, nrecs, fmt)
|
95 |
|
|
#endif /* DEBUG */
|
96 |
|
|
|
97 |
|
|
/*
|
98 |
|
|
* Check that none of the inode's in the buffer have a next
|
99 |
|
|
* unlinked field of 0.
|
100 |
|
|
*/
|
101 |
|
|
#if defined(DEBUG)
|
102 |
|
|
void
|
103 |
|
|
xfs_inobp_check(
|
104 |
|
|
xfs_mount_t *mp,
|
105 |
|
|
xfs_buf_t *bp)
|
106 |
|
|
{
|
107 |
|
|
int i;
|
108 |
|
|
int j;
|
109 |
|
|
xfs_dinode_t *dip;
|
110 |
|
|
|
111 |
|
|
j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
|
112 |
|
|
|
113 |
|
|
for (i = 0; i < j; i++) {
|
114 |
|
|
dip = (xfs_dinode_t *)xfs_buf_offset(bp,
|
115 |
|
|
i * mp->m_sb.sb_inodesize);
|
116 |
|
|
if (!dip->di_next_unlinked) {
|
117 |
|
|
xfs_fs_cmn_err(CE_ALERT, mp,
|
118 |
|
|
"Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
|
119 |
|
|
bp);
|
120 |
|
|
ASSERT(dip->di_next_unlinked);
|
121 |
|
|
}
|
122 |
|
|
}
|
123 |
|
|
}
|
124 |
|
|
#endif
|
125 |
|
|
|
126 |
|
|
/*
|
127 |
|
|
* This routine is called to map an inode number within a file
|
128 |
|
|
* system to the buffer containing the on-disk version of the
|
129 |
|
|
* inode. It returns a pointer to the buffer containing the
|
130 |
|
|
* on-disk inode in the bpp parameter, and in the dip parameter
|
131 |
|
|
* it returns a pointer to the on-disk inode within that buffer.
|
132 |
|
|
*
|
133 |
|
|
* If a non-zero error is returned, then the contents of bpp and
|
134 |
|
|
* dipp are undefined.
|
135 |
|
|
*
|
136 |
|
|
* Use xfs_imap() to determine the size and location of the
|
137 |
|
|
* buffer to read from disk.
|
138 |
|
|
*/
|
139 |
|
|
STATIC int
|
140 |
|
|
xfs_inotobp(
|
141 |
|
|
xfs_mount_t *mp,
|
142 |
|
|
xfs_trans_t *tp,
|
143 |
|
|
xfs_ino_t ino,
|
144 |
|
|
xfs_dinode_t **dipp,
|
145 |
|
|
xfs_buf_t **bpp,
|
146 |
|
|
int *offset)
|
147 |
|
|
{
|
148 |
|
|
int di_ok;
|
149 |
|
|
xfs_imap_t imap;
|
150 |
|
|
xfs_buf_t *bp;
|
151 |
|
|
int error;
|
152 |
|
|
xfs_dinode_t *dip;
|
153 |
|
|
|
154 |
|
|
/*
|
155 |
|
|
* Call the space management code to find the location of the
|
156 |
|
|
* inode on disk.
|
157 |
|
|
*/
|
158 |
|
|
imap.im_blkno = 0;
|
159 |
|
|
error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
|
160 |
|
|
if (error != 0) {
|
161 |
|
|
cmn_err(CE_WARN,
|
162 |
|
|
"xfs_inotobp: xfs_imap() returned an "
|
163 |
|
|
"error %d on %s. Returning error.", error, mp->m_fsname);
|
164 |
|
|
return error;
|
165 |
|
|
}
|
166 |
|
|
|
167 |
|
|
/*
|
168 |
|
|
* If the inode number maps to a block outside the bounds of the
|
169 |
|
|
* file system then return NULL rather than calling read_buf
|
170 |
|
|
* and panicing when we get an error from the driver.
|
171 |
|
|
*/
|
172 |
|
|
if ((imap.im_blkno + imap.im_len) >
|
173 |
|
|
XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
|
174 |
|
|
cmn_err(CE_WARN,
|
175 |
|
|
"xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
|
176 |
|
|
"of the file system %s. Returning EINVAL.",
|
177 |
|
|
(unsigned long long)imap.im_blkno,
|
178 |
|
|
imap.im_len, mp->m_fsname);
|
179 |
|
|
return XFS_ERROR(EINVAL);
|
180 |
|
|
}
|
181 |
|
|
|
182 |
|
|
/*
|
183 |
|
|
* Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
|
184 |
|
|
* default to just a read_buf() call.
|
185 |
|
|
*/
|
186 |
|
|
error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
|
187 |
|
|
(int)imap.im_len, XFS_BUF_LOCK, &bp);
|
188 |
|
|
|
189 |
|
|
if (error) {
|
190 |
|
|
cmn_err(CE_WARN,
|
191 |
|
|
"xfs_inotobp: xfs_trans_read_buf() returned an "
|
192 |
|
|
"error %d on %s. Returning error.", error, mp->m_fsname);
|
193 |
|
|
return error;
|
194 |
|
|
}
|
195 |
|
|
dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
|
196 |
|
|
di_ok =
|
197 |
|
|
be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
|
198 |
|
|
XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
|
199 |
|
|
if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
|
200 |
|
|
XFS_RANDOM_ITOBP_INOTOBP))) {
|
201 |
|
|
XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
|
202 |
|
|
xfs_trans_brelse(tp, bp);
|
203 |
|
|
cmn_err(CE_WARN,
|
204 |
|
|
"xfs_inotobp: XFS_TEST_ERROR() returned an "
|
205 |
|
|
"error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
|
206 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
207 |
|
|
}
|
208 |
|
|
|
209 |
|
|
xfs_inobp_check(mp, bp);
|
210 |
|
|
|
211 |
|
|
/*
|
212 |
|
|
* Set *dipp to point to the on-disk inode in the buffer.
|
213 |
|
|
*/
|
214 |
|
|
*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
|
215 |
|
|
*bpp = bp;
|
216 |
|
|
*offset = imap.im_boffset;
|
217 |
|
|
return 0;
|
218 |
|
|
}
|
219 |
|
|
|
220 |
|
|
|
221 |
|
|
/*
|
222 |
|
|
* This routine is called to map an inode to the buffer containing
|
223 |
|
|
* the on-disk version of the inode. It returns a pointer to the
|
224 |
|
|
* buffer containing the on-disk inode in the bpp parameter, and in
|
225 |
|
|
* the dip parameter it returns a pointer to the on-disk inode within
|
226 |
|
|
* that buffer.
|
227 |
|
|
*
|
228 |
|
|
* If a non-zero error is returned, then the contents of bpp and
|
229 |
|
|
* dipp are undefined.
|
230 |
|
|
*
|
231 |
|
|
* If the inode is new and has not yet been initialized, use xfs_imap()
|
232 |
|
|
* to determine the size and location of the buffer to read from disk.
|
233 |
|
|
* If the inode has already been mapped to its buffer and read in once,
|
234 |
|
|
* then use the mapping information stored in the inode rather than
|
235 |
|
|
* calling xfs_imap(). This allows us to avoid the overhead of looking
|
236 |
|
|
* at the inode btree for small block file systems (see xfs_dilocate()).
|
237 |
|
|
* We can tell whether the inode has been mapped in before by comparing
|
238 |
|
|
* its disk block address to 0. Only uninitialized inodes will have
|
239 |
|
|
* 0 for the disk block address.
|
240 |
|
|
*/
|
241 |
|
|
int
|
242 |
|
|
xfs_itobp(
|
243 |
|
|
xfs_mount_t *mp,
|
244 |
|
|
xfs_trans_t *tp,
|
245 |
|
|
xfs_inode_t *ip,
|
246 |
|
|
xfs_dinode_t **dipp,
|
247 |
|
|
xfs_buf_t **bpp,
|
248 |
|
|
xfs_daddr_t bno,
|
249 |
|
|
uint imap_flags)
|
250 |
|
|
{
|
251 |
|
|
xfs_imap_t imap;
|
252 |
|
|
xfs_buf_t *bp;
|
253 |
|
|
int error;
|
254 |
|
|
int i;
|
255 |
|
|
int ni;
|
256 |
|
|
|
257 |
|
|
if (ip->i_blkno == (xfs_daddr_t)0) {
|
258 |
|
|
/*
|
259 |
|
|
* Call the space management code to find the location of the
|
260 |
|
|
* inode on disk.
|
261 |
|
|
*/
|
262 |
|
|
imap.im_blkno = bno;
|
263 |
|
|
if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
|
264 |
|
|
XFS_IMAP_LOOKUP | imap_flags)))
|
265 |
|
|
return error;
|
266 |
|
|
|
267 |
|
|
/*
|
268 |
|
|
* If the inode number maps to a block outside the bounds
|
269 |
|
|
* of the file system then return NULL rather than calling
|
270 |
|
|
* read_buf and panicing when we get an error from the
|
271 |
|
|
* driver.
|
272 |
|
|
*/
|
273 |
|
|
if ((imap.im_blkno + imap.im_len) >
|
274 |
|
|
XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
|
275 |
|
|
#ifdef DEBUG
|
276 |
|
|
xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
|
277 |
|
|
"(imap.im_blkno (0x%llx) "
|
278 |
|
|
"+ imap.im_len (0x%llx)) > "
|
279 |
|
|
" XFS_FSB_TO_BB(mp, "
|
280 |
|
|
"mp->m_sb.sb_dblocks) (0x%llx)",
|
281 |
|
|
(unsigned long long) imap.im_blkno,
|
282 |
|
|
(unsigned long long) imap.im_len,
|
283 |
|
|
XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
|
284 |
|
|
#endif /* DEBUG */
|
285 |
|
|
return XFS_ERROR(EINVAL);
|
286 |
|
|
}
|
287 |
|
|
|
288 |
|
|
/*
|
289 |
|
|
* Fill in the fields in the inode that will be used to
|
290 |
|
|
* map the inode to its buffer from now on.
|
291 |
|
|
*/
|
292 |
|
|
ip->i_blkno = imap.im_blkno;
|
293 |
|
|
ip->i_len = imap.im_len;
|
294 |
|
|
ip->i_boffset = imap.im_boffset;
|
295 |
|
|
} else {
|
296 |
|
|
/*
|
297 |
|
|
* We've already mapped the inode once, so just use the
|
298 |
|
|
* mapping that we saved the first time.
|
299 |
|
|
*/
|
300 |
|
|
imap.im_blkno = ip->i_blkno;
|
301 |
|
|
imap.im_len = ip->i_len;
|
302 |
|
|
imap.im_boffset = ip->i_boffset;
|
303 |
|
|
}
|
304 |
|
|
ASSERT(bno == 0 || bno == imap.im_blkno);
|
305 |
|
|
|
306 |
|
|
/*
|
307 |
|
|
* Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
|
308 |
|
|
* default to just a read_buf() call.
|
309 |
|
|
*/
|
310 |
|
|
error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
|
311 |
|
|
(int)imap.im_len, XFS_BUF_LOCK, &bp);
|
312 |
|
|
if (error) {
|
313 |
|
|
#ifdef DEBUG
|
314 |
|
|
xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
|
315 |
|
|
"xfs_trans_read_buf() returned error %d, "
|
316 |
|
|
"imap.im_blkno 0x%llx, imap.im_len 0x%llx",
|
317 |
|
|
error, (unsigned long long) imap.im_blkno,
|
318 |
|
|
(unsigned long long) imap.im_len);
|
319 |
|
|
#endif /* DEBUG */
|
320 |
|
|
return error;
|
321 |
|
|
}
|
322 |
|
|
|
323 |
|
|
/*
|
324 |
|
|
* Validate the magic number and version of every inode in the buffer
|
325 |
|
|
* (if DEBUG kernel) or the first inode in the buffer, otherwise.
|
326 |
|
|
* No validation is done here in userspace (xfs_repair).
|
327 |
|
|
*/
|
328 |
|
|
#if !defined(__KERNEL__)
|
329 |
|
|
ni = 0;
|
330 |
|
|
#elif defined(DEBUG)
|
331 |
|
|
ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
|
332 |
|
|
#else /* usual case */
|
333 |
|
|
ni = 1;
|
334 |
|
|
#endif
|
335 |
|
|
|
336 |
|
|
for (i = 0; i < ni; i++) {
|
337 |
|
|
int di_ok;
|
338 |
|
|
xfs_dinode_t *dip;
|
339 |
|
|
|
340 |
|
|
dip = (xfs_dinode_t *)xfs_buf_offset(bp,
|
341 |
|
|
(i << mp->m_sb.sb_inodelog));
|
342 |
|
|
di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
|
343 |
|
|
XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
|
344 |
|
|
if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
|
345 |
|
|
XFS_ERRTAG_ITOBP_INOTOBP,
|
346 |
|
|
XFS_RANDOM_ITOBP_INOTOBP))) {
|
347 |
|
|
if (imap_flags & XFS_IMAP_BULKSTAT) {
|
348 |
|
|
xfs_trans_brelse(tp, bp);
|
349 |
|
|
return XFS_ERROR(EINVAL);
|
350 |
|
|
}
|
351 |
|
|
#ifdef DEBUG
|
352 |
|
|
cmn_err(CE_ALERT,
|
353 |
|
|
"Device %s - bad inode magic/vsn "
|
354 |
|
|
"daddr %lld #%d (magic=%x)",
|
355 |
|
|
XFS_BUFTARG_NAME(mp->m_ddev_targp),
|
356 |
|
|
(unsigned long long)imap.im_blkno, i,
|
357 |
|
|
be16_to_cpu(dip->di_core.di_magic));
|
358 |
|
|
#endif
|
359 |
|
|
XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
|
360 |
|
|
mp, dip);
|
361 |
|
|
xfs_trans_brelse(tp, bp);
|
362 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
363 |
|
|
}
|
364 |
|
|
}
|
365 |
|
|
|
366 |
|
|
xfs_inobp_check(mp, bp);
|
367 |
|
|
|
368 |
|
|
/*
|
369 |
|
|
* Mark the buffer as an inode buffer now that it looks good
|
370 |
|
|
*/
|
371 |
|
|
XFS_BUF_SET_VTYPE(bp, B_FS_INO);
|
372 |
|
|
|
373 |
|
|
/*
|
374 |
|
|
* Set *dipp to point to the on-disk inode in the buffer.
|
375 |
|
|
*/
|
376 |
|
|
*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
|
377 |
|
|
*bpp = bp;
|
378 |
|
|
return 0;
|
379 |
|
|
}
|
380 |
|
|
|
381 |
|
|
/*
|
382 |
|
|
* Move inode type and inode format specific information from the
|
383 |
|
|
* on-disk inode to the in-core inode. For fifos, devs, and sockets
|
384 |
|
|
* this means set if_rdev to the proper value. For files, directories,
|
385 |
|
|
* and symlinks this means to bring in the in-line data or extent
|
386 |
|
|
* pointers. For a file in B-tree format, only the root is immediately
|
387 |
|
|
* brought in-core. The rest will be in-lined in if_extents when it
|
388 |
|
|
* is first referenced (see xfs_iread_extents()).
|
389 |
|
|
*/
|
390 |
|
|
STATIC int
|
391 |
|
|
xfs_iformat(
|
392 |
|
|
xfs_inode_t *ip,
|
393 |
|
|
xfs_dinode_t *dip)
|
394 |
|
|
{
|
395 |
|
|
xfs_attr_shortform_t *atp;
|
396 |
|
|
int size;
|
397 |
|
|
int error;
|
398 |
|
|
xfs_fsize_t di_size;
|
399 |
|
|
ip->i_df.if_ext_max =
|
400 |
|
|
XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
|
401 |
|
|
error = 0;
|
402 |
|
|
|
403 |
|
|
if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
|
404 |
|
|
be16_to_cpu(dip->di_core.di_anextents) >
|
405 |
|
|
be64_to_cpu(dip->di_core.di_nblocks))) {
|
406 |
|
|
xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
|
407 |
|
|
"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
|
408 |
|
|
(unsigned long long)ip->i_ino,
|
409 |
|
|
(int)(be32_to_cpu(dip->di_core.di_nextents) +
|
410 |
|
|
be16_to_cpu(dip->di_core.di_anextents)),
|
411 |
|
|
(unsigned long long)
|
412 |
|
|
be64_to_cpu(dip->di_core.di_nblocks));
|
413 |
|
|
XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
|
414 |
|
|
ip->i_mount, dip);
|
415 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
416 |
|
|
}
|
417 |
|
|
|
418 |
|
|
if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
|
419 |
|
|
xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
|
420 |
|
|
"corrupt dinode %Lu, forkoff = 0x%x.",
|
421 |
|
|
(unsigned long long)ip->i_ino,
|
422 |
|
|
dip->di_core.di_forkoff);
|
423 |
|
|
XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
|
424 |
|
|
ip->i_mount, dip);
|
425 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
426 |
|
|
}
|
427 |
|
|
|
428 |
|
|
switch (ip->i_d.di_mode & S_IFMT) {
|
429 |
|
|
case S_IFIFO:
|
430 |
|
|
case S_IFCHR:
|
431 |
|
|
case S_IFBLK:
|
432 |
|
|
case S_IFSOCK:
|
433 |
|
|
if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
|
434 |
|
|
XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
|
435 |
|
|
ip->i_mount, dip);
|
436 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
437 |
|
|
}
|
438 |
|
|
ip->i_d.di_size = 0;
|
439 |
|
|
ip->i_size = 0;
|
440 |
|
|
ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
|
441 |
|
|
break;
|
442 |
|
|
|
443 |
|
|
case S_IFREG:
|
444 |
|
|
case S_IFLNK:
|
445 |
|
|
case S_IFDIR:
|
446 |
|
|
switch (dip->di_core.di_format) {
|
447 |
|
|
case XFS_DINODE_FMT_LOCAL:
|
448 |
|
|
/*
|
449 |
|
|
* no local regular files yet
|
450 |
|
|
*/
|
451 |
|
|
if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
|
452 |
|
|
xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
|
453 |
|
|
"corrupt inode %Lu "
|
454 |
|
|
"(local format for regular file).",
|
455 |
|
|
(unsigned long long) ip->i_ino);
|
456 |
|
|
XFS_CORRUPTION_ERROR("xfs_iformat(4)",
|
457 |
|
|
XFS_ERRLEVEL_LOW,
|
458 |
|
|
ip->i_mount, dip);
|
459 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
460 |
|
|
}
|
461 |
|
|
|
462 |
|
|
di_size = be64_to_cpu(dip->di_core.di_size);
|
463 |
|
|
if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
|
464 |
|
|
xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
|
465 |
|
|
"corrupt inode %Lu "
|
466 |
|
|
"(bad size %Ld for local inode).",
|
467 |
|
|
(unsigned long long) ip->i_ino,
|
468 |
|
|
(long long) di_size);
|
469 |
|
|
XFS_CORRUPTION_ERROR("xfs_iformat(5)",
|
470 |
|
|
XFS_ERRLEVEL_LOW,
|
471 |
|
|
ip->i_mount, dip);
|
472 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
473 |
|
|
}
|
474 |
|
|
|
475 |
|
|
size = (int)di_size;
|
476 |
|
|
error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
|
477 |
|
|
break;
|
478 |
|
|
case XFS_DINODE_FMT_EXTENTS:
|
479 |
|
|
error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
|
480 |
|
|
break;
|
481 |
|
|
case XFS_DINODE_FMT_BTREE:
|
482 |
|
|
error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
|
483 |
|
|
break;
|
484 |
|
|
default:
|
485 |
|
|
XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
|
486 |
|
|
ip->i_mount);
|
487 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
488 |
|
|
}
|
489 |
|
|
break;
|
490 |
|
|
|
491 |
|
|
default:
|
492 |
|
|
XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
|
493 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
494 |
|
|
}
|
495 |
|
|
if (error) {
|
496 |
|
|
return error;
|
497 |
|
|
}
|
498 |
|
|
if (!XFS_DFORK_Q(dip))
|
499 |
|
|
return 0;
|
500 |
|
|
ASSERT(ip->i_afp == NULL);
|
501 |
|
|
ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
|
502 |
|
|
ip->i_afp->if_ext_max =
|
503 |
|
|
XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
|
504 |
|
|
switch (dip->di_core.di_aformat) {
|
505 |
|
|
case XFS_DINODE_FMT_LOCAL:
|
506 |
|
|
atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
|
507 |
|
|
size = be16_to_cpu(atp->hdr.totsize);
|
508 |
|
|
error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
|
509 |
|
|
break;
|
510 |
|
|
case XFS_DINODE_FMT_EXTENTS:
|
511 |
|
|
error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
|
512 |
|
|
break;
|
513 |
|
|
case XFS_DINODE_FMT_BTREE:
|
514 |
|
|
error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
|
515 |
|
|
break;
|
516 |
|
|
default:
|
517 |
|
|
error = XFS_ERROR(EFSCORRUPTED);
|
518 |
|
|
break;
|
519 |
|
|
}
|
520 |
|
|
if (error) {
|
521 |
|
|
kmem_zone_free(xfs_ifork_zone, ip->i_afp);
|
522 |
|
|
ip->i_afp = NULL;
|
523 |
|
|
xfs_idestroy_fork(ip, XFS_DATA_FORK);
|
524 |
|
|
}
|
525 |
|
|
return error;
|
526 |
|
|
}
|
527 |
|
|
|
528 |
|
|
/*
|
529 |
|
|
* The file is in-lined in the on-disk inode.
|
530 |
|
|
* If it fits into if_inline_data, then copy
|
531 |
|
|
* it there, otherwise allocate a buffer for it
|
532 |
|
|
* and copy the data there. Either way, set
|
533 |
|
|
* if_data to point at the data.
|
534 |
|
|
* If we allocate a buffer for the data, make
|
535 |
|
|
* sure that its size is a multiple of 4 and
|
536 |
|
|
* record the real size in i_real_bytes.
|
537 |
|
|
*/
|
538 |
|
|
STATIC int
|
539 |
|
|
xfs_iformat_local(
|
540 |
|
|
xfs_inode_t *ip,
|
541 |
|
|
xfs_dinode_t *dip,
|
542 |
|
|
int whichfork,
|
543 |
|
|
int size)
|
544 |
|
|
{
|
545 |
|
|
xfs_ifork_t *ifp;
|
546 |
|
|
int real_size;
|
547 |
|
|
|
548 |
|
|
/*
|
549 |
|
|
* If the size is unreasonable, then something
|
550 |
|
|
* is wrong and we just bail out rather than crash in
|
551 |
|
|
* kmem_alloc() or memcpy() below.
|
552 |
|
|
*/
|
553 |
|
|
if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
|
554 |
|
|
xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
|
555 |
|
|
"corrupt inode %Lu "
|
556 |
|
|
"(bad size %d for local fork, size = %d).",
|
557 |
|
|
(unsigned long long) ip->i_ino, size,
|
558 |
|
|
XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
|
559 |
|
|
XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
|
560 |
|
|
ip->i_mount, dip);
|
561 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
562 |
|
|
}
|
563 |
|
|
ifp = XFS_IFORK_PTR(ip, whichfork);
|
564 |
|
|
real_size = 0;
|
565 |
|
|
if (size == 0)
|
566 |
|
|
ifp->if_u1.if_data = NULL;
|
567 |
|
|
else if (size <= sizeof(ifp->if_u2.if_inline_data))
|
568 |
|
|
ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
|
569 |
|
|
else {
|
570 |
|
|
real_size = roundup(size, 4);
|
571 |
|
|
ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
|
572 |
|
|
}
|
573 |
|
|
ifp->if_bytes = size;
|
574 |
|
|
ifp->if_real_bytes = real_size;
|
575 |
|
|
if (size)
|
576 |
|
|
memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
|
577 |
|
|
ifp->if_flags &= ~XFS_IFEXTENTS;
|
578 |
|
|
ifp->if_flags |= XFS_IFINLINE;
|
579 |
|
|
return 0;
|
580 |
|
|
}
|
581 |
|
|
|
582 |
|
|
/*
|
583 |
|
|
* The file consists of a set of extents all
|
584 |
|
|
* of which fit into the on-disk inode.
|
585 |
|
|
* If there are few enough extents to fit into
|
586 |
|
|
* the if_inline_ext, then copy them there.
|
587 |
|
|
* Otherwise allocate a buffer for them and copy
|
588 |
|
|
* them into it. Either way, set if_extents
|
589 |
|
|
* to point at the extents.
|
590 |
|
|
*/
|
591 |
|
|
STATIC int
|
592 |
|
|
xfs_iformat_extents(
|
593 |
|
|
xfs_inode_t *ip,
|
594 |
|
|
xfs_dinode_t *dip,
|
595 |
|
|
int whichfork)
|
596 |
|
|
{
|
597 |
|
|
xfs_bmbt_rec_t *dp;
|
598 |
|
|
xfs_ifork_t *ifp;
|
599 |
|
|
int nex;
|
600 |
|
|
int size;
|
601 |
|
|
int i;
|
602 |
|
|
|
603 |
|
|
ifp = XFS_IFORK_PTR(ip, whichfork);
|
604 |
|
|
nex = XFS_DFORK_NEXTENTS(dip, whichfork);
|
605 |
|
|
size = nex * (uint)sizeof(xfs_bmbt_rec_t);
|
606 |
|
|
|
607 |
|
|
/*
|
608 |
|
|
* If the number of extents is unreasonable, then something
|
609 |
|
|
* is wrong and we just bail out rather than crash in
|
610 |
|
|
* kmem_alloc() or memcpy() below.
|
611 |
|
|
*/
|
612 |
|
|
if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
|
613 |
|
|
xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
|
614 |
|
|
"corrupt inode %Lu ((a)extents = %d).",
|
615 |
|
|
(unsigned long long) ip->i_ino, nex);
|
616 |
|
|
XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
|
617 |
|
|
ip->i_mount, dip);
|
618 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
619 |
|
|
}
|
620 |
|
|
|
621 |
|
|
ifp->if_real_bytes = 0;
|
622 |
|
|
if (nex == 0)
|
623 |
|
|
ifp->if_u1.if_extents = NULL;
|
624 |
|
|
else if (nex <= XFS_INLINE_EXTS)
|
625 |
|
|
ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
|
626 |
|
|
else
|
627 |
|
|
xfs_iext_add(ifp, 0, nex);
|
628 |
|
|
|
629 |
|
|
ifp->if_bytes = size;
|
630 |
|
|
if (size) {
|
631 |
|
|
dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
|
632 |
|
|
xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
|
633 |
|
|
for (i = 0; i < nex; i++, dp++) {
|
634 |
|
|
xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
|
635 |
|
|
ep->l0 = be64_to_cpu(get_unaligned(&dp->l0));
|
636 |
|
|
ep->l1 = be64_to_cpu(get_unaligned(&dp->l1));
|
637 |
|
|
}
|
638 |
|
|
XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
|
639 |
|
|
if (whichfork != XFS_DATA_FORK ||
|
640 |
|
|
XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
|
641 |
|
|
if (unlikely(xfs_check_nostate_extents(
|
642 |
|
|
ifp, 0, nex))) {
|
643 |
|
|
XFS_ERROR_REPORT("xfs_iformat_extents(2)",
|
644 |
|
|
XFS_ERRLEVEL_LOW,
|
645 |
|
|
ip->i_mount);
|
646 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
647 |
|
|
}
|
648 |
|
|
}
|
649 |
|
|
ifp->if_flags |= XFS_IFEXTENTS;
|
650 |
|
|
return 0;
|
651 |
|
|
}
|
652 |
|
|
|
653 |
|
|
/*
|
654 |
|
|
* The file has too many extents to fit into
|
655 |
|
|
* the inode, so they are in B-tree format.
|
656 |
|
|
* Allocate a buffer for the root of the B-tree
|
657 |
|
|
* and copy the root into it. The i_extents
|
658 |
|
|
* field will remain NULL until all of the
|
659 |
|
|
* extents are read in (when they are needed).
|
660 |
|
|
*/
|
661 |
|
|
STATIC int
|
662 |
|
|
xfs_iformat_btree(
|
663 |
|
|
xfs_inode_t *ip,
|
664 |
|
|
xfs_dinode_t *dip,
|
665 |
|
|
int whichfork)
|
666 |
|
|
{
|
667 |
|
|
xfs_bmdr_block_t *dfp;
|
668 |
|
|
xfs_ifork_t *ifp;
|
669 |
|
|
/* REFERENCED */
|
670 |
|
|
int nrecs;
|
671 |
|
|
int size;
|
672 |
|
|
|
673 |
|
|
ifp = XFS_IFORK_PTR(ip, whichfork);
|
674 |
|
|
dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
|
675 |
|
|
size = XFS_BMAP_BROOT_SPACE(dfp);
|
676 |
|
|
nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
|
677 |
|
|
|
678 |
|
|
/*
|
679 |
|
|
* blow out if -- fork has less extents than can fit in
|
680 |
|
|
* fork (fork shouldn't be a btree format), root btree
|
681 |
|
|
* block has more records than can fit into the fork,
|
682 |
|
|
* or the number of extents is greater than the number of
|
683 |
|
|
* blocks.
|
684 |
|
|
*/
|
685 |
|
|
if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
|
686 |
|
|
|| XFS_BMDR_SPACE_CALC(nrecs) >
|
687 |
|
|
XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
|
688 |
|
|
|| XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
|
689 |
|
|
xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
|
690 |
|
|
"corrupt inode %Lu (btree).",
|
691 |
|
|
(unsigned long long) ip->i_ino);
|
692 |
|
|
XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
|
693 |
|
|
ip->i_mount);
|
694 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
695 |
|
|
}
|
696 |
|
|
|
697 |
|
|
ifp->if_broot_bytes = size;
|
698 |
|
|
ifp->if_broot = kmem_alloc(size, KM_SLEEP);
|
699 |
|
|
ASSERT(ifp->if_broot != NULL);
|
700 |
|
|
/*
|
701 |
|
|
* Copy and convert from the on-disk structure
|
702 |
|
|
* to the in-memory structure.
|
703 |
|
|
*/
|
704 |
|
|
xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
|
705 |
|
|
ifp->if_broot, size);
|
706 |
|
|
ifp->if_flags &= ~XFS_IFEXTENTS;
|
707 |
|
|
ifp->if_flags |= XFS_IFBROOT;
|
708 |
|
|
|
709 |
|
|
return 0;
|
710 |
|
|
}
|
711 |
|
|
|
712 |
|
|
void
|
713 |
|
|
xfs_dinode_from_disk(
|
714 |
|
|
xfs_icdinode_t *to,
|
715 |
|
|
xfs_dinode_core_t *from)
|
716 |
|
|
{
|
717 |
|
|
to->di_magic = be16_to_cpu(from->di_magic);
|
718 |
|
|
to->di_mode = be16_to_cpu(from->di_mode);
|
719 |
|
|
to->di_version = from ->di_version;
|
720 |
|
|
to->di_format = from->di_format;
|
721 |
|
|
to->di_onlink = be16_to_cpu(from->di_onlink);
|
722 |
|
|
to->di_uid = be32_to_cpu(from->di_uid);
|
723 |
|
|
to->di_gid = be32_to_cpu(from->di_gid);
|
724 |
|
|
to->di_nlink = be32_to_cpu(from->di_nlink);
|
725 |
|
|
to->di_projid = be16_to_cpu(from->di_projid);
|
726 |
|
|
memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
|
727 |
|
|
to->di_flushiter = be16_to_cpu(from->di_flushiter);
|
728 |
|
|
to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
|
729 |
|
|
to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
|
730 |
|
|
to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
|
731 |
|
|
to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
|
732 |
|
|
to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
|
733 |
|
|
to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
|
734 |
|
|
to->di_size = be64_to_cpu(from->di_size);
|
735 |
|
|
to->di_nblocks = be64_to_cpu(from->di_nblocks);
|
736 |
|
|
to->di_extsize = be32_to_cpu(from->di_extsize);
|
737 |
|
|
to->di_nextents = be32_to_cpu(from->di_nextents);
|
738 |
|
|
to->di_anextents = be16_to_cpu(from->di_anextents);
|
739 |
|
|
to->di_forkoff = from->di_forkoff;
|
740 |
|
|
to->di_aformat = from->di_aformat;
|
741 |
|
|
to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
|
742 |
|
|
to->di_dmstate = be16_to_cpu(from->di_dmstate);
|
743 |
|
|
to->di_flags = be16_to_cpu(from->di_flags);
|
744 |
|
|
to->di_gen = be32_to_cpu(from->di_gen);
|
745 |
|
|
}
|
746 |
|
|
|
747 |
|
|
void
|
748 |
|
|
xfs_dinode_to_disk(
|
749 |
|
|
xfs_dinode_core_t *to,
|
750 |
|
|
xfs_icdinode_t *from)
|
751 |
|
|
{
|
752 |
|
|
to->di_magic = cpu_to_be16(from->di_magic);
|
753 |
|
|
to->di_mode = cpu_to_be16(from->di_mode);
|
754 |
|
|
to->di_version = from ->di_version;
|
755 |
|
|
to->di_format = from->di_format;
|
756 |
|
|
to->di_onlink = cpu_to_be16(from->di_onlink);
|
757 |
|
|
to->di_uid = cpu_to_be32(from->di_uid);
|
758 |
|
|
to->di_gid = cpu_to_be32(from->di_gid);
|
759 |
|
|
to->di_nlink = cpu_to_be32(from->di_nlink);
|
760 |
|
|
to->di_projid = cpu_to_be16(from->di_projid);
|
761 |
|
|
memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
|
762 |
|
|
to->di_flushiter = cpu_to_be16(from->di_flushiter);
|
763 |
|
|
to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
|
764 |
|
|
to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
|
765 |
|
|
to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
|
766 |
|
|
to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
|
767 |
|
|
to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
|
768 |
|
|
to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
|
769 |
|
|
to->di_size = cpu_to_be64(from->di_size);
|
770 |
|
|
to->di_nblocks = cpu_to_be64(from->di_nblocks);
|
771 |
|
|
to->di_extsize = cpu_to_be32(from->di_extsize);
|
772 |
|
|
to->di_nextents = cpu_to_be32(from->di_nextents);
|
773 |
|
|
to->di_anextents = cpu_to_be16(from->di_anextents);
|
774 |
|
|
to->di_forkoff = from->di_forkoff;
|
775 |
|
|
to->di_aformat = from->di_aformat;
|
776 |
|
|
to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
|
777 |
|
|
to->di_dmstate = cpu_to_be16(from->di_dmstate);
|
778 |
|
|
to->di_flags = cpu_to_be16(from->di_flags);
|
779 |
|
|
to->di_gen = cpu_to_be32(from->di_gen);
|
780 |
|
|
}
|
781 |
|
|
|
782 |
|
|
STATIC uint
|
783 |
|
|
_xfs_dic2xflags(
|
784 |
|
|
__uint16_t di_flags)
|
785 |
|
|
{
|
786 |
|
|
uint flags = 0;
|
787 |
|
|
|
788 |
|
|
if (di_flags & XFS_DIFLAG_ANY) {
|
789 |
|
|
if (di_flags & XFS_DIFLAG_REALTIME)
|
790 |
|
|
flags |= XFS_XFLAG_REALTIME;
|
791 |
|
|
if (di_flags & XFS_DIFLAG_PREALLOC)
|
792 |
|
|
flags |= XFS_XFLAG_PREALLOC;
|
793 |
|
|
if (di_flags & XFS_DIFLAG_IMMUTABLE)
|
794 |
|
|
flags |= XFS_XFLAG_IMMUTABLE;
|
795 |
|
|
if (di_flags & XFS_DIFLAG_APPEND)
|
796 |
|
|
flags |= XFS_XFLAG_APPEND;
|
797 |
|
|
if (di_flags & XFS_DIFLAG_SYNC)
|
798 |
|
|
flags |= XFS_XFLAG_SYNC;
|
799 |
|
|
if (di_flags & XFS_DIFLAG_NOATIME)
|
800 |
|
|
flags |= XFS_XFLAG_NOATIME;
|
801 |
|
|
if (di_flags & XFS_DIFLAG_NODUMP)
|
802 |
|
|
flags |= XFS_XFLAG_NODUMP;
|
803 |
|
|
if (di_flags & XFS_DIFLAG_RTINHERIT)
|
804 |
|
|
flags |= XFS_XFLAG_RTINHERIT;
|
805 |
|
|
if (di_flags & XFS_DIFLAG_PROJINHERIT)
|
806 |
|
|
flags |= XFS_XFLAG_PROJINHERIT;
|
807 |
|
|
if (di_flags & XFS_DIFLAG_NOSYMLINKS)
|
808 |
|
|
flags |= XFS_XFLAG_NOSYMLINKS;
|
809 |
|
|
if (di_flags & XFS_DIFLAG_EXTSIZE)
|
810 |
|
|
flags |= XFS_XFLAG_EXTSIZE;
|
811 |
|
|
if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
|
812 |
|
|
flags |= XFS_XFLAG_EXTSZINHERIT;
|
813 |
|
|
if (di_flags & XFS_DIFLAG_NODEFRAG)
|
814 |
|
|
flags |= XFS_XFLAG_NODEFRAG;
|
815 |
|
|
if (di_flags & XFS_DIFLAG_FILESTREAM)
|
816 |
|
|
flags |= XFS_XFLAG_FILESTREAM;
|
817 |
|
|
}
|
818 |
|
|
|
819 |
|
|
return flags;
|
820 |
|
|
}
|
821 |
|
|
|
822 |
|
|
uint
|
823 |
|
|
xfs_ip2xflags(
|
824 |
|
|
xfs_inode_t *ip)
|
825 |
|
|
{
|
826 |
|
|
xfs_icdinode_t *dic = &ip->i_d;
|
827 |
|
|
|
828 |
|
|
return _xfs_dic2xflags(dic->di_flags) |
|
829 |
|
|
(XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
|
830 |
|
|
}
|
831 |
|
|
|
832 |
|
|
uint
|
833 |
|
|
xfs_dic2xflags(
|
834 |
|
|
xfs_dinode_core_t *dic)
|
835 |
|
|
{
|
836 |
|
|
return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
|
837 |
|
|
(XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
|
838 |
|
|
}
|
839 |
|
|
|
840 |
|
|
/*
|
841 |
|
|
* Given a mount structure and an inode number, return a pointer
|
842 |
|
|
* to a newly allocated in-core inode corresponding to the given
|
843 |
|
|
* inode number.
|
844 |
|
|
*
|
845 |
|
|
* Initialize the inode's attributes and extent pointers if it
|
846 |
|
|
* already has them (it will not if the inode has no links).
|
847 |
|
|
*/
|
848 |
|
|
int
|
849 |
|
|
xfs_iread(
|
850 |
|
|
xfs_mount_t *mp,
|
851 |
|
|
xfs_trans_t *tp,
|
852 |
|
|
xfs_ino_t ino,
|
853 |
|
|
xfs_inode_t **ipp,
|
854 |
|
|
xfs_daddr_t bno,
|
855 |
|
|
uint imap_flags)
|
856 |
|
|
{
|
857 |
|
|
xfs_buf_t *bp;
|
858 |
|
|
xfs_dinode_t *dip;
|
859 |
|
|
xfs_inode_t *ip;
|
860 |
|
|
int error;
|
861 |
|
|
|
862 |
|
|
ASSERT(xfs_inode_zone != NULL);
|
863 |
|
|
|
864 |
|
|
ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
|
865 |
|
|
ip->i_ino = ino;
|
866 |
|
|
ip->i_mount = mp;
|
867 |
|
|
atomic_set(&ip->i_iocount, 0);
|
868 |
|
|
spin_lock_init(&ip->i_flags_lock);
|
869 |
|
|
|
870 |
|
|
/*
|
871 |
|
|
* Get pointer's to the on-disk inode and the buffer containing it.
|
872 |
|
|
* If the inode number refers to a block outside the file system
|
873 |
|
|
* then xfs_itobp() will return NULL. In this case we should
|
874 |
|
|
* return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
|
875 |
|
|
* know that this is a new incore inode.
|
876 |
|
|
*/
|
877 |
|
|
error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
|
878 |
|
|
if (error) {
|
879 |
|
|
kmem_zone_free(xfs_inode_zone, ip);
|
880 |
|
|
return error;
|
881 |
|
|
}
|
882 |
|
|
|
883 |
|
|
/*
|
884 |
|
|
* Initialize inode's trace buffers.
|
885 |
|
|
* Do this before xfs_iformat in case it adds entries.
|
886 |
|
|
*/
|
887 |
|
|
#ifdef XFS_VNODE_TRACE
|
888 |
|
|
ip->i_trace = ktrace_alloc(VNODE_TRACE_SIZE, KM_SLEEP);
|
889 |
|
|
#endif
|
890 |
|
|
#ifdef XFS_BMAP_TRACE
|
891 |
|
|
ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
|
892 |
|
|
#endif
|
893 |
|
|
#ifdef XFS_BMBT_TRACE
|
894 |
|
|
ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
|
895 |
|
|
#endif
|
896 |
|
|
#ifdef XFS_RW_TRACE
|
897 |
|
|
ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
|
898 |
|
|
#endif
|
899 |
|
|
#ifdef XFS_ILOCK_TRACE
|
900 |
|
|
ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
|
901 |
|
|
#endif
|
902 |
|
|
#ifdef XFS_DIR2_TRACE
|
903 |
|
|
ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
|
904 |
|
|
#endif
|
905 |
|
|
|
906 |
|
|
/*
|
907 |
|
|
* If we got something that isn't an inode it means someone
|
908 |
|
|
* (nfs or dmi) has a stale handle.
|
909 |
|
|
*/
|
910 |
|
|
if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
|
911 |
|
|
kmem_zone_free(xfs_inode_zone, ip);
|
912 |
|
|
xfs_trans_brelse(tp, bp);
|
913 |
|
|
#ifdef DEBUG
|
914 |
|
|
xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
|
915 |
|
|
"dip->di_core.di_magic (0x%x) != "
|
916 |
|
|
"XFS_DINODE_MAGIC (0x%x)",
|
917 |
|
|
be16_to_cpu(dip->di_core.di_magic),
|
918 |
|
|
XFS_DINODE_MAGIC);
|
919 |
|
|
#endif /* DEBUG */
|
920 |
|
|
return XFS_ERROR(EINVAL);
|
921 |
|
|
}
|
922 |
|
|
|
923 |
|
|
/*
|
924 |
|
|
* If the on-disk inode is already linked to a directory
|
925 |
|
|
* entry, copy all of the inode into the in-core inode.
|
926 |
|
|
* xfs_iformat() handles copying in the inode format
|
927 |
|
|
* specific information.
|
928 |
|
|
* Otherwise, just get the truly permanent information.
|
929 |
|
|
*/
|
930 |
|
|
if (dip->di_core.di_mode) {
|
931 |
|
|
xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
|
932 |
|
|
error = xfs_iformat(ip, dip);
|
933 |
|
|
if (error) {
|
934 |
|
|
kmem_zone_free(xfs_inode_zone, ip);
|
935 |
|
|
xfs_trans_brelse(tp, bp);
|
936 |
|
|
#ifdef DEBUG
|
937 |
|
|
xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
|
938 |
|
|
"xfs_iformat() returned error %d",
|
939 |
|
|
error);
|
940 |
|
|
#endif /* DEBUG */
|
941 |
|
|
return error;
|
942 |
|
|
}
|
943 |
|
|
} else {
|
944 |
|
|
ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
|
945 |
|
|
ip->i_d.di_version = dip->di_core.di_version;
|
946 |
|
|
ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
|
947 |
|
|
ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
|
948 |
|
|
/*
|
949 |
|
|
* Make sure to pull in the mode here as well in
|
950 |
|
|
* case the inode is released without being used.
|
951 |
|
|
* This ensures that xfs_inactive() will see that
|
952 |
|
|
* the inode is already free and not try to mess
|
953 |
|
|
* with the uninitialized part of it.
|
954 |
|
|
*/
|
955 |
|
|
ip->i_d.di_mode = 0;
|
956 |
|
|
/*
|
957 |
|
|
* Initialize the per-fork minima and maxima for a new
|
958 |
|
|
* inode here. xfs_iformat will do it for old inodes.
|
959 |
|
|
*/
|
960 |
|
|
ip->i_df.if_ext_max =
|
961 |
|
|
XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
|
962 |
|
|
}
|
963 |
|
|
|
964 |
|
|
INIT_LIST_HEAD(&ip->i_reclaim);
|
965 |
|
|
|
966 |
|
|
/*
|
967 |
|
|
* The inode format changed when we moved the link count and
|
968 |
|
|
* made it 32 bits long. If this is an old format inode,
|
969 |
|
|
* convert it in memory to look like a new one. If it gets
|
970 |
|
|
* flushed to disk we will convert back before flushing or
|
971 |
|
|
* logging it. We zero out the new projid field and the old link
|
972 |
|
|
* count field. We'll handle clearing the pad field (the remains
|
973 |
|
|
* of the old uuid field) when we actually convert the inode to
|
974 |
|
|
* the new format. We don't change the version number so that we
|
975 |
|
|
* can distinguish this from a real new format inode.
|
976 |
|
|
*/
|
977 |
|
|
if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
|
978 |
|
|
ip->i_d.di_nlink = ip->i_d.di_onlink;
|
979 |
|
|
ip->i_d.di_onlink = 0;
|
980 |
|
|
ip->i_d.di_projid = 0;
|
981 |
|
|
}
|
982 |
|
|
|
983 |
|
|
ip->i_delayed_blks = 0;
|
984 |
|
|
ip->i_size = ip->i_d.di_size;
|
985 |
|
|
|
986 |
|
|
/*
|
987 |
|
|
* Mark the buffer containing the inode as something to keep
|
988 |
|
|
* around for a while. This helps to keep recently accessed
|
989 |
|
|
* meta-data in-core longer.
|
990 |
|
|
*/
|
991 |
|
|
XFS_BUF_SET_REF(bp, XFS_INO_REF);
|
992 |
|
|
|
993 |
|
|
/*
|
994 |
|
|
* Use xfs_trans_brelse() to release the buffer containing the
|
995 |
|
|
* on-disk inode, because it was acquired with xfs_trans_read_buf()
|
996 |
|
|
* in xfs_itobp() above. If tp is NULL, this is just a normal
|
997 |
|
|
* brelse(). If we're within a transaction, then xfs_trans_brelse()
|
998 |
|
|
* will only release the buffer if it is not dirty within the
|
999 |
|
|
* transaction. It will be OK to release the buffer in this case,
|
1000 |
|
|
* because inodes on disk are never destroyed and we will be
|
1001 |
|
|
* locking the new in-core inode before putting it in the hash
|
1002 |
|
|
* table where other processes can find it. Thus we don't have
|
1003 |
|
|
* to worry about the inode being changed just because we released
|
1004 |
|
|
* the buffer.
|
1005 |
|
|
*/
|
1006 |
|
|
xfs_trans_brelse(tp, bp);
|
1007 |
|
|
*ipp = ip;
|
1008 |
|
|
return 0;
|
1009 |
|
|
}
|
1010 |
|
|
|
1011 |
|
|
/*
|
1012 |
|
|
* Read in extents from a btree-format inode.
|
1013 |
|
|
* Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
|
1014 |
|
|
*/
|
1015 |
|
|
int
|
1016 |
|
|
xfs_iread_extents(
|
1017 |
|
|
xfs_trans_t *tp,
|
1018 |
|
|
xfs_inode_t *ip,
|
1019 |
|
|
int whichfork)
|
1020 |
|
|
{
|
1021 |
|
|
int error;
|
1022 |
|
|
xfs_ifork_t *ifp;
|
1023 |
|
|
xfs_extnum_t nextents;
|
1024 |
|
|
size_t size;
|
1025 |
|
|
|
1026 |
|
|
if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
|
1027 |
|
|
XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
|
1028 |
|
|
ip->i_mount);
|
1029 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
1030 |
|
|
}
|
1031 |
|
|
nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
|
1032 |
|
|
size = nextents * sizeof(xfs_bmbt_rec_t);
|
1033 |
|
|
ifp = XFS_IFORK_PTR(ip, whichfork);
|
1034 |
|
|
|
1035 |
|
|
/*
|
1036 |
|
|
* We know that the size is valid (it's checked in iformat_btree)
|
1037 |
|
|
*/
|
1038 |
|
|
ifp->if_lastex = NULLEXTNUM;
|
1039 |
|
|
ifp->if_bytes = ifp->if_real_bytes = 0;
|
1040 |
|
|
ifp->if_flags |= XFS_IFEXTENTS;
|
1041 |
|
|
xfs_iext_add(ifp, 0, nextents);
|
1042 |
|
|
error = xfs_bmap_read_extents(tp, ip, whichfork);
|
1043 |
|
|
if (error) {
|
1044 |
|
|
xfs_iext_destroy(ifp);
|
1045 |
|
|
ifp->if_flags &= ~XFS_IFEXTENTS;
|
1046 |
|
|
return error;
|
1047 |
|
|
}
|
1048 |
|
|
xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
|
1049 |
|
|
return 0;
|
1050 |
|
|
}
|
1051 |
|
|
|
1052 |
|
|
/*
|
1053 |
|
|
* Allocate an inode on disk and return a copy of its in-core version.
|
1054 |
|
|
* The in-core inode is locked exclusively. Set mode, nlink, and rdev
|
1055 |
|
|
* appropriately within the inode. The uid and gid for the inode are
|
1056 |
|
|
* set according to the contents of the given cred structure.
|
1057 |
|
|
*
|
1058 |
|
|
* Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
|
1059 |
|
|
* has a free inode available, call xfs_iget()
|
1060 |
|
|
* to obtain the in-core version of the allocated inode. Finally,
|
1061 |
|
|
* fill in the inode and log its initial contents. In this case,
|
1062 |
|
|
* ialloc_context would be set to NULL and call_again set to false.
|
1063 |
|
|
*
|
1064 |
|
|
* If xfs_dialloc() does not have an available inode,
|
1065 |
|
|
* it will replenish its supply by doing an allocation. Since we can
|
1066 |
|
|
* only do one allocation within a transaction without deadlocks, we
|
1067 |
|
|
* must commit the current transaction before returning the inode itself.
|
1068 |
|
|
* In this case, therefore, we will set call_again to true and return.
|
1069 |
|
|
* The caller should then commit the current transaction, start a new
|
1070 |
|
|
* transaction, and call xfs_ialloc() again to actually get the inode.
|
1071 |
|
|
*
|
1072 |
|
|
* To ensure that some other process does not grab the inode that
|
1073 |
|
|
* was allocated during the first call to xfs_ialloc(), this routine
|
1074 |
|
|
* also returns the [locked] bp pointing to the head of the freelist
|
1075 |
|
|
* as ialloc_context. The caller should hold this buffer across
|
1076 |
|
|
* the commit and pass it back into this routine on the second call.
|
1077 |
|
|
*
|
1078 |
|
|
* If we are allocating quota inodes, we do not have a parent inode
|
1079 |
|
|
* to attach to or associate with (i.e. pip == NULL) because they
|
1080 |
|
|
* are not linked into the directory structure - they are attached
|
1081 |
|
|
* directly to the superblock - and so have no parent.
|
1082 |
|
|
*/
|
1083 |
|
|
int
|
1084 |
|
|
xfs_ialloc(
|
1085 |
|
|
xfs_trans_t *tp,
|
1086 |
|
|
xfs_inode_t *pip,
|
1087 |
|
|
mode_t mode,
|
1088 |
|
|
xfs_nlink_t nlink,
|
1089 |
|
|
xfs_dev_t rdev,
|
1090 |
|
|
cred_t *cr,
|
1091 |
|
|
xfs_prid_t prid,
|
1092 |
|
|
int okalloc,
|
1093 |
|
|
xfs_buf_t **ialloc_context,
|
1094 |
|
|
boolean_t *call_again,
|
1095 |
|
|
xfs_inode_t **ipp)
|
1096 |
|
|
{
|
1097 |
|
|
xfs_ino_t ino;
|
1098 |
|
|
xfs_inode_t *ip;
|
1099 |
|
|
bhv_vnode_t *vp;
|
1100 |
|
|
uint flags;
|
1101 |
|
|
int error;
|
1102 |
|
|
|
1103 |
|
|
/*
|
1104 |
|
|
* Call the space management code to pick
|
1105 |
|
|
* the on-disk inode to be allocated.
|
1106 |
|
|
*/
|
1107 |
|
|
error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
|
1108 |
|
|
ialloc_context, call_again, &ino);
|
1109 |
|
|
if (error != 0) {
|
1110 |
|
|
return error;
|
1111 |
|
|
}
|
1112 |
|
|
if (*call_again || ino == NULLFSINO) {
|
1113 |
|
|
*ipp = NULL;
|
1114 |
|
|
return 0;
|
1115 |
|
|
}
|
1116 |
|
|
ASSERT(*ialloc_context == NULL);
|
1117 |
|
|
|
1118 |
|
|
/*
|
1119 |
|
|
* Get the in-core inode with the lock held exclusively.
|
1120 |
|
|
* This is because we're setting fields here we need
|
1121 |
|
|
* to prevent others from looking at until we're done.
|
1122 |
|
|
*/
|
1123 |
|
|
error = xfs_trans_iget(tp->t_mountp, tp, ino,
|
1124 |
|
|
XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
|
1125 |
|
|
if (error != 0) {
|
1126 |
|
|
return error;
|
1127 |
|
|
}
|
1128 |
|
|
ASSERT(ip != NULL);
|
1129 |
|
|
|
1130 |
|
|
vp = XFS_ITOV(ip);
|
1131 |
|
|
ip->i_d.di_mode = (__uint16_t)mode;
|
1132 |
|
|
ip->i_d.di_onlink = 0;
|
1133 |
|
|
ip->i_d.di_nlink = nlink;
|
1134 |
|
|
ASSERT(ip->i_d.di_nlink == nlink);
|
1135 |
|
|
ip->i_d.di_uid = current_fsuid(cr);
|
1136 |
|
|
ip->i_d.di_gid = current_fsgid(cr);
|
1137 |
|
|
ip->i_d.di_projid = prid;
|
1138 |
|
|
memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
|
1139 |
|
|
|
1140 |
|
|
/*
|
1141 |
|
|
* If the superblock version is up to where we support new format
|
1142 |
|
|
* inodes and this is currently an old format inode, then change
|
1143 |
|
|
* the inode version number now. This way we only do the conversion
|
1144 |
|
|
* here rather than here and in the flush/logging code.
|
1145 |
|
|
*/
|
1146 |
|
|
if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
|
1147 |
|
|
ip->i_d.di_version == XFS_DINODE_VERSION_1) {
|
1148 |
|
|
ip->i_d.di_version = XFS_DINODE_VERSION_2;
|
1149 |
|
|
/*
|
1150 |
|
|
* We've already zeroed the old link count, the projid field,
|
1151 |
|
|
* and the pad field.
|
1152 |
|
|
*/
|
1153 |
|
|
}
|
1154 |
|
|
|
1155 |
|
|
/*
|
1156 |
|
|
* Project ids won't be stored on disk if we are using a version 1 inode.
|
1157 |
|
|
*/
|
1158 |
|
|
if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
|
1159 |
|
|
xfs_bump_ino_vers2(tp, ip);
|
1160 |
|
|
|
1161 |
|
|
if (pip && XFS_INHERIT_GID(pip)) {
|
1162 |
|
|
ip->i_d.di_gid = pip->i_d.di_gid;
|
1163 |
|
|
if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
|
1164 |
|
|
ip->i_d.di_mode |= S_ISGID;
|
1165 |
|
|
}
|
1166 |
|
|
}
|
1167 |
|
|
|
1168 |
|
|
/*
|
1169 |
|
|
* If the group ID of the new file does not match the effective group
|
1170 |
|
|
* ID or one of the supplementary group IDs, the S_ISGID bit is cleared
|
1171 |
|
|
* (and only if the irix_sgid_inherit compatibility variable is set).
|
1172 |
|
|
*/
|
1173 |
|
|
if ((irix_sgid_inherit) &&
|
1174 |
|
|
(ip->i_d.di_mode & S_ISGID) &&
|
1175 |
|
|
(!in_group_p((gid_t)ip->i_d.di_gid))) {
|
1176 |
|
|
ip->i_d.di_mode &= ~S_ISGID;
|
1177 |
|
|
}
|
1178 |
|
|
|
1179 |
|
|
ip->i_d.di_size = 0;
|
1180 |
|
|
ip->i_size = 0;
|
1181 |
|
|
ip->i_d.di_nextents = 0;
|
1182 |
|
|
ASSERT(ip->i_d.di_nblocks == 0);
|
1183 |
|
|
xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
|
1184 |
|
|
/*
|
1185 |
|
|
* di_gen will have been taken care of in xfs_iread.
|
1186 |
|
|
*/
|
1187 |
|
|
ip->i_d.di_extsize = 0;
|
1188 |
|
|
ip->i_d.di_dmevmask = 0;
|
1189 |
|
|
ip->i_d.di_dmstate = 0;
|
1190 |
|
|
ip->i_d.di_flags = 0;
|
1191 |
|
|
flags = XFS_ILOG_CORE;
|
1192 |
|
|
switch (mode & S_IFMT) {
|
1193 |
|
|
case S_IFIFO:
|
1194 |
|
|
case S_IFCHR:
|
1195 |
|
|
case S_IFBLK:
|
1196 |
|
|
case S_IFSOCK:
|
1197 |
|
|
ip->i_d.di_format = XFS_DINODE_FMT_DEV;
|
1198 |
|
|
ip->i_df.if_u2.if_rdev = rdev;
|
1199 |
|
|
ip->i_df.if_flags = 0;
|
1200 |
|
|
flags |= XFS_ILOG_DEV;
|
1201 |
|
|
break;
|
1202 |
|
|
case S_IFREG:
|
1203 |
|
|
if (pip && xfs_inode_is_filestream(pip)) {
|
1204 |
|
|
error = xfs_filestream_associate(pip, ip);
|
1205 |
|
|
if (error < 0)
|
1206 |
|
|
return -error;
|
1207 |
|
|
if (!error)
|
1208 |
|
|
xfs_iflags_set(ip, XFS_IFILESTREAM);
|
1209 |
|
|
}
|
1210 |
|
|
/* fall through */
|
1211 |
|
|
case S_IFDIR:
|
1212 |
|
|
if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
|
1213 |
|
|
uint di_flags = 0;
|
1214 |
|
|
|
1215 |
|
|
if ((mode & S_IFMT) == S_IFDIR) {
|
1216 |
|
|
if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
|
1217 |
|
|
di_flags |= XFS_DIFLAG_RTINHERIT;
|
1218 |
|
|
if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
|
1219 |
|
|
di_flags |= XFS_DIFLAG_EXTSZINHERIT;
|
1220 |
|
|
ip->i_d.di_extsize = pip->i_d.di_extsize;
|
1221 |
|
|
}
|
1222 |
|
|
} else if ((mode & S_IFMT) == S_IFREG) {
|
1223 |
|
|
if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
|
1224 |
|
|
di_flags |= XFS_DIFLAG_REALTIME;
|
1225 |
|
|
ip->i_iocore.io_flags |= XFS_IOCORE_RT;
|
1226 |
|
|
}
|
1227 |
|
|
if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
|
1228 |
|
|
di_flags |= XFS_DIFLAG_EXTSIZE;
|
1229 |
|
|
ip->i_d.di_extsize = pip->i_d.di_extsize;
|
1230 |
|
|
}
|
1231 |
|
|
}
|
1232 |
|
|
if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
|
1233 |
|
|
xfs_inherit_noatime)
|
1234 |
|
|
di_flags |= XFS_DIFLAG_NOATIME;
|
1235 |
|
|
if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
|
1236 |
|
|
xfs_inherit_nodump)
|
1237 |
|
|
di_flags |= XFS_DIFLAG_NODUMP;
|
1238 |
|
|
if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
|
1239 |
|
|
xfs_inherit_sync)
|
1240 |
|
|
di_flags |= XFS_DIFLAG_SYNC;
|
1241 |
|
|
if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
|
1242 |
|
|
xfs_inherit_nosymlinks)
|
1243 |
|
|
di_flags |= XFS_DIFLAG_NOSYMLINKS;
|
1244 |
|
|
if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
|
1245 |
|
|
di_flags |= XFS_DIFLAG_PROJINHERIT;
|
1246 |
|
|
if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
|
1247 |
|
|
xfs_inherit_nodefrag)
|
1248 |
|
|
di_flags |= XFS_DIFLAG_NODEFRAG;
|
1249 |
|
|
if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
|
1250 |
|
|
di_flags |= XFS_DIFLAG_FILESTREAM;
|
1251 |
|
|
ip->i_d.di_flags |= di_flags;
|
1252 |
|
|
}
|
1253 |
|
|
/* FALLTHROUGH */
|
1254 |
|
|
case S_IFLNK:
|
1255 |
|
|
ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
|
1256 |
|
|
ip->i_df.if_flags = XFS_IFEXTENTS;
|
1257 |
|
|
ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
|
1258 |
|
|
ip->i_df.if_u1.if_extents = NULL;
|
1259 |
|
|
break;
|
1260 |
|
|
default:
|
1261 |
|
|
ASSERT(0);
|
1262 |
|
|
}
|
1263 |
|
|
/*
|
1264 |
|
|
* Attribute fork settings for new inode.
|
1265 |
|
|
*/
|
1266 |
|
|
ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
|
1267 |
|
|
ip->i_d.di_anextents = 0;
|
1268 |
|
|
|
1269 |
|
|
/*
|
1270 |
|
|
* Log the new values stuffed into the inode.
|
1271 |
|
|
*/
|
1272 |
|
|
xfs_trans_log_inode(tp, ip, flags);
|
1273 |
|
|
|
1274 |
|
|
/* now that we have an i_mode we can setup inode ops and unlock */
|
1275 |
|
|
xfs_initialize_vnode(tp->t_mountp, vp, ip);
|
1276 |
|
|
|
1277 |
|
|
*ipp = ip;
|
1278 |
|
|
return 0;
|
1279 |
|
|
}
|
1280 |
|
|
|
1281 |
|
|
/*
|
1282 |
|
|
* Check to make sure that there are no blocks allocated to the
|
1283 |
|
|
* file beyond the size of the file. We don't check this for
|
1284 |
|
|
* files with fixed size extents or real time extents, but we
|
1285 |
|
|
* at least do it for regular files.
|
1286 |
|
|
*/
|
1287 |
|
|
#ifdef DEBUG
|
1288 |
|
|
void
|
1289 |
|
|
xfs_isize_check(
|
1290 |
|
|
xfs_mount_t *mp,
|
1291 |
|
|
xfs_inode_t *ip,
|
1292 |
|
|
xfs_fsize_t isize)
|
1293 |
|
|
{
|
1294 |
|
|
xfs_fileoff_t map_first;
|
1295 |
|
|
int nimaps;
|
1296 |
|
|
xfs_bmbt_irec_t imaps[2];
|
1297 |
|
|
|
1298 |
|
|
if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
|
1299 |
|
|
return;
|
1300 |
|
|
|
1301 |
|
|
if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
|
1302 |
|
|
return;
|
1303 |
|
|
|
1304 |
|
|
nimaps = 2;
|
1305 |
|
|
map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
|
1306 |
|
|
/*
|
1307 |
|
|
* The filesystem could be shutting down, so bmapi may return
|
1308 |
|
|
* an error.
|
1309 |
|
|
*/
|
1310 |
|
|
if (xfs_bmapi(NULL, ip, map_first,
|
1311 |
|
|
(XFS_B_TO_FSB(mp,
|
1312 |
|
|
(xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
|
1313 |
|
|
map_first),
|
1314 |
|
|
XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
|
1315 |
|
|
NULL, NULL))
|
1316 |
|
|
return;
|
1317 |
|
|
ASSERT(nimaps == 1);
|
1318 |
|
|
ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
|
1319 |
|
|
}
|
1320 |
|
|
#endif /* DEBUG */
|
1321 |
|
|
|
1322 |
|
|
/*
|
1323 |
|
|
* Calculate the last possible buffered byte in a file. This must
|
1324 |
|
|
* include data that was buffered beyond the EOF by the write code.
|
1325 |
|
|
* This also needs to deal with overflowing the xfs_fsize_t type
|
1326 |
|
|
* which can happen for sizes near the limit.
|
1327 |
|
|
*
|
1328 |
|
|
* We also need to take into account any blocks beyond the EOF. It
|
1329 |
|
|
* may be the case that they were buffered by a write which failed.
|
1330 |
|
|
* In that case the pages will still be in memory, but the inode size
|
1331 |
|
|
* will never have been updated.
|
1332 |
|
|
*/
|
1333 |
|
|
xfs_fsize_t
|
1334 |
|
|
xfs_file_last_byte(
|
1335 |
|
|
xfs_inode_t *ip)
|
1336 |
|
|
{
|
1337 |
|
|
xfs_mount_t *mp;
|
1338 |
|
|
xfs_fsize_t last_byte;
|
1339 |
|
|
xfs_fileoff_t last_block;
|
1340 |
|
|
xfs_fileoff_t size_last_block;
|
1341 |
|
|
int error;
|
1342 |
|
|
|
1343 |
|
|
ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
|
1344 |
|
|
|
1345 |
|
|
mp = ip->i_mount;
|
1346 |
|
|
/*
|
1347 |
|
|
* Only check for blocks beyond the EOF if the extents have
|
1348 |
|
|
* been read in. This eliminates the need for the inode lock,
|
1349 |
|
|
* and it also saves us from looking when it really isn't
|
1350 |
|
|
* necessary.
|
1351 |
|
|
*/
|
1352 |
|
|
if (ip->i_df.if_flags & XFS_IFEXTENTS) {
|
1353 |
|
|
error = xfs_bmap_last_offset(NULL, ip, &last_block,
|
1354 |
|
|
XFS_DATA_FORK);
|
1355 |
|
|
if (error) {
|
1356 |
|
|
last_block = 0;
|
1357 |
|
|
}
|
1358 |
|
|
} else {
|
1359 |
|
|
last_block = 0;
|
1360 |
|
|
}
|
1361 |
|
|
size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
|
1362 |
|
|
last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
|
1363 |
|
|
|
1364 |
|
|
last_byte = XFS_FSB_TO_B(mp, last_block);
|
1365 |
|
|
if (last_byte < 0) {
|
1366 |
|
|
return XFS_MAXIOFFSET(mp);
|
1367 |
|
|
}
|
1368 |
|
|
last_byte += (1 << mp->m_writeio_log);
|
1369 |
|
|
if (last_byte < 0) {
|
1370 |
|
|
return XFS_MAXIOFFSET(mp);
|
1371 |
|
|
}
|
1372 |
|
|
return last_byte;
|
1373 |
|
|
}
|
1374 |
|
|
|
1375 |
|
|
#if defined(XFS_RW_TRACE)
|
1376 |
|
|
STATIC void
|
1377 |
|
|
xfs_itrunc_trace(
|
1378 |
|
|
int tag,
|
1379 |
|
|
xfs_inode_t *ip,
|
1380 |
|
|
int flag,
|
1381 |
|
|
xfs_fsize_t new_size,
|
1382 |
|
|
xfs_off_t toss_start,
|
1383 |
|
|
xfs_off_t toss_finish)
|
1384 |
|
|
{
|
1385 |
|
|
if (ip->i_rwtrace == NULL) {
|
1386 |
|
|
return;
|
1387 |
|
|
}
|
1388 |
|
|
|
1389 |
|
|
ktrace_enter(ip->i_rwtrace,
|
1390 |
|
|
(void*)((long)tag),
|
1391 |
|
|
(void*)ip,
|
1392 |
|
|
(void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
|
1393 |
|
|
(void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
|
1394 |
|
|
(void*)((long)flag),
|
1395 |
|
|
(void*)(unsigned long)((new_size >> 32) & 0xffffffff),
|
1396 |
|
|
(void*)(unsigned long)(new_size & 0xffffffff),
|
1397 |
|
|
(void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
|
1398 |
|
|
(void*)(unsigned long)(toss_start & 0xffffffff),
|
1399 |
|
|
(void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
|
1400 |
|
|
(void*)(unsigned long)(toss_finish & 0xffffffff),
|
1401 |
|
|
(void*)(unsigned long)current_cpu(),
|
1402 |
|
|
(void*)(unsigned long)current_pid(),
|
1403 |
|
|
(void*)NULL,
|
1404 |
|
|
(void*)NULL,
|
1405 |
|
|
(void*)NULL);
|
1406 |
|
|
}
|
1407 |
|
|
#else
|
1408 |
|
|
#define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
|
1409 |
|
|
#endif
|
1410 |
|
|
|
1411 |
|
|
/*
|
1412 |
|
|
* Start the truncation of the file to new_size. The new size
|
1413 |
|
|
* must be smaller than the current size. This routine will
|
1414 |
|
|
* clear the buffer and page caches of file data in the removed
|
1415 |
|
|
* range, and xfs_itruncate_finish() will remove the underlying
|
1416 |
|
|
* disk blocks.
|
1417 |
|
|
*
|
1418 |
|
|
* The inode must have its I/O lock locked EXCLUSIVELY, and it
|
1419 |
|
|
* must NOT have the inode lock held at all. This is because we're
|
1420 |
|
|
* calling into the buffer/page cache code and we can't hold the
|
1421 |
|
|
* inode lock when we do so.
|
1422 |
|
|
*
|
1423 |
|
|
* We need to wait for any direct I/Os in flight to complete before we
|
1424 |
|
|
* proceed with the truncate. This is needed to prevent the extents
|
1425 |
|
|
* being read or written by the direct I/Os from being removed while the
|
1426 |
|
|
* I/O is in flight as there is no other method of synchronising
|
1427 |
|
|
* direct I/O with the truncate operation. Also, because we hold
|
1428 |
|
|
* the IOLOCK in exclusive mode, we prevent new direct I/Os from being
|
1429 |
|
|
* started until the truncate completes and drops the lock. Essentially,
|
1430 |
|
|
* the vn_iowait() call forms an I/O barrier that provides strict ordering
|
1431 |
|
|
* between direct I/Os and the truncate operation.
|
1432 |
|
|
*
|
1433 |
|
|
* The flags parameter can have either the value XFS_ITRUNC_DEFINITE
|
1434 |
|
|
* or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
|
1435 |
|
|
* in the case that the caller is locking things out of order and
|
1436 |
|
|
* may not be able to call xfs_itruncate_finish() with the inode lock
|
1437 |
|
|
* held without dropping the I/O lock. If the caller must drop the
|
1438 |
|
|
* I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
|
1439 |
|
|
* must be called again with all the same restrictions as the initial
|
1440 |
|
|
* call.
|
1441 |
|
|
*/
|
1442 |
|
|
int
|
1443 |
|
|
xfs_itruncate_start(
|
1444 |
|
|
xfs_inode_t *ip,
|
1445 |
|
|
uint flags,
|
1446 |
|
|
xfs_fsize_t new_size)
|
1447 |
|
|
{
|
1448 |
|
|
xfs_fsize_t last_byte;
|
1449 |
|
|
xfs_off_t toss_start;
|
1450 |
|
|
xfs_mount_t *mp;
|
1451 |
|
|
bhv_vnode_t *vp;
|
1452 |
|
|
int error = 0;
|
1453 |
|
|
|
1454 |
|
|
ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
|
1455 |
|
|
ASSERT((new_size == 0) || (new_size <= ip->i_size));
|
1456 |
|
|
ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
|
1457 |
|
|
(flags == XFS_ITRUNC_MAYBE));
|
1458 |
|
|
|
1459 |
|
|
mp = ip->i_mount;
|
1460 |
|
|
vp = XFS_ITOV(ip);
|
1461 |
|
|
|
1462 |
|
|
/* wait for the completion of any pending DIOs */
|
1463 |
|
|
if (new_size < ip->i_size)
|
1464 |
|
|
vn_iowait(ip);
|
1465 |
|
|
|
1466 |
|
|
/*
|
1467 |
|
|
* Call toss_pages or flushinval_pages to get rid of pages
|
1468 |
|
|
* overlapping the region being removed. We have to use
|
1469 |
|
|
* the less efficient flushinval_pages in the case that the
|
1470 |
|
|
* caller may not be able to finish the truncate without
|
1471 |
|
|
* dropping the inode's I/O lock. Make sure
|
1472 |
|
|
* to catch any pages brought in by buffers overlapping
|
1473 |
|
|
* the EOF by searching out beyond the isize by our
|
1474 |
|
|
* block size. We round new_size up to a block boundary
|
1475 |
|
|
* so that we don't toss things on the same block as
|
1476 |
|
|
* new_size but before it.
|
1477 |
|
|
*
|
1478 |
|
|
* Before calling toss_page or flushinval_pages, make sure to
|
1479 |
|
|
* call remapf() over the same region if the file is mapped.
|
1480 |
|
|
* This frees up mapped file references to the pages in the
|
1481 |
|
|
* given range and for the flushinval_pages case it ensures
|
1482 |
|
|
* that we get the latest mapped changes flushed out.
|
1483 |
|
|
*/
|
1484 |
|
|
toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
|
1485 |
|
|
toss_start = XFS_FSB_TO_B(mp, toss_start);
|
1486 |
|
|
if (toss_start < 0) {
|
1487 |
|
|
/*
|
1488 |
|
|
* The place to start tossing is beyond our maximum
|
1489 |
|
|
* file size, so there is no way that the data extended
|
1490 |
|
|
* out there.
|
1491 |
|
|
*/
|
1492 |
|
|
return 0;
|
1493 |
|
|
}
|
1494 |
|
|
last_byte = xfs_file_last_byte(ip);
|
1495 |
|
|
xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
|
1496 |
|
|
last_byte);
|
1497 |
|
|
if (last_byte > toss_start) {
|
1498 |
|
|
if (flags & XFS_ITRUNC_DEFINITE) {
|
1499 |
|
|
xfs_tosspages(ip, toss_start,
|
1500 |
|
|
-1, FI_REMAPF_LOCKED);
|
1501 |
|
|
} else {
|
1502 |
|
|
error = xfs_flushinval_pages(ip, toss_start,
|
1503 |
|
|
-1, FI_REMAPF_LOCKED);
|
1504 |
|
|
}
|
1505 |
|
|
}
|
1506 |
|
|
|
1507 |
|
|
#ifdef DEBUG
|
1508 |
|
|
if (new_size == 0) {
|
1509 |
|
|
ASSERT(VN_CACHED(vp) == 0);
|
1510 |
|
|
}
|
1511 |
|
|
#endif
|
1512 |
|
|
return error;
|
1513 |
|
|
}
|
1514 |
|
|
|
1515 |
|
|
/*
|
1516 |
|
|
* Shrink the file to the given new_size. The new
|
1517 |
|
|
* size must be smaller than the current size.
|
1518 |
|
|
* This will free up the underlying blocks
|
1519 |
|
|
* in the removed range after a call to xfs_itruncate_start()
|
1520 |
|
|
* or xfs_atruncate_start().
|
1521 |
|
|
*
|
1522 |
|
|
* The transaction passed to this routine must have made
|
1523 |
|
|
* a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
|
1524 |
|
|
* This routine may commit the given transaction and
|
1525 |
|
|
* start new ones, so make sure everything involved in
|
1526 |
|
|
* the transaction is tidy before calling here.
|
1527 |
|
|
* Some transaction will be returned to the caller to be
|
1528 |
|
|
* committed. The incoming transaction must already include
|
1529 |
|
|
* the inode, and both inode locks must be held exclusively.
|
1530 |
|
|
* The inode must also be "held" within the transaction. On
|
1531 |
|
|
* return the inode will be "held" within the returned transaction.
|
1532 |
|
|
* This routine does NOT require any disk space to be reserved
|
1533 |
|
|
* for it within the transaction.
|
1534 |
|
|
*
|
1535 |
|
|
* The fork parameter must be either xfs_attr_fork or xfs_data_fork,
|
1536 |
|
|
* and it indicates the fork which is to be truncated. For the
|
1537 |
|
|
* attribute fork we only support truncation to size 0.
|
1538 |
|
|
*
|
1539 |
|
|
* We use the sync parameter to indicate whether or not the first
|
1540 |
|
|
* transaction we perform might have to be synchronous. For the attr fork,
|
1541 |
|
|
* it needs to be so if the unlink of the inode is not yet known to be
|
1542 |
|
|
* permanent in the log. This keeps us from freeing and reusing the
|
1543 |
|
|
* blocks of the attribute fork before the unlink of the inode becomes
|
1544 |
|
|
* permanent.
|
1545 |
|
|
*
|
1546 |
|
|
* For the data fork, we normally have to run synchronously if we're
|
1547 |
|
|
* being called out of the inactive path or we're being called
|
1548 |
|
|
* out of the create path where we're truncating an existing file.
|
1549 |
|
|
* Either way, the truncate needs to be sync so blocks don't reappear
|
1550 |
|
|
* in the file with altered data in case of a crash. wsync filesystems
|
1551 |
|
|
* can run the first case async because anything that shrinks the inode
|
1552 |
|
|
* has to run sync so by the time we're called here from inactive, the
|
1553 |
|
|
* inode size is permanently set to 0.
|
1554 |
|
|
*
|
1555 |
|
|
* Calls from the truncate path always need to be sync unless we're
|
1556 |
|
|
* in a wsync filesystem and the file has already been unlinked.
|
1557 |
|
|
*
|
1558 |
|
|
* The caller is responsible for correctly setting the sync parameter.
|
1559 |
|
|
* It gets too hard for us to guess here which path we're being called
|
1560 |
|
|
* out of just based on inode state.
|
1561 |
|
|
*/
|
1562 |
|
|
int
|
1563 |
|
|
xfs_itruncate_finish(
|
1564 |
|
|
xfs_trans_t **tp,
|
1565 |
|
|
xfs_inode_t *ip,
|
1566 |
|
|
xfs_fsize_t new_size,
|
1567 |
|
|
int fork,
|
1568 |
|
|
int sync)
|
1569 |
|
|
{
|
1570 |
|
|
xfs_fsblock_t first_block;
|
1571 |
|
|
xfs_fileoff_t first_unmap_block;
|
1572 |
|
|
xfs_fileoff_t last_block;
|
1573 |
|
|
xfs_filblks_t unmap_len=0;
|
1574 |
|
|
xfs_mount_t *mp;
|
1575 |
|
|
xfs_trans_t *ntp;
|
1576 |
|
|
int done;
|
1577 |
|
|
int committed;
|
1578 |
|
|
xfs_bmap_free_t free_list;
|
1579 |
|
|
int error;
|
1580 |
|
|
|
1581 |
|
|
ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
|
1582 |
|
|
ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
|
1583 |
|
|
ASSERT((new_size == 0) || (new_size <= ip->i_size));
|
1584 |
|
|
ASSERT(*tp != NULL);
|
1585 |
|
|
ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
|
1586 |
|
|
ASSERT(ip->i_transp == *tp);
|
1587 |
|
|
ASSERT(ip->i_itemp != NULL);
|
1588 |
|
|
ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
|
1589 |
|
|
|
1590 |
|
|
|
1591 |
|
|
ntp = *tp;
|
1592 |
|
|
mp = (ntp)->t_mountp;
|
1593 |
|
|
ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
|
1594 |
|
|
|
1595 |
|
|
/*
|
1596 |
|
|
* We only support truncating the entire attribute fork.
|
1597 |
|
|
*/
|
1598 |
|
|
if (fork == XFS_ATTR_FORK) {
|
1599 |
|
|
new_size = 0LL;
|
1600 |
|
|
}
|
1601 |
|
|
first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
|
1602 |
|
|
xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
|
1603 |
|
|
/*
|
1604 |
|
|
* The first thing we do is set the size to new_size permanently
|
1605 |
|
|
* on disk. This way we don't have to worry about anyone ever
|
1606 |
|
|
* being able to look at the data being freed even in the face
|
1607 |
|
|
* of a crash. What we're getting around here is the case where
|
1608 |
|
|
* we free a block, it is allocated to another file, it is written
|
1609 |
|
|
* to, and then we crash. If the new data gets written to the
|
1610 |
|
|
* file but the log buffers containing the free and reallocation
|
1611 |
|
|
* don't, then we'd end up with garbage in the blocks being freed.
|
1612 |
|
|
* As long as we make the new_size permanent before actually
|
1613 |
|
|
* freeing any blocks it doesn't matter if they get writtten to.
|
1614 |
|
|
*
|
1615 |
|
|
* The callers must signal into us whether or not the size
|
1616 |
|
|
* setting here must be synchronous. There are a few cases
|
1617 |
|
|
* where it doesn't have to be synchronous. Those cases
|
1618 |
|
|
* occur if the file is unlinked and we know the unlink is
|
1619 |
|
|
* permanent or if the blocks being truncated are guaranteed
|
1620 |
|
|
* to be beyond the inode eof (regardless of the link count)
|
1621 |
|
|
* and the eof value is permanent. Both of these cases occur
|
1622 |
|
|
* only on wsync-mounted filesystems. In those cases, we're
|
1623 |
|
|
* guaranteed that no user will ever see the data in the blocks
|
1624 |
|
|
* that are being truncated so the truncate can run async.
|
1625 |
|
|
* In the free beyond eof case, the file may wind up with
|
1626 |
|
|
* more blocks allocated to it than it needs if we crash
|
1627 |
|
|
* and that won't get fixed until the next time the file
|
1628 |
|
|
* is re-opened and closed but that's ok as that shouldn't
|
1629 |
|
|
* be too many blocks.
|
1630 |
|
|
*
|
1631 |
|
|
* However, we can't just make all wsync xactions run async
|
1632 |
|
|
* because there's one call out of the create path that needs
|
1633 |
|
|
* to run sync where it's truncating an existing file to size
|
1634 |
|
|
* 0 whose size is > 0.
|
1635 |
|
|
*
|
1636 |
|
|
* It's probably possible to come up with a test in this
|
1637 |
|
|
* routine that would correctly distinguish all the above
|
1638 |
|
|
* cases from the values of the function parameters and the
|
1639 |
|
|
* inode state but for sanity's sake, I've decided to let the
|
1640 |
|
|
* layers above just tell us. It's simpler to correctly figure
|
1641 |
|
|
* out in the layer above exactly under what conditions we
|
1642 |
|
|
* can run async and I think it's easier for others read and
|
1643 |
|
|
* follow the logic in case something has to be changed.
|
1644 |
|
|
* cscope is your friend -- rcc.
|
1645 |
|
|
*
|
1646 |
|
|
* The attribute fork is much simpler.
|
1647 |
|
|
*
|
1648 |
|
|
* For the attribute fork we allow the caller to tell us whether
|
1649 |
|
|
* the unlink of the inode that led to this call is yet permanent
|
1650 |
|
|
* in the on disk log. If it is not and we will be freeing extents
|
1651 |
|
|
* in this inode then we make the first transaction synchronous
|
1652 |
|
|
* to make sure that the unlink is permanent by the time we free
|
1653 |
|
|
* the blocks.
|
1654 |
|
|
*/
|
1655 |
|
|
if (fork == XFS_DATA_FORK) {
|
1656 |
|
|
if (ip->i_d.di_nextents > 0) {
|
1657 |
|
|
/*
|
1658 |
|
|
* If we are not changing the file size then do
|
1659 |
|
|
* not update the on-disk file size - we may be
|
1660 |
|
|
* called from xfs_inactive_free_eofblocks(). If we
|
1661 |
|
|
* update the on-disk file size and then the system
|
1662 |
|
|
* crashes before the contents of the file are
|
1663 |
|
|
* flushed to disk then the files may be full of
|
1664 |
|
|
* holes (ie NULL files bug).
|
1665 |
|
|
*/
|
1666 |
|
|
if (ip->i_size != new_size) {
|
1667 |
|
|
ip->i_d.di_size = new_size;
|
1668 |
|
|
ip->i_size = new_size;
|
1669 |
|
|
xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
|
1670 |
|
|
}
|
1671 |
|
|
}
|
1672 |
|
|
} else if (sync) {
|
1673 |
|
|
ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
|
1674 |
|
|
if (ip->i_d.di_anextents > 0)
|
1675 |
|
|
xfs_trans_set_sync(ntp);
|
1676 |
|
|
}
|
1677 |
|
|
ASSERT(fork == XFS_DATA_FORK ||
|
1678 |
|
|
(fork == XFS_ATTR_FORK &&
|
1679 |
|
|
((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
|
1680 |
|
|
(sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
|
1681 |
|
|
|
1682 |
|
|
/*
|
1683 |
|
|
* Since it is possible for space to become allocated beyond
|
1684 |
|
|
* the end of the file (in a crash where the space is allocated
|
1685 |
|
|
* but the inode size is not yet updated), simply remove any
|
1686 |
|
|
* blocks which show up between the new EOF and the maximum
|
1687 |
|
|
* possible file size. If the first block to be removed is
|
1688 |
|
|
* beyond the maximum file size (ie it is the same as last_block),
|
1689 |
|
|
* then there is nothing to do.
|
1690 |
|
|
*/
|
1691 |
|
|
last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
|
1692 |
|
|
ASSERT(first_unmap_block <= last_block);
|
1693 |
|
|
done = 0;
|
1694 |
|
|
if (last_block == first_unmap_block) {
|
1695 |
|
|
done = 1;
|
1696 |
|
|
} else {
|
1697 |
|
|
unmap_len = last_block - first_unmap_block + 1;
|
1698 |
|
|
}
|
1699 |
|
|
while (!done) {
|
1700 |
|
|
/*
|
1701 |
|
|
* Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
|
1702 |
|
|
* will tell us whether it freed the entire range or
|
1703 |
|
|
* not. If this is a synchronous mount (wsync),
|
1704 |
|
|
* then we can tell bunmapi to keep all the
|
1705 |
|
|
* transactions asynchronous since the unlink
|
1706 |
|
|
* transaction that made this inode inactive has
|
1707 |
|
|
* already hit the disk. There's no danger of
|
1708 |
|
|
* the freed blocks being reused, there being a
|
1709 |
|
|
* crash, and the reused blocks suddenly reappearing
|
1710 |
|
|
* in this file with garbage in them once recovery
|
1711 |
|
|
* runs.
|
1712 |
|
|
*/
|
1713 |
|
|
XFS_BMAP_INIT(&free_list, &first_block);
|
1714 |
|
|
error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
|
1715 |
|
|
first_unmap_block, unmap_len,
|
1716 |
|
|
XFS_BMAPI_AFLAG(fork) |
|
1717 |
|
|
(sync ? 0 : XFS_BMAPI_ASYNC),
|
1718 |
|
|
XFS_ITRUNC_MAX_EXTENTS,
|
1719 |
|
|
&first_block, &free_list,
|
1720 |
|
|
NULL, &done);
|
1721 |
|
|
if (error) {
|
1722 |
|
|
/*
|
1723 |
|
|
* If the bunmapi call encounters an error,
|
1724 |
|
|
* return to the caller where the transaction
|
1725 |
|
|
* can be properly aborted. We just need to
|
1726 |
|
|
* make sure we're not holding any resources
|
1727 |
|
|
* that we were not when we came in.
|
1728 |
|
|
*/
|
1729 |
|
|
xfs_bmap_cancel(&free_list);
|
1730 |
|
|
return error;
|
1731 |
|
|
}
|
1732 |
|
|
|
1733 |
|
|
/*
|
1734 |
|
|
* Duplicate the transaction that has the permanent
|
1735 |
|
|
* reservation and commit the old transaction.
|
1736 |
|
|
*/
|
1737 |
|
|
error = xfs_bmap_finish(tp, &free_list, &committed);
|
1738 |
|
|
ntp = *tp;
|
1739 |
|
|
if (error) {
|
1740 |
|
|
/*
|
1741 |
|
|
* If the bmap finish call encounters an error,
|
1742 |
|
|
* return to the caller where the transaction
|
1743 |
|
|
* can be properly aborted. We just need to
|
1744 |
|
|
* make sure we're not holding any resources
|
1745 |
|
|
* that we were not when we came in.
|
1746 |
|
|
*
|
1747 |
|
|
* Aborting from this point might lose some
|
1748 |
|
|
* blocks in the file system, but oh well.
|
1749 |
|
|
*/
|
1750 |
|
|
xfs_bmap_cancel(&free_list);
|
1751 |
|
|
if (committed) {
|
1752 |
|
|
/*
|
1753 |
|
|
* If the passed in transaction committed
|
1754 |
|
|
* in xfs_bmap_finish(), then we want to
|
1755 |
|
|
* add the inode to this one before returning.
|
1756 |
|
|
* This keeps things simple for the higher
|
1757 |
|
|
* level code, because it always knows that
|
1758 |
|
|
* the inode is locked and held in the
|
1759 |
|
|
* transaction that returns to it whether
|
1760 |
|
|
* errors occur or not. We don't mark the
|
1761 |
|
|
* inode dirty so that this transaction can
|
1762 |
|
|
* be easily aborted if possible.
|
1763 |
|
|
*/
|
1764 |
|
|
xfs_trans_ijoin(ntp, ip,
|
1765 |
|
|
XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
|
1766 |
|
|
xfs_trans_ihold(ntp, ip);
|
1767 |
|
|
}
|
1768 |
|
|
return error;
|
1769 |
|
|
}
|
1770 |
|
|
|
1771 |
|
|
if (committed) {
|
1772 |
|
|
/*
|
1773 |
|
|
* The first xact was committed,
|
1774 |
|
|
* so add the inode to the new one.
|
1775 |
|
|
* Mark it dirty so it will be logged
|
1776 |
|
|
* and moved forward in the log as
|
1777 |
|
|
* part of every commit.
|
1778 |
|
|
*/
|
1779 |
|
|
xfs_trans_ijoin(ntp, ip,
|
1780 |
|
|
XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
|
1781 |
|
|
xfs_trans_ihold(ntp, ip);
|
1782 |
|
|
xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
|
1783 |
|
|
}
|
1784 |
|
|
ntp = xfs_trans_dup(ntp);
|
1785 |
|
|
(void) xfs_trans_commit(*tp, 0);
|
1786 |
|
|
*tp = ntp;
|
1787 |
|
|
error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
|
1788 |
|
|
XFS_TRANS_PERM_LOG_RES,
|
1789 |
|
|
XFS_ITRUNCATE_LOG_COUNT);
|
1790 |
|
|
/*
|
1791 |
|
|
* Add the inode being truncated to the next chained
|
1792 |
|
|
* transaction.
|
1793 |
|
|
*/
|
1794 |
|
|
xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
|
1795 |
|
|
xfs_trans_ihold(ntp, ip);
|
1796 |
|
|
if (error)
|
1797 |
|
|
return (error);
|
1798 |
|
|
}
|
1799 |
|
|
/*
|
1800 |
|
|
* Only update the size in the case of the data fork, but
|
1801 |
|
|
* always re-log the inode so that our permanent transaction
|
1802 |
|
|
* can keep on rolling it forward in the log.
|
1803 |
|
|
*/
|
1804 |
|
|
if (fork == XFS_DATA_FORK) {
|
1805 |
|
|
xfs_isize_check(mp, ip, new_size);
|
1806 |
|
|
/*
|
1807 |
|
|
* If we are not changing the file size then do
|
1808 |
|
|
* not update the on-disk file size - we may be
|
1809 |
|
|
* called from xfs_inactive_free_eofblocks(). If we
|
1810 |
|
|
* update the on-disk file size and then the system
|
1811 |
|
|
* crashes before the contents of the file are
|
1812 |
|
|
* flushed to disk then the files may be full of
|
1813 |
|
|
* holes (ie NULL files bug).
|
1814 |
|
|
*/
|
1815 |
|
|
if (ip->i_size != new_size) {
|
1816 |
|
|
ip->i_d.di_size = new_size;
|
1817 |
|
|
ip->i_size = new_size;
|
1818 |
|
|
}
|
1819 |
|
|
}
|
1820 |
|
|
xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
|
1821 |
|
|
ASSERT((new_size != 0) ||
|
1822 |
|
|
(fork == XFS_ATTR_FORK) ||
|
1823 |
|
|
(ip->i_delayed_blks == 0));
|
1824 |
|
|
ASSERT((new_size != 0) ||
|
1825 |
|
|
(fork == XFS_ATTR_FORK) ||
|
1826 |
|
|
(ip->i_d.di_nextents == 0));
|
1827 |
|
|
xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
|
1828 |
|
|
return 0;
|
1829 |
|
|
}
|
1830 |
|
|
|
1831 |
|
|
|
1832 |
|
|
/*
|
1833 |
|
|
* xfs_igrow_start
|
1834 |
|
|
*
|
1835 |
|
|
* Do the first part of growing a file: zero any data in the last
|
1836 |
|
|
* block that is beyond the old EOF. We need to do this before
|
1837 |
|
|
* the inode is joined to the transaction to modify the i_size.
|
1838 |
|
|
* That way we can drop the inode lock and call into the buffer
|
1839 |
|
|
* cache to get the buffer mapping the EOF.
|
1840 |
|
|
*/
|
1841 |
|
|
int
|
1842 |
|
|
xfs_igrow_start(
|
1843 |
|
|
xfs_inode_t *ip,
|
1844 |
|
|
xfs_fsize_t new_size,
|
1845 |
|
|
cred_t *credp)
|
1846 |
|
|
{
|
1847 |
|
|
int error;
|
1848 |
|
|
|
1849 |
|
|
ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
|
1850 |
|
|
ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
|
1851 |
|
|
ASSERT(new_size > ip->i_size);
|
1852 |
|
|
|
1853 |
|
|
/*
|
1854 |
|
|
* Zero any pages that may have been created by
|
1855 |
|
|
* xfs_write_file() beyond the end of the file
|
1856 |
|
|
* and any blocks between the old and new file sizes.
|
1857 |
|
|
*/
|
1858 |
|
|
error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
|
1859 |
|
|
ip->i_size);
|
1860 |
|
|
return error;
|
1861 |
|
|
}
|
1862 |
|
|
|
1863 |
|
|
/*
|
1864 |
|
|
* xfs_igrow_finish
|
1865 |
|
|
*
|
1866 |
|
|
* This routine is called to extend the size of a file.
|
1867 |
|
|
* The inode must have both the iolock and the ilock locked
|
1868 |
|
|
* for update and it must be a part of the current transaction.
|
1869 |
|
|
* The xfs_igrow_start() function must have been called previously.
|
1870 |
|
|
* If the change_flag is not zero, the inode change timestamp will
|
1871 |
|
|
* be updated.
|
1872 |
|
|
*/
|
1873 |
|
|
void
|
1874 |
|
|
xfs_igrow_finish(
|
1875 |
|
|
xfs_trans_t *tp,
|
1876 |
|
|
xfs_inode_t *ip,
|
1877 |
|
|
xfs_fsize_t new_size,
|
1878 |
|
|
int change_flag)
|
1879 |
|
|
{
|
1880 |
|
|
ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
|
1881 |
|
|
ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
|
1882 |
|
|
ASSERT(ip->i_transp == tp);
|
1883 |
|
|
ASSERT(new_size > ip->i_size);
|
1884 |
|
|
|
1885 |
|
|
/*
|
1886 |
|
|
* Update the file size. Update the inode change timestamp
|
1887 |
|
|
* if change_flag set.
|
1888 |
|
|
*/
|
1889 |
|
|
ip->i_d.di_size = new_size;
|
1890 |
|
|
ip->i_size = new_size;
|
1891 |
|
|
if (change_flag)
|
1892 |
|
|
xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
|
1893 |
|
|
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
|
1894 |
|
|
|
1895 |
|
|
}
|
1896 |
|
|
|
1897 |
|
|
|
1898 |
|
|
/*
|
1899 |
|
|
* This is called when the inode's link count goes to 0.
|
1900 |
|
|
* We place the on-disk inode on a list in the AGI. It
|
1901 |
|
|
* will be pulled from this list when the inode is freed.
|
1902 |
|
|
*/
|
1903 |
|
|
int
|
1904 |
|
|
xfs_iunlink(
|
1905 |
|
|
xfs_trans_t *tp,
|
1906 |
|
|
xfs_inode_t *ip)
|
1907 |
|
|
{
|
1908 |
|
|
xfs_mount_t *mp;
|
1909 |
|
|
xfs_agi_t *agi;
|
1910 |
|
|
xfs_dinode_t *dip;
|
1911 |
|
|
xfs_buf_t *agibp;
|
1912 |
|
|
xfs_buf_t *ibp;
|
1913 |
|
|
xfs_agnumber_t agno;
|
1914 |
|
|
xfs_daddr_t agdaddr;
|
1915 |
|
|
xfs_agino_t agino;
|
1916 |
|
|
short bucket_index;
|
1917 |
|
|
int offset;
|
1918 |
|
|
int error;
|
1919 |
|
|
int agi_ok;
|
1920 |
|
|
|
1921 |
|
|
ASSERT(ip->i_d.di_nlink == 0);
|
1922 |
|
|
ASSERT(ip->i_d.di_mode != 0);
|
1923 |
|
|
ASSERT(ip->i_transp == tp);
|
1924 |
|
|
|
1925 |
|
|
mp = tp->t_mountp;
|
1926 |
|
|
|
1927 |
|
|
agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
|
1928 |
|
|
agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
|
1929 |
|
|
|
1930 |
|
|
/*
|
1931 |
|
|
* Get the agi buffer first. It ensures lock ordering
|
1932 |
|
|
* on the list.
|
1933 |
|
|
*/
|
1934 |
|
|
error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
|
1935 |
|
|
XFS_FSS_TO_BB(mp, 1), 0, &agibp);
|
1936 |
|
|
if (error)
|
1937 |
|
|
return error;
|
1938 |
|
|
|
1939 |
|
|
/*
|
1940 |
|
|
* Validate the magic number of the agi block.
|
1941 |
|
|
*/
|
1942 |
|
|
agi = XFS_BUF_TO_AGI(agibp);
|
1943 |
|
|
agi_ok =
|
1944 |
|
|
be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
|
1945 |
|
|
XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
|
1946 |
|
|
if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
|
1947 |
|
|
XFS_RANDOM_IUNLINK))) {
|
1948 |
|
|
XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
|
1949 |
|
|
xfs_trans_brelse(tp, agibp);
|
1950 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
1951 |
|
|
}
|
1952 |
|
|
/*
|
1953 |
|
|
* Get the index into the agi hash table for the
|
1954 |
|
|
* list this inode will go on.
|
1955 |
|
|
*/
|
1956 |
|
|
agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
|
1957 |
|
|
ASSERT(agino != 0);
|
1958 |
|
|
bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
|
1959 |
|
|
ASSERT(agi->agi_unlinked[bucket_index]);
|
1960 |
|
|
ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
|
1961 |
|
|
|
1962 |
|
|
error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
|
1963 |
|
|
if (error)
|
1964 |
|
|
return error;
|
1965 |
|
|
|
1966 |
|
|
/*
|
1967 |
|
|
* Clear the on-disk di_nlink. This is to prevent xfs_bulkstat
|
1968 |
|
|
* from picking up this inode when it is reclaimed (its incore state
|
1969 |
|
|
* initialzed but not flushed to disk yet). The in-core di_nlink is
|
1970 |
|
|
* already cleared in xfs_droplink() and a corresponding transaction
|
1971 |
|
|
* logged. The hack here just synchronizes the in-core to on-disk
|
1972 |
|
|
* di_nlink value in advance before the actual inode sync to disk.
|
1973 |
|
|
* This is OK because the inode is already unlinked and would never
|
1974 |
|
|
* change its di_nlink again for this inode generation.
|
1975 |
|
|
* This is a temporary hack that would require a proper fix
|
1976 |
|
|
* in the future.
|
1977 |
|
|
*/
|
1978 |
|
|
dip->di_core.di_nlink = 0;
|
1979 |
|
|
|
1980 |
|
|
if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
|
1981 |
|
|
/*
|
1982 |
|
|
* There is already another inode in the bucket we need
|
1983 |
|
|
* to add ourselves to. Add us at the front of the list.
|
1984 |
|
|
* Here we put the head pointer into our next pointer,
|
1985 |
|
|
* and then we fall through to point the head at us.
|
1986 |
|
|
*/
|
1987 |
|
|
ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
|
1988 |
|
|
/* both on-disk, don't endian flip twice */
|
1989 |
|
|
dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
|
1990 |
|
|
offset = ip->i_boffset +
|
1991 |
|
|
offsetof(xfs_dinode_t, di_next_unlinked);
|
1992 |
|
|
xfs_trans_inode_buf(tp, ibp);
|
1993 |
|
|
xfs_trans_log_buf(tp, ibp, offset,
|
1994 |
|
|
(offset + sizeof(xfs_agino_t) - 1));
|
1995 |
|
|
xfs_inobp_check(mp, ibp);
|
1996 |
|
|
}
|
1997 |
|
|
|
1998 |
|
|
/*
|
1999 |
|
|
* Point the bucket head pointer at the inode being inserted.
|
2000 |
|
|
*/
|
2001 |
|
|
ASSERT(agino != 0);
|
2002 |
|
|
agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
|
2003 |
|
|
offset = offsetof(xfs_agi_t, agi_unlinked) +
|
2004 |
|
|
(sizeof(xfs_agino_t) * bucket_index);
|
2005 |
|
|
xfs_trans_log_buf(tp, agibp, offset,
|
2006 |
|
|
(offset + sizeof(xfs_agino_t) - 1));
|
2007 |
|
|
return 0;
|
2008 |
|
|
}
|
2009 |
|
|
|
2010 |
|
|
/*
|
2011 |
|
|
* Pull the on-disk inode from the AGI unlinked list.
|
2012 |
|
|
*/
|
2013 |
|
|
STATIC int
|
2014 |
|
|
xfs_iunlink_remove(
|
2015 |
|
|
xfs_trans_t *tp,
|
2016 |
|
|
xfs_inode_t *ip)
|
2017 |
|
|
{
|
2018 |
|
|
xfs_ino_t next_ino;
|
2019 |
|
|
xfs_mount_t *mp;
|
2020 |
|
|
xfs_agi_t *agi;
|
2021 |
|
|
xfs_dinode_t *dip;
|
2022 |
|
|
xfs_buf_t *agibp;
|
2023 |
|
|
xfs_buf_t *ibp;
|
2024 |
|
|
xfs_agnumber_t agno;
|
2025 |
|
|
xfs_daddr_t agdaddr;
|
2026 |
|
|
xfs_agino_t agino;
|
2027 |
|
|
xfs_agino_t next_agino;
|
2028 |
|
|
xfs_buf_t *last_ibp;
|
2029 |
|
|
xfs_dinode_t *last_dip = NULL;
|
2030 |
|
|
short bucket_index;
|
2031 |
|
|
int offset, last_offset = 0;
|
2032 |
|
|
int error;
|
2033 |
|
|
int agi_ok;
|
2034 |
|
|
|
2035 |
|
|
/*
|
2036 |
|
|
* First pull the on-disk inode from the AGI unlinked list.
|
2037 |
|
|
*/
|
2038 |
|
|
mp = tp->t_mountp;
|
2039 |
|
|
|
2040 |
|
|
agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
|
2041 |
|
|
agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
|
2042 |
|
|
|
2043 |
|
|
/*
|
2044 |
|
|
* Get the agi buffer first. It ensures lock ordering
|
2045 |
|
|
* on the list.
|
2046 |
|
|
*/
|
2047 |
|
|
error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
|
2048 |
|
|
XFS_FSS_TO_BB(mp, 1), 0, &agibp);
|
2049 |
|
|
if (error) {
|
2050 |
|
|
cmn_err(CE_WARN,
|
2051 |
|
|
"xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
|
2052 |
|
|
error, mp->m_fsname);
|
2053 |
|
|
return error;
|
2054 |
|
|
}
|
2055 |
|
|
/*
|
2056 |
|
|
* Validate the magic number of the agi block.
|
2057 |
|
|
*/
|
2058 |
|
|
agi = XFS_BUF_TO_AGI(agibp);
|
2059 |
|
|
agi_ok =
|
2060 |
|
|
be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
|
2061 |
|
|
XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
|
2062 |
|
|
if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
|
2063 |
|
|
XFS_RANDOM_IUNLINK_REMOVE))) {
|
2064 |
|
|
XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
|
2065 |
|
|
mp, agi);
|
2066 |
|
|
xfs_trans_brelse(tp, agibp);
|
2067 |
|
|
cmn_err(CE_WARN,
|
2068 |
|
|
"xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
|
2069 |
|
|
mp->m_fsname);
|
2070 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
2071 |
|
|
}
|
2072 |
|
|
/*
|
2073 |
|
|
* Get the index into the agi hash table for the
|
2074 |
|
|
* list this inode will go on.
|
2075 |
|
|
*/
|
2076 |
|
|
agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
|
2077 |
|
|
ASSERT(agino != 0);
|
2078 |
|
|
bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
|
2079 |
|
|
ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
|
2080 |
|
|
ASSERT(agi->agi_unlinked[bucket_index]);
|
2081 |
|
|
|
2082 |
|
|
if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
|
2083 |
|
|
/*
|
2084 |
|
|
* We're at the head of the list. Get the inode's
|
2085 |
|
|
* on-disk buffer to see if there is anyone after us
|
2086 |
|
|
* on the list. Only modify our next pointer if it
|
2087 |
|
|
* is not already NULLAGINO. This saves us the overhead
|
2088 |
|
|
* of dealing with the buffer when there is no need to
|
2089 |
|
|
* change it.
|
2090 |
|
|
*/
|
2091 |
|
|
error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
|
2092 |
|
|
if (error) {
|
2093 |
|
|
cmn_err(CE_WARN,
|
2094 |
|
|
"xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
|
2095 |
|
|
error, mp->m_fsname);
|
2096 |
|
|
return error;
|
2097 |
|
|
}
|
2098 |
|
|
next_agino = be32_to_cpu(dip->di_next_unlinked);
|
2099 |
|
|
ASSERT(next_agino != 0);
|
2100 |
|
|
if (next_agino != NULLAGINO) {
|
2101 |
|
|
dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
|
2102 |
|
|
offset = ip->i_boffset +
|
2103 |
|
|
offsetof(xfs_dinode_t, di_next_unlinked);
|
2104 |
|
|
xfs_trans_inode_buf(tp, ibp);
|
2105 |
|
|
xfs_trans_log_buf(tp, ibp, offset,
|
2106 |
|
|
(offset + sizeof(xfs_agino_t) - 1));
|
2107 |
|
|
xfs_inobp_check(mp, ibp);
|
2108 |
|
|
} else {
|
2109 |
|
|
xfs_trans_brelse(tp, ibp);
|
2110 |
|
|
}
|
2111 |
|
|
/*
|
2112 |
|
|
* Point the bucket head pointer at the next inode.
|
2113 |
|
|
*/
|
2114 |
|
|
ASSERT(next_agino != 0);
|
2115 |
|
|
ASSERT(next_agino != agino);
|
2116 |
|
|
agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
|
2117 |
|
|
offset = offsetof(xfs_agi_t, agi_unlinked) +
|
2118 |
|
|
(sizeof(xfs_agino_t) * bucket_index);
|
2119 |
|
|
xfs_trans_log_buf(tp, agibp, offset,
|
2120 |
|
|
(offset + sizeof(xfs_agino_t) - 1));
|
2121 |
|
|
} else {
|
2122 |
|
|
/*
|
2123 |
|
|
* We need to search the list for the inode being freed.
|
2124 |
|
|
*/
|
2125 |
|
|
next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
|
2126 |
|
|
last_ibp = NULL;
|
2127 |
|
|
while (next_agino != agino) {
|
2128 |
|
|
/*
|
2129 |
|
|
* If the last inode wasn't the one pointing to
|
2130 |
|
|
* us, then release its buffer since we're not
|
2131 |
|
|
* going to do anything with it.
|
2132 |
|
|
*/
|
2133 |
|
|
if (last_ibp != NULL) {
|
2134 |
|
|
xfs_trans_brelse(tp, last_ibp);
|
2135 |
|
|
}
|
2136 |
|
|
next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
|
2137 |
|
|
error = xfs_inotobp(mp, tp, next_ino, &last_dip,
|
2138 |
|
|
&last_ibp, &last_offset);
|
2139 |
|
|
if (error) {
|
2140 |
|
|
cmn_err(CE_WARN,
|
2141 |
|
|
"xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
|
2142 |
|
|
error, mp->m_fsname);
|
2143 |
|
|
return error;
|
2144 |
|
|
}
|
2145 |
|
|
next_agino = be32_to_cpu(last_dip->di_next_unlinked);
|
2146 |
|
|
ASSERT(next_agino != NULLAGINO);
|
2147 |
|
|
ASSERT(next_agino != 0);
|
2148 |
|
|
}
|
2149 |
|
|
/*
|
2150 |
|
|
* Now last_ibp points to the buffer previous to us on
|
2151 |
|
|
* the unlinked list. Pull us from the list.
|
2152 |
|
|
*/
|
2153 |
|
|
error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
|
2154 |
|
|
if (error) {
|
2155 |
|
|
cmn_err(CE_WARN,
|
2156 |
|
|
"xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
|
2157 |
|
|
error, mp->m_fsname);
|
2158 |
|
|
return error;
|
2159 |
|
|
}
|
2160 |
|
|
next_agino = be32_to_cpu(dip->di_next_unlinked);
|
2161 |
|
|
ASSERT(next_agino != 0);
|
2162 |
|
|
ASSERT(next_agino != agino);
|
2163 |
|
|
if (next_agino != NULLAGINO) {
|
2164 |
|
|
dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
|
2165 |
|
|
offset = ip->i_boffset +
|
2166 |
|
|
offsetof(xfs_dinode_t, di_next_unlinked);
|
2167 |
|
|
xfs_trans_inode_buf(tp, ibp);
|
2168 |
|
|
xfs_trans_log_buf(tp, ibp, offset,
|
2169 |
|
|
(offset + sizeof(xfs_agino_t) - 1));
|
2170 |
|
|
xfs_inobp_check(mp, ibp);
|
2171 |
|
|
} else {
|
2172 |
|
|
xfs_trans_brelse(tp, ibp);
|
2173 |
|
|
}
|
2174 |
|
|
/*
|
2175 |
|
|
* Point the previous inode on the list to the next inode.
|
2176 |
|
|
*/
|
2177 |
|
|
last_dip->di_next_unlinked = cpu_to_be32(next_agino);
|
2178 |
|
|
ASSERT(next_agino != 0);
|
2179 |
|
|
offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
|
2180 |
|
|
xfs_trans_inode_buf(tp, last_ibp);
|
2181 |
|
|
xfs_trans_log_buf(tp, last_ibp, offset,
|
2182 |
|
|
(offset + sizeof(xfs_agino_t) - 1));
|
2183 |
|
|
xfs_inobp_check(mp, last_ibp);
|
2184 |
|
|
}
|
2185 |
|
|
return 0;
|
2186 |
|
|
}
|
2187 |
|
|
|
2188 |
|
|
STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
|
2189 |
|
|
{
|
2190 |
|
|
return (((ip->i_itemp == NULL) ||
|
2191 |
|
|
!(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
|
2192 |
|
|
(ip->i_update_core == 0));
|
2193 |
|
|
}
|
2194 |
|
|
|
2195 |
|
|
STATIC void
|
2196 |
|
|
xfs_ifree_cluster(
|
2197 |
|
|
xfs_inode_t *free_ip,
|
2198 |
|
|
xfs_trans_t *tp,
|
2199 |
|
|
xfs_ino_t inum)
|
2200 |
|
|
{
|
2201 |
|
|
xfs_mount_t *mp = free_ip->i_mount;
|
2202 |
|
|
int blks_per_cluster;
|
2203 |
|
|
int nbufs;
|
2204 |
|
|
int ninodes;
|
2205 |
|
|
int i, j, found, pre_flushed;
|
2206 |
|
|
xfs_daddr_t blkno;
|
2207 |
|
|
xfs_buf_t *bp;
|
2208 |
|
|
xfs_inode_t *ip, **ip_found;
|
2209 |
|
|
xfs_inode_log_item_t *iip;
|
2210 |
|
|
xfs_log_item_t *lip;
|
2211 |
|
|
xfs_perag_t *pag = xfs_get_perag(mp, inum);
|
2212 |
|
|
SPLDECL(s);
|
2213 |
|
|
|
2214 |
|
|
if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
|
2215 |
|
|
blks_per_cluster = 1;
|
2216 |
|
|
ninodes = mp->m_sb.sb_inopblock;
|
2217 |
|
|
nbufs = XFS_IALLOC_BLOCKS(mp);
|
2218 |
|
|
} else {
|
2219 |
|
|
blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
|
2220 |
|
|
mp->m_sb.sb_blocksize;
|
2221 |
|
|
ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
|
2222 |
|
|
nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
|
2223 |
|
|
}
|
2224 |
|
|
|
2225 |
|
|
ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
|
2226 |
|
|
|
2227 |
|
|
for (j = 0; j < nbufs; j++, inum += ninodes) {
|
2228 |
|
|
blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
|
2229 |
|
|
XFS_INO_TO_AGBNO(mp, inum));
|
2230 |
|
|
|
2231 |
|
|
|
2232 |
|
|
/*
|
2233 |
|
|
* Look for each inode in memory and attempt to lock it,
|
2234 |
|
|
* we can be racing with flush and tail pushing here.
|
2235 |
|
|
* any inode we get the locks on, add to an array of
|
2236 |
|
|
* inode items to process later.
|
2237 |
|
|
*
|
2238 |
|
|
* The get the buffer lock, we could beat a flush
|
2239 |
|
|
* or tail pushing thread to the lock here, in which
|
2240 |
|
|
* case they will go looking for the inode buffer
|
2241 |
|
|
* and fail, we need some other form of interlock
|
2242 |
|
|
* here.
|
2243 |
|
|
*/
|
2244 |
|
|
found = 0;
|
2245 |
|
|
for (i = 0; i < ninodes; i++) {
|
2246 |
|
|
read_lock(&pag->pag_ici_lock);
|
2247 |
|
|
ip = radix_tree_lookup(&pag->pag_ici_root,
|
2248 |
|
|
XFS_INO_TO_AGINO(mp, (inum + i)));
|
2249 |
|
|
|
2250 |
|
|
/* Inode not in memory or we found it already,
|
2251 |
|
|
* nothing to do
|
2252 |
|
|
*/
|
2253 |
|
|
if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
|
2254 |
|
|
read_unlock(&pag->pag_ici_lock);
|
2255 |
|
|
continue;
|
2256 |
|
|
}
|
2257 |
|
|
|
2258 |
|
|
if (xfs_inode_clean(ip)) {
|
2259 |
|
|
read_unlock(&pag->pag_ici_lock);
|
2260 |
|
|
continue;
|
2261 |
|
|
}
|
2262 |
|
|
|
2263 |
|
|
/* If we can get the locks then add it to the
|
2264 |
|
|
* list, otherwise by the time we get the bp lock
|
2265 |
|
|
* below it will already be attached to the
|
2266 |
|
|
* inode buffer.
|
2267 |
|
|
*/
|
2268 |
|
|
|
2269 |
|
|
/* This inode will already be locked - by us, lets
|
2270 |
|
|
* keep it that way.
|
2271 |
|
|
*/
|
2272 |
|
|
|
2273 |
|
|
if (ip == free_ip) {
|
2274 |
|
|
if (xfs_iflock_nowait(ip)) {
|
2275 |
|
|
xfs_iflags_set(ip, XFS_ISTALE);
|
2276 |
|
|
if (xfs_inode_clean(ip)) {
|
2277 |
|
|
xfs_ifunlock(ip);
|
2278 |
|
|
} else {
|
2279 |
|
|
ip_found[found++] = ip;
|
2280 |
|
|
}
|
2281 |
|
|
}
|
2282 |
|
|
read_unlock(&pag->pag_ici_lock);
|
2283 |
|
|
continue;
|
2284 |
|
|
}
|
2285 |
|
|
|
2286 |
|
|
if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
|
2287 |
|
|
if (xfs_iflock_nowait(ip)) {
|
2288 |
|
|
xfs_iflags_set(ip, XFS_ISTALE);
|
2289 |
|
|
|
2290 |
|
|
if (xfs_inode_clean(ip)) {
|
2291 |
|
|
xfs_ifunlock(ip);
|
2292 |
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
2293 |
|
|
} else {
|
2294 |
|
|
ip_found[found++] = ip;
|
2295 |
|
|
}
|
2296 |
|
|
} else {
|
2297 |
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
2298 |
|
|
}
|
2299 |
|
|
}
|
2300 |
|
|
read_unlock(&pag->pag_ici_lock);
|
2301 |
|
|
}
|
2302 |
|
|
|
2303 |
|
|
bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
|
2304 |
|
|
mp->m_bsize * blks_per_cluster,
|
2305 |
|
|
XFS_BUF_LOCK);
|
2306 |
|
|
|
2307 |
|
|
pre_flushed = 0;
|
2308 |
|
|
lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
|
2309 |
|
|
while (lip) {
|
2310 |
|
|
if (lip->li_type == XFS_LI_INODE) {
|
2311 |
|
|
iip = (xfs_inode_log_item_t *)lip;
|
2312 |
|
|
ASSERT(iip->ili_logged == 1);
|
2313 |
|
|
lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
|
2314 |
|
|
AIL_LOCK(mp,s);
|
2315 |
|
|
iip->ili_flush_lsn = iip->ili_item.li_lsn;
|
2316 |
|
|
AIL_UNLOCK(mp, s);
|
2317 |
|
|
xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
|
2318 |
|
|
pre_flushed++;
|
2319 |
|
|
}
|
2320 |
|
|
lip = lip->li_bio_list;
|
2321 |
|
|
}
|
2322 |
|
|
|
2323 |
|
|
for (i = 0; i < found; i++) {
|
2324 |
|
|
ip = ip_found[i];
|
2325 |
|
|
iip = ip->i_itemp;
|
2326 |
|
|
|
2327 |
|
|
if (!iip) {
|
2328 |
|
|
ip->i_update_core = 0;
|
2329 |
|
|
xfs_ifunlock(ip);
|
2330 |
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
2331 |
|
|
continue;
|
2332 |
|
|
}
|
2333 |
|
|
|
2334 |
|
|
iip->ili_last_fields = iip->ili_format.ilf_fields;
|
2335 |
|
|
iip->ili_format.ilf_fields = 0;
|
2336 |
|
|
iip->ili_logged = 1;
|
2337 |
|
|
AIL_LOCK(mp,s);
|
2338 |
|
|
iip->ili_flush_lsn = iip->ili_item.li_lsn;
|
2339 |
|
|
AIL_UNLOCK(mp, s);
|
2340 |
|
|
|
2341 |
|
|
xfs_buf_attach_iodone(bp,
|
2342 |
|
|
(void(*)(xfs_buf_t*,xfs_log_item_t*))
|
2343 |
|
|
xfs_istale_done, (xfs_log_item_t *)iip);
|
2344 |
|
|
if (ip != free_ip) {
|
2345 |
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
2346 |
|
|
}
|
2347 |
|
|
}
|
2348 |
|
|
|
2349 |
|
|
if (found || pre_flushed)
|
2350 |
|
|
xfs_trans_stale_inode_buf(tp, bp);
|
2351 |
|
|
xfs_trans_binval(tp, bp);
|
2352 |
|
|
}
|
2353 |
|
|
|
2354 |
|
|
kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
|
2355 |
|
|
xfs_put_perag(mp, pag);
|
2356 |
|
|
}
|
2357 |
|
|
|
2358 |
|
|
/*
|
2359 |
|
|
* This is called to return an inode to the inode free list.
|
2360 |
|
|
* The inode should already be truncated to 0 length and have
|
2361 |
|
|
* no pages associated with it. This routine also assumes that
|
2362 |
|
|
* the inode is already a part of the transaction.
|
2363 |
|
|
*
|
2364 |
|
|
* The on-disk copy of the inode will have been added to the list
|
2365 |
|
|
* of unlinked inodes in the AGI. We need to remove the inode from
|
2366 |
|
|
* that list atomically with respect to freeing it here.
|
2367 |
|
|
*/
|
2368 |
|
|
int
|
2369 |
|
|
xfs_ifree(
|
2370 |
|
|
xfs_trans_t *tp,
|
2371 |
|
|
xfs_inode_t *ip,
|
2372 |
|
|
xfs_bmap_free_t *flist)
|
2373 |
|
|
{
|
2374 |
|
|
int error;
|
2375 |
|
|
int delete;
|
2376 |
|
|
xfs_ino_t first_ino;
|
2377 |
|
|
|
2378 |
|
|
ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
|
2379 |
|
|
ASSERT(ip->i_transp == tp);
|
2380 |
|
|
ASSERT(ip->i_d.di_nlink == 0);
|
2381 |
|
|
ASSERT(ip->i_d.di_nextents == 0);
|
2382 |
|
|
ASSERT(ip->i_d.di_anextents == 0);
|
2383 |
|
|
ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
|
2384 |
|
|
((ip->i_d.di_mode & S_IFMT) != S_IFREG));
|
2385 |
|
|
ASSERT(ip->i_d.di_nblocks == 0);
|
2386 |
|
|
|
2387 |
|
|
/*
|
2388 |
|
|
* Pull the on-disk inode from the AGI unlinked list.
|
2389 |
|
|
*/
|
2390 |
|
|
error = xfs_iunlink_remove(tp, ip);
|
2391 |
|
|
if (error != 0) {
|
2392 |
|
|
return error;
|
2393 |
|
|
}
|
2394 |
|
|
|
2395 |
|
|
error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
|
2396 |
|
|
if (error != 0) {
|
2397 |
|
|
return error;
|
2398 |
|
|
}
|
2399 |
|
|
ip->i_d.di_mode = 0; /* mark incore inode as free */
|
2400 |
|
|
ip->i_d.di_flags = 0;
|
2401 |
|
|
ip->i_d.di_dmevmask = 0;
|
2402 |
|
|
ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
|
2403 |
|
|
ip->i_df.if_ext_max =
|
2404 |
|
|
XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
|
2405 |
|
|
ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
|
2406 |
|
|
ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
|
2407 |
|
|
/*
|
2408 |
|
|
* Bump the generation count so no one will be confused
|
2409 |
|
|
* by reincarnations of this inode.
|
2410 |
|
|
*/
|
2411 |
|
|
ip->i_d.di_gen++;
|
2412 |
|
|
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
|
2413 |
|
|
|
2414 |
|
|
if (delete) {
|
2415 |
|
|
xfs_ifree_cluster(ip, tp, first_ino);
|
2416 |
|
|
}
|
2417 |
|
|
|
2418 |
|
|
return 0;
|
2419 |
|
|
}
|
2420 |
|
|
|
2421 |
|
|
/*
|
2422 |
|
|
* Reallocate the space for if_broot based on the number of records
|
2423 |
|
|
* being added or deleted as indicated in rec_diff. Move the records
|
2424 |
|
|
* and pointers in if_broot to fit the new size. When shrinking this
|
2425 |
|
|
* will eliminate holes between the records and pointers created by
|
2426 |
|
|
* the caller. When growing this will create holes to be filled in
|
2427 |
|
|
* by the caller.
|
2428 |
|
|
*
|
2429 |
|
|
* The caller must not request to add more records than would fit in
|
2430 |
|
|
* the on-disk inode root. If the if_broot is currently NULL, then
|
2431 |
|
|
* if we adding records one will be allocated. The caller must also
|
2432 |
|
|
* not request that the number of records go below zero, although
|
2433 |
|
|
* it can go to zero.
|
2434 |
|
|
*
|
2435 |
|
|
* ip -- the inode whose if_broot area is changing
|
2436 |
|
|
* ext_diff -- the change in the number of records, positive or negative,
|
2437 |
|
|
* requested for the if_broot array.
|
2438 |
|
|
*/
|
2439 |
|
|
void
|
2440 |
|
|
xfs_iroot_realloc(
|
2441 |
|
|
xfs_inode_t *ip,
|
2442 |
|
|
int rec_diff,
|
2443 |
|
|
int whichfork)
|
2444 |
|
|
{
|
2445 |
|
|
int cur_max;
|
2446 |
|
|
xfs_ifork_t *ifp;
|
2447 |
|
|
xfs_bmbt_block_t *new_broot;
|
2448 |
|
|
int new_max;
|
2449 |
|
|
size_t new_size;
|
2450 |
|
|
char *np;
|
2451 |
|
|
char *op;
|
2452 |
|
|
|
2453 |
|
|
/*
|
2454 |
|
|
* Handle the degenerate case quietly.
|
2455 |
|
|
*/
|
2456 |
|
|
if (rec_diff == 0) {
|
2457 |
|
|
return;
|
2458 |
|
|
}
|
2459 |
|
|
|
2460 |
|
|
ifp = XFS_IFORK_PTR(ip, whichfork);
|
2461 |
|
|
if (rec_diff > 0) {
|
2462 |
|
|
/*
|
2463 |
|
|
* If there wasn't any memory allocated before, just
|
2464 |
|
|
* allocate it now and get out.
|
2465 |
|
|
*/
|
2466 |
|
|
if (ifp->if_broot_bytes == 0) {
|
2467 |
|
|
new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
|
2468 |
|
|
ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
|
2469 |
|
|
KM_SLEEP);
|
2470 |
|
|
ifp->if_broot_bytes = (int)new_size;
|
2471 |
|
|
return;
|
2472 |
|
|
}
|
2473 |
|
|
|
2474 |
|
|
/*
|
2475 |
|
|
* If there is already an existing if_broot, then we need
|
2476 |
|
|
* to realloc() it and shift the pointers to their new
|
2477 |
|
|
* location. The records don't change location because
|
2478 |
|
|
* they are kept butted up against the btree block header.
|
2479 |
|
|
*/
|
2480 |
|
|
cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
|
2481 |
|
|
new_max = cur_max + rec_diff;
|
2482 |
|
|
new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
|
2483 |
|
|
ifp->if_broot = (xfs_bmbt_block_t *)
|
2484 |
|
|
kmem_realloc(ifp->if_broot,
|
2485 |
|
|
new_size,
|
2486 |
|
|
(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
|
2487 |
|
|
KM_SLEEP);
|
2488 |
|
|
op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
|
2489 |
|
|
ifp->if_broot_bytes);
|
2490 |
|
|
np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
|
2491 |
|
|
(int)new_size);
|
2492 |
|
|
ifp->if_broot_bytes = (int)new_size;
|
2493 |
|
|
ASSERT(ifp->if_broot_bytes <=
|
2494 |
|
|
XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
|
2495 |
|
|
memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
|
2496 |
|
|
return;
|
2497 |
|
|
}
|
2498 |
|
|
|
2499 |
|
|
/*
|
2500 |
|
|
* rec_diff is less than 0. In this case, we are shrinking the
|
2501 |
|
|
* if_broot buffer. It must already exist. If we go to zero
|
2502 |
|
|
* records, just get rid of the root and clear the status bit.
|
2503 |
|
|
*/
|
2504 |
|
|
ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
|
2505 |
|
|
cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
|
2506 |
|
|
new_max = cur_max + rec_diff;
|
2507 |
|
|
ASSERT(new_max >= 0);
|
2508 |
|
|
if (new_max > 0)
|
2509 |
|
|
new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
|
2510 |
|
|
else
|
2511 |
|
|
new_size = 0;
|
2512 |
|
|
if (new_size > 0) {
|
2513 |
|
|
new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
|
2514 |
|
|
/*
|
2515 |
|
|
* First copy over the btree block header.
|
2516 |
|
|
*/
|
2517 |
|
|
memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
|
2518 |
|
|
} else {
|
2519 |
|
|
new_broot = NULL;
|
2520 |
|
|
ifp->if_flags &= ~XFS_IFBROOT;
|
2521 |
|
|
}
|
2522 |
|
|
|
2523 |
|
|
/*
|
2524 |
|
|
* Only copy the records and pointers if there are any.
|
2525 |
|
|
*/
|
2526 |
|
|
if (new_max > 0) {
|
2527 |
|
|
/*
|
2528 |
|
|
* First copy the records.
|
2529 |
|
|
*/
|
2530 |
|
|
op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
|
2531 |
|
|
ifp->if_broot_bytes);
|
2532 |
|
|
np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
|
2533 |
|
|
(int)new_size);
|
2534 |
|
|
memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
|
2535 |
|
|
|
2536 |
|
|
/*
|
2537 |
|
|
* Then copy the pointers.
|
2538 |
|
|
*/
|
2539 |
|
|
op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
|
2540 |
|
|
ifp->if_broot_bytes);
|
2541 |
|
|
np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
|
2542 |
|
|
(int)new_size);
|
2543 |
|
|
memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
|
2544 |
|
|
}
|
2545 |
|
|
kmem_free(ifp->if_broot, ifp->if_broot_bytes);
|
2546 |
|
|
ifp->if_broot = new_broot;
|
2547 |
|
|
ifp->if_broot_bytes = (int)new_size;
|
2548 |
|
|
ASSERT(ifp->if_broot_bytes <=
|
2549 |
|
|
XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
|
2550 |
|
|
return;
|
2551 |
|
|
}
|
2552 |
|
|
|
2553 |
|
|
|
2554 |
|
|
/*
|
2555 |
|
|
* This is called when the amount of space needed for if_data
|
2556 |
|
|
* is increased or decreased. The change in size is indicated by
|
2557 |
|
|
* the number of bytes that need to be added or deleted in the
|
2558 |
|
|
* byte_diff parameter.
|
2559 |
|
|
*
|
2560 |
|
|
* If the amount of space needed has decreased below the size of the
|
2561 |
|
|
* inline buffer, then switch to using the inline buffer. Otherwise,
|
2562 |
|
|
* use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
|
2563 |
|
|
* to what is needed.
|
2564 |
|
|
*
|
2565 |
|
|
* ip -- the inode whose if_data area is changing
|
2566 |
|
|
* byte_diff -- the change in the number of bytes, positive or negative,
|
2567 |
|
|
* requested for the if_data array.
|
2568 |
|
|
*/
|
2569 |
|
|
void
|
2570 |
|
|
xfs_idata_realloc(
|
2571 |
|
|
xfs_inode_t *ip,
|
2572 |
|
|
int byte_diff,
|
2573 |
|
|
int whichfork)
|
2574 |
|
|
{
|
2575 |
|
|
xfs_ifork_t *ifp;
|
2576 |
|
|
int new_size;
|
2577 |
|
|
int real_size;
|
2578 |
|
|
|
2579 |
|
|
if (byte_diff == 0) {
|
2580 |
|
|
return;
|
2581 |
|
|
}
|
2582 |
|
|
|
2583 |
|
|
ifp = XFS_IFORK_PTR(ip, whichfork);
|
2584 |
|
|
new_size = (int)ifp->if_bytes + byte_diff;
|
2585 |
|
|
ASSERT(new_size >= 0);
|
2586 |
|
|
|
2587 |
|
|
if (new_size == 0) {
|
2588 |
|
|
if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
|
2589 |
|
|
kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
|
2590 |
|
|
}
|
2591 |
|
|
ifp->if_u1.if_data = NULL;
|
2592 |
|
|
real_size = 0;
|
2593 |
|
|
} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
|
2594 |
|
|
/*
|
2595 |
|
|
* If the valid extents/data can fit in if_inline_ext/data,
|
2596 |
|
|
* copy them from the malloc'd vector and free it.
|
2597 |
|
|
*/
|
2598 |
|
|
if (ifp->if_u1.if_data == NULL) {
|
2599 |
|
|
ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
|
2600 |
|
|
} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
|
2601 |
|
|
ASSERT(ifp->if_real_bytes != 0);
|
2602 |
|
|
memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
|
2603 |
|
|
new_size);
|
2604 |
|
|
kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
|
2605 |
|
|
ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
|
2606 |
|
|
}
|
2607 |
|
|
real_size = 0;
|
2608 |
|
|
} else {
|
2609 |
|
|
/*
|
2610 |
|
|
* Stuck with malloc/realloc.
|
2611 |
|
|
* For inline data, the underlying buffer must be
|
2612 |
|
|
* a multiple of 4 bytes in size so that it can be
|
2613 |
|
|
* logged and stay on word boundaries. We enforce
|
2614 |
|
|
* that here.
|
2615 |
|
|
*/
|
2616 |
|
|
real_size = roundup(new_size, 4);
|
2617 |
|
|
if (ifp->if_u1.if_data == NULL) {
|
2618 |
|
|
ASSERT(ifp->if_real_bytes == 0);
|
2619 |
|
|
ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
|
2620 |
|
|
} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
|
2621 |
|
|
/*
|
2622 |
|
|
* Only do the realloc if the underlying size
|
2623 |
|
|
* is really changing.
|
2624 |
|
|
*/
|
2625 |
|
|
if (ifp->if_real_bytes != real_size) {
|
2626 |
|
|
ifp->if_u1.if_data =
|
2627 |
|
|
kmem_realloc(ifp->if_u1.if_data,
|
2628 |
|
|
real_size,
|
2629 |
|
|
ifp->if_real_bytes,
|
2630 |
|
|
KM_SLEEP);
|
2631 |
|
|
}
|
2632 |
|
|
} else {
|
2633 |
|
|
ASSERT(ifp->if_real_bytes == 0);
|
2634 |
|
|
ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
|
2635 |
|
|
memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
|
2636 |
|
|
ifp->if_bytes);
|
2637 |
|
|
}
|
2638 |
|
|
}
|
2639 |
|
|
ifp->if_real_bytes = real_size;
|
2640 |
|
|
ifp->if_bytes = new_size;
|
2641 |
|
|
ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
|
2642 |
|
|
}
|
2643 |
|
|
|
2644 |
|
|
|
2645 |
|
|
|
2646 |
|
|
|
2647 |
|
|
/*
|
2648 |
|
|
* Map inode to disk block and offset.
|
2649 |
|
|
*
|
2650 |
|
|
* mp -- the mount point structure for the current file system
|
2651 |
|
|
* tp -- the current transaction
|
2652 |
|
|
* ino -- the inode number of the inode to be located
|
2653 |
|
|
* imap -- this structure is filled in with the information necessary
|
2654 |
|
|
* to retrieve the given inode from disk
|
2655 |
|
|
* flags -- flags to pass to xfs_dilocate indicating whether or not
|
2656 |
|
|
* lookups in the inode btree were OK or not
|
2657 |
|
|
*/
|
2658 |
|
|
int
|
2659 |
|
|
xfs_imap(
|
2660 |
|
|
xfs_mount_t *mp,
|
2661 |
|
|
xfs_trans_t *tp,
|
2662 |
|
|
xfs_ino_t ino,
|
2663 |
|
|
xfs_imap_t *imap,
|
2664 |
|
|
uint flags)
|
2665 |
|
|
{
|
2666 |
|
|
xfs_fsblock_t fsbno;
|
2667 |
|
|
int len;
|
2668 |
|
|
int off;
|
2669 |
|
|
int error;
|
2670 |
|
|
|
2671 |
|
|
fsbno = imap->im_blkno ?
|
2672 |
|
|
XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
|
2673 |
|
|
error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
|
2674 |
|
|
if (error != 0) {
|
2675 |
|
|
return error;
|
2676 |
|
|
}
|
2677 |
|
|
imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
|
2678 |
|
|
imap->im_len = XFS_FSB_TO_BB(mp, len);
|
2679 |
|
|
imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
|
2680 |
|
|
imap->im_ioffset = (ushort)off;
|
2681 |
|
|
imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
|
2682 |
|
|
return 0;
|
2683 |
|
|
}
|
2684 |
|
|
|
2685 |
|
|
void
|
2686 |
|
|
xfs_idestroy_fork(
|
2687 |
|
|
xfs_inode_t *ip,
|
2688 |
|
|
int whichfork)
|
2689 |
|
|
{
|
2690 |
|
|
xfs_ifork_t *ifp;
|
2691 |
|
|
|
2692 |
|
|
ifp = XFS_IFORK_PTR(ip, whichfork);
|
2693 |
|
|
if (ifp->if_broot != NULL) {
|
2694 |
|
|
kmem_free(ifp->if_broot, ifp->if_broot_bytes);
|
2695 |
|
|
ifp->if_broot = NULL;
|
2696 |
|
|
}
|
2697 |
|
|
|
2698 |
|
|
/*
|
2699 |
|
|
* If the format is local, then we can't have an extents
|
2700 |
|
|
* array so just look for an inline data array. If we're
|
2701 |
|
|
* not local then we may or may not have an extents list,
|
2702 |
|
|
* so check and free it up if we do.
|
2703 |
|
|
*/
|
2704 |
|
|
if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
|
2705 |
|
|
if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
|
2706 |
|
|
(ifp->if_u1.if_data != NULL)) {
|
2707 |
|
|
ASSERT(ifp->if_real_bytes != 0);
|
2708 |
|
|
kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
|
2709 |
|
|
ifp->if_u1.if_data = NULL;
|
2710 |
|
|
ifp->if_real_bytes = 0;
|
2711 |
|
|
}
|
2712 |
|
|
} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
|
2713 |
|
|
((ifp->if_flags & XFS_IFEXTIREC) ||
|
2714 |
|
|
((ifp->if_u1.if_extents != NULL) &&
|
2715 |
|
|
(ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
|
2716 |
|
|
ASSERT(ifp->if_real_bytes != 0);
|
2717 |
|
|
xfs_iext_destroy(ifp);
|
2718 |
|
|
}
|
2719 |
|
|
ASSERT(ifp->if_u1.if_extents == NULL ||
|
2720 |
|
|
ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
|
2721 |
|
|
ASSERT(ifp->if_real_bytes == 0);
|
2722 |
|
|
if (whichfork == XFS_ATTR_FORK) {
|
2723 |
|
|
kmem_zone_free(xfs_ifork_zone, ip->i_afp);
|
2724 |
|
|
ip->i_afp = NULL;
|
2725 |
|
|
}
|
2726 |
|
|
}
|
2727 |
|
|
|
2728 |
|
|
/*
|
2729 |
|
|
* This is called free all the memory associated with an inode.
|
2730 |
|
|
* It must free the inode itself and any buffers allocated for
|
2731 |
|
|
* if_extents/if_data and if_broot. It must also free the lock
|
2732 |
|
|
* associated with the inode.
|
2733 |
|
|
*/
|
2734 |
|
|
void
|
2735 |
|
|
xfs_idestroy(
|
2736 |
|
|
xfs_inode_t *ip)
|
2737 |
|
|
{
|
2738 |
|
|
|
2739 |
|
|
switch (ip->i_d.di_mode & S_IFMT) {
|
2740 |
|
|
case S_IFREG:
|
2741 |
|
|
case S_IFDIR:
|
2742 |
|
|
case S_IFLNK:
|
2743 |
|
|
xfs_idestroy_fork(ip, XFS_DATA_FORK);
|
2744 |
|
|
break;
|
2745 |
|
|
}
|
2746 |
|
|
if (ip->i_afp)
|
2747 |
|
|
xfs_idestroy_fork(ip, XFS_ATTR_FORK);
|
2748 |
|
|
mrfree(&ip->i_lock);
|
2749 |
|
|
mrfree(&ip->i_iolock);
|
2750 |
|
|
freesema(&ip->i_flock);
|
2751 |
|
|
|
2752 |
|
|
#ifdef XFS_VNODE_TRACE
|
2753 |
|
|
ktrace_free(ip->i_trace);
|
2754 |
|
|
#endif
|
2755 |
|
|
#ifdef XFS_BMAP_TRACE
|
2756 |
|
|
ktrace_free(ip->i_xtrace);
|
2757 |
|
|
#endif
|
2758 |
|
|
#ifdef XFS_BMBT_TRACE
|
2759 |
|
|
ktrace_free(ip->i_btrace);
|
2760 |
|
|
#endif
|
2761 |
|
|
#ifdef XFS_RW_TRACE
|
2762 |
|
|
ktrace_free(ip->i_rwtrace);
|
2763 |
|
|
#endif
|
2764 |
|
|
#ifdef XFS_ILOCK_TRACE
|
2765 |
|
|
ktrace_free(ip->i_lock_trace);
|
2766 |
|
|
#endif
|
2767 |
|
|
#ifdef XFS_DIR2_TRACE
|
2768 |
|
|
ktrace_free(ip->i_dir_trace);
|
2769 |
|
|
#endif
|
2770 |
|
|
if (ip->i_itemp) {
|
2771 |
|
|
/*
|
2772 |
|
|
* Only if we are shutting down the fs will we see an
|
2773 |
|
|
* inode still in the AIL. If it is there, we should remove
|
2774 |
|
|
* it to prevent a use-after-free from occurring.
|
2775 |
|
|
*/
|
2776 |
|
|
xfs_mount_t *mp = ip->i_mount;
|
2777 |
|
|
xfs_log_item_t *lip = &ip->i_itemp->ili_item;
|
2778 |
|
|
int s;
|
2779 |
|
|
|
2780 |
|
|
ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
|
2781 |
|
|
XFS_FORCED_SHUTDOWN(ip->i_mount));
|
2782 |
|
|
if (lip->li_flags & XFS_LI_IN_AIL) {
|
2783 |
|
|
AIL_LOCK(mp, s);
|
2784 |
|
|
if (lip->li_flags & XFS_LI_IN_AIL)
|
2785 |
|
|
xfs_trans_delete_ail(mp, lip, s);
|
2786 |
|
|
else
|
2787 |
|
|
AIL_UNLOCK(mp, s);
|
2788 |
|
|
}
|
2789 |
|
|
xfs_inode_item_destroy(ip);
|
2790 |
|
|
}
|
2791 |
|
|
kmem_zone_free(xfs_inode_zone, ip);
|
2792 |
|
|
}
|
2793 |
|
|
|
2794 |
|
|
|
2795 |
|
|
/*
|
2796 |
|
|
* Increment the pin count of the given buffer.
|
2797 |
|
|
* This value is protected by ipinlock spinlock in the mount structure.
|
2798 |
|
|
*/
|
2799 |
|
|
void
|
2800 |
|
|
xfs_ipin(
|
2801 |
|
|
xfs_inode_t *ip)
|
2802 |
|
|
{
|
2803 |
|
|
ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
|
2804 |
|
|
|
2805 |
|
|
atomic_inc(&ip->i_pincount);
|
2806 |
|
|
}
|
2807 |
|
|
|
2808 |
|
|
/*
|
2809 |
|
|
* Decrement the pin count of the given inode, and wake up
|
2810 |
|
|
* anyone in xfs_iwait_unpin() if the count goes to 0. The
|
2811 |
|
|
* inode must have been previously pinned with a call to xfs_ipin().
|
2812 |
|
|
*/
|
2813 |
|
|
void
|
2814 |
|
|
xfs_iunpin(
|
2815 |
|
|
xfs_inode_t *ip)
|
2816 |
|
|
{
|
2817 |
|
|
ASSERT(atomic_read(&ip->i_pincount) > 0);
|
2818 |
|
|
|
2819 |
|
|
if (atomic_dec_and_lock(&ip->i_pincount, &ip->i_flags_lock)) {
|
2820 |
|
|
|
2821 |
|
|
/*
|
2822 |
|
|
* If the inode is currently being reclaimed, the link between
|
2823 |
|
|
* the bhv_vnode and the xfs_inode will be broken after the
|
2824 |
|
|
* XFS_IRECLAIM* flag is set. Hence, if these flags are not
|
2825 |
|
|
* set, then we can move forward and mark the linux inode dirty
|
2826 |
|
|
* knowing that it is still valid as it won't freed until after
|
2827 |
|
|
* the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The
|
2828 |
|
|
* i_flags_lock is used to synchronise the setting of the
|
2829 |
|
|
* XFS_IRECLAIM* flags and the breaking of the link, and so we
|
2830 |
|
|
* can execute atomically w.r.t to reclaim by holding this lock
|
2831 |
|
|
* here.
|
2832 |
|
|
*
|
2833 |
|
|
* However, we still need to issue the unpin wakeup call as the
|
2834 |
|
|
* inode reclaim may be blocked waiting for the inode to become
|
2835 |
|
|
* unpinned.
|
2836 |
|
|
*/
|
2837 |
|
|
|
2838 |
|
|
if (!__xfs_iflags_test(ip, XFS_IRECLAIM|XFS_IRECLAIMABLE)) {
|
2839 |
|
|
bhv_vnode_t *vp = XFS_ITOV_NULL(ip);
|
2840 |
|
|
struct inode *inode = NULL;
|
2841 |
|
|
|
2842 |
|
|
BUG_ON(vp == NULL);
|
2843 |
|
|
inode = vn_to_inode(vp);
|
2844 |
|
|
BUG_ON(inode->i_state & I_CLEAR);
|
2845 |
|
|
|
2846 |
|
|
/* make sync come back and flush this inode */
|
2847 |
|
|
if (!(inode->i_state & (I_NEW|I_FREEING)))
|
2848 |
|
|
mark_inode_dirty_sync(inode);
|
2849 |
|
|
}
|
2850 |
|
|
spin_unlock(&ip->i_flags_lock);
|
2851 |
|
|
wake_up(&ip->i_ipin_wait);
|
2852 |
|
|
}
|
2853 |
|
|
}
|
2854 |
|
|
|
2855 |
|
|
/*
|
2856 |
|
|
* This is called to wait for the given inode to be unpinned.
|
2857 |
|
|
* It will sleep until this happens. The caller must have the
|
2858 |
|
|
* inode locked in at least shared mode so that the buffer cannot
|
2859 |
|
|
* be subsequently pinned once someone is waiting for it to be
|
2860 |
|
|
* unpinned.
|
2861 |
|
|
*/
|
2862 |
|
|
STATIC void
|
2863 |
|
|
xfs_iunpin_wait(
|
2864 |
|
|
xfs_inode_t *ip)
|
2865 |
|
|
{
|
2866 |
|
|
xfs_inode_log_item_t *iip;
|
2867 |
|
|
xfs_lsn_t lsn;
|
2868 |
|
|
|
2869 |
|
|
ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
|
2870 |
|
|
|
2871 |
|
|
if (atomic_read(&ip->i_pincount) == 0) {
|
2872 |
|
|
return;
|
2873 |
|
|
}
|
2874 |
|
|
|
2875 |
|
|
iip = ip->i_itemp;
|
2876 |
|
|
if (iip && iip->ili_last_lsn) {
|
2877 |
|
|
lsn = iip->ili_last_lsn;
|
2878 |
|
|
} else {
|
2879 |
|
|
lsn = (xfs_lsn_t)0;
|
2880 |
|
|
}
|
2881 |
|
|
|
2882 |
|
|
/*
|
2883 |
|
|
* Give the log a push so we don't wait here too long.
|
2884 |
|
|
*/
|
2885 |
|
|
xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
|
2886 |
|
|
|
2887 |
|
|
wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
|
2888 |
|
|
}
|
2889 |
|
|
|
2890 |
|
|
|
2891 |
|
|
/*
|
2892 |
|
|
* xfs_iextents_copy()
|
2893 |
|
|
*
|
2894 |
|
|
* This is called to copy the REAL extents (as opposed to the delayed
|
2895 |
|
|
* allocation extents) from the inode into the given buffer. It
|
2896 |
|
|
* returns the number of bytes copied into the buffer.
|
2897 |
|
|
*
|
2898 |
|
|
* If there are no delayed allocation extents, then we can just
|
2899 |
|
|
* memcpy() the extents into the buffer. Otherwise, we need to
|
2900 |
|
|
* examine each extent in turn and skip those which are delayed.
|
2901 |
|
|
*/
|
2902 |
|
|
int
|
2903 |
|
|
xfs_iextents_copy(
|
2904 |
|
|
xfs_inode_t *ip,
|
2905 |
|
|
xfs_bmbt_rec_t *dp,
|
2906 |
|
|
int whichfork)
|
2907 |
|
|
{
|
2908 |
|
|
int copied;
|
2909 |
|
|
int i;
|
2910 |
|
|
xfs_ifork_t *ifp;
|
2911 |
|
|
int nrecs;
|
2912 |
|
|
xfs_fsblock_t start_block;
|
2913 |
|
|
|
2914 |
|
|
ifp = XFS_IFORK_PTR(ip, whichfork);
|
2915 |
|
|
ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
|
2916 |
|
|
ASSERT(ifp->if_bytes > 0);
|
2917 |
|
|
|
2918 |
|
|
nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
|
2919 |
|
|
XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
|
2920 |
|
|
ASSERT(nrecs > 0);
|
2921 |
|
|
|
2922 |
|
|
/*
|
2923 |
|
|
* There are some delayed allocation extents in the
|
2924 |
|
|
* inode, so copy the extents one at a time and skip
|
2925 |
|
|
* the delayed ones. There must be at least one
|
2926 |
|
|
* non-delayed extent.
|
2927 |
|
|
*/
|
2928 |
|
|
copied = 0;
|
2929 |
|
|
for (i = 0; i < nrecs; i++) {
|
2930 |
|
|
xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
|
2931 |
|
|
start_block = xfs_bmbt_get_startblock(ep);
|
2932 |
|
|
if (ISNULLSTARTBLOCK(start_block)) {
|
2933 |
|
|
/*
|
2934 |
|
|
* It's a delayed allocation extent, so skip it.
|
2935 |
|
|
*/
|
2936 |
|
|
continue;
|
2937 |
|
|
}
|
2938 |
|
|
|
2939 |
|
|
/* Translate to on disk format */
|
2940 |
|
|
put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
|
2941 |
|
|
put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
|
2942 |
|
|
dp++;
|
2943 |
|
|
copied++;
|
2944 |
|
|
}
|
2945 |
|
|
ASSERT(copied != 0);
|
2946 |
|
|
xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
|
2947 |
|
|
|
2948 |
|
|
return (copied * (uint)sizeof(xfs_bmbt_rec_t));
|
2949 |
|
|
}
|
2950 |
|
|
|
2951 |
|
|
/*
|
2952 |
|
|
* Each of the following cases stores data into the same region
|
2953 |
|
|
* of the on-disk inode, so only one of them can be valid at
|
2954 |
|
|
* any given time. While it is possible to have conflicting formats
|
2955 |
|
|
* and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
|
2956 |
|
|
* in EXTENTS format, this can only happen when the fork has
|
2957 |
|
|
* changed formats after being modified but before being flushed.
|
2958 |
|
|
* In these cases, the format always takes precedence, because the
|
2959 |
|
|
* format indicates the current state of the fork.
|
2960 |
|
|
*/
|
2961 |
|
|
/*ARGSUSED*/
|
2962 |
|
|
STATIC int
|
2963 |
|
|
xfs_iflush_fork(
|
2964 |
|
|
xfs_inode_t *ip,
|
2965 |
|
|
xfs_dinode_t *dip,
|
2966 |
|
|
xfs_inode_log_item_t *iip,
|
2967 |
|
|
int whichfork,
|
2968 |
|
|
xfs_buf_t *bp)
|
2969 |
|
|
{
|
2970 |
|
|
char *cp;
|
2971 |
|
|
xfs_ifork_t *ifp;
|
2972 |
|
|
xfs_mount_t *mp;
|
2973 |
|
|
#ifdef XFS_TRANS_DEBUG
|
2974 |
|
|
int first;
|
2975 |
|
|
#endif
|
2976 |
|
|
static const short brootflag[2] =
|
2977 |
|
|
{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
|
2978 |
|
|
static const short dataflag[2] =
|
2979 |
|
|
{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
|
2980 |
|
|
static const short extflag[2] =
|
2981 |
|
|
{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
|
2982 |
|
|
|
2983 |
|
|
if (iip == NULL)
|
2984 |
|
|
return 0;
|
2985 |
|
|
ifp = XFS_IFORK_PTR(ip, whichfork);
|
2986 |
|
|
/*
|
2987 |
|
|
* This can happen if we gave up in iformat in an error path,
|
2988 |
|
|
* for the attribute fork.
|
2989 |
|
|
*/
|
2990 |
|
|
if (ifp == NULL) {
|
2991 |
|
|
ASSERT(whichfork == XFS_ATTR_FORK);
|
2992 |
|
|
return 0;
|
2993 |
|
|
}
|
2994 |
|
|
cp = XFS_DFORK_PTR(dip, whichfork);
|
2995 |
|
|
mp = ip->i_mount;
|
2996 |
|
|
switch (XFS_IFORK_FORMAT(ip, whichfork)) {
|
2997 |
|
|
case XFS_DINODE_FMT_LOCAL:
|
2998 |
|
|
if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
|
2999 |
|
|
(ifp->if_bytes > 0)) {
|
3000 |
|
|
ASSERT(ifp->if_u1.if_data != NULL);
|
3001 |
|
|
ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
|
3002 |
|
|
memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
|
3003 |
|
|
}
|
3004 |
|
|
break;
|
3005 |
|
|
|
3006 |
|
|
case XFS_DINODE_FMT_EXTENTS:
|
3007 |
|
|
ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
|
3008 |
|
|
!(iip->ili_format.ilf_fields & extflag[whichfork]));
|
3009 |
|
|
ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
|
3010 |
|
|
(ifp->if_bytes == 0));
|
3011 |
|
|
ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
|
3012 |
|
|
(ifp->if_bytes > 0));
|
3013 |
|
|
if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
|
3014 |
|
|
(ifp->if_bytes > 0)) {
|
3015 |
|
|
ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
|
3016 |
|
|
(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
|
3017 |
|
|
whichfork);
|
3018 |
|
|
}
|
3019 |
|
|
break;
|
3020 |
|
|
|
3021 |
|
|
case XFS_DINODE_FMT_BTREE:
|
3022 |
|
|
if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
|
3023 |
|
|
(ifp->if_broot_bytes > 0)) {
|
3024 |
|
|
ASSERT(ifp->if_broot != NULL);
|
3025 |
|
|
ASSERT(ifp->if_broot_bytes <=
|
3026 |
|
|
(XFS_IFORK_SIZE(ip, whichfork) +
|
3027 |
|
|
XFS_BROOT_SIZE_ADJ));
|
3028 |
|
|
xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
|
3029 |
|
|
(xfs_bmdr_block_t *)cp,
|
3030 |
|
|
XFS_DFORK_SIZE(dip, mp, whichfork));
|
3031 |
|
|
}
|
3032 |
|
|
break;
|
3033 |
|
|
|
3034 |
|
|
case XFS_DINODE_FMT_DEV:
|
3035 |
|
|
if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
|
3036 |
|
|
ASSERT(whichfork == XFS_DATA_FORK);
|
3037 |
|
|
dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
|
3038 |
|
|
}
|
3039 |
|
|
break;
|
3040 |
|
|
|
3041 |
|
|
case XFS_DINODE_FMT_UUID:
|
3042 |
|
|
if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
|
3043 |
|
|
ASSERT(whichfork == XFS_DATA_FORK);
|
3044 |
|
|
memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
|
3045 |
|
|
sizeof(uuid_t));
|
3046 |
|
|
}
|
3047 |
|
|
break;
|
3048 |
|
|
|
3049 |
|
|
default:
|
3050 |
|
|
ASSERT(0);
|
3051 |
|
|
break;
|
3052 |
|
|
}
|
3053 |
|
|
|
3054 |
|
|
return 0;
|
3055 |
|
|
}
|
3056 |
|
|
|
3057 |
|
|
/*
|
3058 |
|
|
* xfs_iflush() will write a modified inode's changes out to the
|
3059 |
|
|
* inode's on disk home. The caller must have the inode lock held
|
3060 |
|
|
* in at least shared mode and the inode flush semaphore must be
|
3061 |
|
|
* held as well. The inode lock will still be held upon return from
|
3062 |
|
|
* the call and the caller is free to unlock it.
|
3063 |
|
|
* The inode flush lock will be unlocked when the inode reaches the disk.
|
3064 |
|
|
* The flags indicate how the inode's buffer should be written out.
|
3065 |
|
|
*/
|
3066 |
|
|
int
|
3067 |
|
|
xfs_iflush(
|
3068 |
|
|
xfs_inode_t *ip,
|
3069 |
|
|
uint flags)
|
3070 |
|
|
{
|
3071 |
|
|
xfs_inode_log_item_t *iip;
|
3072 |
|
|
xfs_buf_t *bp;
|
3073 |
|
|
xfs_dinode_t *dip;
|
3074 |
|
|
xfs_mount_t *mp;
|
3075 |
|
|
int error;
|
3076 |
|
|
/* REFERENCED */
|
3077 |
|
|
xfs_inode_t *iq;
|
3078 |
|
|
int clcount; /* count of inodes clustered */
|
3079 |
|
|
int bufwasdelwri;
|
3080 |
|
|
struct hlist_node *entry;
|
3081 |
|
|
enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
|
3082 |
|
|
|
3083 |
|
|
XFS_STATS_INC(xs_iflush_count);
|
3084 |
|
|
|
3085 |
|
|
ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
|
3086 |
|
|
ASSERT(issemalocked(&(ip->i_flock)));
|
3087 |
|
|
ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
|
3088 |
|
|
ip->i_d.di_nextents > ip->i_df.if_ext_max);
|
3089 |
|
|
|
3090 |
|
|
iip = ip->i_itemp;
|
3091 |
|
|
mp = ip->i_mount;
|
3092 |
|
|
|
3093 |
|
|
/*
|
3094 |
|
|
* If the inode isn't dirty, then just release the inode
|
3095 |
|
|
* flush lock and do nothing.
|
3096 |
|
|
*/
|
3097 |
|
|
if ((ip->i_update_core == 0) &&
|
3098 |
|
|
((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
|
3099 |
|
|
ASSERT((iip != NULL) ?
|
3100 |
|
|
!(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
|
3101 |
|
|
xfs_ifunlock(ip);
|
3102 |
|
|
return 0;
|
3103 |
|
|
}
|
3104 |
|
|
|
3105 |
|
|
/*
|
3106 |
|
|
* We can't flush the inode until it is unpinned, so
|
3107 |
|
|
* wait for it. We know noone new can pin it, because
|
3108 |
|
|
* we are holding the inode lock shared and you need
|
3109 |
|
|
* to hold it exclusively to pin the inode.
|
3110 |
|
|
*/
|
3111 |
|
|
xfs_iunpin_wait(ip);
|
3112 |
|
|
|
3113 |
|
|
/*
|
3114 |
|
|
* This may have been unpinned because the filesystem is shutting
|
3115 |
|
|
* down forcibly. If that's the case we must not write this inode
|
3116 |
|
|
* to disk, because the log record didn't make it to disk!
|
3117 |
|
|
*/
|
3118 |
|
|
if (XFS_FORCED_SHUTDOWN(mp)) {
|
3119 |
|
|
ip->i_update_core = 0;
|
3120 |
|
|
if (iip)
|
3121 |
|
|
iip->ili_format.ilf_fields = 0;
|
3122 |
|
|
xfs_ifunlock(ip);
|
3123 |
|
|
return XFS_ERROR(EIO);
|
3124 |
|
|
}
|
3125 |
|
|
|
3126 |
|
|
/*
|
3127 |
|
|
* Get the buffer containing the on-disk inode.
|
3128 |
|
|
*/
|
3129 |
|
|
error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
|
3130 |
|
|
if (error) {
|
3131 |
|
|
xfs_ifunlock(ip);
|
3132 |
|
|
return error;
|
3133 |
|
|
}
|
3134 |
|
|
|
3135 |
|
|
/*
|
3136 |
|
|
* Decide how buffer will be flushed out. This is done before
|
3137 |
|
|
* the call to xfs_iflush_int because this field is zeroed by it.
|
3138 |
|
|
*/
|
3139 |
|
|
if (iip != NULL && iip->ili_format.ilf_fields != 0) {
|
3140 |
|
|
/*
|
3141 |
|
|
* Flush out the inode buffer according to the directions
|
3142 |
|
|
* of the caller. In the cases where the caller has given
|
3143 |
|
|
* us a choice choose the non-delwri case. This is because
|
3144 |
|
|
* the inode is in the AIL and we need to get it out soon.
|
3145 |
|
|
*/
|
3146 |
|
|
switch (flags) {
|
3147 |
|
|
case XFS_IFLUSH_SYNC:
|
3148 |
|
|
case XFS_IFLUSH_DELWRI_ELSE_SYNC:
|
3149 |
|
|
flags = 0;
|
3150 |
|
|
break;
|
3151 |
|
|
case XFS_IFLUSH_ASYNC:
|
3152 |
|
|
case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
|
3153 |
|
|
flags = INT_ASYNC;
|
3154 |
|
|
break;
|
3155 |
|
|
case XFS_IFLUSH_DELWRI:
|
3156 |
|
|
flags = INT_DELWRI;
|
3157 |
|
|
break;
|
3158 |
|
|
default:
|
3159 |
|
|
ASSERT(0);
|
3160 |
|
|
flags = 0;
|
3161 |
|
|
break;
|
3162 |
|
|
}
|
3163 |
|
|
} else {
|
3164 |
|
|
switch (flags) {
|
3165 |
|
|
case XFS_IFLUSH_DELWRI_ELSE_SYNC:
|
3166 |
|
|
case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
|
3167 |
|
|
case XFS_IFLUSH_DELWRI:
|
3168 |
|
|
flags = INT_DELWRI;
|
3169 |
|
|
break;
|
3170 |
|
|
case XFS_IFLUSH_ASYNC:
|
3171 |
|
|
flags = INT_ASYNC;
|
3172 |
|
|
break;
|
3173 |
|
|
case XFS_IFLUSH_SYNC:
|
3174 |
|
|
flags = 0;
|
3175 |
|
|
break;
|
3176 |
|
|
default:
|
3177 |
|
|
ASSERT(0);
|
3178 |
|
|
flags = 0;
|
3179 |
|
|
break;
|
3180 |
|
|
}
|
3181 |
|
|
}
|
3182 |
|
|
|
3183 |
|
|
/*
|
3184 |
|
|
* First flush out the inode that xfs_iflush was called with.
|
3185 |
|
|
*/
|
3186 |
|
|
error = xfs_iflush_int(ip, bp);
|
3187 |
|
|
if (error) {
|
3188 |
|
|
goto corrupt_out;
|
3189 |
|
|
}
|
3190 |
|
|
|
3191 |
|
|
/*
|
3192 |
|
|
* inode clustering:
|
3193 |
|
|
* see if other inodes can be gathered into this write
|
3194 |
|
|
*/
|
3195 |
|
|
spin_lock(&ip->i_cluster->icl_lock);
|
3196 |
|
|
ip->i_cluster->icl_buf = bp;
|
3197 |
|
|
|
3198 |
|
|
clcount = 0;
|
3199 |
|
|
hlist_for_each_entry(iq, entry, &ip->i_cluster->icl_inodes, i_cnode) {
|
3200 |
|
|
if (iq == ip)
|
3201 |
|
|
continue;
|
3202 |
|
|
|
3203 |
|
|
/*
|
3204 |
|
|
* Do an un-protected check to see if the inode is dirty and
|
3205 |
|
|
* is a candidate for flushing. These checks will be repeated
|
3206 |
|
|
* later after the appropriate locks are acquired.
|
3207 |
|
|
*/
|
3208 |
|
|
iip = iq->i_itemp;
|
3209 |
|
|
if ((iq->i_update_core == 0) &&
|
3210 |
|
|
((iip == NULL) ||
|
3211 |
|
|
!(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
|
3212 |
|
|
xfs_ipincount(iq) == 0) {
|
3213 |
|
|
continue;
|
3214 |
|
|
}
|
3215 |
|
|
|
3216 |
|
|
/*
|
3217 |
|
|
* Try to get locks. If any are unavailable,
|
3218 |
|
|
* then this inode cannot be flushed and is skipped.
|
3219 |
|
|
*/
|
3220 |
|
|
|
3221 |
|
|
/* get inode locks (just i_lock) */
|
3222 |
|
|
if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
|
3223 |
|
|
/* get inode flush lock */
|
3224 |
|
|
if (xfs_iflock_nowait(iq)) {
|
3225 |
|
|
/* check if pinned */
|
3226 |
|
|
if (xfs_ipincount(iq) == 0) {
|
3227 |
|
|
/* arriving here means that
|
3228 |
|
|
* this inode can be flushed.
|
3229 |
|
|
* first re-check that it's
|
3230 |
|
|
* dirty
|
3231 |
|
|
*/
|
3232 |
|
|
iip = iq->i_itemp;
|
3233 |
|
|
if ((iq->i_update_core != 0)||
|
3234 |
|
|
((iip != NULL) &&
|
3235 |
|
|
(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
|
3236 |
|
|
clcount++;
|
3237 |
|
|
error = xfs_iflush_int(iq, bp);
|
3238 |
|
|
if (error) {
|
3239 |
|
|
xfs_iunlock(iq,
|
3240 |
|
|
XFS_ILOCK_SHARED);
|
3241 |
|
|
goto cluster_corrupt_out;
|
3242 |
|
|
}
|
3243 |
|
|
} else {
|
3244 |
|
|
xfs_ifunlock(iq);
|
3245 |
|
|
}
|
3246 |
|
|
} else {
|
3247 |
|
|
xfs_ifunlock(iq);
|
3248 |
|
|
}
|
3249 |
|
|
}
|
3250 |
|
|
xfs_iunlock(iq, XFS_ILOCK_SHARED);
|
3251 |
|
|
}
|
3252 |
|
|
}
|
3253 |
|
|
spin_unlock(&ip->i_cluster->icl_lock);
|
3254 |
|
|
|
3255 |
|
|
if (clcount) {
|
3256 |
|
|
XFS_STATS_INC(xs_icluster_flushcnt);
|
3257 |
|
|
XFS_STATS_ADD(xs_icluster_flushinode, clcount);
|
3258 |
|
|
}
|
3259 |
|
|
|
3260 |
|
|
/*
|
3261 |
|
|
* If the buffer is pinned then push on the log so we won't
|
3262 |
|
|
* get stuck waiting in the write for too long.
|
3263 |
|
|
*/
|
3264 |
|
|
if (XFS_BUF_ISPINNED(bp)){
|
3265 |
|
|
xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
|
3266 |
|
|
}
|
3267 |
|
|
|
3268 |
|
|
if (flags & INT_DELWRI) {
|
3269 |
|
|
xfs_bdwrite(mp, bp);
|
3270 |
|
|
} else if (flags & INT_ASYNC) {
|
3271 |
|
|
xfs_bawrite(mp, bp);
|
3272 |
|
|
} else {
|
3273 |
|
|
error = xfs_bwrite(mp, bp);
|
3274 |
|
|
}
|
3275 |
|
|
return error;
|
3276 |
|
|
|
3277 |
|
|
corrupt_out:
|
3278 |
|
|
xfs_buf_relse(bp);
|
3279 |
|
|
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
|
3280 |
|
|
xfs_iflush_abort(ip);
|
3281 |
|
|
/*
|
3282 |
|
|
* Unlocks the flush lock
|
3283 |
|
|
*/
|
3284 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
3285 |
|
|
|
3286 |
|
|
cluster_corrupt_out:
|
3287 |
|
|
/* Corruption detected in the clustering loop. Invalidate the
|
3288 |
|
|
* inode buffer and shut down the filesystem.
|
3289 |
|
|
*/
|
3290 |
|
|
spin_unlock(&ip->i_cluster->icl_lock);
|
3291 |
|
|
|
3292 |
|
|
/*
|
3293 |
|
|
* Clean up the buffer. If it was B_DELWRI, just release it --
|
3294 |
|
|
* brelse can handle it with no problems. If not, shut down the
|
3295 |
|
|
* filesystem before releasing the buffer.
|
3296 |
|
|
*/
|
3297 |
|
|
if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
|
3298 |
|
|
xfs_buf_relse(bp);
|
3299 |
|
|
}
|
3300 |
|
|
|
3301 |
|
|
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
|
3302 |
|
|
|
3303 |
|
|
if(!bufwasdelwri) {
|
3304 |
|
|
/*
|
3305 |
|
|
* Just like incore_relse: if we have b_iodone functions,
|
3306 |
|
|
* mark the buffer as an error and call them. Otherwise
|
3307 |
|
|
* mark it as stale and brelse.
|
3308 |
|
|
*/
|
3309 |
|
|
if (XFS_BUF_IODONE_FUNC(bp)) {
|
3310 |
|
|
XFS_BUF_CLR_BDSTRAT_FUNC(bp);
|
3311 |
|
|
XFS_BUF_UNDONE(bp);
|
3312 |
|
|
XFS_BUF_STALE(bp);
|
3313 |
|
|
XFS_BUF_SHUT(bp);
|
3314 |
|
|
XFS_BUF_ERROR(bp,EIO);
|
3315 |
|
|
xfs_biodone(bp);
|
3316 |
|
|
} else {
|
3317 |
|
|
XFS_BUF_STALE(bp);
|
3318 |
|
|
xfs_buf_relse(bp);
|
3319 |
|
|
}
|
3320 |
|
|
}
|
3321 |
|
|
|
3322 |
|
|
xfs_iflush_abort(iq);
|
3323 |
|
|
/*
|
3324 |
|
|
* Unlocks the flush lock
|
3325 |
|
|
*/
|
3326 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
3327 |
|
|
}
|
3328 |
|
|
|
3329 |
|
|
|
3330 |
|
|
STATIC int
|
3331 |
|
|
xfs_iflush_int(
|
3332 |
|
|
xfs_inode_t *ip,
|
3333 |
|
|
xfs_buf_t *bp)
|
3334 |
|
|
{
|
3335 |
|
|
xfs_inode_log_item_t *iip;
|
3336 |
|
|
xfs_dinode_t *dip;
|
3337 |
|
|
xfs_mount_t *mp;
|
3338 |
|
|
#ifdef XFS_TRANS_DEBUG
|
3339 |
|
|
int first;
|
3340 |
|
|
#endif
|
3341 |
|
|
SPLDECL(s);
|
3342 |
|
|
|
3343 |
|
|
ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
|
3344 |
|
|
ASSERT(issemalocked(&(ip->i_flock)));
|
3345 |
|
|
ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
|
3346 |
|
|
ip->i_d.di_nextents > ip->i_df.if_ext_max);
|
3347 |
|
|
|
3348 |
|
|
iip = ip->i_itemp;
|
3349 |
|
|
mp = ip->i_mount;
|
3350 |
|
|
|
3351 |
|
|
|
3352 |
|
|
/*
|
3353 |
|
|
* If the inode isn't dirty, then just release the inode
|
3354 |
|
|
* flush lock and do nothing.
|
3355 |
|
|
*/
|
3356 |
|
|
if ((ip->i_update_core == 0) &&
|
3357 |
|
|
((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
|
3358 |
|
|
xfs_ifunlock(ip);
|
3359 |
|
|
return 0;
|
3360 |
|
|
}
|
3361 |
|
|
|
3362 |
|
|
/* set *dip = inode's place in the buffer */
|
3363 |
|
|
dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
|
3364 |
|
|
|
3365 |
|
|
/*
|
3366 |
|
|
* Clear i_update_core before copying out the data.
|
3367 |
|
|
* This is for coordination with our timestamp updates
|
3368 |
|
|
* that don't hold the inode lock. They will always
|
3369 |
|
|
* update the timestamps BEFORE setting i_update_core,
|
3370 |
|
|
* so if we clear i_update_core after they set it we
|
3371 |
|
|
* are guaranteed to see their updates to the timestamps.
|
3372 |
|
|
* I believe that this depends on strongly ordered memory
|
3373 |
|
|
* semantics, but we have that. We use the SYNCHRONIZE
|
3374 |
|
|
* macro to make sure that the compiler does not reorder
|
3375 |
|
|
* the i_update_core access below the data copy below.
|
3376 |
|
|
*/
|
3377 |
|
|
ip->i_update_core = 0;
|
3378 |
|
|
SYNCHRONIZE();
|
3379 |
|
|
|
3380 |
|
|
/*
|
3381 |
|
|
* Make sure to get the latest atime from the Linux inode.
|
3382 |
|
|
*/
|
3383 |
|
|
xfs_synchronize_atime(ip);
|
3384 |
|
|
|
3385 |
|
|
if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
|
3386 |
|
|
mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
|
3387 |
|
|
xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
|
3388 |
|
|
"xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
|
3389 |
|
|
ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
|
3390 |
|
|
goto corrupt_out;
|
3391 |
|
|
}
|
3392 |
|
|
if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
|
3393 |
|
|
mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
|
3394 |
|
|
xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
|
3395 |
|
|
"xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
|
3396 |
|
|
ip->i_ino, ip, ip->i_d.di_magic);
|
3397 |
|
|
goto corrupt_out;
|
3398 |
|
|
}
|
3399 |
|
|
if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
|
3400 |
|
|
if (XFS_TEST_ERROR(
|
3401 |
|
|
(ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
|
3402 |
|
|
(ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
|
3403 |
|
|
mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
|
3404 |
|
|
xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
|
3405 |
|
|
"xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
|
3406 |
|
|
ip->i_ino, ip);
|
3407 |
|
|
goto corrupt_out;
|
3408 |
|
|
}
|
3409 |
|
|
} else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
|
3410 |
|
|
if (XFS_TEST_ERROR(
|
3411 |
|
|
(ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
|
3412 |
|
|
(ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
|
3413 |
|
|
(ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
|
3414 |
|
|
mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
|
3415 |
|
|
xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
|
3416 |
|
|
"xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
|
3417 |
|
|
ip->i_ino, ip);
|
3418 |
|
|
goto corrupt_out;
|
3419 |
|
|
}
|
3420 |
|
|
}
|
3421 |
|
|
if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
|
3422 |
|
|
ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
|
3423 |
|
|
XFS_RANDOM_IFLUSH_5)) {
|
3424 |
|
|
xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
|
3425 |
|
|
"xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
|
3426 |
|
|
ip->i_ino,
|
3427 |
|
|
ip->i_d.di_nextents + ip->i_d.di_anextents,
|
3428 |
|
|
ip->i_d.di_nblocks,
|
3429 |
|
|
ip);
|
3430 |
|
|
goto corrupt_out;
|
3431 |
|
|
}
|
3432 |
|
|
if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
|
3433 |
|
|
mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
|
3434 |
|
|
xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
|
3435 |
|
|
"xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
|
3436 |
|
|
ip->i_ino, ip->i_d.di_forkoff, ip);
|
3437 |
|
|
goto corrupt_out;
|
3438 |
|
|
}
|
3439 |
|
|
/*
|
3440 |
|
|
* bump the flush iteration count, used to detect flushes which
|
3441 |
|
|
* postdate a log record during recovery.
|
3442 |
|
|
*/
|
3443 |
|
|
|
3444 |
|
|
ip->i_d.di_flushiter++;
|
3445 |
|
|
|
3446 |
|
|
/*
|
3447 |
|
|
* Copy the dirty parts of the inode into the on-disk
|
3448 |
|
|
* inode. We always copy out the core of the inode,
|
3449 |
|
|
* because if the inode is dirty at all the core must
|
3450 |
|
|
* be.
|
3451 |
|
|
*/
|
3452 |
|
|
xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
|
3453 |
|
|
|
3454 |
|
|
/* Wrap, we never let the log put out DI_MAX_FLUSH */
|
3455 |
|
|
if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
|
3456 |
|
|
ip->i_d.di_flushiter = 0;
|
3457 |
|
|
|
3458 |
|
|
/*
|
3459 |
|
|
* If this is really an old format inode and the superblock version
|
3460 |
|
|
* has not been updated to support only new format inodes, then
|
3461 |
|
|
* convert back to the old inode format. If the superblock version
|
3462 |
|
|
* has been updated, then make the conversion permanent.
|
3463 |
|
|
*/
|
3464 |
|
|
ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
|
3465 |
|
|
XFS_SB_VERSION_HASNLINK(&mp->m_sb));
|
3466 |
|
|
if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
|
3467 |
|
|
if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
|
3468 |
|
|
/*
|
3469 |
|
|
* Convert it back.
|
3470 |
|
|
*/
|
3471 |
|
|
ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
|
3472 |
|
|
dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
|
3473 |
|
|
} else {
|
3474 |
|
|
/*
|
3475 |
|
|
* The superblock version has already been bumped,
|
3476 |
|
|
* so just make the conversion to the new inode
|
3477 |
|
|
* format permanent.
|
3478 |
|
|
*/
|
3479 |
|
|
ip->i_d.di_version = XFS_DINODE_VERSION_2;
|
3480 |
|
|
dip->di_core.di_version = XFS_DINODE_VERSION_2;
|
3481 |
|
|
ip->i_d.di_onlink = 0;
|
3482 |
|
|
dip->di_core.di_onlink = 0;
|
3483 |
|
|
memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
|
3484 |
|
|
memset(&(dip->di_core.di_pad[0]), 0,
|
3485 |
|
|
sizeof(dip->di_core.di_pad));
|
3486 |
|
|
ASSERT(ip->i_d.di_projid == 0);
|
3487 |
|
|
}
|
3488 |
|
|
}
|
3489 |
|
|
|
3490 |
|
|
if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
|
3491 |
|
|
goto corrupt_out;
|
3492 |
|
|
}
|
3493 |
|
|
|
3494 |
|
|
if (XFS_IFORK_Q(ip)) {
|
3495 |
|
|
/*
|
3496 |
|
|
* The only error from xfs_iflush_fork is on the data fork.
|
3497 |
|
|
*/
|
3498 |
|
|
(void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
|
3499 |
|
|
}
|
3500 |
|
|
xfs_inobp_check(mp, bp);
|
3501 |
|
|
|
3502 |
|
|
/*
|
3503 |
|
|
* We've recorded everything logged in the inode, so we'd
|
3504 |
|
|
* like to clear the ilf_fields bits so we don't log and
|
3505 |
|
|
* flush things unnecessarily. However, we can't stop
|
3506 |
|
|
* logging all this information until the data we've copied
|
3507 |
|
|
* into the disk buffer is written to disk. If we did we might
|
3508 |
|
|
* overwrite the copy of the inode in the log with all the
|
3509 |
|
|
* data after re-logging only part of it, and in the face of
|
3510 |
|
|
* a crash we wouldn't have all the data we need to recover.
|
3511 |
|
|
*
|
3512 |
|
|
* What we do is move the bits to the ili_last_fields field.
|
3513 |
|
|
* When logging the inode, these bits are moved back to the
|
3514 |
|
|
* ilf_fields field. In the xfs_iflush_done() routine we
|
3515 |
|
|
* clear ili_last_fields, since we know that the information
|
3516 |
|
|
* those bits represent is permanently on disk. As long as
|
3517 |
|
|
* the flush completes before the inode is logged again, then
|
3518 |
|
|
* both ilf_fields and ili_last_fields will be cleared.
|
3519 |
|
|
*
|
3520 |
|
|
* We can play with the ilf_fields bits here, because the inode
|
3521 |
|
|
* lock must be held exclusively in order to set bits there
|
3522 |
|
|
* and the flush lock protects the ili_last_fields bits.
|
3523 |
|
|
* Set ili_logged so the flush done
|
3524 |
|
|
* routine can tell whether or not to look in the AIL.
|
3525 |
|
|
* Also, store the current LSN of the inode so that we can tell
|
3526 |
|
|
* whether the item has moved in the AIL from xfs_iflush_done().
|
3527 |
|
|
* In order to read the lsn we need the AIL lock, because
|
3528 |
|
|
* it is a 64 bit value that cannot be read atomically.
|
3529 |
|
|
*/
|
3530 |
|
|
if (iip != NULL && iip->ili_format.ilf_fields != 0) {
|
3531 |
|
|
iip->ili_last_fields = iip->ili_format.ilf_fields;
|
3532 |
|
|
iip->ili_format.ilf_fields = 0;
|
3533 |
|
|
iip->ili_logged = 1;
|
3534 |
|
|
|
3535 |
|
|
ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
|
3536 |
|
|
AIL_LOCK(mp,s);
|
3537 |
|
|
iip->ili_flush_lsn = iip->ili_item.li_lsn;
|
3538 |
|
|
AIL_UNLOCK(mp, s);
|
3539 |
|
|
|
3540 |
|
|
/*
|
3541 |
|
|
* Attach the function xfs_iflush_done to the inode's
|
3542 |
|
|
* buffer. This will remove the inode from the AIL
|
3543 |
|
|
* and unlock the inode's flush lock when the inode is
|
3544 |
|
|
* completely written to disk.
|
3545 |
|
|
*/
|
3546 |
|
|
xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
|
3547 |
|
|
xfs_iflush_done, (xfs_log_item_t *)iip);
|
3548 |
|
|
|
3549 |
|
|
ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
|
3550 |
|
|
ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
|
3551 |
|
|
} else {
|
3552 |
|
|
/*
|
3553 |
|
|
* We're flushing an inode which is not in the AIL and has
|
3554 |
|
|
* not been logged but has i_update_core set. For this
|
3555 |
|
|
* case we can use a B_DELWRI flush and immediately drop
|
3556 |
|
|
* the inode flush lock because we can avoid the whole
|
3557 |
|
|
* AIL state thing. It's OK to drop the flush lock now,
|
3558 |
|
|
* because we've already locked the buffer and to do anything
|
3559 |
|
|
* you really need both.
|
3560 |
|
|
*/
|
3561 |
|
|
if (iip != NULL) {
|
3562 |
|
|
ASSERT(iip->ili_logged == 0);
|
3563 |
|
|
ASSERT(iip->ili_last_fields == 0);
|
3564 |
|
|
ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
|
3565 |
|
|
}
|
3566 |
|
|
xfs_ifunlock(ip);
|
3567 |
|
|
}
|
3568 |
|
|
|
3569 |
|
|
return 0;
|
3570 |
|
|
|
3571 |
|
|
corrupt_out:
|
3572 |
|
|
return XFS_ERROR(EFSCORRUPTED);
|
3573 |
|
|
}
|
3574 |
|
|
|
3575 |
|
|
|
3576 |
|
|
/*
|
3577 |
|
|
* Flush all inactive inodes in mp.
|
3578 |
|
|
*/
|
3579 |
|
|
void
|
3580 |
|
|
xfs_iflush_all(
|
3581 |
|
|
xfs_mount_t *mp)
|
3582 |
|
|
{
|
3583 |
|
|
xfs_inode_t *ip;
|
3584 |
|
|
bhv_vnode_t *vp;
|
3585 |
|
|
|
3586 |
|
|
again:
|
3587 |
|
|
XFS_MOUNT_ILOCK(mp);
|
3588 |
|
|
ip = mp->m_inodes;
|
3589 |
|
|
if (ip == NULL)
|
3590 |
|
|
goto out;
|
3591 |
|
|
|
3592 |
|
|
do {
|
3593 |
|
|
/* Make sure we skip markers inserted by sync */
|
3594 |
|
|
if (ip->i_mount == NULL) {
|
3595 |
|
|
ip = ip->i_mnext;
|
3596 |
|
|
continue;
|
3597 |
|
|
}
|
3598 |
|
|
|
3599 |
|
|
vp = XFS_ITOV_NULL(ip);
|
3600 |
|
|
if (!vp) {
|
3601 |
|
|
XFS_MOUNT_IUNLOCK(mp);
|
3602 |
|
|
xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
|
3603 |
|
|
goto again;
|
3604 |
|
|
}
|
3605 |
|
|
|
3606 |
|
|
ASSERT(vn_count(vp) == 0);
|
3607 |
|
|
|
3608 |
|
|
ip = ip->i_mnext;
|
3609 |
|
|
} while (ip != mp->m_inodes);
|
3610 |
|
|
out:
|
3611 |
|
|
XFS_MOUNT_IUNLOCK(mp);
|
3612 |
|
|
}
|
3613 |
|
|
|
3614 |
|
|
/*
|
3615 |
|
|
* xfs_iaccess: check accessibility of inode for mode.
|
3616 |
|
|
*/
|
3617 |
|
|
int
|
3618 |
|
|
xfs_iaccess(
|
3619 |
|
|
xfs_inode_t *ip,
|
3620 |
|
|
mode_t mode,
|
3621 |
|
|
cred_t *cr)
|
3622 |
|
|
{
|
3623 |
|
|
int error;
|
3624 |
|
|
mode_t orgmode = mode;
|
3625 |
|
|
struct inode *inode = vn_to_inode(XFS_ITOV(ip));
|
3626 |
|
|
|
3627 |
|
|
if (mode & S_IWUSR) {
|
3628 |
|
|
umode_t imode = inode->i_mode;
|
3629 |
|
|
|
3630 |
|
|
if (IS_RDONLY(inode) &&
|
3631 |
|
|
(S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
|
3632 |
|
|
return XFS_ERROR(EROFS);
|
3633 |
|
|
|
3634 |
|
|
if (IS_IMMUTABLE(inode))
|
3635 |
|
|
return XFS_ERROR(EACCES);
|
3636 |
|
|
}
|
3637 |
|
|
|
3638 |
|
|
/*
|
3639 |
|
|
* If there's an Access Control List it's used instead of
|
3640 |
|
|
* the mode bits.
|
3641 |
|
|
*/
|
3642 |
|
|
if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
|
3643 |
|
|
return error ? XFS_ERROR(error) : 0;
|
3644 |
|
|
|
3645 |
|
|
if (current_fsuid(cr) != ip->i_d.di_uid) {
|
3646 |
|
|
mode >>= 3;
|
3647 |
|
|
if (!in_group_p((gid_t)ip->i_d.di_gid))
|
3648 |
|
|
mode >>= 3;
|
3649 |
|
|
}
|
3650 |
|
|
|
3651 |
|
|
/*
|
3652 |
|
|
* If the DACs are ok we don't need any capability check.
|
3653 |
|
|
*/
|
3654 |
|
|
if ((ip->i_d.di_mode & mode) == mode)
|
3655 |
|
|
return 0;
|
3656 |
|
|
/*
|
3657 |
|
|
* Read/write DACs are always overridable.
|
3658 |
|
|
* Executable DACs are overridable if at least one exec bit is set.
|
3659 |
|
|
*/
|
3660 |
|
|
if (!(orgmode & S_IXUSR) ||
|
3661 |
|
|
(inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
|
3662 |
|
|
if (capable_cred(cr, CAP_DAC_OVERRIDE))
|
3663 |
|
|
return 0;
|
3664 |
|
|
|
3665 |
|
|
if ((orgmode == S_IRUSR) ||
|
3666 |
|
|
(S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
|
3667 |
|
|
if (capable_cred(cr, CAP_DAC_READ_SEARCH))
|
3668 |
|
|
return 0;
|
3669 |
|
|
#ifdef NOISE
|
3670 |
|
|
cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
|
3671 |
|
|
#endif /* NOISE */
|
3672 |
|
|
return XFS_ERROR(EACCES);
|
3673 |
|
|
}
|
3674 |
|
|
return XFS_ERROR(EACCES);
|
3675 |
|
|
}
|
3676 |
|
|
|
3677 |
|
|
/*
|
3678 |
|
|
* xfs_iroundup: round up argument to next power of two
|
3679 |
|
|
*/
|
3680 |
|
|
uint
|
3681 |
|
|
xfs_iroundup(
|
3682 |
|
|
uint v)
|
3683 |
|
|
{
|
3684 |
|
|
int i;
|
3685 |
|
|
uint m;
|
3686 |
|
|
|
3687 |
|
|
if ((v & (v - 1)) == 0)
|
3688 |
|
|
return v;
|
3689 |
|
|
ASSERT((v & 0x80000000) == 0);
|
3690 |
|
|
if ((v & (v + 1)) == 0)
|
3691 |
|
|
return v + 1;
|
3692 |
|
|
for (i = 0, m = 1; i < 31; i++, m <<= 1) {
|
3693 |
|
|
if (v & m)
|
3694 |
|
|
continue;
|
3695 |
|
|
v |= m;
|
3696 |
|
|
if ((v & (v + 1)) == 0)
|
3697 |
|
|
return v + 1;
|
3698 |
|
|
}
|
3699 |
|
|
ASSERT(0);
|
3700 |
|
|
return( 0 );
|
3701 |
|
|
}
|
3702 |
|
|
|
3703 |
|
|
#ifdef XFS_ILOCK_TRACE
|
3704 |
|
|
ktrace_t *xfs_ilock_trace_buf;
|
3705 |
|
|
|
3706 |
|
|
void
|
3707 |
|
|
xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
|
3708 |
|
|
{
|
3709 |
|
|
ktrace_enter(ip->i_lock_trace,
|
3710 |
|
|
(void *)ip,
|
3711 |
|
|
(void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
|
3712 |
|
|
(void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
|
3713 |
|
|
(void *)ra, /* caller of ilock */
|
3714 |
|
|
(void *)(unsigned long)current_cpu(),
|
3715 |
|
|
(void *)(unsigned long)current_pid(),
|
3716 |
|
|
NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
|
3717 |
|
|
}
|
3718 |
|
|
#endif
|
3719 |
|
|
|
3720 |
|
|
/*
|
3721 |
|
|
* Return a pointer to the extent record at file index idx.
|
3722 |
|
|
*/
|
3723 |
|
|
xfs_bmbt_rec_host_t *
|
3724 |
|
|
xfs_iext_get_ext(
|
3725 |
|
|
xfs_ifork_t *ifp, /* inode fork pointer */
|
3726 |
|
|
xfs_extnum_t idx) /* index of target extent */
|
3727 |
|
|
{
|
3728 |
|
|
ASSERT(idx >= 0);
|
3729 |
|
|
if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
|
3730 |
|
|
return ifp->if_u1.if_ext_irec->er_extbuf;
|
3731 |
|
|
} else if (ifp->if_flags & XFS_IFEXTIREC) {
|
3732 |
|
|
xfs_ext_irec_t *erp; /* irec pointer */
|
3733 |
|
|
int erp_idx = 0; /* irec index */
|
3734 |
|
|
xfs_extnum_t page_idx = idx; /* ext index in target list */
|
3735 |
|
|
|
3736 |
|
|
erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
|
3737 |
|
|
return &erp->er_extbuf[page_idx];
|
3738 |
|
|
} else if (ifp->if_bytes) {
|
3739 |
|
|
return &ifp->if_u1.if_extents[idx];
|
3740 |
|
|
} else {
|
3741 |
|
|
return NULL;
|
3742 |
|
|
}
|
3743 |
|
|
}
|
3744 |
|
|
|
3745 |
|
|
/*
|
3746 |
|
|
* Insert new item(s) into the extent records for incore inode
|
3747 |
|
|
* fork 'ifp'. 'count' new items are inserted at index 'idx'.
|
3748 |
|
|
*/
|
3749 |
|
|
void
|
3750 |
|
|
xfs_iext_insert(
|
3751 |
|
|
xfs_ifork_t *ifp, /* inode fork pointer */
|
3752 |
|
|
xfs_extnum_t idx, /* starting index of new items */
|
3753 |
|
|
xfs_extnum_t count, /* number of inserted items */
|
3754 |
|
|
xfs_bmbt_irec_t *new) /* items to insert */
|
3755 |
|
|
{
|
3756 |
|
|
xfs_extnum_t i; /* extent record index */
|
3757 |
|
|
|
3758 |
|
|
ASSERT(ifp->if_flags & XFS_IFEXTENTS);
|
3759 |
|
|
xfs_iext_add(ifp, idx, count);
|
3760 |
|
|
for (i = idx; i < idx + count; i++, new++)
|
3761 |
|
|
xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
|
3762 |
|
|
}
|
3763 |
|
|
|
3764 |
|
|
/*
|
3765 |
|
|
* This is called when the amount of space required for incore file
|
3766 |
|
|
* extents needs to be increased. The ext_diff parameter stores the
|
3767 |
|
|
* number of new extents being added and the idx parameter contains
|
3768 |
|
|
* the extent index where the new extents will be added. If the new
|
3769 |
|
|
* extents are being appended, then we just need to (re)allocate and
|
3770 |
|
|
* initialize the space. Otherwise, if the new extents are being
|
3771 |
|
|
* inserted into the middle of the existing entries, a bit more work
|
3772 |
|
|
* is required to make room for the new extents to be inserted. The
|
3773 |
|
|
* caller is responsible for filling in the new extent entries upon
|
3774 |
|
|
* return.
|
3775 |
|
|
*/
|
3776 |
|
|
void
|
3777 |
|
|
xfs_iext_add(
|
3778 |
|
|
xfs_ifork_t *ifp, /* inode fork pointer */
|
3779 |
|
|
xfs_extnum_t idx, /* index to begin adding exts */
|
3780 |
|
|
int ext_diff) /* number of extents to add */
|
3781 |
|
|
{
|
3782 |
|
|
int byte_diff; /* new bytes being added */
|
3783 |
|
|
int new_size; /* size of extents after adding */
|
3784 |
|
|
xfs_extnum_t nextents; /* number of extents in file */
|
3785 |
|
|
|
3786 |
|
|
nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
|
3787 |
|
|
ASSERT((idx >= 0) && (idx <= nextents));
|
3788 |
|
|
byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
|
3789 |
|
|
new_size = ifp->if_bytes + byte_diff;
|
3790 |
|
|
/*
|
3791 |
|
|
* If the new number of extents (nextents + ext_diff)
|
3792 |
|
|
* fits inside the inode, then continue to use the inline
|
3793 |
|
|
* extent buffer.
|
3794 |
|
|
*/
|
3795 |
|
|
if (nextents + ext_diff <= XFS_INLINE_EXTS) {
|
3796 |
|
|
if (idx < nextents) {
|
3797 |
|
|
memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
|
3798 |
|
|
&ifp->if_u2.if_inline_ext[idx],
|
3799 |
|
|
(nextents - idx) * sizeof(xfs_bmbt_rec_t));
|
3800 |
|
|
memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
|
3801 |
|
|
}
|
3802 |
|
|
ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
|
3803 |
|
|
ifp->if_real_bytes = 0;
|
3804 |
|
|
ifp->if_lastex = nextents + ext_diff;
|
3805 |
|
|
}
|
3806 |
|
|
/*
|
3807 |
|
|
* Otherwise use a linear (direct) extent list.
|
3808 |
|
|
* If the extents are currently inside the inode,
|
3809 |
|
|
* xfs_iext_realloc_direct will switch us from
|
3810 |
|
|
* inline to direct extent allocation mode.
|
3811 |
|
|
*/
|
3812 |
|
|
else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
|
3813 |
|
|
xfs_iext_realloc_direct(ifp, new_size);
|
3814 |
|
|
if (idx < nextents) {
|
3815 |
|
|
memmove(&ifp->if_u1.if_extents[idx + ext_diff],
|
3816 |
|
|
&ifp->if_u1.if_extents[idx],
|
3817 |
|
|
(nextents - idx) * sizeof(xfs_bmbt_rec_t));
|
3818 |
|
|
memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
|
3819 |
|
|
}
|
3820 |
|
|
}
|
3821 |
|
|
/* Indirection array */
|
3822 |
|
|
else {
|
3823 |
|
|
xfs_ext_irec_t *erp;
|
3824 |
|
|
int erp_idx = 0;
|
3825 |
|
|
int page_idx = idx;
|
3826 |
|
|
|
3827 |
|
|
ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
|
3828 |
|
|
if (ifp->if_flags & XFS_IFEXTIREC) {
|
3829 |
|
|
erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
|
3830 |
|
|
} else {
|
3831 |
|
|
xfs_iext_irec_init(ifp);
|
3832 |
|
|
ASSERT(ifp->if_flags & XFS_IFEXTIREC);
|
3833 |
|
|
erp = ifp->if_u1.if_ext_irec;
|
3834 |
|
|
}
|
3835 |
|
|
/* Extents fit in target extent page */
|
3836 |
|
|
if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
|
3837 |
|
|
if (page_idx < erp->er_extcount) {
|
3838 |
|
|
memmove(&erp->er_extbuf[page_idx + ext_diff],
|
3839 |
|
|
&erp->er_extbuf[page_idx],
|
3840 |
|
|
(erp->er_extcount - page_idx) *
|
3841 |
|
|
sizeof(xfs_bmbt_rec_t));
|
3842 |
|
|
memset(&erp->er_extbuf[page_idx], 0, byte_diff);
|
3843 |
|
|
}
|
3844 |
|
|
erp->er_extcount += ext_diff;
|
3845 |
|
|
xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
|
3846 |
|
|
}
|
3847 |
|
|
/* Insert a new extent page */
|
3848 |
|
|
else if (erp) {
|
3849 |
|
|
xfs_iext_add_indirect_multi(ifp,
|
3850 |
|
|
erp_idx, page_idx, ext_diff);
|
3851 |
|
|
}
|
3852 |
|
|
/*
|
3853 |
|
|
* If extent(s) are being appended to the last page in
|
3854 |
|
|
* the indirection array and the new extent(s) don't fit
|
3855 |
|
|
* in the page, then erp is NULL and erp_idx is set to
|
3856 |
|
|
* the next index needed in the indirection array.
|
3857 |
|
|
*/
|
3858 |
|
|
else {
|
3859 |
|
|
int count = ext_diff;
|
3860 |
|
|
|
3861 |
|
|
while (count) {
|
3862 |
|
|
erp = xfs_iext_irec_new(ifp, erp_idx);
|
3863 |
|
|
erp->er_extcount = count;
|
3864 |
|
|
count -= MIN(count, (int)XFS_LINEAR_EXTS);
|
3865 |
|
|
if (count) {
|
3866 |
|
|
erp_idx++;
|
3867 |
|
|
}
|
3868 |
|
|
}
|
3869 |
|
|
}
|
3870 |
|
|
}
|
3871 |
|
|
ifp->if_bytes = new_size;
|
3872 |
|
|
}
|
3873 |
|
|
|
3874 |
|
|
/*
|
3875 |
|
|
* This is called when incore extents are being added to the indirection
|
3876 |
|
|
* array and the new extents do not fit in the target extent list. The
|
3877 |
|
|
* erp_idx parameter contains the irec index for the target extent list
|
3878 |
|
|
* in the indirection array, and the idx parameter contains the extent
|
3879 |
|
|
* index within the list. The number of extents being added is stored
|
3880 |
|
|
* in the count parameter.
|
3881 |
|
|
*
|
3882 |
|
|
* |-------| |-------|
|
3883 |
|
|
* | | | | idx - number of extents before idx
|
3884 |
|
|
* | idx | | count |
|
3885 |
|
|
* | | | | count - number of extents being inserted at idx
|
3886 |
|
|
* |-------| |-------|
|
3887 |
|
|
* | count | | nex2 | nex2 - number of extents after idx + count
|
3888 |
|
|
* |-------| |-------|
|
3889 |
|
|
*/
|
3890 |
|
|
void
|
3891 |
|
|
xfs_iext_add_indirect_multi(
|
3892 |
|
|
xfs_ifork_t *ifp, /* inode fork pointer */
|
3893 |
|
|
int erp_idx, /* target extent irec index */
|
3894 |
|
|
xfs_extnum_t idx, /* index within target list */
|
3895 |
|
|
int count) /* new extents being added */
|
3896 |
|
|
{
|
3897 |
|
|
int byte_diff; /* new bytes being added */
|
3898 |
|
|
xfs_ext_irec_t *erp; /* pointer to irec entry */
|
3899 |
|
|
xfs_extnum_t ext_diff; /* number of extents to add */
|
3900 |
|
|
xfs_extnum_t ext_cnt; /* new extents still needed */
|
3901 |
|
|
xfs_extnum_t nex2; /* extents after idx + count */
|
3902 |
|
|
xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
|
3903 |
|
|
int nlists; /* number of irec's (lists) */
|
3904 |
|
|
|
3905 |
|
|
ASSERT(ifp->if_flags & XFS_IFEXTIREC);
|
3906 |
|
|
erp = &ifp->if_u1.if_ext_irec[erp_idx];
|
3907 |
|
|
nex2 = erp->er_extcount - idx;
|
3908 |
|
|
nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
|
3909 |
|
|
|
3910 |
|
|
/*
|
3911 |
|
|
* Save second part of target extent list
|
3912 |
|
|
* (all extents past */
|
3913 |
|
|
if (nex2) {
|
3914 |
|
|
byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
|
3915 |
|
|
nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
|
3916 |
|
|
memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
|
3917 |
|
|
erp->er_extcount -= nex2;
|
3918 |
|
|
xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
|
3919 |
|
|
memset(&erp->er_extbuf[idx], 0, byte_diff);
|
3920 |
|
|
}
|
3921 |
|
|
|
3922 |
|
|
/*
|
3923 |
|
|
* Add the new extents to the end of the target
|
3924 |
|
|
* list, then allocate new irec record(s) and
|
3925 |
|
|
* extent buffer(s) as needed to store the rest
|
3926 |
|
|
* of the new extents.
|
3927 |
|
|
*/
|
3928 |
|
|
ext_cnt = count;
|
3929 |
|
|
ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
|
3930 |
|
|
if (ext_diff) {
|
3931 |
|
|
erp->er_extcount += ext_diff;
|
3932 |
|
|
xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
|
3933 |
|
|
ext_cnt -= ext_diff;
|
3934 |
|
|
}
|
3935 |
|
|
while (ext_cnt) {
|
3936 |
|
|
erp_idx++;
|
3937 |
|
|
erp = xfs_iext_irec_new(ifp, erp_idx);
|
3938 |
|
|
ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
|
3939 |
|
|
erp->er_extcount = ext_diff;
|
3940 |
|
|
xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
|
3941 |
|
|
ext_cnt -= ext_diff;
|
3942 |
|
|
}
|
3943 |
|
|
|
3944 |
|
|
/* Add nex2 extents back to indirection array */
|
3945 |
|
|
if (nex2) {
|
3946 |
|
|
xfs_extnum_t ext_avail;
|
3947 |
|
|
int i;
|
3948 |
|
|
|
3949 |
|
|
byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
|
3950 |
|
|
ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
|
3951 |
|
|
i = 0;
|
3952 |
|
|
/*
|
3953 |
|
|
* If nex2 extents fit in the current page, append
|
3954 |
|
|
* nex2_ep after the new extents.
|
3955 |
|
|
*/
|
3956 |
|
|
if (nex2 <= ext_avail) {
|
3957 |
|
|
i = erp->er_extcount;
|
3958 |
|
|
}
|
3959 |
|
|
/*
|
3960 |
|
|
* Otherwise, check if space is available in the
|
3961 |
|
|
* next page.
|
3962 |
|
|
*/
|
3963 |
|
|
else if ((erp_idx < nlists - 1) &&
|
3964 |
|
|
(nex2 <= (ext_avail = XFS_LINEAR_EXTS -
|
3965 |
|
|
ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
|
3966 |
|
|
erp_idx++;
|
3967 |
|
|
erp++;
|
3968 |
|
|
/* Create a hole for nex2 extents */
|
3969 |
|
|
memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
|
3970 |
|
|
erp->er_extcount * sizeof(xfs_bmbt_rec_t));
|
3971 |
|
|
}
|
3972 |
|
|
/*
|
3973 |
|
|
* Final choice, create a new extent page for
|
3974 |
|
|
* nex2 extents.
|
3975 |
|
|
*/
|
3976 |
|
|
else {
|
3977 |
|
|
erp_idx++;
|
3978 |
|
|
erp = xfs_iext_irec_new(ifp, erp_idx);
|
3979 |
|
|
}
|
3980 |
|
|
memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
|
3981 |
|
|
kmem_free(nex2_ep, byte_diff);
|
3982 |
|
|
erp->er_extcount += nex2;
|
3983 |
|
|
xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
|
3984 |
|
|
}
|
3985 |
|
|
}
|
3986 |
|
|
|
3987 |
|
|
/*
|
3988 |
|
|
* This is called when the amount of space required for incore file
|
3989 |
|
|
* extents needs to be decreased. The ext_diff parameter stores the
|
3990 |
|
|
* number of extents to be removed and the idx parameter contains
|
3991 |
|
|
* the extent index where the extents will be removed from.
|
3992 |
|
|
*
|
3993 |
|
|
* If the amount of space needed has decreased below the linear
|
3994 |
|
|
* limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
|
3995 |
|
|
* extent array. Otherwise, use kmem_realloc() to adjust the
|
3996 |
|
|
* size to what is needed.
|
3997 |
|
|
*/
|
3998 |
|
|
void
|
3999 |
|
|
xfs_iext_remove(
|
4000 |
|
|
xfs_ifork_t *ifp, /* inode fork pointer */
|
4001 |
|
|
xfs_extnum_t idx, /* index to begin removing exts */
|
4002 |
|
|
int ext_diff) /* number of extents to remove */
|
4003 |
|
|
{
|
4004 |
|
|
xfs_extnum_t nextents; /* number of extents in file */
|
4005 |
|
|
int new_size; /* size of extents after removal */
|
4006 |
|
|
|
4007 |
|
|
ASSERT(ext_diff > 0);
|
4008 |
|
|
nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
|
4009 |
|
|
new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
|
4010 |
|
|
|
4011 |
|
|
if (new_size == 0) {
|
4012 |
|
|
xfs_iext_destroy(ifp);
|
4013 |
|
|
} else if (ifp->if_flags & XFS_IFEXTIREC) {
|
4014 |
|
|
xfs_iext_remove_indirect(ifp, idx, ext_diff);
|
4015 |
|
|
} else if (ifp->if_real_bytes) {
|
4016 |
|
|
xfs_iext_remove_direct(ifp, idx, ext_diff);
|
4017 |
|
|
} else {
|
4018 |
|
|
xfs_iext_remove_inline(ifp, idx, ext_diff);
|
4019 |
|
|
}
|
4020 |
|
|
ifp->if_bytes = new_size;
|
4021 |
|
|
}
|
4022 |
|
|
|
4023 |
|
|
/*
|
4024 |
|
|
* This removes ext_diff extents from the inline buffer, beginning
|
4025 |
|
|
* at extent index idx.
|
4026 |
|
|
*/
|
4027 |
|
|
void
|
4028 |
|
|
xfs_iext_remove_inline(
|
4029 |
|
|
xfs_ifork_t *ifp, /* inode fork pointer */
|
4030 |
|
|
xfs_extnum_t idx, /* index to begin removing exts */
|
4031 |
|
|
int ext_diff) /* number of extents to remove */
|
4032 |
|
|
{
|
4033 |
|
|
int nextents; /* number of extents in file */
|
4034 |
|
|
|
4035 |
|
|
ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
|
4036 |
|
|
ASSERT(idx < XFS_INLINE_EXTS);
|
4037 |
|
|
nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
|
4038 |
|
|
ASSERT(((nextents - ext_diff) > 0) &&
|
4039 |
|
|
(nextents - ext_diff) < XFS_INLINE_EXTS);
|
4040 |
|
|
|
4041 |
|
|
if (idx + ext_diff < nextents) {
|
4042 |
|
|
memmove(&ifp->if_u2.if_inline_ext[idx],
|
4043 |
|
|
&ifp->if_u2.if_inline_ext[idx + ext_diff],
|
4044 |
|
|
(nextents - (idx + ext_diff)) *
|
4045 |
|
|
sizeof(xfs_bmbt_rec_t));
|
4046 |
|
|
memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
|
4047 |
|
|
0, ext_diff * sizeof(xfs_bmbt_rec_t));
|
4048 |
|
|
} else {
|
4049 |
|
|
memset(&ifp->if_u2.if_inline_ext[idx], 0,
|
4050 |
|
|
ext_diff * sizeof(xfs_bmbt_rec_t));
|
4051 |
|
|
}
|
4052 |
|
|
}
|
4053 |
|
|
|
4054 |
|
|
/*
|
4055 |
|
|
* This removes ext_diff extents from a linear (direct) extent list,
|
4056 |
|
|
* beginning at extent index idx. If the extents are being removed
|
4057 |
|
|
* from the end of the list (ie. truncate) then we just need to re-
|
4058 |
|
|
* allocate the list to remove the extra space. Otherwise, if the
|
4059 |
|
|
* extents are being removed from the middle of the existing extent
|
4060 |
|
|
* entries, then we first need to move the extent records beginning
|
4061 |
|
|
* at idx + ext_diff up in the list to overwrite the records being
|
4062 |
|
|
* removed, then remove the extra space via kmem_realloc.
|
4063 |
|
|
*/
|
4064 |
|
|
void
|
4065 |
|
|
xfs_iext_remove_direct(
|
4066 |
|
|
xfs_ifork_t *ifp, /* inode fork pointer */
|
4067 |
|
|
xfs_extnum_t idx, /* index to begin removing exts */
|
4068 |
|
|
int ext_diff) /* number of extents to remove */
|
4069 |
|
|
{
|
4070 |
|
|
xfs_extnum_t nextents; /* number of extents in file */
|
4071 |
|
|
int new_size; /* size of extents after removal */
|
4072 |
|
|
|
4073 |
|
|
ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
|
4074 |
|
|
new_size = ifp->if_bytes -
|
4075 |
|
|
(ext_diff * sizeof(xfs_bmbt_rec_t));
|
4076 |
|
|
nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
|
4077 |
|
|
|
4078 |
|
|
if (new_size == 0) {
|
4079 |
|
|
xfs_iext_destroy(ifp);
|
4080 |
|
|
return;
|
4081 |
|
|
}
|
4082 |
|
|
/* Move extents up in the list (if needed) */
|
4083 |
|
|
if (idx + ext_diff < nextents) {
|
4084 |
|
|
memmove(&ifp->if_u1.if_extents[idx],
|
4085 |
|
|
&ifp->if_u1.if_extents[idx + ext_diff],
|
4086 |
|
|
(nextents - (idx + ext_diff)) *
|
4087 |
|
|
sizeof(xfs_bmbt_rec_t));
|
4088 |
|
|
}
|
4089 |
|
|
memset(&ifp->if_u1.if_extents[nextents - ext_diff],
|
4090 |
|
|
0, ext_diff * sizeof(xfs_bmbt_rec_t));
|
4091 |
|
|
/*
|
4092 |
|
|
* Reallocate the direct extent list. If the extents
|
4093 |
|
|
* will fit inside the inode then xfs_iext_realloc_direct
|
4094 |
|
|
* will switch from direct to inline extent allocation
|
4095 |
|
|
* mode for us.
|
4096 |
|
|
*/
|
4097 |
|
|
xfs_iext_realloc_direct(ifp, new_size);
|
4098 |
|
|
ifp->if_bytes = new_size;
|
4099 |
|
|
}
|
4100 |
|
|
|
4101 |
|
|
/*
|
4102 |
|
|
* This is called when incore extents are being removed from the
|
4103 |
|
|
* indirection array and the extents being removed span multiple extent
|
4104 |
|
|
* buffers. The idx parameter contains the file extent index where we
|
4105 |
|
|
* want to begin removing extents, and the count parameter contains
|
4106 |
|
|
* how many extents need to be removed.
|
4107 |
|
|
*
|
4108 |
|
|
* |-------| |-------|
|
4109 |
|
|
* | nex1 | | | nex1 - number of extents before idx
|
4110 |
|
|
* |-------| | count |
|
4111 |
|
|
* | | | | count - number of extents being removed at idx
|
4112 |
|
|
* | count | |-------|
|
4113 |
|
|
* | | | nex2 | nex2 - number of extents after idx + count
|
4114 |
|
|
* |-------| |-------|
|
4115 |
|
|
*/
|
4116 |
|
|
void
|
4117 |
|
|
xfs_iext_remove_indirect(
|
4118 |
|
|
xfs_ifork_t *ifp, /* inode fork pointer */
|
4119 |
|
|
xfs_extnum_t idx, /* index to begin removing extents */
|
4120 |
|
|
int count) /* number of extents to remove */
|
4121 |
|
|
{
|
4122 |
|
|
xfs_ext_irec_t *erp; /* indirection array pointer */
|
4123 |
|
|
int erp_idx = 0; /* indirection array index */
|
4124 |
|
|
xfs_extnum_t ext_cnt; /* extents left to remove */
|
4125 |
|
|
xfs_extnum_t ext_diff; /* extents to remove in current list */
|
4126 |
|
|
xfs_extnum_t nex1; /* number of extents before idx */
|
4127 |
|
|
xfs_extnum_t nex2; /* extents after idx + count */
|
4128 |
|
|
int nlists; /* entries in indirection array */
|
4129 |
|
|
int page_idx = idx; /* index in target extent list */
|
4130 |
|
|
|
4131 |
|
|
ASSERT(ifp->if_flags & XFS_IFEXTIREC);
|
4132 |
|
|
erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
|
4133 |
|
|
ASSERT(erp != NULL);
|
4134 |
|
|
nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
|
4135 |
|
|
nex1 = page_idx;
|
4136 |
|
|
ext_cnt = count;
|
4137 |
|
|
while (ext_cnt) {
|
4138 |
|
|
nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
|
4139 |
|
|
ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
|
4140 |
|
|
/*
|
4141 |
|
|
* Check for deletion of entire list;
|
4142 |
|
|
* xfs_iext_irec_remove() updates extent offsets.
|
4143 |
|
|
*/
|
4144 |
|
|
if (ext_diff == erp->er_extcount) {
|
4145 |
|
|
xfs_iext_irec_remove(ifp, erp_idx);
|
4146 |
|
|
ext_cnt -= ext_diff;
|
4147 |
|
|
nex1 = 0;
|
4148 |
|
|
if (ext_cnt) {
|
4149 |
|
|
ASSERT(erp_idx < ifp->if_real_bytes /
|
4150 |
|
|
XFS_IEXT_BUFSZ);
|
4151 |
|
|
erp = &ifp->if_u1.if_ext_irec[erp_idx];
|
4152 |
|
|
nex1 = 0;
|
4153 |
|
|
continue;
|
4154 |
|
|
} else {
|
4155 |
|
|
break;
|
4156 |
|
|
}
|
4157 |
|
|
}
|
4158 |
|
|
/* Move extents up (if needed) */
|
4159 |
|
|
if (nex2) {
|
4160 |
|
|
memmove(&erp->er_extbuf[nex1],
|
4161 |
|
|
&erp->er_extbuf[nex1 + ext_diff],
|
4162 |
|
|
nex2 * sizeof(xfs_bmbt_rec_t));
|
4163 |
|
|
}
|
4164 |
|
|
/* Zero out rest of page */
|
4165 |
|
|
memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
|
4166 |
|
|
((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
|
4167 |
|
|
/* Update remaining counters */
|
4168 |
|
|
erp->er_extcount -= ext_diff;
|
4169 |
|
|
xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
|
4170 |
|
|
ext_cnt -= ext_diff;
|
4171 |
|
|
nex1 = 0;
|
4172 |
|
|
erp_idx++;
|
4173 |
|
|
erp++;
|
4174 |
|
|
}
|
4175 |
|
|
ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
|
4176 |
|
|
xfs_iext_irec_compact(ifp);
|
4177 |
|
|
}
|
4178 |
|
|
|
4179 |
|
|
/*
|
4180 |
|
|
* Create, destroy, or resize a linear (direct) block of extents.
|
4181 |
|
|
*/
|
4182 |
|
|
void
|
4183 |
|
|
xfs_iext_realloc_direct(
|
4184 |
|
|
xfs_ifork_t *ifp, /* inode fork pointer */
|
4185 |
|
|
int new_size) /* new size of extents */
|
4186 |
|
|
{
|
4187 |
|
|
int rnew_size; /* real new size of extents */
|
4188 |
|
|
|
4189 |
|
|
rnew_size = new_size;
|
4190 |
|
|
|
4191 |
|
|
ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
|
4192 |
|
|
((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
|
4193 |
|
|
(new_size != ifp->if_real_bytes)));
|
4194 |
|
|
|
4195 |
|
|
/* Free extent records */
|
4196 |
|
|
if (new_size == 0) {
|
4197 |
|
|
xfs_iext_destroy(ifp);
|
4198 |
|
|
}
|
4199 |
|
|
/* Resize direct extent list and zero any new bytes */
|
4200 |
|
|
else if (ifp->if_real_bytes) {
|
4201 |
|
|
/* Check if extents will fit inside the inode */
|
4202 |
|
|
if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
|
4203 |
|
|
xfs_iext_direct_to_inline(ifp, new_size /
|
4204 |
|
|
(uint)sizeof(xfs_bmbt_rec_t));
|
4205 |
|
|
ifp->if_bytes = new_size;
|
4206 |
|
|
return;
|
4207 |
|
|
}
|
4208 |
|
|
if (!is_power_of_2(new_size)){
|
4209 |
|
|
rnew_size = xfs_iroundup(new_size);
|
4210 |
|
|
}
|
4211 |
|
|
if (rnew_size != ifp->if_real_bytes) {
|
4212 |
|
|
ifp->if_u1.if_extents =
|
4213 |
|
|
kmem_realloc(ifp->if_u1.if_extents,
|
4214 |
|
|
rnew_size,
|
4215 |
|
|
ifp->if_real_bytes,
|
4216 |
|
|
KM_SLEEP);
|
4217 |
|
|
}
|
4218 |
|
|
if (rnew_size > ifp->if_real_bytes) {
|
4219 |
|
|
memset(&ifp->if_u1.if_extents[ifp->if_bytes /
|
4220 |
|
|
(uint)sizeof(xfs_bmbt_rec_t)], 0,
|
4221 |
|
|
rnew_size - ifp->if_real_bytes);
|
4222 |
|
|
}
|
4223 |
|
|
}
|
4224 |
|
|
/*
|
4225 |
|
|
* Switch from the inline extent buffer to a direct
|
4226 |
|
|
* extent list. Be sure to include the inline extent
|
4227 |
|
|
* bytes in new_size.
|
4228 |
|
|
*/
|
4229 |
|
|
else {
|
4230 |
|
|
new_size += ifp->if_bytes;
|
4231 |
|
|
if (!is_power_of_2(new_size)) {
|
4232 |
|
|
rnew_size = xfs_iroundup(new_size);
|
4233 |
|
|
}
|
4234 |
|
|
xfs_iext_inline_to_direct(ifp, rnew_size);
|
4235 |
|
|
}
|
4236 |
|
|
ifp->if_real_bytes = rnew_size;
|
4237 |
|
|
ifp->if_bytes = new_size;
|
4238 |
|
|
}
|
4239 |
|
|
|
4240 |
|
|
/*
|
4241 |
|
|
* Switch from linear (direct) extent records to inline buffer.
|
4242 |
|
|
*/
|
4243 |
|
|
void
|
4244 |
|
|
xfs_iext_direct_to_inline(
|
4245 |
|
|
xfs_ifork_t *ifp, /* inode fork pointer */
|
4246 |
|
|
xfs_extnum_t nextents) /* number of extents in file */
|
4247 |
|
|
{
|
4248 |
|
|
ASSERT(ifp->if_flags & XFS_IFEXTENTS);
|
4249 |
|
|
ASSERT(nextents <= XFS_INLINE_EXTS);
|
4250 |
|
|
/*
|
4251 |
|
|
* The inline buffer was zeroed when we switched
|
4252 |
|
|
* from inline to direct extent allocation mode,
|
4253 |
|
|
* so we don't need to clear it here.
|
4254 |
|
|
*/
|
4255 |
|
|
memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
|
4256 |
|
|
nextents * sizeof(xfs_bmbt_rec_t));
|
4257 |
|
|
kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
|
4258 |
|
|
ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
|
4259 |
|
|
ifp->if_real_bytes = 0;
|
4260 |
|
|
}
|
4261 |
|
|
|
4262 |
|
|
/*
|
4263 |
|
|
* Switch from inline buffer to linear (direct) extent records.
|
4264 |
|
|
* new_size should already be rounded up to the next power of 2
|
4265 |
|
|
* by the caller (when appropriate), so use new_size as it is.
|
4266 |
|
|
* However, since new_size may be rounded up, we can't update
|
4267 |
|
|
* if_bytes here. It is the caller's responsibility to update
|
4268 |
|
|
* if_bytes upon return.
|
4269 |
|
|
*/
|
4270 |
|
|
void
|
4271 |
|
|
xfs_iext_inline_to_direct(
|
4272 |
|
|
xfs_ifork_t *ifp, /* inode fork pointer */
|
4273 |
|
|
int new_size) /* number of extents in file */
|
4274 |
|
|
{
|
4275 |
|
|
ifp->if_u1.if_extents = kmem_alloc(new_size, KM_SLEEP);
|
4276 |
|
|
memset(ifp->if_u1.if_extents, 0, new_size);
|
4277 |
|
|
if (ifp->if_bytes) {
|
4278 |
|
|
memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
|
4279 |
|
|
ifp->if_bytes);
|
4280 |
|
|
memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
|
4281 |
|
|
sizeof(xfs_bmbt_rec_t));
|
4282 |
|
|
}
|
4283 |
|
|
ifp->if_real_bytes = new_size;
|
4284 |
|
|
}
|
4285 |
|
|
|
4286 |
|
|
/*
|
4287 |
|
|
* Resize an extent indirection array to new_size bytes.
|
4288 |
|
|
*/
|
4289 |
|
|
void
|
4290 |
|
|
xfs_iext_realloc_indirect(
|
4291 |
|
|
xfs_ifork_t *ifp, /* inode fork pointer */
|
4292 |
|
|
int new_size) /* new indirection array size */
|
4293 |
|
|
{
|
4294 |
|
|
int nlists; /* number of irec's (ex lists) */
|
4295 |
|
|
int size; /* current indirection array size */
|
4296 |
|
|
|
4297 |
|
|
ASSERT(ifp->if_flags & XFS_IFEXTIREC);
|
4298 |
|
|
nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
|
4299 |
|
|
size = nlists * sizeof(xfs_ext_irec_t);
|
4300 |
|
|
ASSERT(ifp->if_real_bytes);
|
4301 |
|
|
ASSERT((new_size >= 0) && (new_size != size));
|
4302 |
|
|
if (new_size == 0) {
|
4303 |
|
|
xfs_iext_destroy(ifp);
|
4304 |
|
|
} else {
|
4305 |
|
|
ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
|
4306 |
|
|
kmem_realloc(ifp->if_u1.if_ext_irec,
|
4307 |
|
|
new_size, size, KM_SLEEP);
|
4308 |
|
|
}
|
4309 |
|
|
}
|
4310 |
|
|
|
4311 |
|
|
/*
|
4312 |
|
|
* Switch from indirection array to linear (direct) extent allocations.
|
4313 |
|
|
*/
|
4314 |
|
|
void
|
4315 |
|
|
xfs_iext_indirect_to_direct(
|
4316 |
|
|
xfs_ifork_t *ifp) /* inode fork pointer */
|
4317 |
|
|
{
|
4318 |
|
|
xfs_bmbt_rec_host_t *ep; /* extent record pointer */
|
4319 |
|
|
xfs_extnum_t nextents; /* number of extents in file */
|
4320 |
|
|
int size; /* size of file extents */
|
4321 |
|
|
|
4322 |
|
|
ASSERT(ifp->if_flags & XFS_IFEXTIREC);
|
4323 |
|
|
nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
|
4324 |
|
|
ASSERT(nextents <= XFS_LINEAR_EXTS);
|
4325 |
|
|
size = nextents * sizeof(xfs_bmbt_rec_t);
|
4326 |
|
|
|
4327 |
|
|
xfs_iext_irec_compact_full(ifp);
|
4328 |
|
|
ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
|
4329 |
|
|
|
4330 |
|
|
ep = ifp->if_u1.if_ext_irec->er_extbuf;
|
4331 |
|
|
kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
|
4332 |
|
|
ifp->if_flags &= ~XFS_IFEXTIREC;
|
4333 |
|
|
ifp->if_u1.if_extents = ep;
|
4334 |
|
|
ifp->if_bytes = size;
|
4335 |
|
|
if (nextents < XFS_LINEAR_EXTS) {
|
4336 |
|
|
xfs_iext_realloc_direct(ifp, size);
|
4337 |
|
|
}
|
4338 |
|
|
}
|
4339 |
|
|
|
4340 |
|
|
/*
|
4341 |
|
|
* Free incore file extents.
|
4342 |
|
|
*/
|
4343 |
|
|
void
|
4344 |
|
|
xfs_iext_destroy(
|
4345 |
|
|
xfs_ifork_t *ifp) /* inode fork pointer */
|
4346 |
|
|
{
|
4347 |
|
|
if (ifp->if_flags & XFS_IFEXTIREC) {
|
4348 |
|
|
int erp_idx;
|
4349 |
|
|
int nlists;
|
4350 |
|
|
|
4351 |
|
|
nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
|
4352 |
|
|
for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
|
4353 |
|
|
xfs_iext_irec_remove(ifp, erp_idx);
|
4354 |
|
|
}
|
4355 |
|
|
ifp->if_flags &= ~XFS_IFEXTIREC;
|
4356 |
|
|
} else if (ifp->if_real_bytes) {
|
4357 |
|
|
kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
|
4358 |
|
|
} else if (ifp->if_bytes) {
|
4359 |
|
|
memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
|
4360 |
|
|
sizeof(xfs_bmbt_rec_t));
|
4361 |
|
|
}
|
4362 |
|
|
ifp->if_u1.if_extents = NULL;
|
4363 |
|
|
ifp->if_real_bytes = 0;
|
4364 |
|
|
ifp->if_bytes = 0;
|
4365 |
|
|
}
|
4366 |
|
|
|
4367 |
|
|
/*
|
4368 |
|
|
* Return a pointer to the extent record for file system block bno.
|
4369 |
|
|
*/
|
4370 |
|
|
xfs_bmbt_rec_host_t * /* pointer to found extent record */
|
4371 |
|
|
xfs_iext_bno_to_ext(
|
4372 |
|
|
xfs_ifork_t *ifp, /* inode fork pointer */
|
4373 |
|
|
xfs_fileoff_t bno, /* block number to search for */
|
4374 |
|
|
xfs_extnum_t *idxp) /* index of target extent */
|
4375 |
|
|
{
|
4376 |
|
|
xfs_bmbt_rec_host_t *base; /* pointer to first extent */
|
4377 |
|
|
xfs_filblks_t blockcount = 0; /* number of blocks in extent */
|
4378 |
|
|
xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
|
4379 |
|
|
xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
|
4380 |
|
|
int high; /* upper boundary in search */
|
4381 |
|
|
xfs_extnum_t idx = 0; /* index of target extent */
|
4382 |
|
|
int low; /* lower boundary in search */
|
4383 |
|
|
xfs_extnum_t nextents; /* number of file extents */
|
4384 |
|
|
xfs_fileoff_t startoff = 0; /* start offset of extent */
|
4385 |
|
|
|
4386 |
|
|
nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
|
4387 |
|
|
if (nextents == 0) {
|
4388 |
|
|
*idxp = 0;
|
4389 |
|
|
return NULL;
|
4390 |
|
|
}
|
4391 |
|
|
low = 0;
|
4392 |
|
|
if (ifp->if_flags & XFS_IFEXTIREC) {
|
4393 |
|
|
/* Find target extent list */
|
4394 |
|
|
int erp_idx = 0;
|
4395 |
|
|
erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
|
4396 |
|
|
base = erp->er_extbuf;
|
4397 |
|
|
high = erp->er_extcount - 1;
|
4398 |
|
|
} else {
|
4399 |
|
|
base = ifp->if_u1.if_extents;
|
4400 |
|
|
high = nextents - 1;
|
4401 |
|
|
}
|
4402 |
|
|
/* Binary search extent records */
|
4403 |
|
|
while (low <= high) {
|
4404 |
|
|
idx = (low + high) >> 1;
|
4405 |
|
|
ep = base + idx;
|
4406 |
|
|
startoff = xfs_bmbt_get_startoff(ep);
|
4407 |
|
|
blockcount = xfs_bmbt_get_blockcount(ep);
|
4408 |
|
|
if (bno < startoff) {
|
4409 |
|
|
high = idx - 1;
|
4410 |
|
|
} else if (bno >= startoff + blockcount) {
|
4411 |
|
|
low = idx + 1;
|
4412 |
|
|
} else {
|
4413 |
|
|
/* Convert back to file-based extent index */
|
4414 |
|
|
if (ifp->if_flags & XFS_IFEXTIREC) {
|
4415 |
|
|
idx += erp->er_extoff;
|
4416 |
|
|
}
|
4417 |
|
|
*idxp = idx;
|
4418 |
|
|
return ep;
|
4419 |
|
|
}
|
4420 |
|
|
}
|
4421 |
|
|
/* Convert back to file-based extent index */
|
4422 |
|
|
if (ifp->if_flags & XFS_IFEXTIREC) {
|
4423 |
|
|
idx += erp->er_extoff;
|
4424 |
|
|
}
|
4425 |
|
|
if (bno >= startoff + blockcount) {
|
4426 |
|
|
if (++idx == nextents) {
|
4427 |
|
|
ep = NULL;
|
4428 |
|
|
} else {
|
4429 |
|
|
ep = xfs_iext_get_ext(ifp, idx);
|
4430 |
|
|
}
|
4431 |
|
|
}
|
4432 |
|
|
*idxp = idx;
|
4433 |
|
|
return ep;
|
4434 |
|
|
}
|
4435 |
|
|
|
4436 |
|
|
/*
|
4437 |
|
|
* Return a pointer to the indirection array entry containing the
|
4438 |
|
|
* extent record for filesystem block bno. Store the index of the
|
4439 |
|
|
* target irec in *erp_idxp.
|
4440 |
|
|
*/
|
4441 |
|
|
xfs_ext_irec_t * /* pointer to found extent record */
|
4442 |
|
|
xfs_iext_bno_to_irec(
|
4443 |
|
|
xfs_ifork_t *ifp, /* inode fork pointer */
|
4444 |
|
|
xfs_fileoff_t bno, /* block number to search for */
|
4445 |
|
|
int *erp_idxp) /* irec index of target ext list */
|
4446 |
|
|
{
|
4447 |
|
|
xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
|
4448 |
|
|
xfs_ext_irec_t *erp_next; /* next indirection array entry */
|
4449 |
|
|
int erp_idx; /* indirection array index */
|
4450 |
|
|
int nlists; /* number of extent irec's (lists) */
|
4451 |
|
|
int high; /* binary search upper limit */
|
4452 |
|
|
int low; /* binary search lower limit */
|
4453 |
|
|
|
4454 |
|
|
ASSERT(ifp->if_flags & XFS_IFEXTIREC);
|
4455 |
|
|
nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
|
4456 |
|
|
erp_idx = 0;
|
4457 |
|
|
low = 0;
|
4458 |
|
|
high = nlists - 1;
|
4459 |
|
|
while (low <= high) {
|
4460 |
|
|
erp_idx = (low + high) >> 1;
|
4461 |
|
|
erp = &ifp->if_u1.if_ext_irec[erp_idx];
|
4462 |
|
|
erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
|
4463 |
|
|
if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
|
4464 |
|
|
high = erp_idx - 1;
|
4465 |
|
|
} else if (erp_next && bno >=
|
4466 |
|
|
xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
|
4467 |
|
|
low = erp_idx + 1;
|
4468 |
|
|
} else {
|
4469 |
|
|
break;
|
4470 |
|
|
}
|
4471 |
|
|
}
|
4472 |
|
|
*erp_idxp = erp_idx;
|
4473 |
|
|
return erp;
|
4474 |
|
|
}
|
4475 |
|
|
|
4476 |
|
|
/*
|
4477 |
|
|
* Return a pointer to the indirection array entry containing the
|
4478 |
|
|
* extent record at file extent index *idxp. Store the index of the
|
4479 |
|
|
* target irec in *erp_idxp and store the page index of the target
|
4480 |
|
|
* extent record in *idxp.
|
4481 |
|
|
*/
|
4482 |
|
|
xfs_ext_irec_t *
|
4483 |
|
|
xfs_iext_idx_to_irec(
|
4484 |
|
|
xfs_ifork_t *ifp, /* inode fork pointer */
|
4485 |
|
|
xfs_extnum_t *idxp, /* extent index (file -> page) */
|
4486 |
|
|
int *erp_idxp, /* pointer to target irec */
|
4487 |
|
|
int realloc) /* new bytes were just added */
|
4488 |
|
|
{
|
4489 |
|
|
xfs_ext_irec_t *prev; /* pointer to previous irec */
|
4490 |
|
|
xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
|
4491 |
|
|
int erp_idx; /* indirection array index */
|
4492 |
|
|
int nlists; /* number of irec's (ex lists) */
|
4493 |
|
|
int high; /* binary search upper limit */
|
4494 |
|
|
int low; /* binary search lower limit */
|
4495 |
|
|
xfs_extnum_t page_idx = *idxp; /* extent index in target list */
|
4496 |
|
|
|
4497 |
|
|
ASSERT(ifp->if_flags & XFS_IFEXTIREC);
|
4498 |
|
|
ASSERT(page_idx >= 0 && page_idx <=
|
4499 |
|
|
ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
|
4500 |
|
|
nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
|
4501 |
|
|
erp_idx = 0;
|
4502 |
|
|
low = 0;
|
4503 |
|
|
high = nlists - 1;
|
4504 |
|
|
|
4505 |
|
|
/* Binary search extent irec's */
|
4506 |
|
|
while (low <= high) {
|
4507 |
|
|
erp_idx = (low + high) >> 1;
|
4508 |
|
|
erp = &ifp->if_u1.if_ext_irec[erp_idx];
|
4509 |
|
|
prev = erp_idx > 0 ? erp - 1 : NULL;
|
4510 |
|
|
if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
|
4511 |
|
|
realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
|
4512 |
|
|
high = erp_idx - 1;
|
4513 |
|
|
} else if (page_idx > erp->er_extoff + erp->er_extcount ||
|
4514 |
|
|
(page_idx == erp->er_extoff + erp->er_extcount &&
|
4515 |
|
|
!realloc)) {
|
4516 |
|
|
low = erp_idx + 1;
|
4517 |
|
|
} else if (page_idx == erp->er_extoff + erp->er_extcount &&
|
4518 |
|
|
erp->er_extcount == XFS_LINEAR_EXTS) {
|
4519 |
|
|
ASSERT(realloc);
|
4520 |
|
|
page_idx = 0;
|
4521 |
|
|
erp_idx++;
|
4522 |
|
|
erp = erp_idx < nlists ? erp + 1 : NULL;
|
4523 |
|
|
break;
|
4524 |
|
|
} else {
|
4525 |
|
|
page_idx -= erp->er_extoff;
|
4526 |
|
|
break;
|
4527 |
|
|
}
|
4528 |
|
|
}
|
4529 |
|
|
*idxp = page_idx;
|
4530 |
|
|
*erp_idxp = erp_idx;
|
4531 |
|
|
return(erp);
|
4532 |
|
|
}
|
4533 |
|
|
|
4534 |
|
|
/*
|
4535 |
|
|
* Allocate and initialize an indirection array once the space needed
|
4536 |
|
|
* for incore extents increases above XFS_IEXT_BUFSZ.
|
4537 |
|
|
*/
|
4538 |
|
|
void
|
4539 |
|
|
xfs_iext_irec_init(
|
4540 |
|
|
xfs_ifork_t *ifp) /* inode fork pointer */
|
4541 |
|
|
{
|
4542 |
|
|
xfs_ext_irec_t *erp; /* indirection array pointer */
|
4543 |
|
|
xfs_extnum_t nextents; /* number of extents in file */
|
4544 |
|
|
|
4545 |
|
|
ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
|
4546 |
|
|
nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
|
4547 |
|
|
ASSERT(nextents <= XFS_LINEAR_EXTS);
|
4548 |
|
|
|
4549 |
|
|
erp = (xfs_ext_irec_t *)
|
4550 |
|
|
kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
|
4551 |
|
|
|
4552 |
|
|
if (nextents == 0) {
|
4553 |
|
|
ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
|
4554 |
|
|
} else if (!ifp->if_real_bytes) {
|
4555 |
|
|
xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
|
4556 |
|
|
} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
|
4557 |
|
|
xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
|
4558 |
|
|
}
|
4559 |
|
|
erp->er_extbuf = ifp->if_u1.if_extents;
|
4560 |
|
|
erp->er_extcount = nextents;
|
4561 |
|
|
erp->er_extoff = 0;
|
4562 |
|
|
|
4563 |
|
|
ifp->if_flags |= XFS_IFEXTIREC;
|
4564 |
|
|
ifp->if_real_bytes = XFS_IEXT_BUFSZ;
|
4565 |
|
|
ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
|
4566 |
|
|
ifp->if_u1.if_ext_irec = erp;
|
4567 |
|
|
|
4568 |
|
|
return;
|
4569 |
|
|
}
|
4570 |
|
|
|
4571 |
|
|
/*
|
4572 |
|
|
* Allocate and initialize a new entry in the indirection array.
|
4573 |
|
|
*/
|
4574 |
|
|
xfs_ext_irec_t *
|
4575 |
|
|
xfs_iext_irec_new(
|
4576 |
|
|
xfs_ifork_t *ifp, /* inode fork pointer */
|
4577 |
|
|
int erp_idx) /* index for new irec */
|
4578 |
|
|
{
|
4579 |
|
|
xfs_ext_irec_t *erp; /* indirection array pointer */
|
4580 |
|
|
int i; /* loop counter */
|
4581 |
|
|
int nlists; /* number of irec's (ex lists) */
|
4582 |
|
|
|
4583 |
|
|
ASSERT(ifp->if_flags & XFS_IFEXTIREC);
|
4584 |
|
|
nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
|
4585 |
|
|
|
4586 |
|
|
/* Resize indirection array */
|
4587 |
|
|
xfs_iext_realloc_indirect(ifp, ++nlists *
|
4588 |
|
|
sizeof(xfs_ext_irec_t));
|
4589 |
|
|
/*
|
4590 |
|
|
* Move records down in the array so the
|
4591 |
|
|
* new page can use erp_idx.
|
4592 |
|
|
*/
|
4593 |
|
|
erp = ifp->if_u1.if_ext_irec;
|
4594 |
|
|
for (i = nlists - 1; i > erp_idx; i--) {
|
4595 |
|
|
memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
|
4596 |
|
|
}
|
4597 |
|
|
ASSERT(i == erp_idx);
|
4598 |
|
|
|
4599 |
|
|
/* Initialize new extent record */
|
4600 |
|
|
erp = ifp->if_u1.if_ext_irec;
|
4601 |
|
|
erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
|
4602 |
|
|
ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
|
4603 |
|
|
memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
|
4604 |
|
|
erp[erp_idx].er_extcount = 0;
|
4605 |
|
|
erp[erp_idx].er_extoff = erp_idx > 0 ?
|
4606 |
|
|
erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
|
4607 |
|
|
return (&erp[erp_idx]);
|
4608 |
|
|
}
|
4609 |
|
|
|
4610 |
|
|
/*
|
4611 |
|
|
* Remove a record from the indirection array.
|
4612 |
|
|
*/
|
4613 |
|
|
void
|
4614 |
|
|
xfs_iext_irec_remove(
|
4615 |
|
|
xfs_ifork_t *ifp, /* inode fork pointer */
|
4616 |
|
|
int erp_idx) /* irec index to remove */
|
4617 |
|
|
{
|
4618 |
|
|
xfs_ext_irec_t *erp; /* indirection array pointer */
|
4619 |
|
|
int i; /* loop counter */
|
4620 |
|
|
int nlists; /* number of irec's (ex lists) */
|
4621 |
|
|
|
4622 |
|
|
ASSERT(ifp->if_flags & XFS_IFEXTIREC);
|
4623 |
|
|
nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
|
4624 |
|
|
erp = &ifp->if_u1.if_ext_irec[erp_idx];
|
4625 |
|
|
if (erp->er_extbuf) {
|
4626 |
|
|
xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
|
4627 |
|
|
-erp->er_extcount);
|
4628 |
|
|
kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
|
4629 |
|
|
}
|
4630 |
|
|
/* Compact extent records */
|
4631 |
|
|
erp = ifp->if_u1.if_ext_irec;
|
4632 |
|
|
for (i = erp_idx; i < nlists - 1; i++) {
|
4633 |
|
|
memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
|
4634 |
|
|
}
|
4635 |
|
|
/*
|
4636 |
|
|
* Manually free the last extent record from the indirection
|
4637 |
|
|
* array. A call to xfs_iext_realloc_indirect() with a size
|
4638 |
|
|
* of zero would result in a call to xfs_iext_destroy() which
|
4639 |
|
|
* would in turn call this function again, creating a nasty
|
4640 |
|
|
* infinite loop.
|
4641 |
|
|
*/
|
4642 |
|
|
if (--nlists) {
|
4643 |
|
|
xfs_iext_realloc_indirect(ifp,
|
4644 |
|
|
nlists * sizeof(xfs_ext_irec_t));
|
4645 |
|
|
} else {
|
4646 |
|
|
kmem_free(ifp->if_u1.if_ext_irec,
|
4647 |
|
|
sizeof(xfs_ext_irec_t));
|
4648 |
|
|
}
|
4649 |
|
|
ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
|
4650 |
|
|
}
|
4651 |
|
|
|
4652 |
|
|
/*
|
4653 |
|
|
* This is called to clean up large amounts of unused memory allocated
|
4654 |
|
|
* by the indirection array. Before compacting anything though, verify
|
4655 |
|
|
* that the indirection array is still needed and switch back to the
|
4656 |
|
|
* linear extent list (or even the inline buffer) if possible. The
|
4657 |
|
|
* compaction policy is as follows:
|
4658 |
|
|
*
|
4659 |
|
|
* Full Compaction: Extents fit into a single page (or inline buffer)
|
4660 |
|
|
* Full Compaction: Extents occupy less than 10% of allocated space
|
4661 |
|
|
* Partial Compaction: Extents occupy > 10% and < 50% of allocated space
|
4662 |
|
|
* No Compaction: Extents occupy at least 50% of allocated space
|
4663 |
|
|
*/
|
4664 |
|
|
void
|
4665 |
|
|
xfs_iext_irec_compact(
|
4666 |
|
|
xfs_ifork_t *ifp) /* inode fork pointer */
|
4667 |
|
|
{
|
4668 |
|
|
xfs_extnum_t nextents; /* number of extents in file */
|
4669 |
|
|
int nlists; /* number of irec's (ex lists) */
|
4670 |
|
|
|
4671 |
|
|
ASSERT(ifp->if_flags & XFS_IFEXTIREC);
|
4672 |
|
|
nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
|
4673 |
|
|
nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
|
4674 |
|
|
|
4675 |
|
|
if (nextents == 0) {
|
4676 |
|
|
xfs_iext_destroy(ifp);
|
4677 |
|
|
} else if (nextents <= XFS_INLINE_EXTS) {
|
4678 |
|
|
xfs_iext_indirect_to_direct(ifp);
|
4679 |
|
|
xfs_iext_direct_to_inline(ifp, nextents);
|
4680 |
|
|
} else if (nextents <= XFS_LINEAR_EXTS) {
|
4681 |
|
|
xfs_iext_indirect_to_direct(ifp);
|
4682 |
|
|
} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
|
4683 |
|
|
xfs_iext_irec_compact_full(ifp);
|
4684 |
|
|
} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
|
4685 |
|
|
xfs_iext_irec_compact_pages(ifp);
|
4686 |
|
|
}
|
4687 |
|
|
}
|
4688 |
|
|
|
4689 |
|
|
/*
|
4690 |
|
|
* Combine extents from neighboring extent pages.
|
4691 |
|
|
*/
|
4692 |
|
|
void
|
4693 |
|
|
xfs_iext_irec_compact_pages(
|
4694 |
|
|
xfs_ifork_t *ifp) /* inode fork pointer */
|
4695 |
|
|
{
|
4696 |
|
|
xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
|
4697 |
|
|
int erp_idx = 0; /* indirection array index */
|
4698 |
|
|
int nlists; /* number of irec's (ex lists) */
|
4699 |
|
|
|
4700 |
|
|
ASSERT(ifp->if_flags & XFS_IFEXTIREC);
|
4701 |
|
|
nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
|
4702 |
|
|
while (erp_idx < nlists - 1) {
|
4703 |
|
|
erp = &ifp->if_u1.if_ext_irec[erp_idx];
|
4704 |
|
|
erp_next = erp + 1;
|
4705 |
|
|
if (erp_next->er_extcount <=
|
4706 |
|
|
(XFS_LINEAR_EXTS - erp->er_extcount)) {
|
4707 |
|
|
memmove(&erp->er_extbuf[erp->er_extcount],
|
4708 |
|
|
erp_next->er_extbuf, erp_next->er_extcount *
|
4709 |
|
|
sizeof(xfs_bmbt_rec_t));
|
4710 |
|
|
erp->er_extcount += erp_next->er_extcount;
|
4711 |
|
|
/*
|
4712 |
|
|
* Free page before removing extent record
|
4713 |
|
|
* so er_extoffs don't get modified in
|
4714 |
|
|
* xfs_iext_irec_remove.
|
4715 |
|
|
*/
|
4716 |
|
|
kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
|
4717 |
|
|
erp_next->er_extbuf = NULL;
|
4718 |
|
|
xfs_iext_irec_remove(ifp, erp_idx + 1);
|
4719 |
|
|
nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
|
4720 |
|
|
} else {
|
4721 |
|
|
erp_idx++;
|
4722 |
|
|
}
|
4723 |
|
|
}
|
4724 |
|
|
}
|
4725 |
|
|
|
4726 |
|
|
/*
|
4727 |
|
|
* Fully compact the extent records managed by the indirection array.
|
4728 |
|
|
*/
|
4729 |
|
|
void
|
4730 |
|
|
xfs_iext_irec_compact_full(
|
4731 |
|
|
xfs_ifork_t *ifp) /* inode fork pointer */
|
4732 |
|
|
{
|
4733 |
|
|
xfs_bmbt_rec_host_t *ep, *ep_next; /* extent record pointers */
|
4734 |
|
|
xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
|
4735 |
|
|
int erp_idx = 0; /* extent irec index */
|
4736 |
|
|
int ext_avail; /* empty entries in ex list */
|
4737 |
|
|
int ext_diff; /* number of exts to add */
|
4738 |
|
|
int nlists; /* number of irec's (ex lists) */
|
4739 |
|
|
|
4740 |
|
|
ASSERT(ifp->if_flags & XFS_IFEXTIREC);
|
4741 |
|
|
nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
|
4742 |
|
|
erp = ifp->if_u1.if_ext_irec;
|
4743 |
|
|
ep = &erp->er_extbuf[erp->er_extcount];
|
4744 |
|
|
erp_next = erp + 1;
|
4745 |
|
|
ep_next = erp_next->er_extbuf;
|
4746 |
|
|
while (erp_idx < nlists - 1) {
|
4747 |
|
|
ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
|
4748 |
|
|
ext_diff = MIN(ext_avail, erp_next->er_extcount);
|
4749 |
|
|
memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
|
4750 |
|
|
erp->er_extcount += ext_diff;
|
4751 |
|
|
erp_next->er_extcount -= ext_diff;
|
4752 |
|
|
/* Remove next page */
|
4753 |
|
|
if (erp_next->er_extcount == 0) {
|
4754 |
|
|
/*
|
4755 |
|
|
* Free page before removing extent record
|
4756 |
|
|
* so er_extoffs don't get modified in
|
4757 |
|
|
* xfs_iext_irec_remove.
|
4758 |
|
|
*/
|
4759 |
|
|
kmem_free(erp_next->er_extbuf,
|
4760 |
|
|
erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
|
4761 |
|
|
erp_next->er_extbuf = NULL;
|
4762 |
|
|
xfs_iext_irec_remove(ifp, erp_idx + 1);
|
4763 |
|
|
erp = &ifp->if_u1.if_ext_irec[erp_idx];
|
4764 |
|
|
nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
|
4765 |
|
|
/* Update next page */
|
4766 |
|
|
} else {
|
4767 |
|
|
/* Move rest of page up to become next new page */
|
4768 |
|
|
memmove(erp_next->er_extbuf, ep_next,
|
4769 |
|
|
erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
|
4770 |
|
|
ep_next = erp_next->er_extbuf;
|
4771 |
|
|
memset(&ep_next[erp_next->er_extcount], 0,
|
4772 |
|
|
(XFS_LINEAR_EXTS - erp_next->er_extcount) *
|
4773 |
|
|
sizeof(xfs_bmbt_rec_t));
|
4774 |
|
|
}
|
4775 |
|
|
if (erp->er_extcount == XFS_LINEAR_EXTS) {
|
4776 |
|
|
erp_idx++;
|
4777 |
|
|
if (erp_idx < nlists)
|
4778 |
|
|
erp = &ifp->if_u1.if_ext_irec[erp_idx];
|
4779 |
|
|
else
|
4780 |
|
|
break;
|
4781 |
|
|
}
|
4782 |
|
|
ep = &erp->er_extbuf[erp->er_extcount];
|
4783 |
|
|
erp_next = erp + 1;
|
4784 |
|
|
ep_next = erp_next->er_extbuf;
|
4785 |
|
|
}
|
4786 |
|
|
}
|
4787 |
|
|
|
4788 |
|
|
/*
|
4789 |
|
|
* This is called to update the er_extoff field in the indirection
|
4790 |
|
|
* array when extents have been added or removed from one of the
|
4791 |
|
|
* extent lists. erp_idx contains the irec index to begin updating
|
4792 |
|
|
* at and ext_diff contains the number of extents that were added
|
4793 |
|
|
* or removed.
|
4794 |
|
|
*/
|
4795 |
|
|
void
|
4796 |
|
|
xfs_iext_irec_update_extoffs(
|
4797 |
|
|
xfs_ifork_t *ifp, /* inode fork pointer */
|
4798 |
|
|
int erp_idx, /* irec index to update */
|
4799 |
|
|
int ext_diff) /* number of new extents */
|
4800 |
|
|
{
|
4801 |
|
|
int i; /* loop counter */
|
4802 |
|
|
int nlists; /* number of irec's (ex lists */
|
4803 |
|
|
|
4804 |
|
|
ASSERT(ifp->if_flags & XFS_IFEXTIREC);
|
4805 |
|
|
nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
|
4806 |
|
|
for (i = erp_idx; i < nlists; i++) {
|
4807 |
|
|
ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
|
4808 |
|
|
}
|
4809 |
|
|
}
|