1 |
62 |
marcus.erl |
/*
|
2 |
|
|
* include/linux/ktime.h
|
3 |
|
|
*
|
4 |
|
|
* ktime_t - nanosecond-resolution time format.
|
5 |
|
|
*
|
6 |
|
|
* Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
|
7 |
|
|
* Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
|
8 |
|
|
*
|
9 |
|
|
* data type definitions, declarations, prototypes and macros.
|
10 |
|
|
*
|
11 |
|
|
* Started by: Thomas Gleixner and Ingo Molnar
|
12 |
|
|
*
|
13 |
|
|
* Credits:
|
14 |
|
|
*
|
15 |
|
|
* Roman Zippel provided the ideas and primary code snippets of
|
16 |
|
|
* the ktime_t union and further simplifications of the original
|
17 |
|
|
* code.
|
18 |
|
|
*
|
19 |
|
|
* For licencing details see kernel-base/COPYING
|
20 |
|
|
*/
|
21 |
|
|
#ifndef _LINUX_KTIME_H
|
22 |
|
|
#define _LINUX_KTIME_H
|
23 |
|
|
|
24 |
|
|
#include <linux/time.h>
|
25 |
|
|
#include <linux/jiffies.h>
|
26 |
|
|
|
27 |
|
|
/*
|
28 |
|
|
* ktime_t:
|
29 |
|
|
*
|
30 |
|
|
* On 64-bit CPUs a single 64-bit variable is used to store the hrtimers
|
31 |
|
|
* internal representation of time values in scalar nanoseconds. The
|
32 |
|
|
* design plays out best on 64-bit CPUs, where most conversions are
|
33 |
|
|
* NOPs and most arithmetic ktime_t operations are plain arithmetic
|
34 |
|
|
* operations.
|
35 |
|
|
*
|
36 |
|
|
* On 32-bit CPUs an optimized representation of the timespec structure
|
37 |
|
|
* is used to avoid expensive conversions from and to timespecs. The
|
38 |
|
|
* endian-aware order of the tv struct members is choosen to allow
|
39 |
|
|
* mathematical operations on the tv64 member of the union too, which
|
40 |
|
|
* for certain operations produces better code.
|
41 |
|
|
*
|
42 |
|
|
* For architectures with efficient support for 64/32-bit conversions the
|
43 |
|
|
* plain scalar nanosecond based representation can be selected by the
|
44 |
|
|
* config switch CONFIG_KTIME_SCALAR.
|
45 |
|
|
*/
|
46 |
|
|
union ktime {
|
47 |
|
|
s64 tv64;
|
48 |
|
|
#if BITS_PER_LONG != 64 && !defined(CONFIG_KTIME_SCALAR)
|
49 |
|
|
struct {
|
50 |
|
|
# ifdef __BIG_ENDIAN
|
51 |
|
|
s32 sec, nsec;
|
52 |
|
|
# else
|
53 |
|
|
s32 nsec, sec;
|
54 |
|
|
# endif
|
55 |
|
|
} tv;
|
56 |
|
|
#endif
|
57 |
|
|
};
|
58 |
|
|
|
59 |
|
|
typedef union ktime ktime_t; /* Kill this */
|
60 |
|
|
|
61 |
|
|
#define KTIME_MAX ((s64)~((u64)1 << 63))
|
62 |
|
|
#if (BITS_PER_LONG == 64)
|
63 |
|
|
# define KTIME_SEC_MAX (KTIME_MAX / NSEC_PER_SEC)
|
64 |
|
|
#else
|
65 |
|
|
# define KTIME_SEC_MAX LONG_MAX
|
66 |
|
|
#endif
|
67 |
|
|
|
68 |
|
|
/*
|
69 |
|
|
* ktime_t definitions when using the 64-bit scalar representation:
|
70 |
|
|
*/
|
71 |
|
|
|
72 |
|
|
#if (BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)
|
73 |
|
|
|
74 |
|
|
/**
|
75 |
|
|
* ktime_set - Set a ktime_t variable from a seconds/nanoseconds value
|
76 |
|
|
* @secs: seconds to set
|
77 |
|
|
* @nsecs: nanoseconds to set
|
78 |
|
|
*
|
79 |
|
|
* Return the ktime_t representation of the value
|
80 |
|
|
*/
|
81 |
|
|
static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
|
82 |
|
|
{
|
83 |
|
|
#if (BITS_PER_LONG == 64)
|
84 |
|
|
if (unlikely(secs >= KTIME_SEC_MAX))
|
85 |
|
|
return (ktime_t){ .tv64 = KTIME_MAX };
|
86 |
|
|
#endif
|
87 |
|
|
return (ktime_t) { .tv64 = (s64)secs * NSEC_PER_SEC + (s64)nsecs };
|
88 |
|
|
}
|
89 |
|
|
|
90 |
|
|
/* Subtract two ktime_t variables. rem = lhs -rhs: */
|
91 |
|
|
#define ktime_sub(lhs, rhs) \
|
92 |
|
|
({ (ktime_t){ .tv64 = (lhs).tv64 - (rhs).tv64 }; })
|
93 |
|
|
|
94 |
|
|
/* Add two ktime_t variables. res = lhs + rhs: */
|
95 |
|
|
#define ktime_add(lhs, rhs) \
|
96 |
|
|
({ (ktime_t){ .tv64 = (lhs).tv64 + (rhs).tv64 }; })
|
97 |
|
|
|
98 |
|
|
/*
|
99 |
|
|
* Add a ktime_t variable and a scalar nanosecond value.
|
100 |
|
|
* res = kt + nsval:
|
101 |
|
|
*/
|
102 |
|
|
#define ktime_add_ns(kt, nsval) \
|
103 |
|
|
({ (ktime_t){ .tv64 = (kt).tv64 + (nsval) }; })
|
104 |
|
|
|
105 |
|
|
/*
|
106 |
|
|
* Subtract a scalar nanosecod from a ktime_t variable
|
107 |
|
|
* res = kt - nsval:
|
108 |
|
|
*/
|
109 |
|
|
#define ktime_sub_ns(kt, nsval) \
|
110 |
|
|
({ (ktime_t){ .tv64 = (kt).tv64 - (nsval) }; })
|
111 |
|
|
|
112 |
|
|
/* convert a timespec to ktime_t format: */
|
113 |
|
|
static inline ktime_t timespec_to_ktime(struct timespec ts)
|
114 |
|
|
{
|
115 |
|
|
return ktime_set(ts.tv_sec, ts.tv_nsec);
|
116 |
|
|
}
|
117 |
|
|
|
118 |
|
|
/* convert a timeval to ktime_t format: */
|
119 |
|
|
static inline ktime_t timeval_to_ktime(struct timeval tv)
|
120 |
|
|
{
|
121 |
|
|
return ktime_set(tv.tv_sec, tv.tv_usec * NSEC_PER_USEC);
|
122 |
|
|
}
|
123 |
|
|
|
124 |
|
|
/* Map the ktime_t to timespec conversion to ns_to_timespec function */
|
125 |
|
|
#define ktime_to_timespec(kt) ns_to_timespec((kt).tv64)
|
126 |
|
|
|
127 |
|
|
/* Map the ktime_t to timeval conversion to ns_to_timeval function */
|
128 |
|
|
#define ktime_to_timeval(kt) ns_to_timeval((kt).tv64)
|
129 |
|
|
|
130 |
|
|
/* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */
|
131 |
|
|
#define ktime_to_ns(kt) ((kt).tv64)
|
132 |
|
|
|
133 |
|
|
#else
|
134 |
|
|
|
135 |
|
|
/*
|
136 |
|
|
* Helper macros/inlines to get the ktime_t math right in the timespec
|
137 |
|
|
* representation. The macros are sometimes ugly - their actual use is
|
138 |
|
|
* pretty okay-ish, given the circumstances. We do all this for
|
139 |
|
|
* performance reasons. The pure scalar nsec_t based code was nice and
|
140 |
|
|
* simple, but created too many 64-bit / 32-bit conversions and divisions.
|
141 |
|
|
*
|
142 |
|
|
* Be especially aware that negative values are represented in a way
|
143 |
|
|
* that the tv.sec field is negative and the tv.nsec field is greater
|
144 |
|
|
* or equal to zero but less than nanoseconds per second. This is the
|
145 |
|
|
* same representation which is used by timespecs.
|
146 |
|
|
*
|
147 |
|
|
* tv.sec < 0 and 0 >= tv.nsec < NSEC_PER_SEC
|
148 |
|
|
*/
|
149 |
|
|
|
150 |
|
|
/* Set a ktime_t variable to a value in sec/nsec representation: */
|
151 |
|
|
static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
|
152 |
|
|
{
|
153 |
|
|
return (ktime_t) { .tv = { .sec = secs, .nsec = nsecs } };
|
154 |
|
|
}
|
155 |
|
|
|
156 |
|
|
/**
|
157 |
|
|
* ktime_sub - subtract two ktime_t variables
|
158 |
|
|
* @lhs: minuend
|
159 |
|
|
* @rhs: subtrahend
|
160 |
|
|
*
|
161 |
|
|
* Returns the remainder of the substraction
|
162 |
|
|
*/
|
163 |
|
|
static inline ktime_t ktime_sub(const ktime_t lhs, const ktime_t rhs)
|
164 |
|
|
{
|
165 |
|
|
ktime_t res;
|
166 |
|
|
|
167 |
|
|
res.tv64 = lhs.tv64 - rhs.tv64;
|
168 |
|
|
if (res.tv.nsec < 0)
|
169 |
|
|
res.tv.nsec += NSEC_PER_SEC;
|
170 |
|
|
|
171 |
|
|
return res;
|
172 |
|
|
}
|
173 |
|
|
|
174 |
|
|
/**
|
175 |
|
|
* ktime_add - add two ktime_t variables
|
176 |
|
|
* @add1: addend1
|
177 |
|
|
* @add2: addend2
|
178 |
|
|
*
|
179 |
|
|
* Returns the sum of @add1 and @add2.
|
180 |
|
|
*/
|
181 |
|
|
static inline ktime_t ktime_add(const ktime_t add1, const ktime_t add2)
|
182 |
|
|
{
|
183 |
|
|
ktime_t res;
|
184 |
|
|
|
185 |
|
|
res.tv64 = add1.tv64 + add2.tv64;
|
186 |
|
|
/*
|
187 |
|
|
* performance trick: the (u32) -NSEC gives 0x00000000Fxxxxxxx
|
188 |
|
|
* so we subtract NSEC_PER_SEC and add 1 to the upper 32 bit.
|
189 |
|
|
*
|
190 |
|
|
* it's equivalent to:
|
191 |
|
|
* tv.nsec -= NSEC_PER_SEC
|
192 |
|
|
* tv.sec ++;
|
193 |
|
|
*/
|
194 |
|
|
if (res.tv.nsec >= NSEC_PER_SEC)
|
195 |
|
|
res.tv64 += (u32)-NSEC_PER_SEC;
|
196 |
|
|
|
197 |
|
|
return res;
|
198 |
|
|
}
|
199 |
|
|
|
200 |
|
|
/**
|
201 |
|
|
* ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
|
202 |
|
|
* @kt: addend
|
203 |
|
|
* @nsec: the scalar nsec value to add
|
204 |
|
|
*
|
205 |
|
|
* Returns the sum of @kt and @nsec in ktime_t format
|
206 |
|
|
*/
|
207 |
|
|
extern ktime_t ktime_add_ns(const ktime_t kt, u64 nsec);
|
208 |
|
|
|
209 |
|
|
/**
|
210 |
|
|
* ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
|
211 |
|
|
* @kt: minuend
|
212 |
|
|
* @nsec: the scalar nsec value to subtract
|
213 |
|
|
*
|
214 |
|
|
* Returns the subtraction of @nsec from @kt in ktime_t format
|
215 |
|
|
*/
|
216 |
|
|
extern ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec);
|
217 |
|
|
|
218 |
|
|
/**
|
219 |
|
|
* timespec_to_ktime - convert a timespec to ktime_t format
|
220 |
|
|
* @ts: the timespec variable to convert
|
221 |
|
|
*
|
222 |
|
|
* Returns a ktime_t variable with the converted timespec value
|
223 |
|
|
*/
|
224 |
|
|
static inline ktime_t timespec_to_ktime(const struct timespec ts)
|
225 |
|
|
{
|
226 |
|
|
return (ktime_t) { .tv = { .sec = (s32)ts.tv_sec,
|
227 |
|
|
.nsec = (s32)ts.tv_nsec } };
|
228 |
|
|
}
|
229 |
|
|
|
230 |
|
|
/**
|
231 |
|
|
* timeval_to_ktime - convert a timeval to ktime_t format
|
232 |
|
|
* @tv: the timeval variable to convert
|
233 |
|
|
*
|
234 |
|
|
* Returns a ktime_t variable with the converted timeval value
|
235 |
|
|
*/
|
236 |
|
|
static inline ktime_t timeval_to_ktime(const struct timeval tv)
|
237 |
|
|
{
|
238 |
|
|
return (ktime_t) { .tv = { .sec = (s32)tv.tv_sec,
|
239 |
|
|
.nsec = (s32)tv.tv_usec * 1000 } };
|
240 |
|
|
}
|
241 |
|
|
|
242 |
|
|
/**
|
243 |
|
|
* ktime_to_timespec - convert a ktime_t variable to timespec format
|
244 |
|
|
* @kt: the ktime_t variable to convert
|
245 |
|
|
*
|
246 |
|
|
* Returns the timespec representation of the ktime value
|
247 |
|
|
*/
|
248 |
|
|
static inline struct timespec ktime_to_timespec(const ktime_t kt)
|
249 |
|
|
{
|
250 |
|
|
return (struct timespec) { .tv_sec = (time_t) kt.tv.sec,
|
251 |
|
|
.tv_nsec = (long) kt.tv.nsec };
|
252 |
|
|
}
|
253 |
|
|
|
254 |
|
|
/**
|
255 |
|
|
* ktime_to_timeval - convert a ktime_t variable to timeval format
|
256 |
|
|
* @kt: the ktime_t variable to convert
|
257 |
|
|
*
|
258 |
|
|
* Returns the timeval representation of the ktime value
|
259 |
|
|
*/
|
260 |
|
|
static inline struct timeval ktime_to_timeval(const ktime_t kt)
|
261 |
|
|
{
|
262 |
|
|
return (struct timeval) {
|
263 |
|
|
.tv_sec = (time_t) kt.tv.sec,
|
264 |
|
|
.tv_usec = (suseconds_t) (kt.tv.nsec / NSEC_PER_USEC) };
|
265 |
|
|
}
|
266 |
|
|
|
267 |
|
|
/**
|
268 |
|
|
* ktime_to_ns - convert a ktime_t variable to scalar nanoseconds
|
269 |
|
|
* @kt: the ktime_t variable to convert
|
270 |
|
|
*
|
271 |
|
|
* Returns the scalar nanoseconds representation of @kt
|
272 |
|
|
*/
|
273 |
|
|
static inline s64 ktime_to_ns(const ktime_t kt)
|
274 |
|
|
{
|
275 |
|
|
return (s64) kt.tv.sec * NSEC_PER_SEC + kt.tv.nsec;
|
276 |
|
|
}
|
277 |
|
|
|
278 |
|
|
#endif
|
279 |
|
|
|
280 |
|
|
/**
|
281 |
|
|
* ktime_equal - Compares two ktime_t variables to see if they are equal
|
282 |
|
|
* @cmp1: comparable1
|
283 |
|
|
* @cmp2: comparable2
|
284 |
|
|
*
|
285 |
|
|
* Compare two ktime_t variables, returns 1 if equal
|
286 |
|
|
*/
|
287 |
|
|
static inline int ktime_equal(const ktime_t cmp1, const ktime_t cmp2)
|
288 |
|
|
{
|
289 |
|
|
return cmp1.tv64 == cmp2.tv64;
|
290 |
|
|
}
|
291 |
|
|
|
292 |
|
|
static inline s64 ktime_to_us(const ktime_t kt)
|
293 |
|
|
{
|
294 |
|
|
struct timeval tv = ktime_to_timeval(kt);
|
295 |
|
|
return (s64) tv.tv_sec * USEC_PER_SEC + tv.tv_usec;
|
296 |
|
|
}
|
297 |
|
|
|
298 |
|
|
static inline s64 ktime_us_delta(const ktime_t later, const ktime_t earlier)
|
299 |
|
|
{
|
300 |
|
|
return ktime_to_us(ktime_sub(later, earlier));
|
301 |
|
|
}
|
302 |
|
|
|
303 |
|
|
static inline ktime_t ktime_add_us(const ktime_t kt, const u64 usec)
|
304 |
|
|
{
|
305 |
|
|
return ktime_add_ns(kt, usec * 1000);
|
306 |
|
|
}
|
307 |
|
|
|
308 |
|
|
static inline ktime_t ktime_sub_us(const ktime_t kt, const u64 usec)
|
309 |
|
|
{
|
310 |
|
|
return ktime_sub_ns(kt, usec * 1000);
|
311 |
|
|
}
|
312 |
|
|
|
313 |
|
|
/*
|
314 |
|
|
* The resolution of the clocks. The resolution value is returned in
|
315 |
|
|
* the clock_getres() system call to give application programmers an
|
316 |
|
|
* idea of the (in)accuracy of timers. Timer values are rounded up to
|
317 |
|
|
* this resolution values.
|
318 |
|
|
*/
|
319 |
|
|
#define KTIME_LOW_RES (ktime_t){ .tv64 = TICK_NSEC }
|
320 |
|
|
|
321 |
|
|
/* Get the monotonic time in timespec format: */
|
322 |
|
|
extern void ktime_get_ts(struct timespec *ts);
|
323 |
|
|
|
324 |
|
|
/* Get the real (wall-) time in timespec format: */
|
325 |
|
|
#define ktime_get_real_ts(ts) getnstimeofday(ts)
|
326 |
|
|
|
327 |
|
|
#endif
|