OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [include/] [linux/] [log2.h] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/* Integer base 2 logarithm calculation
2
 *
3
 * Copyright (C) 2006 Red Hat, Inc. All Rights Reserved.
4
 * Written by David Howells (dhowells@redhat.com)
5
 *
6
 * This program is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU General Public License
8
 * as published by the Free Software Foundation; either version
9
 * 2 of the License, or (at your option) any later version.
10
 */
11
 
12
#ifndef _LINUX_LOG2_H
13
#define _LINUX_LOG2_H
14
 
15
#include <linux/types.h>
16
#include <linux/bitops.h>
17
 
18
/*
19
 * deal with unrepresentable constant logarithms
20
 */
21
extern __attribute__((const, noreturn))
22
int ____ilog2_NaN(void);
23
 
24
/*
25
 * non-constant log of base 2 calculators
26
 * - the arch may override these in asm/bitops.h if they can be implemented
27
 *   more efficiently than using fls() and fls64()
28
 * - the arch is not required to handle n==0 if implementing the fallback
29
 */
30
#ifndef CONFIG_ARCH_HAS_ILOG2_U32
31
static inline __attribute__((const))
32
int __ilog2_u32(u32 n)
33
{
34
        return fls(n) - 1;
35
}
36
#endif
37
 
38
#ifndef CONFIG_ARCH_HAS_ILOG2_U64
39
static inline __attribute__((const))
40
int __ilog2_u64(u64 n)
41
{
42
        return fls64(n) - 1;
43
}
44
#endif
45
 
46
/*
47
 *  Determine whether some value is a power of two, where zero is
48
 * *not* considered a power of two.
49
 */
50
 
51
static inline __attribute__((const))
52
bool is_power_of_2(unsigned long n)
53
{
54
        return (n != 0 && ((n & (n - 1)) == 0));
55
}
56
 
57
/*
58
 * round up to nearest power of two
59
 */
60
static inline __attribute__((const))
61
unsigned long __roundup_pow_of_two(unsigned long n)
62
{
63
        return 1UL << fls_long(n - 1);
64
}
65
 
66
/*
67
 * round down to nearest power of two
68
 */
69
static inline __attribute__((const))
70
unsigned long __rounddown_pow_of_two(unsigned long n)
71
{
72
        return 1UL << (fls_long(n) - 1);
73
}
74
 
75
/**
76
 * ilog2 - log of base 2 of 32-bit or a 64-bit unsigned value
77
 * @n - parameter
78
 *
79
 * constant-capable log of base 2 calculation
80
 * - this can be used to initialise global variables from constant data, hence
81
 *   the massive ternary operator construction
82
 *
83
 * selects the appropriately-sized optimised version depending on sizeof(n)
84
 */
85
#define ilog2(n)                                \
86
(                                               \
87
        __builtin_constant_p(n) ? (             \
88
                (n) < 1 ? ____ilog2_NaN() :     \
89
                (n) & (1ULL << 63) ? 63 :       \
90
                (n) & (1ULL << 62) ? 62 :       \
91
                (n) & (1ULL << 61) ? 61 :       \
92
                (n) & (1ULL << 60) ? 60 :       \
93
                (n) & (1ULL << 59) ? 59 :       \
94
                (n) & (1ULL << 58) ? 58 :       \
95
                (n) & (1ULL << 57) ? 57 :       \
96
                (n) & (1ULL << 56) ? 56 :       \
97
                (n) & (1ULL << 55) ? 55 :       \
98
                (n) & (1ULL << 54) ? 54 :       \
99
                (n) & (1ULL << 53) ? 53 :       \
100
                (n) & (1ULL << 52) ? 52 :       \
101
                (n) & (1ULL << 51) ? 51 :       \
102
                (n) & (1ULL << 50) ? 50 :       \
103
                (n) & (1ULL << 49) ? 49 :       \
104
                (n) & (1ULL << 48) ? 48 :       \
105
                (n) & (1ULL << 47) ? 47 :       \
106
                (n) & (1ULL << 46) ? 46 :       \
107
                (n) & (1ULL << 45) ? 45 :       \
108
                (n) & (1ULL << 44) ? 44 :       \
109
                (n) & (1ULL << 43) ? 43 :       \
110
                (n) & (1ULL << 42) ? 42 :       \
111
                (n) & (1ULL << 41) ? 41 :       \
112
                (n) & (1ULL << 40) ? 40 :       \
113
                (n) & (1ULL << 39) ? 39 :       \
114
                (n) & (1ULL << 38) ? 38 :       \
115
                (n) & (1ULL << 37) ? 37 :       \
116
                (n) & (1ULL << 36) ? 36 :       \
117
                (n) & (1ULL << 35) ? 35 :       \
118
                (n) & (1ULL << 34) ? 34 :       \
119
                (n) & (1ULL << 33) ? 33 :       \
120
                (n) & (1ULL << 32) ? 32 :       \
121
                (n) & (1ULL << 31) ? 31 :       \
122
                (n) & (1ULL << 30) ? 30 :       \
123
                (n) & (1ULL << 29) ? 29 :       \
124
                (n) & (1ULL << 28) ? 28 :       \
125
                (n) & (1ULL << 27) ? 27 :       \
126
                (n) & (1ULL << 26) ? 26 :       \
127
                (n) & (1ULL << 25) ? 25 :       \
128
                (n) & (1ULL << 24) ? 24 :       \
129
                (n) & (1ULL << 23) ? 23 :       \
130
                (n) & (1ULL << 22) ? 22 :       \
131
                (n) & (1ULL << 21) ? 21 :       \
132
                (n) & (1ULL << 20) ? 20 :       \
133
                (n) & (1ULL << 19) ? 19 :       \
134
                (n) & (1ULL << 18) ? 18 :       \
135
                (n) & (1ULL << 17) ? 17 :       \
136
                (n) & (1ULL << 16) ? 16 :       \
137
                (n) & (1ULL << 15) ? 15 :       \
138
                (n) & (1ULL << 14) ? 14 :       \
139
                (n) & (1ULL << 13) ? 13 :       \
140
                (n) & (1ULL << 12) ? 12 :       \
141
                (n) & (1ULL << 11) ? 11 :       \
142
                (n) & (1ULL << 10) ? 10 :       \
143
                (n) & (1ULL <<  9) ?  9 :       \
144
                (n) & (1ULL <<  8) ?  8 :       \
145
                (n) & (1ULL <<  7) ?  7 :       \
146
                (n) & (1ULL <<  6) ?  6 :       \
147
                (n) & (1ULL <<  5) ?  5 :       \
148
                (n) & (1ULL <<  4) ?  4 :       \
149
                (n) & (1ULL <<  3) ?  3 :       \
150
                (n) & (1ULL <<  2) ?  2 :       \
151
                (n) & (1ULL <<  1) ?  1 :       \
152
                (n) & (1ULL <<  0) ?  0 : \
153
                ____ilog2_NaN()                 \
154
                                   ) :          \
155
        (sizeof(n) <= 4) ?                      \
156
        __ilog2_u32(n) :                        \
157
        __ilog2_u64(n)                          \
158
 )
159
 
160
/**
161
 * roundup_pow_of_two - round the given value up to nearest power of two
162
 * @n - parameter
163
 *
164
 * round the given value up to the nearest power of two
165
 * - the result is undefined when n == 0
166
 * - this can be used to initialise global variables from constant data
167
 */
168
#define roundup_pow_of_two(n)                   \
169
(                                               \
170
        __builtin_constant_p(n) ? (             \
171
                (n == 1) ? 1 :                  \
172
                (1UL << (ilog2((n) - 1) + 1))   \
173
                                   ) :          \
174
        __roundup_pow_of_two(n)                 \
175
 )
176
 
177
/**
178
 * rounddown_pow_of_two - round the given value down to nearest power of two
179
 * @n - parameter
180
 *
181
 * round the given value down to the nearest power of two
182
 * - the result is undefined when n == 0
183
 * - this can be used to initialise global variables from constant data
184
 */
185
#define rounddown_pow_of_two(n)                 \
186
(                                               \
187
        __builtin_constant_p(n) ? (             \
188
                (n == 1) ? 0 :                   \
189
                (1UL << ilog2(n))) :            \
190
        __rounddown_pow_of_two(n)               \
191
 )
192
 
193
#endif /* _LINUX_LOG2_H */

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.