OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [include/] [linux/] [mm.h] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
#ifndef _LINUX_MM_H
2
#define _LINUX_MM_H
3
 
4
#include <linux/errno.h>
5
 
6
#ifdef __KERNEL__
7
 
8
#include <linux/gfp.h>
9
#include <linux/list.h>
10
#include <linux/mmzone.h>
11
#include <linux/rbtree.h>
12
#include <linux/prio_tree.h>
13
#include <linux/debug_locks.h>
14
#include <linux/mm_types.h>
15
#include <linux/security.h>
16
 
17
struct mempolicy;
18
struct anon_vma;
19
struct file_ra_state;
20
struct user_struct;
21
struct writeback_control;
22
 
23
#ifndef CONFIG_DISCONTIGMEM          /* Don't use mapnrs, do it properly */
24
extern unsigned long max_mapnr;
25
#endif
26
 
27
extern unsigned long num_physpages;
28
extern void * high_memory;
29
extern int page_cluster;
30
 
31
#ifdef CONFIG_SYSCTL
32
extern int sysctl_legacy_va_layout;
33
#else
34
#define sysctl_legacy_va_layout 0
35
#endif
36
 
37
#include <asm/page.h>
38
#include <asm/pgtable.h>
39
#include <asm/processor.h>
40
 
41
#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
42
 
43
/*
44
 * Linux kernel virtual memory manager primitives.
45
 * The idea being to have a "virtual" mm in the same way
46
 * we have a virtual fs - giving a cleaner interface to the
47
 * mm details, and allowing different kinds of memory mappings
48
 * (from shared memory to executable loading to arbitrary
49
 * mmap() functions).
50
 */
51
 
52
extern struct kmem_cache *vm_area_cachep;
53
 
54
/*
55
 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
56
 * disabled, then there's a single shared list of VMAs maintained by the
57
 * system, and mm's subscribe to these individually
58
 */
59
struct vm_list_struct {
60
        struct vm_list_struct   *next;
61
        struct vm_area_struct   *vma;
62
};
63
 
64
#ifndef CONFIG_MMU
65
extern struct rb_root nommu_vma_tree;
66
extern struct rw_semaphore nommu_vma_sem;
67
 
68
extern unsigned int kobjsize(const void *objp);
69
#endif
70
 
71
/*
72
 * vm_flags..
73
 */
74
#define VM_READ         0x00000001      /* currently active flags */
75
#define VM_WRITE        0x00000002
76
#define VM_EXEC         0x00000004
77
#define VM_SHARED       0x00000008
78
 
79
/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
80
#define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
81
#define VM_MAYWRITE     0x00000020
82
#define VM_MAYEXEC      0x00000040
83
#define VM_MAYSHARE     0x00000080
84
 
85
#define VM_GROWSDOWN    0x00000100      /* general info on the segment */
86
#define VM_GROWSUP      0x00000200
87
#define VM_PFNMAP       0x00000400      /* Page-ranges managed without "struct page", just pure PFN */
88
#define VM_DENYWRITE    0x00000800      /* ETXTBSY on write attempts.. */
89
 
90
#define VM_EXECUTABLE   0x00001000
91
#define VM_LOCKED       0x00002000
92
#define VM_IO           0x00004000      /* Memory mapped I/O or similar */
93
 
94
                                        /* Used by sys_madvise() */
95
#define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
96
#define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */
97
 
98
#define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
99
#define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
100
#define VM_RESERVED     0x00080000      /* Count as reserved_vm like IO */
101
#define VM_ACCOUNT      0x00100000      /* Is a VM accounted object */
102
#define VM_HUGETLB      0x00400000      /* Huge TLB Page VM */
103
#define VM_NONLINEAR    0x00800000      /* Is non-linear (remap_file_pages) */
104
#define VM_MAPPED_COPY  0x01000000      /* T if mapped copy of data (nommu mmap) */
105
#define VM_INSERTPAGE   0x02000000      /* The vma has had "vm_insert_page()" done on it */
106
#define VM_ALWAYSDUMP   0x04000000      /* Always include in core dumps */
107
 
108
#define VM_CAN_NONLINEAR 0x08000000     /* Has ->fault & does nonlinear pages */
109
 
110
#ifndef VM_STACK_DEFAULT_FLAGS          /* arch can override this */
111
#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
112
#endif
113
 
114
#ifdef CONFIG_STACK_GROWSUP
115
#define VM_STACK_FLAGS  (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
116
#else
117
#define VM_STACK_FLAGS  (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
118
#endif
119
 
120
#define VM_READHINTMASK                 (VM_SEQ_READ | VM_RAND_READ)
121
#define VM_ClearReadHint(v)             (v)->vm_flags &= ~VM_READHINTMASK
122
#define VM_NormalReadHint(v)            (!((v)->vm_flags & VM_READHINTMASK))
123
#define VM_SequentialReadHint(v)        ((v)->vm_flags & VM_SEQ_READ)
124
#define VM_RandomReadHint(v)            ((v)->vm_flags & VM_RAND_READ)
125
 
126
/*
127
 * mapping from the currently active vm_flags protection bits (the
128
 * low four bits) to a page protection mask..
129
 */
130
extern pgprot_t protection_map[16];
131
 
132
#define FAULT_FLAG_WRITE        0x01    /* Fault was a write access */
133
#define FAULT_FLAG_NONLINEAR    0x02    /* Fault was via a nonlinear mapping */
134
 
135
 
136
/*
137
 * vm_fault is filled by the the pagefault handler and passed to the vma's
138
 * ->fault function. The vma's ->fault is responsible for returning a bitmask
139
 * of VM_FAULT_xxx flags that give details about how the fault was handled.
140
 *
141
 * pgoff should be used in favour of virtual_address, if possible. If pgoff
142
 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
143
 * mapping support.
144
 */
145
struct vm_fault {
146
        unsigned int flags;             /* FAULT_FLAG_xxx flags */
147
        pgoff_t pgoff;                  /* Logical page offset based on vma */
148
        void __user *virtual_address;   /* Faulting virtual address */
149
 
150
        struct page *page;              /* ->fault handlers should return a
151
                                         * page here, unless VM_FAULT_NOPAGE
152
                                         * is set (which is also implied by
153
                                         * VM_FAULT_ERROR).
154
                                         */
155
};
156
 
157
/*
158
 * These are the virtual MM functions - opening of an area, closing and
159
 * unmapping it (needed to keep files on disk up-to-date etc), pointer
160
 * to the functions called when a no-page or a wp-page exception occurs.
161
 */
162
struct vm_operations_struct {
163
        void (*open)(struct vm_area_struct * area);
164
        void (*close)(struct vm_area_struct * area);
165
        int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
166
        struct page *(*nopage)(struct vm_area_struct *area,
167
                        unsigned long address, int *type);
168
        unsigned long (*nopfn)(struct vm_area_struct *area,
169
                        unsigned long address);
170
 
171
        /* notification that a previously read-only page is about to become
172
         * writable, if an error is returned it will cause a SIGBUS */
173
        int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
174
#ifdef CONFIG_NUMA
175
        int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
176
        struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
177
                                        unsigned long addr);
178
        int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
179
                const nodemask_t *to, unsigned long flags);
180
#endif
181
};
182
 
183
struct mmu_gather;
184
struct inode;
185
 
186
#define page_private(page)              ((page)->private)
187
#define set_page_private(page, v)       ((page)->private = (v))
188
 
189
/*
190
 * FIXME: take this include out, include page-flags.h in
191
 * files which need it (119 of them)
192
 */
193
#include <linux/page-flags.h>
194
 
195
#ifdef CONFIG_DEBUG_VM
196
#define VM_BUG_ON(cond) BUG_ON(cond)
197
#else
198
#define VM_BUG_ON(condition) do { } while(0)
199
#endif
200
 
201
/*
202
 * Methods to modify the page usage count.
203
 *
204
 * What counts for a page usage:
205
 * - cache mapping   (page->mapping)
206
 * - private data    (page->private)
207
 * - page mapped in a task's page tables, each mapping
208
 *   is counted separately
209
 *
210
 * Also, many kernel routines increase the page count before a critical
211
 * routine so they can be sure the page doesn't go away from under them.
212
 */
213
 
214
/*
215
 * Drop a ref, return true if the refcount fell to zero (the page has no users)
216
 */
217
static inline int put_page_testzero(struct page *page)
218
{
219
        VM_BUG_ON(atomic_read(&page->_count) == 0);
220
        return atomic_dec_and_test(&page->_count);
221
}
222
 
223
/*
224
 * Try to grab a ref unless the page has a refcount of zero, return false if
225
 * that is the case.
226
 */
227
static inline int get_page_unless_zero(struct page *page)
228
{
229
        VM_BUG_ON(PageCompound(page));
230
        return atomic_inc_not_zero(&page->_count);
231
}
232
 
233
static inline struct page *compound_head(struct page *page)
234
{
235
        if (unlikely(PageTail(page)))
236
                return page->first_page;
237
        return page;
238
}
239
 
240
static inline int page_count(struct page *page)
241
{
242
        return atomic_read(&compound_head(page)->_count);
243
}
244
 
245
static inline void get_page(struct page *page)
246
{
247
        page = compound_head(page);
248
        VM_BUG_ON(atomic_read(&page->_count) == 0);
249
        atomic_inc(&page->_count);
250
}
251
 
252
static inline struct page *virt_to_head_page(const void *x)
253
{
254
        struct page *page = virt_to_page(x);
255
        return compound_head(page);
256
}
257
 
258
/*
259
 * Setup the page count before being freed into the page allocator for
260
 * the first time (boot or memory hotplug)
261
 */
262
static inline void init_page_count(struct page *page)
263
{
264
        atomic_set(&page->_count, 1);
265
}
266
 
267
void put_page(struct page *page);
268
void put_pages_list(struct list_head *pages);
269
 
270
void split_page(struct page *page, unsigned int order);
271
 
272
/*
273
 * Compound pages have a destructor function.  Provide a
274
 * prototype for that function and accessor functions.
275
 * These are _only_ valid on the head of a PG_compound page.
276
 */
277
typedef void compound_page_dtor(struct page *);
278
 
279
static inline void set_compound_page_dtor(struct page *page,
280
                                                compound_page_dtor *dtor)
281
{
282
        page[1].lru.next = (void *)dtor;
283
}
284
 
285
static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
286
{
287
        return (compound_page_dtor *)page[1].lru.next;
288
}
289
 
290
static inline int compound_order(struct page *page)
291
{
292
        if (!PageHead(page))
293
                return 0;
294
        return (unsigned long)page[1].lru.prev;
295
}
296
 
297
static inline void set_compound_order(struct page *page, unsigned long order)
298
{
299
        page[1].lru.prev = (void *)order;
300
}
301
 
302
/*
303
 * Multiple processes may "see" the same page. E.g. for untouched
304
 * mappings of /dev/null, all processes see the same page full of
305
 * zeroes, and text pages of executables and shared libraries have
306
 * only one copy in memory, at most, normally.
307
 *
308
 * For the non-reserved pages, page_count(page) denotes a reference count.
309
 *   page_count() == 0 means the page is free. page->lru is then used for
310
 *   freelist management in the buddy allocator.
311
 *   page_count() > 0  means the page has been allocated.
312
 *
313
 * Pages are allocated by the slab allocator in order to provide memory
314
 * to kmalloc and kmem_cache_alloc. In this case, the management of the
315
 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
316
 * unless a particular usage is carefully commented. (the responsibility of
317
 * freeing the kmalloc memory is the caller's, of course).
318
 *
319
 * A page may be used by anyone else who does a __get_free_page().
320
 * In this case, page_count still tracks the references, and should only
321
 * be used through the normal accessor functions. The top bits of page->flags
322
 * and page->virtual store page management information, but all other fields
323
 * are unused and could be used privately, carefully. The management of this
324
 * page is the responsibility of the one who allocated it, and those who have
325
 * subsequently been given references to it.
326
 *
327
 * The other pages (we may call them "pagecache pages") are completely
328
 * managed by the Linux memory manager: I/O, buffers, swapping etc.
329
 * The following discussion applies only to them.
330
 *
331
 * A pagecache page contains an opaque `private' member, which belongs to the
332
 * page's address_space. Usually, this is the address of a circular list of
333
 * the page's disk buffers. PG_private must be set to tell the VM to call
334
 * into the filesystem to release these pages.
335
 *
336
 * A page may belong to an inode's memory mapping. In this case, page->mapping
337
 * is the pointer to the inode, and page->index is the file offset of the page,
338
 * in units of PAGE_CACHE_SIZE.
339
 *
340
 * If pagecache pages are not associated with an inode, they are said to be
341
 * anonymous pages. These may become associated with the swapcache, and in that
342
 * case PG_swapcache is set, and page->private is an offset into the swapcache.
343
 *
344
 * In either case (swapcache or inode backed), the pagecache itself holds one
345
 * reference to the page. Setting PG_private should also increment the
346
 * refcount. The each user mapping also has a reference to the page.
347
 *
348
 * The pagecache pages are stored in a per-mapping radix tree, which is
349
 * rooted at mapping->page_tree, and indexed by offset.
350
 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
351
 * lists, we instead now tag pages as dirty/writeback in the radix tree.
352
 *
353
 * All pagecache pages may be subject to I/O:
354
 * - inode pages may need to be read from disk,
355
 * - inode pages which have been modified and are MAP_SHARED may need
356
 *   to be written back to the inode on disk,
357
 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
358
 *   modified may need to be swapped out to swap space and (later) to be read
359
 *   back into memory.
360
 */
361
 
362
/*
363
 * The zone field is never updated after free_area_init_core()
364
 * sets it, so none of the operations on it need to be atomic.
365
 */
366
 
367
 
368
/*
369
 * page->flags layout:
370
 *
371
 * There are three possibilities for how page->flags get
372
 * laid out.  The first is for the normal case, without
373
 * sparsemem.  The second is for sparsemem when there is
374
 * plenty of space for node and section.  The last is when
375
 * we have run out of space and have to fall back to an
376
 * alternate (slower) way of determining the node.
377
 *
378
 *        No sparsemem: |       NODE     | ZONE | ... | FLAGS |
379
 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
380
 *   no space for node: | SECTION |     ZONE    | ... | FLAGS |
381
 */
382
#ifdef CONFIG_SPARSEMEM
383
#define SECTIONS_WIDTH          SECTIONS_SHIFT
384
#else
385
#define SECTIONS_WIDTH          0
386
#endif
387
 
388
#define ZONES_WIDTH             ZONES_SHIFT
389
 
390
#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
391
#define NODES_WIDTH             NODES_SHIFT
392
#else
393
#define NODES_WIDTH             0
394
#endif
395
 
396
/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
397
#define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
398
#define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)
399
#define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)
400
 
401
/*
402
 * We are going to use the flags for the page to node mapping if its in
403
 * there.  This includes the case where there is no node, so it is implicit.
404
 */
405
#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
406
#define NODE_NOT_IN_PAGE_FLAGS
407
#endif
408
 
409
#ifndef PFN_SECTION_SHIFT
410
#define PFN_SECTION_SHIFT 0
411
#endif
412
 
413
/*
414
 * Define the bit shifts to access each section.  For non-existant
415
 * sections we define the shift as 0; that plus a 0 mask ensures
416
 * the compiler will optimise away reference to them.
417
 */
418
#define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
419
#define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))
420
#define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))
421
 
422
/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
423
#ifdef NODE_NOT_IN_PAGEFLAGS
424
#define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)
425
#define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF)? \
426
                                                SECTIONS_PGOFF : ZONES_PGOFF)
427
#else
428
#define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)
429
#define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF)? \
430
                                                NODES_PGOFF : ZONES_PGOFF)
431
#endif
432
 
433
#define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
434
 
435
#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
436
#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
437
#endif
438
 
439
#define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)
440
#define NODES_MASK              ((1UL << NODES_WIDTH) - 1)
441
#define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)
442
#define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)
443
 
444
static inline enum zone_type page_zonenum(struct page *page)
445
{
446
        return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
447
}
448
 
449
/*
450
 * The identification function is only used by the buddy allocator for
451
 * determining if two pages could be buddies. We are not really
452
 * identifying a zone since we could be using a the section number
453
 * id if we have not node id available in page flags.
454
 * We guarantee only that it will return the same value for two
455
 * combinable pages in a zone.
456
 */
457
static inline int page_zone_id(struct page *page)
458
{
459
        return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
460
}
461
 
462
static inline int zone_to_nid(struct zone *zone)
463
{
464
#ifdef CONFIG_NUMA
465
        return zone->node;
466
#else
467
        return 0;
468
#endif
469
}
470
 
471
#ifdef NODE_NOT_IN_PAGE_FLAGS
472
extern int page_to_nid(struct page *page);
473
#else
474
static inline int page_to_nid(struct page *page)
475
{
476
        return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
477
}
478
#endif
479
 
480
static inline struct zone *page_zone(struct page *page)
481
{
482
        return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
483
}
484
 
485
static inline unsigned long page_to_section(struct page *page)
486
{
487
        return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
488
}
489
 
490
static inline void set_page_zone(struct page *page, enum zone_type zone)
491
{
492
        page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
493
        page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
494
}
495
 
496
static inline void set_page_node(struct page *page, unsigned long node)
497
{
498
        page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
499
        page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
500
}
501
 
502
static inline void set_page_section(struct page *page, unsigned long section)
503
{
504
        page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
505
        page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
506
}
507
 
508
static inline void set_page_links(struct page *page, enum zone_type zone,
509
        unsigned long node, unsigned long pfn)
510
{
511
        set_page_zone(page, zone);
512
        set_page_node(page, node);
513
        set_page_section(page, pfn_to_section_nr(pfn));
514
}
515
 
516
/*
517
 * If a hint addr is less than mmap_min_addr change hint to be as
518
 * low as possible but still greater than mmap_min_addr
519
 */
520
static inline unsigned long round_hint_to_min(unsigned long hint)
521
{
522
#ifdef CONFIG_SECURITY
523
        hint &= PAGE_MASK;
524
        if (((void *)hint != NULL) &&
525
            (hint < mmap_min_addr))
526
                return PAGE_ALIGN(mmap_min_addr);
527
#endif
528
        return hint;
529
}
530
 
531
/*
532
 * Some inline functions in vmstat.h depend on page_zone()
533
 */
534
#include <linux/vmstat.h>
535
 
536
static __always_inline void *lowmem_page_address(struct page *page)
537
{
538
        return __va(page_to_pfn(page) << PAGE_SHIFT);
539
}
540
 
541
#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
542
#define HASHED_PAGE_VIRTUAL
543
#endif
544
 
545
#if defined(WANT_PAGE_VIRTUAL)
546
#define page_address(page) ((page)->virtual)
547
#define set_page_address(page, address)                 \
548
        do {                                            \
549
                (page)->virtual = (address);            \
550
        } while(0)
551
#define page_address_init()  do { } while(0)
552
#endif
553
 
554
#if defined(HASHED_PAGE_VIRTUAL)
555
void *page_address(struct page *page);
556
void set_page_address(struct page *page, void *virtual);
557
void page_address_init(void);
558
#endif
559
 
560
#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
561
#define page_address(page) lowmem_page_address(page)
562
#define set_page_address(page, address)  do { } while(0)
563
#define page_address_init()  do { } while(0)
564
#endif
565
 
566
/*
567
 * On an anonymous page mapped into a user virtual memory area,
568
 * page->mapping points to its anon_vma, not to a struct address_space;
569
 * with the PAGE_MAPPING_ANON bit set to distinguish it.
570
 *
571
 * Please note that, confusingly, "page_mapping" refers to the inode
572
 * address_space which maps the page from disk; whereas "page_mapped"
573
 * refers to user virtual address space into which the page is mapped.
574
 */
575
#define PAGE_MAPPING_ANON       1
576
 
577
extern struct address_space swapper_space;
578
static inline struct address_space *page_mapping(struct page *page)
579
{
580
        struct address_space *mapping = page->mapping;
581
 
582
        VM_BUG_ON(PageSlab(page));
583
        if (unlikely(PageSwapCache(page)))
584
                mapping = &swapper_space;
585
        else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
586
                mapping = NULL;
587
        return mapping;
588
}
589
 
590
static inline int PageAnon(struct page *page)
591
{
592
        return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
593
}
594
 
595
/*
596
 * Return the pagecache index of the passed page.  Regular pagecache pages
597
 * use ->index whereas swapcache pages use ->private
598
 */
599
static inline pgoff_t page_index(struct page *page)
600
{
601
        if (unlikely(PageSwapCache(page)))
602
                return page_private(page);
603
        return page->index;
604
}
605
 
606
/*
607
 * The atomic page->_mapcount, like _count, starts from -1:
608
 * so that transitions both from it and to it can be tracked,
609
 * using atomic_inc_and_test and atomic_add_negative(-1).
610
 */
611
static inline void reset_page_mapcount(struct page *page)
612
{
613
        atomic_set(&(page)->_mapcount, -1);
614
}
615
 
616
static inline int page_mapcount(struct page *page)
617
{
618
        return atomic_read(&(page)->_mapcount) + 1;
619
}
620
 
621
/*
622
 * Return true if this page is mapped into pagetables.
623
 */
624
static inline int page_mapped(struct page *page)
625
{
626
        return atomic_read(&(page)->_mapcount) >= 0;
627
}
628
 
629
/*
630
 * Error return values for the *_nopage functions
631
 */
632
#define NOPAGE_SIGBUS   (NULL)
633
#define NOPAGE_OOM      ((struct page *) (-1))
634
 
635
/*
636
 * Error return values for the *_nopfn functions
637
 */
638
#define NOPFN_SIGBUS    ((unsigned long) -1)
639
#define NOPFN_OOM       ((unsigned long) -2)
640
#define NOPFN_REFAULT   ((unsigned long) -3)
641
 
642
/*
643
 * Different kinds of faults, as returned by handle_mm_fault().
644
 * Used to decide whether a process gets delivered SIGBUS or
645
 * just gets major/minor fault counters bumped up.
646
 */
647
 
648
#define VM_FAULT_MINOR  0 /* For backwards compat. Remove me quickly. */
649
 
650
#define VM_FAULT_OOM    0x0001
651
#define VM_FAULT_SIGBUS 0x0002
652
#define VM_FAULT_MAJOR  0x0004
653
#define VM_FAULT_WRITE  0x0008  /* Special case for get_user_pages */
654
 
655
#define VM_FAULT_NOPAGE 0x0100  /* ->fault installed the pte, not return page */
656
#define VM_FAULT_LOCKED 0x0200  /* ->fault locked the returned page */
657
 
658
#define VM_FAULT_ERROR  (VM_FAULT_OOM | VM_FAULT_SIGBUS)
659
 
660
#define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
661
 
662
extern void show_free_areas(void);
663
 
664
#ifdef CONFIG_SHMEM
665
int shmem_lock(struct file *file, int lock, struct user_struct *user);
666
#else
667
static inline int shmem_lock(struct file *file, int lock,
668
                             struct user_struct *user)
669
{
670
        return 0;
671
}
672
#endif
673
struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
674
 
675
int shmem_zero_setup(struct vm_area_struct *);
676
 
677
#ifndef CONFIG_MMU
678
extern unsigned long shmem_get_unmapped_area(struct file *file,
679
                                             unsigned long addr,
680
                                             unsigned long len,
681
                                             unsigned long pgoff,
682
                                             unsigned long flags);
683
#endif
684
 
685
extern int can_do_mlock(void);
686
extern int user_shm_lock(size_t, struct user_struct *);
687
extern void user_shm_unlock(size_t, struct user_struct *);
688
 
689
/*
690
 * Parameter block passed down to zap_pte_range in exceptional cases.
691
 */
692
struct zap_details {
693
        struct vm_area_struct *nonlinear_vma;   /* Check page->index if set */
694
        struct address_space *check_mapping;    /* Check page->mapping if set */
695
        pgoff_t first_index;                    /* Lowest page->index to unmap */
696
        pgoff_t last_index;                     /* Highest page->index to unmap */
697
        spinlock_t *i_mmap_lock;                /* For unmap_mapping_range: */
698
        unsigned long truncate_count;           /* Compare vm_truncate_count */
699
};
700
 
701
struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
702
unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
703
                unsigned long size, struct zap_details *);
704
unsigned long unmap_vmas(struct mmu_gather **tlb,
705
                struct vm_area_struct *start_vma, unsigned long start_addr,
706
                unsigned long end_addr, unsigned long *nr_accounted,
707
                struct zap_details *);
708
void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
709
                unsigned long end, unsigned long floor, unsigned long ceiling);
710
void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
711
                unsigned long floor, unsigned long ceiling);
712
int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
713
                        struct vm_area_struct *vma);
714
void unmap_mapping_range(struct address_space *mapping,
715
                loff_t const holebegin, loff_t const holelen, int even_cows);
716
 
717
static inline void unmap_shared_mapping_range(struct address_space *mapping,
718
                loff_t const holebegin, loff_t const holelen)
719
{
720
        unmap_mapping_range(mapping, holebegin, holelen, 0);
721
}
722
 
723
extern int vmtruncate(struct inode * inode, loff_t offset);
724
extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
725
 
726
#ifdef CONFIG_MMU
727
extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
728
                        unsigned long address, int write_access);
729
#else
730
static inline int handle_mm_fault(struct mm_struct *mm,
731
                        struct vm_area_struct *vma, unsigned long address,
732
                        int write_access)
733
{
734
        /* should never happen if there's no MMU */
735
        BUG();
736
        return VM_FAULT_SIGBUS;
737
}
738
#endif
739
 
740
extern int make_pages_present(unsigned long addr, unsigned long end);
741
extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
742
 
743
int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
744
                int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
745
void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
746
 
747
extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
748
extern void do_invalidatepage(struct page *page, unsigned long offset);
749
 
750
int __set_page_dirty_nobuffers(struct page *page);
751
int __set_page_dirty_no_writeback(struct page *page);
752
int redirty_page_for_writepage(struct writeback_control *wbc,
753
                                struct page *page);
754
int FASTCALL(set_page_dirty(struct page *page));
755
int set_page_dirty_lock(struct page *page);
756
int clear_page_dirty_for_io(struct page *page);
757
 
758
extern unsigned long move_page_tables(struct vm_area_struct *vma,
759
                unsigned long old_addr, struct vm_area_struct *new_vma,
760
                unsigned long new_addr, unsigned long len);
761
extern unsigned long do_mremap(unsigned long addr,
762
                               unsigned long old_len, unsigned long new_len,
763
                               unsigned long flags, unsigned long new_addr);
764
extern int mprotect_fixup(struct vm_area_struct *vma,
765
                          struct vm_area_struct **pprev, unsigned long start,
766
                          unsigned long end, unsigned long newflags);
767
 
768
/*
769
 * A callback you can register to apply pressure to ageable caches.
770
 *
771
 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'.  It should
772
 * look through the least-recently-used 'nr_to_scan' entries and
773
 * attempt to free them up.  It should return the number of objects
774
 * which remain in the cache.  If it returns -1, it means it cannot do
775
 * any scanning at this time (eg. there is a risk of deadlock).
776
 *
777
 * The 'gfpmask' refers to the allocation we are currently trying to
778
 * fulfil.
779
 *
780
 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
781
 * querying the cache size, so a fastpath for that case is appropriate.
782
 */
783
struct shrinker {
784
        int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
785
        int seeks;      /* seeks to recreate an obj */
786
 
787
        /* These are for internal use */
788
        struct list_head list;
789
        long nr;        /* objs pending delete */
790
};
791
#define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
792
extern void register_shrinker(struct shrinker *);
793
extern void unregister_shrinker(struct shrinker *);
794
 
795
int vma_wants_writenotify(struct vm_area_struct *vma);
796
 
797
extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
798
 
799
#ifdef __PAGETABLE_PUD_FOLDED
800
static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
801
                                                unsigned long address)
802
{
803
        return 0;
804
}
805
#else
806
int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
807
#endif
808
 
809
#ifdef __PAGETABLE_PMD_FOLDED
810
static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
811
                                                unsigned long address)
812
{
813
        return 0;
814
}
815
#else
816
int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
817
#endif
818
 
819
int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
820
int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
821
 
822
/*
823
 * The following ifdef needed to get the 4level-fixup.h header to work.
824
 * Remove it when 4level-fixup.h has been removed.
825
 */
826
#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
827
static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
828
{
829
        return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
830
                NULL: pud_offset(pgd, address);
831
}
832
 
833
static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
834
{
835
        return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
836
                NULL: pmd_offset(pud, address);
837
}
838
#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
839
 
840
#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
841
/*
842
 * We tuck a spinlock to guard each pagetable page into its struct page,
843
 * at page->private, with BUILD_BUG_ON to make sure that this will not
844
 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
845
 * When freeing, reset page->mapping so free_pages_check won't complain.
846
 */
847
#define __pte_lockptr(page)     &((page)->ptl)
848
#define pte_lock_init(_page)    do {                                    \
849
        spin_lock_init(__pte_lockptr(_page));                           \
850
} while (0)
851
#define pte_lock_deinit(page)   ((page)->mapping = NULL)
852
#define pte_lockptr(mm, pmd)    ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
853
#else
854
/*
855
 * We use mm->page_table_lock to guard all pagetable pages of the mm.
856
 */
857
#define pte_lock_init(page)     do {} while (0)
858
#define pte_lock_deinit(page)   do {} while (0)
859
#define pte_lockptr(mm, pmd)    ({(void)(pmd); &(mm)->page_table_lock;})
860
#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
861
 
862
#define pte_offset_map_lock(mm, pmd, address, ptlp)     \
863
({                                                      \
864
        spinlock_t *__ptl = pte_lockptr(mm, pmd);       \
865
        pte_t *__pte = pte_offset_map(pmd, address);    \
866
        *(ptlp) = __ptl;                                \
867
        spin_lock(__ptl);                               \
868
        __pte;                                          \
869
})
870
 
871
#define pte_unmap_unlock(pte, ptl)      do {            \
872
        spin_unlock(ptl);                               \
873
        pte_unmap(pte);                                 \
874
} while (0)
875
 
876
#define pte_alloc_map(mm, pmd, address)                 \
877
        ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
878
                NULL: pte_offset_map(pmd, address))
879
 
880
#define pte_alloc_map_lock(mm, pmd, address, ptlp)      \
881
        ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
882
                NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
883
 
884
#define pte_alloc_kernel(pmd, address)                  \
885
        ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
886
                NULL: pte_offset_kernel(pmd, address))
887
 
888
extern void free_area_init(unsigned long * zones_size);
889
extern void free_area_init_node(int nid, pg_data_t *pgdat,
890
        unsigned long * zones_size, unsigned long zone_start_pfn,
891
        unsigned long *zholes_size);
892
#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
893
/*
894
 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
895
 * zones, allocate the backing mem_map and account for memory holes in a more
896
 * architecture independent manner. This is a substitute for creating the
897
 * zone_sizes[] and zholes_size[] arrays and passing them to
898
 * free_area_init_node()
899
 *
900
 * An architecture is expected to register range of page frames backed by
901
 * physical memory with add_active_range() before calling
902
 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
903
 * usage, an architecture is expected to do something like
904
 *
905
 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
906
 *                                                       max_highmem_pfn};
907
 * for_each_valid_physical_page_range()
908
 *      add_active_range(node_id, start_pfn, end_pfn)
909
 * free_area_init_nodes(max_zone_pfns);
910
 *
911
 * If the architecture guarantees that there are no holes in the ranges
912
 * registered with add_active_range(), free_bootmem_active_regions()
913
 * will call free_bootmem_node() for each registered physical page range.
914
 * Similarly sparse_memory_present_with_active_regions() calls
915
 * memory_present() for each range when SPARSEMEM is enabled.
916
 *
917
 * See mm/page_alloc.c for more information on each function exposed by
918
 * CONFIG_ARCH_POPULATES_NODE_MAP
919
 */
920
extern void free_area_init_nodes(unsigned long *max_zone_pfn);
921
extern void add_active_range(unsigned int nid, unsigned long start_pfn,
922
                                        unsigned long end_pfn);
923
extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
924
                                                unsigned long new_end_pfn);
925
extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
926
                                        unsigned long end_pfn);
927
extern void remove_all_active_ranges(void);
928
extern unsigned long absent_pages_in_range(unsigned long start_pfn,
929
                                                unsigned long end_pfn);
930
extern void get_pfn_range_for_nid(unsigned int nid,
931
                        unsigned long *start_pfn, unsigned long *end_pfn);
932
extern unsigned long find_min_pfn_with_active_regions(void);
933
extern unsigned long find_max_pfn_with_active_regions(void);
934
extern void free_bootmem_with_active_regions(int nid,
935
                                                unsigned long max_low_pfn);
936
extern void sparse_memory_present_with_active_regions(int nid);
937
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
938
extern int early_pfn_to_nid(unsigned long pfn);
939
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
940
#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
941
extern void set_dma_reserve(unsigned long new_dma_reserve);
942
extern void memmap_init_zone(unsigned long, int, unsigned long,
943
                                unsigned long, enum memmap_context);
944
extern void setup_per_zone_pages_min(void);
945
extern void mem_init(void);
946
extern void show_mem(void);
947
extern void si_meminfo(struct sysinfo * val);
948
extern void si_meminfo_node(struct sysinfo *val, int nid);
949
 
950
#ifdef CONFIG_NUMA
951
extern void setup_per_cpu_pageset(void);
952
#else
953
static inline void setup_per_cpu_pageset(void) {}
954
#endif
955
 
956
/* prio_tree.c */
957
void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
958
void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
959
void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
960
struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
961
        struct prio_tree_iter *iter);
962
 
963
#define vma_prio_tree_foreach(vma, iter, root, begin, end)      \
964
        for (prio_tree_iter_init(iter, root, begin, end), vma = NULL;   \
965
                (vma = vma_prio_tree_next(vma, iter)); )
966
 
967
static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
968
                                        struct list_head *list)
969
{
970
        vma->shared.vm_set.parent = NULL;
971
        list_add_tail(&vma->shared.vm_set.list, list);
972
}
973
 
974
/* mmap.c */
975
extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
976
extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
977
        unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
978
extern struct vm_area_struct *vma_merge(struct mm_struct *,
979
        struct vm_area_struct *prev, unsigned long addr, unsigned long end,
980
        unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
981
        struct mempolicy *);
982
extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
983
extern int split_vma(struct mm_struct *,
984
        struct vm_area_struct *, unsigned long addr, int new_below);
985
extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
986
extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
987
        struct rb_node **, struct rb_node *);
988
extern void unlink_file_vma(struct vm_area_struct *);
989
extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
990
        unsigned long addr, unsigned long len, pgoff_t pgoff);
991
extern void exit_mmap(struct mm_struct *);
992
extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
993
extern int install_special_mapping(struct mm_struct *mm,
994
                                   unsigned long addr, unsigned long len,
995
                                   unsigned long flags, struct page **pages);
996
 
997
extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
998
 
999
extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1000
        unsigned long len, unsigned long prot,
1001
        unsigned long flag, unsigned long pgoff);
1002
extern unsigned long mmap_region(struct file *file, unsigned long addr,
1003
        unsigned long len, unsigned long flags,
1004
        unsigned int vm_flags, unsigned long pgoff,
1005
        int accountable);
1006
 
1007
static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1008
        unsigned long len, unsigned long prot,
1009
        unsigned long flag, unsigned long offset)
1010
{
1011
        unsigned long ret = -EINVAL;
1012
        if ((offset + PAGE_ALIGN(len)) < offset)
1013
                goto out;
1014
        if (!(offset & ~PAGE_MASK))
1015
                ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1016
out:
1017
        return ret;
1018
}
1019
 
1020
extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1021
 
1022
extern unsigned long do_brk(unsigned long, unsigned long);
1023
 
1024
/* filemap.c */
1025
extern unsigned long page_unuse(struct page *);
1026
extern void truncate_inode_pages(struct address_space *, loff_t);
1027
extern void truncate_inode_pages_range(struct address_space *,
1028
                                       loff_t lstart, loff_t lend);
1029
 
1030
/* generic vm_area_ops exported for stackable file systems */
1031
extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1032
 
1033
/* mm/page-writeback.c */
1034
int write_one_page(struct page *page, int wait);
1035
 
1036
/* readahead.c */
1037
#define VM_MAX_READAHEAD        128     /* kbytes */
1038
#define VM_MIN_READAHEAD        16      /* kbytes (includes current page) */
1039
 
1040
int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
1041
                        pgoff_t offset, unsigned long nr_to_read);
1042
int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1043
                        pgoff_t offset, unsigned long nr_to_read);
1044
 
1045
void page_cache_sync_readahead(struct address_space *mapping,
1046
                               struct file_ra_state *ra,
1047
                               struct file *filp,
1048
                               pgoff_t offset,
1049
                               unsigned long size);
1050
 
1051
void page_cache_async_readahead(struct address_space *mapping,
1052
                                struct file_ra_state *ra,
1053
                                struct file *filp,
1054
                                struct page *pg,
1055
                                pgoff_t offset,
1056
                                unsigned long size);
1057
 
1058
unsigned long max_sane_readahead(unsigned long nr);
1059
 
1060
/* Do stack extension */
1061
extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1062
#ifdef CONFIG_IA64
1063
extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1064
#endif
1065
extern int expand_stack_downwards(struct vm_area_struct *vma,
1066
                                  unsigned long address);
1067
 
1068
/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1069
extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1070
extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1071
                                             struct vm_area_struct **pprev);
1072
 
1073
/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1074
   NULL if none.  Assume start_addr < end_addr. */
1075
static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1076
{
1077
        struct vm_area_struct * vma = find_vma(mm,start_addr);
1078
 
1079
        if (vma && end_addr <= vma->vm_start)
1080
                vma = NULL;
1081
        return vma;
1082
}
1083
 
1084
static inline unsigned long vma_pages(struct vm_area_struct *vma)
1085
{
1086
        return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1087
}
1088
 
1089
pgprot_t vm_get_page_prot(unsigned long vm_flags);
1090
struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1091
struct page *vmalloc_to_page(void *addr);
1092
unsigned long vmalloc_to_pfn(void *addr);
1093
int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1094
                        unsigned long pfn, unsigned long size, pgprot_t);
1095
int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1096
int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1097
                        unsigned long pfn);
1098
 
1099
struct page *follow_page(struct vm_area_struct *, unsigned long address,
1100
                        unsigned int foll_flags);
1101
#define FOLL_WRITE      0x01    /* check pte is writable */
1102
#define FOLL_TOUCH      0x02    /* mark page accessed */
1103
#define FOLL_GET        0x04    /* do get_page on page */
1104
#define FOLL_ANON       0x08    /* give ZERO_PAGE if no pgtable */
1105
 
1106
typedef int (*pte_fn_t)(pte_t *pte, struct page *pmd_page, unsigned long addr,
1107
                        void *data);
1108
extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1109
                               unsigned long size, pte_fn_t fn, void *data);
1110
 
1111
#ifdef CONFIG_PROC_FS
1112
void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1113
#else
1114
static inline void vm_stat_account(struct mm_struct *mm,
1115
                        unsigned long flags, struct file *file, long pages)
1116
{
1117
}
1118
#endif /* CONFIG_PROC_FS */
1119
 
1120
#ifndef CONFIG_DEBUG_PAGEALLOC
1121
static inline void
1122
kernel_map_pages(struct page *page, int numpages, int enable) {}
1123
#endif
1124
 
1125
extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1126
#ifdef  __HAVE_ARCH_GATE_AREA
1127
int in_gate_area_no_task(unsigned long addr);
1128
int in_gate_area(struct task_struct *task, unsigned long addr);
1129
#else
1130
int in_gate_area_no_task(unsigned long addr);
1131
#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1132
#endif  /* __HAVE_ARCH_GATE_AREA */
1133
 
1134
int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1135
                                        void __user *, size_t *, loff_t *);
1136
unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1137
                        unsigned long lru_pages);
1138
void drop_pagecache(void);
1139
void drop_slab(void);
1140
 
1141
#ifndef CONFIG_MMU
1142
#define randomize_va_space 0
1143
#else
1144
extern int randomize_va_space;
1145
#endif
1146
 
1147
const char * arch_vma_name(struct vm_area_struct *vma);
1148
 
1149
struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1150
pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1151
pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1152
pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1153
pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1154
void *vmemmap_alloc_block(unsigned long size, int node);
1155
void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1156
int vmemmap_populate_basepages(struct page *start_page,
1157
                                                unsigned long pages, int node);
1158
int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1159
 
1160
#endif /* __KERNEL__ */
1161
#endif /* _LINUX_MM_H */

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.