OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [include/] [linux/] [mmzone.h] - Blame information for rev 81

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
#ifndef _LINUX_MMZONE_H
2
#define _LINUX_MMZONE_H
3
 
4
#ifdef __KERNEL__
5
#ifndef __ASSEMBLY__
6
 
7
#include <linux/spinlock.h>
8
#include <linux/list.h>
9
#include <linux/wait.h>
10
#include <linux/bitops.h>
11
#include <linux/cache.h>
12
#include <linux/threads.h>
13
#include <linux/numa.h>
14
#include <linux/init.h>
15
#include <linux/seqlock.h>
16
#include <linux/nodemask.h>
17
#include <linux/pageblock-flags.h>
18
#include <asm/atomic.h>
19
#include <asm/page.h>
20
 
21
/* Free memory management - zoned buddy allocator.  */
22
#ifndef CONFIG_FORCE_MAX_ZONEORDER
23
#define MAX_ORDER 11
24
#else
25
#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
26
#endif
27
#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
28
 
29
/*
30
 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
31
 * costly to service.  That is between allocation orders which should
32
 * coelesce naturally under reasonable reclaim pressure and those which
33
 * will not.
34
 */
35
#define PAGE_ALLOC_COSTLY_ORDER 3
36
 
37
#define MIGRATE_UNMOVABLE     0
38
#define MIGRATE_RECLAIMABLE   1
39
#define MIGRATE_MOVABLE       2
40
#define MIGRATE_RESERVE       3
41
#define MIGRATE_ISOLATE       4 /* can't allocate from here */
42
#define MIGRATE_TYPES         5
43
 
44
#define for_each_migratetype_order(order, type) \
45
        for (order = 0; order < MAX_ORDER; order++) \
46
                for (type = 0; type < MIGRATE_TYPES; type++)
47
 
48
extern int page_group_by_mobility_disabled;
49
 
50
static inline int get_pageblock_migratetype(struct page *page)
51
{
52
        if (unlikely(page_group_by_mobility_disabled))
53
                return MIGRATE_UNMOVABLE;
54
 
55
        return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
56
}
57
 
58
struct free_area {
59
        struct list_head        free_list[MIGRATE_TYPES];
60
        unsigned long           nr_free;
61
};
62
 
63
struct pglist_data;
64
 
65
/*
66
 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
67
 * So add a wild amount of padding here to ensure that they fall into separate
68
 * cachelines.  There are very few zone structures in the machine, so space
69
 * consumption is not a concern here.
70
 */
71
#if defined(CONFIG_SMP)
72
struct zone_padding {
73
        char x[0];
74
} ____cacheline_internodealigned_in_smp;
75
#define ZONE_PADDING(name)      struct zone_padding name;
76
#else
77
#define ZONE_PADDING(name)
78
#endif
79
 
80
enum zone_stat_item {
81
        /* First 128 byte cacheline (assuming 64 bit words) */
82
        NR_FREE_PAGES,
83
        NR_INACTIVE,
84
        NR_ACTIVE,
85
        NR_ANON_PAGES,  /* Mapped anonymous pages */
86
        NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
87
                           only modified from process context */
88
        NR_FILE_PAGES,
89
        NR_FILE_DIRTY,
90
        NR_WRITEBACK,
91
        /* Second 128 byte cacheline */
92
        NR_SLAB_RECLAIMABLE,
93
        NR_SLAB_UNRECLAIMABLE,
94
        NR_PAGETABLE,           /* used for pagetables */
95
        NR_UNSTABLE_NFS,        /* NFS unstable pages */
96
        NR_BOUNCE,
97
        NR_VMSCAN_WRITE,
98
#ifdef CONFIG_NUMA
99
        NUMA_HIT,               /* allocated in intended node */
100
        NUMA_MISS,              /* allocated in non intended node */
101
        NUMA_FOREIGN,           /* was intended here, hit elsewhere */
102
        NUMA_INTERLEAVE_HIT,    /* interleaver preferred this zone */
103
        NUMA_LOCAL,             /* allocation from local node */
104
        NUMA_OTHER,             /* allocation from other node */
105
#endif
106
        NR_VM_ZONE_STAT_ITEMS };
107
 
108
struct per_cpu_pages {
109
        int count;              /* number of pages in the list */
110
        int high;               /* high watermark, emptying needed */
111
        int batch;              /* chunk size for buddy add/remove */
112
        struct list_head list;  /* the list of pages */
113
};
114
 
115
struct per_cpu_pageset {
116
        struct per_cpu_pages pcp[2];    /* 0: hot.  1: cold */
117
#ifdef CONFIG_NUMA
118
        s8 expire;
119
#endif
120
#ifdef CONFIG_SMP
121
        s8 stat_threshold;
122
        s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
123
#endif
124
} ____cacheline_aligned_in_smp;
125
 
126
#ifdef CONFIG_NUMA
127
#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
128
#else
129
#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
130
#endif
131
 
132
enum zone_type {
133
#ifdef CONFIG_ZONE_DMA
134
        /*
135
         * ZONE_DMA is used when there are devices that are not able
136
         * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
137
         * carve out the portion of memory that is needed for these devices.
138
         * The range is arch specific.
139
         *
140
         * Some examples
141
         *
142
         * Architecture         Limit
143
         * ---------------------------
144
         * parisc, ia64, sparc  <4G
145
         * s390                 <2G
146
         * arm                  Various
147
         * alpha                Unlimited or 0-16MB.
148
         *
149
         * i386, x86_64 and multiple other arches
150
         *                      <16M.
151
         */
152
        ZONE_DMA,
153
#endif
154
#ifdef CONFIG_ZONE_DMA32
155
        /*
156
         * x86_64 needs two ZONE_DMAs because it supports devices that are
157
         * only able to do DMA to the lower 16M but also 32 bit devices that
158
         * can only do DMA areas below 4G.
159
         */
160
        ZONE_DMA32,
161
#endif
162
        /*
163
         * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
164
         * performed on pages in ZONE_NORMAL if the DMA devices support
165
         * transfers to all addressable memory.
166
         */
167
        ZONE_NORMAL,
168
#ifdef CONFIG_HIGHMEM
169
        /*
170
         * A memory area that is only addressable by the kernel through
171
         * mapping portions into its own address space. This is for example
172
         * used by i386 to allow the kernel to address the memory beyond
173
         * 900MB. The kernel will set up special mappings (page
174
         * table entries on i386) for each page that the kernel needs to
175
         * access.
176
         */
177
        ZONE_HIGHMEM,
178
#endif
179
        ZONE_MOVABLE,
180
        MAX_NR_ZONES
181
};
182
 
183
/*
184
 * When a memory allocation must conform to specific limitations (such
185
 * as being suitable for DMA) the caller will pass in hints to the
186
 * allocator in the gfp_mask, in the zone modifier bits.  These bits
187
 * are used to select a priority ordered list of memory zones which
188
 * match the requested limits. See gfp_zone() in include/linux/gfp.h
189
 */
190
 
191
/*
192
 * Count the active zones.  Note that the use of defined(X) outside
193
 * #if and family is not necessarily defined so ensure we cannot use
194
 * it later.  Use __ZONE_COUNT to work out how many shift bits we need.
195
 */
196
#define __ZONE_COUNT (                  \
197
          defined(CONFIG_ZONE_DMA)      \
198
        + defined(CONFIG_ZONE_DMA32)    \
199
        + 1                             \
200
        + defined(CONFIG_HIGHMEM)       \
201
        + 1                             \
202
)
203
#if __ZONE_COUNT < 2
204
#define ZONES_SHIFT 0
205
#elif __ZONE_COUNT <= 2
206
#define ZONES_SHIFT 1
207
#elif __ZONE_COUNT <= 4
208
#define ZONES_SHIFT 2
209
#else
210
#error ZONES_SHIFT -- too many zones configured adjust calculation
211
#endif
212
#undef __ZONE_COUNT
213
 
214
struct zone {
215
        /* Fields commonly accessed by the page allocator */
216
        unsigned long           pages_min, pages_low, pages_high;
217
        /*
218
         * We don't know if the memory that we're going to allocate will be freeable
219
         * or/and it will be released eventually, so to avoid totally wasting several
220
         * GB of ram we must reserve some of the lower zone memory (otherwise we risk
221
         * to run OOM on the lower zones despite there's tons of freeable ram
222
         * on the higher zones). This array is recalculated at runtime if the
223
         * sysctl_lowmem_reserve_ratio sysctl changes.
224
         */
225
        unsigned long           lowmem_reserve[MAX_NR_ZONES];
226
 
227
#ifdef CONFIG_NUMA
228
        int node;
229
        /*
230
         * zone reclaim becomes active if more unmapped pages exist.
231
         */
232
        unsigned long           min_unmapped_pages;
233
        unsigned long           min_slab_pages;
234
        struct per_cpu_pageset  *pageset[NR_CPUS];
235
#else
236
        struct per_cpu_pageset  pageset[NR_CPUS];
237
#endif
238
        /*
239
         * free areas of different sizes
240
         */
241
        spinlock_t              lock;
242
#ifdef CONFIG_MEMORY_HOTPLUG
243
        /* see spanned/present_pages for more description */
244
        seqlock_t               span_seqlock;
245
#endif
246
        struct free_area        free_area[MAX_ORDER];
247
 
248
#ifndef CONFIG_SPARSEMEM
249
        /*
250
         * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
251
         * In SPARSEMEM, this map is stored in struct mem_section
252
         */
253
        unsigned long           *pageblock_flags;
254
#endif /* CONFIG_SPARSEMEM */
255
 
256
 
257
        ZONE_PADDING(_pad1_)
258
 
259
        /* Fields commonly accessed by the page reclaim scanner */
260
        spinlock_t              lru_lock;
261
        struct list_head        active_list;
262
        struct list_head        inactive_list;
263
        unsigned long           nr_scan_active;
264
        unsigned long           nr_scan_inactive;
265
        unsigned long           pages_scanned;     /* since last reclaim */
266
        unsigned long           flags;             /* zone flags, see below */
267
 
268
        /* Zone statistics */
269
        atomic_long_t           vm_stat[NR_VM_ZONE_STAT_ITEMS];
270
 
271
        /*
272
         * prev_priority holds the scanning priority for this zone.  It is
273
         * defined as the scanning priority at which we achieved our reclaim
274
         * target at the previous try_to_free_pages() or balance_pgdat()
275
         * invokation.
276
         *
277
         * We use prev_priority as a measure of how much stress page reclaim is
278
         * under - it drives the swappiness decision: whether to unmap mapped
279
         * pages.
280
         *
281
         * Access to both this field is quite racy even on uniprocessor.  But
282
         * it is expected to average out OK.
283
         */
284
        int prev_priority;
285
 
286
 
287
        ZONE_PADDING(_pad2_)
288
        /* Rarely used or read-mostly fields */
289
 
290
        /*
291
         * wait_table           -- the array holding the hash table
292
         * wait_table_hash_nr_entries   -- the size of the hash table array
293
         * wait_table_bits      -- wait_table_size == (1 << wait_table_bits)
294
         *
295
         * The purpose of all these is to keep track of the people
296
         * waiting for a page to become available and make them
297
         * runnable again when possible. The trouble is that this
298
         * consumes a lot of space, especially when so few things
299
         * wait on pages at a given time. So instead of using
300
         * per-page waitqueues, we use a waitqueue hash table.
301
         *
302
         * The bucket discipline is to sleep on the same queue when
303
         * colliding and wake all in that wait queue when removing.
304
         * When something wakes, it must check to be sure its page is
305
         * truly available, a la thundering herd. The cost of a
306
         * collision is great, but given the expected load of the
307
         * table, they should be so rare as to be outweighed by the
308
         * benefits from the saved space.
309
         *
310
         * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
311
         * primary users of these fields, and in mm/page_alloc.c
312
         * free_area_init_core() performs the initialization of them.
313
         */
314
        wait_queue_head_t       * wait_table;
315
        unsigned long           wait_table_hash_nr_entries;
316
        unsigned long           wait_table_bits;
317
 
318
        /*
319
         * Discontig memory support fields.
320
         */
321
        struct pglist_data      *zone_pgdat;
322
        /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
323
        unsigned long           zone_start_pfn;
324
 
325
        /*
326
         * zone_start_pfn, spanned_pages and present_pages are all
327
         * protected by span_seqlock.  It is a seqlock because it has
328
         * to be read outside of zone->lock, and it is done in the main
329
         * allocator path.  But, it is written quite infrequently.
330
         *
331
         * The lock is declared along with zone->lock because it is
332
         * frequently read in proximity to zone->lock.  It's good to
333
         * give them a chance of being in the same cacheline.
334
         */
335
        unsigned long           spanned_pages;  /* total size, including holes */
336
        unsigned long           present_pages;  /* amount of memory (excluding holes) */
337
 
338
        /*
339
         * rarely used fields:
340
         */
341
        const char              *name;
342
} ____cacheline_internodealigned_in_smp;
343
 
344
typedef enum {
345
        ZONE_ALL_UNRECLAIMABLE,         /* all pages pinned */
346
        ZONE_RECLAIM_LOCKED,            /* prevents concurrent reclaim */
347
        ZONE_OOM_LOCKED,                /* zone is in OOM killer zonelist */
348
} zone_flags_t;
349
 
350
static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
351
{
352
        set_bit(flag, &zone->flags);
353
}
354
 
355
static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
356
{
357
        return test_and_set_bit(flag, &zone->flags);
358
}
359
 
360
static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
361
{
362
        clear_bit(flag, &zone->flags);
363
}
364
 
365
static inline int zone_is_all_unreclaimable(const struct zone *zone)
366
{
367
        return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags);
368
}
369
 
370
static inline int zone_is_reclaim_locked(const struct zone *zone)
371
{
372
        return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
373
}
374
 
375
static inline int zone_is_oom_locked(const struct zone *zone)
376
{
377
        return test_bit(ZONE_OOM_LOCKED, &zone->flags);
378
}
379
 
380
/*
381
 * The "priority" of VM scanning is how much of the queues we will scan in one
382
 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
383
 * queues ("queue_length >> 12") during an aging round.
384
 */
385
#define DEF_PRIORITY 12
386
 
387
/* Maximum number of zones on a zonelist */
388
#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
389
 
390
#ifdef CONFIG_NUMA
391
 
392
/*
393
 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
394
 * allocations to a single node for GFP_THISNODE.
395
 *
396
 * [0 .. MAX_NR_ZONES -1]               : Zonelists with fallback
397
 * [MAZ_NR_ZONES ... MAZ_ZONELISTS -1]  : No fallback (GFP_THISNODE)
398
 */
399
#define MAX_ZONELISTS (2 * MAX_NR_ZONES)
400
 
401
 
402
/*
403
 * We cache key information from each zonelist for smaller cache
404
 * footprint when scanning for free pages in get_page_from_freelist().
405
 *
406
 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
407
 *    up short of free memory since the last time (last_fullzone_zap)
408
 *    we zero'd fullzones.
409
 * 2) The array z_to_n[] maps each zone in the zonelist to its node
410
 *    id, so that we can efficiently evaluate whether that node is
411
 *    set in the current tasks mems_allowed.
412
 *
413
 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
414
 * indexed by a zones offset in the zonelist zones[] array.
415
 *
416
 * The get_page_from_freelist() routine does two scans.  During the
417
 * first scan, we skip zones whose corresponding bit in 'fullzones'
418
 * is set or whose corresponding node in current->mems_allowed (which
419
 * comes from cpusets) is not set.  During the second scan, we bypass
420
 * this zonelist_cache, to ensure we look methodically at each zone.
421
 *
422
 * Once per second, we zero out (zap) fullzones, forcing us to
423
 * reconsider nodes that might have regained more free memory.
424
 * The field last_full_zap is the time we last zapped fullzones.
425
 *
426
 * This mechanism reduces the amount of time we waste repeatedly
427
 * reexaming zones for free memory when they just came up low on
428
 * memory momentarilly ago.
429
 *
430
 * The zonelist_cache struct members logically belong in struct
431
 * zonelist.  However, the mempolicy zonelists constructed for
432
 * MPOL_BIND are intentionally variable length (and usually much
433
 * shorter).  A general purpose mechanism for handling structs with
434
 * multiple variable length members is more mechanism than we want
435
 * here.  We resort to some special case hackery instead.
436
 *
437
 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
438
 * part because they are shorter), so we put the fixed length stuff
439
 * at the front of the zonelist struct, ending in a variable length
440
 * zones[], as is needed by MPOL_BIND.
441
 *
442
 * Then we put the optional zonelist cache on the end of the zonelist
443
 * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
444
 * the fixed length portion at the front of the struct.  This pointer
445
 * both enables us to find the zonelist cache, and in the case of
446
 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
447
 * to know that the zonelist cache is not there.
448
 *
449
 * The end result is that struct zonelists come in two flavors:
450
 *  1) The full, fixed length version, shown below, and
451
 *  2) The custom zonelists for MPOL_BIND.
452
 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
453
 *
454
 * Even though there may be multiple CPU cores on a node modifying
455
 * fullzones or last_full_zap in the same zonelist_cache at the same
456
 * time, we don't lock it.  This is just hint data - if it is wrong now
457
 * and then, the allocator will still function, perhaps a bit slower.
458
 */
459
 
460
 
461
struct zonelist_cache {
462
        unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];          /* zone->nid */
463
        DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);      /* zone full? */
464
        unsigned long last_full_zap;            /* when last zap'd (jiffies) */
465
};
466
#else
467
#define MAX_ZONELISTS MAX_NR_ZONES
468
struct zonelist_cache;
469
#endif
470
 
471
/*
472
 * One allocation request operates on a zonelist. A zonelist
473
 * is a list of zones, the first one is the 'goal' of the
474
 * allocation, the other zones are fallback zones, in decreasing
475
 * priority.
476
 *
477
 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
478
 * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
479
 */
480
 
481
struct zonelist {
482
        struct zonelist_cache *zlcache_ptr;                  // NULL or &zlcache
483
        struct zone *zones[MAX_ZONES_PER_ZONELIST + 1];      // NULL delimited
484
#ifdef CONFIG_NUMA
485
        struct zonelist_cache zlcache;                       // optional ...
486
#endif
487
};
488
 
489
#ifdef CONFIG_NUMA
490
/*
491
 * Only custom zonelists like MPOL_BIND need to be filtered as part of
492
 * policies. As described in the comment for struct zonelist_cache, these
493
 * zonelists will not have a zlcache so zlcache_ptr will not be set. Use
494
 * that to determine if the zonelists needs to be filtered or not.
495
 */
496
static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
497
{
498
        return !zonelist->zlcache_ptr;
499
}
500
#else
501
static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
502
{
503
        return 0;
504
}
505
#endif /* CONFIG_NUMA */
506
 
507
#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
508
struct node_active_region {
509
        unsigned long start_pfn;
510
        unsigned long end_pfn;
511
        int nid;
512
};
513
#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
514
 
515
#ifndef CONFIG_DISCONTIGMEM
516
/* The array of struct pages - for discontigmem use pgdat->lmem_map */
517
extern struct page *mem_map;
518
#endif
519
 
520
/*
521
 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
522
 * (mostly NUMA machines?) to denote a higher-level memory zone than the
523
 * zone denotes.
524
 *
525
 * On NUMA machines, each NUMA node would have a pg_data_t to describe
526
 * it's memory layout.
527
 *
528
 * Memory statistics and page replacement data structures are maintained on a
529
 * per-zone basis.
530
 */
531
struct bootmem_data;
532
typedef struct pglist_data {
533
        struct zone node_zones[MAX_NR_ZONES];
534
        struct zonelist node_zonelists[MAX_ZONELISTS];
535
        int nr_zones;
536
#ifdef CONFIG_FLAT_NODE_MEM_MAP
537
        struct page *node_mem_map;
538
#endif
539
        struct bootmem_data *bdata;
540
#ifdef CONFIG_MEMORY_HOTPLUG
541
        /*
542
         * Must be held any time you expect node_start_pfn, node_present_pages
543
         * or node_spanned_pages stay constant.  Holding this will also
544
         * guarantee that any pfn_valid() stays that way.
545
         *
546
         * Nests above zone->lock and zone->size_seqlock.
547
         */
548
        spinlock_t node_size_lock;
549
#endif
550
        unsigned long node_start_pfn;
551
        unsigned long node_present_pages; /* total number of physical pages */
552
        unsigned long node_spanned_pages; /* total size of physical page
553
                                             range, including holes */
554
        int node_id;
555
        wait_queue_head_t kswapd_wait;
556
        struct task_struct *kswapd;
557
        int kswapd_max_order;
558
} pg_data_t;
559
 
560
#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
561
#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
562
#ifdef CONFIG_FLAT_NODE_MEM_MAP
563
#define pgdat_page_nr(pgdat, pagenr)    ((pgdat)->node_mem_map + (pagenr))
564
#else
565
#define pgdat_page_nr(pgdat, pagenr)    pfn_to_page((pgdat)->node_start_pfn + (pagenr))
566
#endif
567
#define nid_page_nr(nid, pagenr)        pgdat_page_nr(NODE_DATA(nid),(pagenr))
568
 
569
#include <linux/memory_hotplug.h>
570
 
571
void get_zone_counts(unsigned long *active, unsigned long *inactive,
572
                        unsigned long *free);
573
void build_all_zonelists(void);
574
void wakeup_kswapd(struct zone *zone, int order);
575
int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
576
                int classzone_idx, int alloc_flags);
577
enum memmap_context {
578
        MEMMAP_EARLY,
579
        MEMMAP_HOTPLUG,
580
};
581
extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
582
                                     unsigned long size,
583
                                     enum memmap_context context);
584
 
585
#ifdef CONFIG_HAVE_MEMORY_PRESENT
586
void memory_present(int nid, unsigned long start, unsigned long end);
587
#else
588
static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
589
#endif
590
 
591
#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
592
unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
593
#endif
594
 
595
/*
596
 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
597
 */
598
#define zone_idx(zone)          ((zone) - (zone)->zone_pgdat->node_zones)
599
 
600
static inline int populated_zone(struct zone *zone)
601
{
602
        return (!!zone->present_pages);
603
}
604
 
605
extern int movable_zone;
606
 
607
static inline int zone_movable_is_highmem(void)
608
{
609
#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
610
        return movable_zone == ZONE_HIGHMEM;
611
#else
612
        return 0;
613
#endif
614
}
615
 
616
static inline int is_highmem_idx(enum zone_type idx)
617
{
618
#ifdef CONFIG_HIGHMEM
619
        return (idx == ZONE_HIGHMEM ||
620
                (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
621
#else
622
        return 0;
623
#endif
624
}
625
 
626
static inline int is_normal_idx(enum zone_type idx)
627
{
628
        return (idx == ZONE_NORMAL);
629
}
630
 
631
/**
632
 * is_highmem - helper function to quickly check if a struct zone is a
633
 *              highmem zone or not.  This is an attempt to keep references
634
 *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
635
 * @zone - pointer to struct zone variable
636
 */
637
static inline int is_highmem(struct zone *zone)
638
{
639
#ifdef CONFIG_HIGHMEM
640
        int zone_idx = zone - zone->zone_pgdat->node_zones;
641
        return zone_idx == ZONE_HIGHMEM ||
642
                (zone_idx == ZONE_MOVABLE && zone_movable_is_highmem());
643
#else
644
        return 0;
645
#endif
646
}
647
 
648
static inline int is_normal(struct zone *zone)
649
{
650
        return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
651
}
652
 
653
static inline int is_dma32(struct zone *zone)
654
{
655
#ifdef CONFIG_ZONE_DMA32
656
        return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
657
#else
658
        return 0;
659
#endif
660
}
661
 
662
static inline int is_dma(struct zone *zone)
663
{
664
#ifdef CONFIG_ZONE_DMA
665
        return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
666
#else
667
        return 0;
668
#endif
669
}
670
 
671
/* These two functions are used to setup the per zone pages min values */
672
struct ctl_table;
673
struct file;
674
int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
675
                                        void __user *, size_t *, loff_t *);
676
extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
677
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
678
                                        void __user *, size_t *, loff_t *);
679
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
680
                                        void __user *, size_t *, loff_t *);
681
int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
682
                        struct file *, void __user *, size_t *, loff_t *);
683
int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
684
                        struct file *, void __user *, size_t *, loff_t *);
685
 
686
extern int numa_zonelist_order_handler(struct ctl_table *, int,
687
                        struct file *, void __user *, size_t *, loff_t *);
688
extern char numa_zonelist_order[];
689
#define NUMA_ZONELIST_ORDER_LEN 16      /* string buffer size */
690
 
691
#include <linux/topology.h>
692
/* Returns the number of the current Node. */
693
#ifndef numa_node_id
694
#define numa_node_id()          (cpu_to_node(raw_smp_processor_id()))
695
#endif
696
 
697
#ifndef CONFIG_NEED_MULTIPLE_NODES
698
 
699
extern struct pglist_data contig_page_data;
700
#define NODE_DATA(nid)          (&contig_page_data)
701
#define NODE_MEM_MAP(nid)       mem_map
702
#define MAX_NODES_SHIFT         1
703
 
704
#else /* CONFIG_NEED_MULTIPLE_NODES */
705
 
706
#include <asm/mmzone.h>
707
 
708
#endif /* !CONFIG_NEED_MULTIPLE_NODES */
709
 
710
extern struct pglist_data *first_online_pgdat(void);
711
extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
712
extern struct zone *next_zone(struct zone *zone);
713
 
714
/**
715
 * for_each_pgdat - helper macro to iterate over all nodes
716
 * @pgdat - pointer to a pg_data_t variable
717
 */
718
#define for_each_online_pgdat(pgdat)                    \
719
        for (pgdat = first_online_pgdat();              \
720
             pgdat;                                     \
721
             pgdat = next_online_pgdat(pgdat))
722
/**
723
 * for_each_zone - helper macro to iterate over all memory zones
724
 * @zone - pointer to struct zone variable
725
 *
726
 * The user only needs to declare the zone variable, for_each_zone
727
 * fills it in.
728
 */
729
#define for_each_zone(zone)                             \
730
        for (zone = (first_online_pgdat())->node_zones; \
731
             zone;                                      \
732
             zone = next_zone(zone))
733
 
734
#ifdef CONFIG_SPARSEMEM
735
#include <asm/sparsemem.h>
736
#endif
737
 
738
#if BITS_PER_LONG == 32
739
/*
740
 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
741
 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
742
 */
743
#define FLAGS_RESERVED          9
744
 
745
#elif BITS_PER_LONG == 64
746
/*
747
 * with 64 bit flags field, there's plenty of room.
748
 */
749
#define FLAGS_RESERVED          32
750
 
751
#else
752
 
753
#error BITS_PER_LONG not defined
754
 
755
#endif
756
 
757
#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
758
        !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
759
#define early_pfn_to_nid(nid)  (0UL)
760
#endif
761
 
762
#ifdef CONFIG_FLATMEM
763
#define pfn_to_nid(pfn)         (0)
764
#endif
765
 
766
#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
767
#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
768
 
769
#ifdef CONFIG_SPARSEMEM
770
 
771
/*
772
 * SECTION_SHIFT                #bits space required to store a section #
773
 *
774
 * PA_SECTION_SHIFT             physical address to/from section number
775
 * PFN_SECTION_SHIFT            pfn to/from section number
776
 */
777
#define SECTIONS_SHIFT          (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
778
 
779
#define PA_SECTION_SHIFT        (SECTION_SIZE_BITS)
780
#define PFN_SECTION_SHIFT       (SECTION_SIZE_BITS - PAGE_SHIFT)
781
 
782
#define NR_MEM_SECTIONS         (1UL << SECTIONS_SHIFT)
783
 
784
#define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
785
#define PAGE_SECTION_MASK       (~(PAGES_PER_SECTION-1))
786
 
787
#define SECTION_BLOCKFLAGS_BITS \
788
        ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
789
 
790
#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
791
#error Allocator MAX_ORDER exceeds SECTION_SIZE
792
#endif
793
 
794
struct page;
795
struct mem_section {
796
        /*
797
         * This is, logically, a pointer to an array of struct
798
         * pages.  However, it is stored with some other magic.
799
         * (see sparse.c::sparse_init_one_section())
800
         *
801
         * Additionally during early boot we encode node id of
802
         * the location of the section here to guide allocation.
803
         * (see sparse.c::memory_present())
804
         *
805
         * Making it a UL at least makes someone do a cast
806
         * before using it wrong.
807
         */
808
        unsigned long section_mem_map;
809
 
810
        /* See declaration of similar field in struct zone */
811
        unsigned long *pageblock_flags;
812
};
813
 
814
#ifdef CONFIG_SPARSEMEM_EXTREME
815
#define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
816
#else
817
#define SECTIONS_PER_ROOT       1
818
#endif
819
 
820
#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
821
#define NR_SECTION_ROOTS        (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
822
#define SECTION_ROOT_MASK       (SECTIONS_PER_ROOT - 1)
823
 
824
#ifdef CONFIG_SPARSEMEM_EXTREME
825
extern struct mem_section *mem_section[NR_SECTION_ROOTS];
826
#else
827
extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
828
#endif
829
 
830
static inline struct mem_section *__nr_to_section(unsigned long nr)
831
{
832
        if (!mem_section[SECTION_NR_TO_ROOT(nr)])
833
                return NULL;
834
        return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
835
}
836
extern int __section_nr(struct mem_section* ms);
837
 
838
/*
839
 * We use the lower bits of the mem_map pointer to store
840
 * a little bit of information.  There should be at least
841
 * 3 bits here due to 32-bit alignment.
842
 */
843
#define SECTION_MARKED_PRESENT  (1UL<<0)
844
#define SECTION_HAS_MEM_MAP     (1UL<<1)
845
#define SECTION_MAP_LAST_BIT    (1UL<<2)
846
#define SECTION_MAP_MASK        (~(SECTION_MAP_LAST_BIT-1))
847
#define SECTION_NID_SHIFT       2
848
 
849
static inline struct page *__section_mem_map_addr(struct mem_section *section)
850
{
851
        unsigned long map = section->section_mem_map;
852
        map &= SECTION_MAP_MASK;
853
        return (struct page *)map;
854
}
855
 
856
static inline int present_section(struct mem_section *section)
857
{
858
        return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
859
}
860
 
861
static inline int present_section_nr(unsigned long nr)
862
{
863
        return present_section(__nr_to_section(nr));
864
}
865
 
866
static inline int valid_section(struct mem_section *section)
867
{
868
        return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
869
}
870
 
871
static inline int valid_section_nr(unsigned long nr)
872
{
873
        return valid_section(__nr_to_section(nr));
874
}
875
 
876
static inline struct mem_section *__pfn_to_section(unsigned long pfn)
877
{
878
        return __nr_to_section(pfn_to_section_nr(pfn));
879
}
880
 
881
static inline int pfn_valid(unsigned long pfn)
882
{
883
        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
884
                return 0;
885
        return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
886
}
887
 
888
static inline int pfn_present(unsigned long pfn)
889
{
890
        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
891
                return 0;
892
        return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
893
}
894
 
895
/*
896
 * These are _only_ used during initialisation, therefore they
897
 * can use __initdata ...  They could have names to indicate
898
 * this restriction.
899
 */
900
#ifdef CONFIG_NUMA
901
#define pfn_to_nid(pfn)                                                 \
902
({                                                                      \
903
        unsigned long __pfn_to_nid_pfn = (pfn);                         \
904
        page_to_nid(pfn_to_page(__pfn_to_nid_pfn));                     \
905
})
906
#else
907
#define pfn_to_nid(pfn)         (0)
908
#endif
909
 
910
#define early_pfn_valid(pfn)    pfn_valid(pfn)
911
void sparse_init(void);
912
#else
913
#define sparse_init()   do {} while (0)
914
#define sparse_index_init(_sec, _nid)  do {} while (0)
915
#endif /* CONFIG_SPARSEMEM */
916
 
917
#ifdef CONFIG_NODES_SPAN_OTHER_NODES
918
#define early_pfn_in_nid(pfn, nid)      (early_pfn_to_nid(pfn) == (nid))
919
#else
920
#define early_pfn_in_nid(pfn, nid)      (1)
921
#endif
922
 
923
#ifndef early_pfn_valid
924
#define early_pfn_valid(pfn)    (1)
925
#endif
926
 
927
void memory_present(int nid, unsigned long start, unsigned long end);
928
unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
929
 
930
/*
931
 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
932
 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
933
 * pfn_valid_within() should be used in this case; we optimise this away
934
 * when we have no holes within a MAX_ORDER_NR_PAGES block.
935
 */
936
#ifdef CONFIG_HOLES_IN_ZONE
937
#define pfn_valid_within(pfn) pfn_valid(pfn)
938
#else
939
#define pfn_valid_within(pfn) (1)
940
#endif
941
 
942
#endif /* !__ASSEMBLY__ */
943
#endif /* __KERNEL__ */
944
#endif /* _LINUX_MMZONE_H */

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.