OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [include/] [linux/] [reiserfs_fs.h] - Blame information for rev 81

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details
3
 */
4
 
5
                                /* this file has an amazingly stupid
6
                                   name, yura please fix it to be
7
                                   reiserfs.h, and merge all the rest
8
                                   of our .h files that are in this
9
                                   directory into it.  */
10
 
11
#ifndef _LINUX_REISER_FS_H
12
#define _LINUX_REISER_FS_H
13
 
14
#include <linux/types.h>
15
#include <linux/magic.h>
16
 
17
#ifdef __KERNEL__
18
#include <linux/slab.h>
19
#include <linux/interrupt.h>
20
#include <linux/sched.h>
21
#include <linux/workqueue.h>
22
#include <asm/unaligned.h>
23
#include <linux/bitops.h>
24
#include <linux/proc_fs.h>
25
#include <linux/smp_lock.h>
26
#include <linux/buffer_head.h>
27
#include <linux/reiserfs_fs_i.h>
28
#include <linux/reiserfs_fs_sb.h>
29
#endif
30
 
31
struct fid;
32
 
33
/*
34
 *  include/linux/reiser_fs.h
35
 *
36
 *  Reiser File System constants and structures
37
 *
38
 */
39
 
40
/* in reading the #defines, it may help to understand that they employ
41
   the following abbreviations:
42
 
43
   B = Buffer
44
   I = Item header
45
   H = Height within the tree (should be changed to LEV)
46
   N = Number of the item in the node
47
   STAT = stat data
48
   DEH = Directory Entry Header
49
   EC = Entry Count
50
   E = Entry number
51
   UL = Unsigned Long
52
   BLKH = BLocK Header
53
   UNFM = UNForMatted node
54
   DC = Disk Child
55
   P = Path
56
 
57
   These #defines are named by concatenating these abbreviations,
58
   where first comes the arguments, and last comes the return value,
59
   of the macro.
60
 
61
*/
62
 
63
#define USE_INODE_GENERATION_COUNTER
64
 
65
#define REISERFS_PREALLOCATE
66
#define DISPLACE_NEW_PACKING_LOCALITIES
67
#define PREALLOCATION_SIZE 9
68
 
69
/* n must be power of 2 */
70
#define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
71
 
72
// to be ok for alpha and others we have to align structures to 8 byte
73
// boundary.
74
// FIXME: do not change 4 by anything else: there is code which relies on that
75
#define ROUND_UP(x) _ROUND_UP(x,8LL)
76
 
77
/* debug levels.  Right now, CONFIG_REISERFS_CHECK means print all debug
78
** messages.
79
*/
80
#define REISERFS_DEBUG_CODE 5   /* extra messages to help find/debug errors */
81
 
82
void reiserfs_warning(struct super_block *s, const char *fmt, ...);
83
/* assertions handling */
84
 
85
/** always check a condition and panic if it's false. */
86
#define __RASSERT( cond, scond, format, args... )                                       \
87
if( !( cond ) )                                                                 \
88
  reiserfs_panic( NULL, "reiserfs[%i]: assertion " scond " failed at "  \
89
                  __FILE__ ":%i:%s: " format "\n",              \
90
                  in_interrupt() ? -1 : task_pid_nr(current), __LINE__ , __FUNCTION__ , ##args )
91
 
92
#define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args)
93
 
94
#if defined( CONFIG_REISERFS_CHECK )
95
#define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args)
96
#else
97
#define RFALSE( cond, format, args... ) do {;} while( 0 )
98
#endif
99
 
100
#define CONSTF __attribute_const__
101
/*
102
 * Disk Data Structures
103
 */
104
 
105
/***************************************************************************/
106
/*                             SUPER BLOCK                                 */
107
/***************************************************************************/
108
 
109
/*
110
 * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs
111
 * the version in RAM is part of a larger structure containing fields never written to disk.
112
 */
113
#define UNSET_HASH 0            // read_super will guess about, what hash names
114
                     // in directories were sorted with
115
#define TEA_HASH  1
116
#define YURA_HASH 2
117
#define R5_HASH   3
118
#define DEFAULT_HASH R5_HASH
119
 
120
struct journal_params {
121
        __le32 jp_journal_1st_block;    /* where does journal start from on its
122
                                         * device */
123
        __le32 jp_journal_dev;  /* journal device st_rdev */
124
        __le32 jp_journal_size; /* size of the journal */
125
        __le32 jp_journal_trans_max;    /* max number of blocks in a transaction. */
126
        __le32 jp_journal_magic;        /* random value made on fs creation (this
127
                                         * was sb_journal_block_count) */
128
        __le32 jp_journal_max_batch;    /* max number of blocks to batch into a
129
                                         * trans */
130
        __le32 jp_journal_max_commit_age;       /* in seconds, how old can an async
131
                                                 * commit be */
132
        __le32 jp_journal_max_trans_age;        /* in seconds, how old can a transaction
133
                                                 * be */
134
};
135
 
136
/* this is the super from 3.5.X, where X >= 10 */
137
struct reiserfs_super_block_v1 {
138
        __le32 s_block_count;   /* blocks count         */
139
        __le32 s_free_blocks;   /* free blocks count    */
140
        __le32 s_root_block;    /* root block number    */
141
        struct journal_params s_journal;
142
        __le16 s_blocksize;     /* block size */
143
        __le16 s_oid_maxsize;   /* max size of object id array, see
144
                                 * get_objectid() commentary  */
145
        __le16 s_oid_cursize;   /* current size of object id array */
146
        __le16 s_umount_state;  /* this is set to 1 when filesystem was
147
                                 * umounted, to 2 - when not */
148
        char s_magic[10];       /* reiserfs magic string indicates that
149
                                 * file system is reiserfs:
150
                                 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */
151
        __le16 s_fs_state;      /* it is set to used by fsck to mark which
152
                                 * phase of rebuilding is done */
153
        __le32 s_hash_function_code;    /* indicate, what hash function is being use
154
                                         * to sort names in a directory*/
155
        __le16 s_tree_height;   /* height of disk tree */
156
        __le16 s_bmap_nr;       /* amount of bitmap blocks needed to address
157
                                 * each block of file system */
158
        __le16 s_version;       /* this field is only reliable on filesystem
159
                                 * with non-standard journal */
160
        __le16 s_reserved_for_journal;  /* size in blocks of journal area on main
161
                                         * device, we need to keep after
162
                                         * making fs with non-standard journal */
163
} __attribute__ ((__packed__));
164
 
165
#define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
166
 
167
/* this is the on disk super block */
168
struct reiserfs_super_block {
169
        struct reiserfs_super_block_v1 s_v1;
170
        __le32 s_inode_generation;
171
        __le32 s_flags;         /* Right now used only by inode-attributes, if enabled */
172
        unsigned char s_uuid[16];       /* filesystem unique identifier */
173
        unsigned char s_label[16];      /* filesystem volume label */
174
        char s_unused[88];      /* zero filled by mkreiserfs and
175
                                 * reiserfs_convert_objectid_map_v1()
176
                                 * so any additions must be updated
177
                                 * there as well. */
178
} __attribute__ ((__packed__));
179
 
180
#define SB_SIZE (sizeof(struct reiserfs_super_block))
181
 
182
#define REISERFS_VERSION_1 0
183
#define REISERFS_VERSION_2 2
184
 
185
// on-disk super block fields converted to cpu form
186
#define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
187
#define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
188
#define SB_BLOCKSIZE(s) \
189
        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
190
#define SB_BLOCK_COUNT(s) \
191
        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
192
#define SB_FREE_BLOCKS(s) \
193
        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
194
#define SB_REISERFS_MAGIC(s) \
195
        (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
196
#define SB_ROOT_BLOCK(s) \
197
        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
198
#define SB_TREE_HEIGHT(s) \
199
        le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
200
#define SB_REISERFS_STATE(s) \
201
        le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
202
#define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
203
#define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
204
 
205
#define PUT_SB_BLOCK_COUNT(s, val) \
206
   do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
207
#define PUT_SB_FREE_BLOCKS(s, val) \
208
   do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
209
#define PUT_SB_ROOT_BLOCK(s, val) \
210
   do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
211
#define PUT_SB_TREE_HEIGHT(s, val) \
212
   do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
213
#define PUT_SB_REISERFS_STATE(s, val) \
214
   do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
215
#define PUT_SB_VERSION(s, val) \
216
   do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
217
#define PUT_SB_BMAP_NR(s, val) \
218
   do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
219
 
220
#define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
221
#define SB_ONDISK_JOURNAL_SIZE(s) \
222
         le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
223
#define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
224
         le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
225
#define SB_ONDISK_JOURNAL_DEVICE(s) \
226
         le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
227
#define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
228
         le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
229
 
230
#define is_block_in_log_or_reserved_area(s, block) \
231
         block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
232
         && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) +  \
233
         ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
234
         SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
235
 
236
int is_reiserfs_3_5(struct reiserfs_super_block *rs);
237
int is_reiserfs_3_6(struct reiserfs_super_block *rs);
238
int is_reiserfs_jr(struct reiserfs_super_block *rs);
239
 
240
/* ReiserFS leaves the first 64k unused, so that partition labels have
241
   enough space.  If someone wants to write a fancy bootloader that
242
   needs more than 64k, let us know, and this will be increased in size.
243
   This number must be larger than than the largest block size on any
244
   platform, or code will break.  -Hans */
245
#define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
246
#define REISERFS_FIRST_BLOCK unused_define
247
#define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
248
 
249
/* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
250
#define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
251
 
252
// reiserfs internal error code (used by search_by_key adn fix_nodes))
253
#define CARRY_ON      0
254
#define REPEAT_SEARCH -1
255
#define IO_ERROR      -2
256
#define NO_DISK_SPACE -3
257
#define NO_BALANCING_NEEDED  (-4)
258
#define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
259
#define QUOTA_EXCEEDED -6
260
 
261
typedef __u32 b_blocknr_t;
262
typedef __le32 unp_t;
263
 
264
struct unfm_nodeinfo {
265
        unp_t unfm_nodenum;
266
        unsigned short unfm_freespace;
267
};
268
 
269
/* there are two formats of keys: 3.5 and 3.6
270
 */
271
#define KEY_FORMAT_3_5 0
272
#define KEY_FORMAT_3_6 1
273
 
274
/* there are two stat datas */
275
#define STAT_DATA_V1 0
276
#define STAT_DATA_V2 1
277
 
278
static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
279
{
280
        return container_of(inode, struct reiserfs_inode_info, vfs_inode);
281
}
282
 
283
static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
284
{
285
        return sb->s_fs_info;
286
}
287
 
288
/* Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16
289
 * which overflows on large file systems. */
290
static inline u32 reiserfs_bmap_count(struct super_block *sb)
291
{
292
        return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1;
293
}
294
 
295
static inline int bmap_would_wrap(unsigned bmap_nr)
296
{
297
        return bmap_nr > ((1LL << 16) - 1);
298
}
299
 
300
/** this says about version of key of all items (but stat data) the
301
    object consists of */
302
#define get_inode_item_key_version( inode )                                    \
303
    ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
304
 
305
#define set_inode_item_key_version( inode, version )                           \
306
         ({ if((version)==KEY_FORMAT_3_6)                                      \
307
                REISERFS_I(inode)->i_flags |= i_item_key_version_mask;      \
308
            else                                                               \
309
                REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
310
 
311
#define get_inode_sd_version(inode)                                            \
312
    ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
313
 
314
#define set_inode_sd_version(inode, version)                                   \
315
         ({ if((version)==STAT_DATA_V2)                                        \
316
                REISERFS_I(inode)->i_flags |= i_stat_data_version_mask;     \
317
            else                                                               \
318
                REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
319
 
320
/* This is an aggressive tail suppression policy, I am hoping it
321
   improves our benchmarks. The principle behind it is that percentage
322
   space saving is what matters, not absolute space saving.  This is
323
   non-intuitive, but it helps to understand it if you consider that the
324
   cost to access 4 blocks is not much more than the cost to access 1
325
   block, if you have to do a seek and rotate.  A tail risks a
326
   non-linear disk access that is significant as a percentage of total
327
   time cost for a 4 block file and saves an amount of space that is
328
   less significant as a percentage of space, or so goes the hypothesis.
329
   -Hans */
330
#define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
331
(\
332
  (!(n_tail_size)) || \
333
  (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
334
   ( (n_file_size) >= (n_block_size) * 4 ) || \
335
   ( ( (n_file_size) >= (n_block_size) * 3 ) && \
336
     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
337
   ( ( (n_file_size) >= (n_block_size) * 2 ) && \
338
     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
339
   ( ( (n_file_size) >= (n_block_size) ) && \
340
     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
341
)
342
 
343
/* Another strategy for tails, this one means only create a tail if all the
344
   file would fit into one DIRECT item.
345
   Primary intention for this one is to increase performance by decreasing
346
   seeking.
347
*/
348
#define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
349
(\
350
  (!(n_tail_size)) || \
351
  (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
352
)
353
 
354
/*
355
 * values for s_umount_state field
356
 */
357
#define REISERFS_VALID_FS    1
358
#define REISERFS_ERROR_FS    2
359
 
360
//
361
// there are 5 item types currently
362
//
363
#define TYPE_STAT_DATA 0
364
#define TYPE_INDIRECT 1
365
#define TYPE_DIRECT 2
366
#define TYPE_DIRENTRY 3
367
#define TYPE_MAXTYPE 3
368
#define TYPE_ANY 15             // FIXME: comment is required
369
 
370
/***************************************************************************/
371
/*                       KEY & ITEM HEAD                                   */
372
/***************************************************************************/
373
 
374
//
375
// directories use this key as well as old files
376
//
377
struct offset_v1 {
378
        __le32 k_offset;
379
        __le32 k_uniqueness;
380
} __attribute__ ((__packed__));
381
 
382
struct offset_v2 {
383
        __le64 v;
384
} __attribute__ ((__packed__));
385
 
386
static inline __u16 offset_v2_k_type(const struct offset_v2 *v2)
387
{
388
        __u8 type = le64_to_cpu(v2->v) >> 60;
389
        return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY;
390
}
391
 
392
static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type)
393
{
394
        v2->v =
395
            (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60);
396
}
397
 
398
static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2)
399
{
400
        return le64_to_cpu(v2->v) & (~0ULL >> 4);
401
}
402
 
403
static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset)
404
{
405
        offset &= (~0ULL >> 4);
406
        v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset);
407
}
408
 
409
/* Key of an item determines its location in the S+tree, and
410
   is composed of 4 components */
411
struct reiserfs_key {
412
        __le32 k_dir_id;        /* packing locality: by default parent
413
                                   directory object id */
414
        __le32 k_objectid;      /* object identifier */
415
        union {
416
                struct offset_v1 k_offset_v1;
417
                struct offset_v2 k_offset_v2;
418
        } __attribute__ ((__packed__)) u;
419
} __attribute__ ((__packed__));
420
 
421
struct in_core_key {
422
        __u32 k_dir_id;         /* packing locality: by default parent
423
                                   directory object id */
424
        __u32 k_objectid;       /* object identifier */
425
        __u64 k_offset;
426
        __u8 k_type;
427
};
428
 
429
struct cpu_key {
430
        struct in_core_key on_disk_key;
431
        int version;
432
        int key_length;         /* 3 in all cases but direct2indirect and
433
                                   indirect2direct conversion */
434
};
435
 
436
/* Our function for comparing keys can compare keys of different
437
   lengths.  It takes as a parameter the length of the keys it is to
438
   compare.  These defines are used in determining what is to be passed
439
   to it as that parameter. */
440
#define REISERFS_FULL_KEY_LEN     4
441
#define REISERFS_SHORT_KEY_LEN    2
442
 
443
/* The result of the key compare */
444
#define FIRST_GREATER 1
445
#define SECOND_GREATER -1
446
#define KEYS_IDENTICAL 0
447
#define KEY_FOUND 1
448
#define KEY_NOT_FOUND 0
449
 
450
#define KEY_SIZE (sizeof(struct reiserfs_key))
451
#define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32))
452
 
453
/* return values for search_by_key and clones */
454
#define ITEM_FOUND 1
455
#define ITEM_NOT_FOUND 0
456
#define ENTRY_FOUND 1
457
#define ENTRY_NOT_FOUND 0
458
#define DIRECTORY_NOT_FOUND -1
459
#define REGULAR_FILE_FOUND -2
460
#define DIRECTORY_FOUND -3
461
#define BYTE_FOUND 1
462
#define BYTE_NOT_FOUND 0
463
#define FILE_NOT_FOUND -1
464
 
465
#define POSITION_FOUND 1
466
#define POSITION_NOT_FOUND 0
467
 
468
// return values for reiserfs_find_entry and search_by_entry_key
469
#define NAME_FOUND 1
470
#define NAME_NOT_FOUND 0
471
#define GOTO_PREVIOUS_ITEM 2
472
#define NAME_FOUND_INVISIBLE 3
473
 
474
/*  Everything in the filesystem is stored as a set of items.  The
475
    item head contains the key of the item, its free space (for
476
    indirect items) and specifies the location of the item itself
477
    within the block.  */
478
 
479
struct item_head {
480
        /* Everything in the tree is found by searching for it based on
481
         * its key.*/
482
        struct reiserfs_key ih_key;
483
        union {
484
                /* The free space in the last unformatted node of an
485
                   indirect item if this is an indirect item.  This
486
                   equals 0xFFFF iff this is a direct item or stat data
487
                   item. Note that the key, not this field, is used to
488
                   determine the item type, and thus which field this
489
                   union contains. */
490
                __le16 ih_free_space_reserved;
491
                /* Iff this is a directory item, this field equals the
492
                   number of directory entries in the directory item. */
493
                __le16 ih_entry_count;
494
        } __attribute__ ((__packed__)) u;
495
        __le16 ih_item_len;     /* total size of the item body */
496
        __le16 ih_item_location;        /* an offset to the item body
497
                                         * within the block */
498
        __le16 ih_version;      /* 0 for all old items, 2 for new
499
                                   ones. Highest bit is set by fsck
500
                                   temporary, cleaned after all
501
                                   done */
502
} __attribute__ ((__packed__));
503
/* size of item header     */
504
#define IH_SIZE (sizeof(struct item_head))
505
 
506
#define ih_free_space(ih)            le16_to_cpu((ih)->u.ih_free_space_reserved)
507
#define ih_version(ih)               le16_to_cpu((ih)->ih_version)
508
#define ih_entry_count(ih)           le16_to_cpu((ih)->u.ih_entry_count)
509
#define ih_location(ih)              le16_to_cpu((ih)->ih_item_location)
510
#define ih_item_len(ih)              le16_to_cpu((ih)->ih_item_len)
511
 
512
#define put_ih_free_space(ih, val)   do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
513
#define put_ih_version(ih, val)      do { (ih)->ih_version = cpu_to_le16(val); } while (0)
514
#define put_ih_entry_count(ih, val)  do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
515
#define put_ih_location(ih, val)     do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
516
#define put_ih_item_len(ih, val)     do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
517
 
518
#define unreachable_item(ih) (ih_version(ih) & (1 << 15))
519
 
520
#define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
521
#define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
522
 
523
/* these operate on indirect items, where you've got an array of ints
524
** at a possibly unaligned location.  These are a noop on ia32
525
**
526
** p is the array of __u32, i is the index into the array, v is the value
527
** to store there.
528
*/
529
#define get_block_num(p, i) le32_to_cpu(get_unaligned((p) + (i)))
530
#define put_block_num(p, i, v) put_unaligned(cpu_to_le32(v), (p) + (i))
531
 
532
//
533
// in old version uniqueness field shows key type
534
//
535
#define V1_SD_UNIQUENESS 0
536
#define V1_INDIRECT_UNIQUENESS 0xfffffffe
537
#define V1_DIRECT_UNIQUENESS 0xffffffff
538
#define V1_DIRENTRY_UNIQUENESS 500
539
#define V1_ANY_UNIQUENESS 555   // FIXME: comment is required
540
 
541
//
542
// here are conversion routines
543
//
544
static inline int uniqueness2type(__u32 uniqueness) CONSTF;
545
static inline int uniqueness2type(__u32 uniqueness)
546
{
547
        switch ((int)uniqueness) {
548
        case V1_SD_UNIQUENESS:
549
                return TYPE_STAT_DATA;
550
        case V1_INDIRECT_UNIQUENESS:
551
                return TYPE_INDIRECT;
552
        case V1_DIRECT_UNIQUENESS:
553
                return TYPE_DIRECT;
554
        case V1_DIRENTRY_UNIQUENESS:
555
                return TYPE_DIRENTRY;
556
        default:
557
                reiserfs_warning(NULL, "vs-500: unknown uniqueness %d",
558
                                 uniqueness);
559
        case V1_ANY_UNIQUENESS:
560
                return TYPE_ANY;
561
        }
562
}
563
 
564
static inline __u32 type2uniqueness(int type) CONSTF;
565
static inline __u32 type2uniqueness(int type)
566
{
567
        switch (type) {
568
        case TYPE_STAT_DATA:
569
                return V1_SD_UNIQUENESS;
570
        case TYPE_INDIRECT:
571
                return V1_INDIRECT_UNIQUENESS;
572
        case TYPE_DIRECT:
573
                return V1_DIRECT_UNIQUENESS;
574
        case TYPE_DIRENTRY:
575
                return V1_DIRENTRY_UNIQUENESS;
576
        default:
577
                reiserfs_warning(NULL, "vs-501: unknown type %d", type);
578
        case TYPE_ANY:
579
                return V1_ANY_UNIQUENESS;
580
        }
581
}
582
 
583
//
584
// key is pointer to on disk key which is stored in le, result is cpu,
585
// there is no way to get version of object from key, so, provide
586
// version to these defines
587
//
588
static inline loff_t le_key_k_offset(int version,
589
                                     const struct reiserfs_key *key)
590
{
591
        return (version == KEY_FORMAT_3_5) ?
592
            le32_to_cpu(key->u.k_offset_v1.k_offset) :
593
            offset_v2_k_offset(&(key->u.k_offset_v2));
594
}
595
 
596
static inline loff_t le_ih_k_offset(const struct item_head *ih)
597
{
598
        return le_key_k_offset(ih_version(ih), &(ih->ih_key));
599
}
600
 
601
static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key)
602
{
603
        return (version == KEY_FORMAT_3_5) ?
604
            uniqueness2type(le32_to_cpu(key->u.k_offset_v1.k_uniqueness)) :
605
            offset_v2_k_type(&(key->u.k_offset_v2));
606
}
607
 
608
static inline loff_t le_ih_k_type(const struct item_head *ih)
609
{
610
        return le_key_k_type(ih_version(ih), &(ih->ih_key));
611
}
612
 
613
static inline void set_le_key_k_offset(int version, struct reiserfs_key *key,
614
                                       loff_t offset)
615
{
616
        (version == KEY_FORMAT_3_5) ? (void)(key->u.k_offset_v1.k_offset = cpu_to_le32(offset)) :       /* jdm check */
617
            (void)(set_offset_v2_k_offset(&(key->u.k_offset_v2), offset));
618
}
619
 
620
static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset)
621
{
622
        set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
623
}
624
 
625
static inline void set_le_key_k_type(int version, struct reiserfs_key *key,
626
                                     int type)
627
{
628
        (version == KEY_FORMAT_3_5) ?
629
            (void)(key->u.k_offset_v1.k_uniqueness =
630
                   cpu_to_le32(type2uniqueness(type)))
631
            : (void)(set_offset_v2_k_type(&(key->u.k_offset_v2), type));
632
}
633
static inline void set_le_ih_k_type(struct item_head *ih, int type)
634
{
635
        set_le_key_k_type(ih_version(ih), &(ih->ih_key), type);
636
}
637
 
638
#define is_direntry_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRENTRY)
639
#define is_direct_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRECT)
640
#define is_indirect_le_key(version,key) (le_key_k_type (version, key) == TYPE_INDIRECT)
641
#define is_statdata_le_key(version,key) (le_key_k_type (version, key) == TYPE_STAT_DATA)
642
 
643
//
644
// item header has version.
645
//
646
#define is_direntry_le_ih(ih) is_direntry_le_key (ih_version (ih), &((ih)->ih_key))
647
#define is_direct_le_ih(ih) is_direct_le_key (ih_version (ih), &((ih)->ih_key))
648
#define is_indirect_le_ih(ih) is_indirect_le_key (ih_version(ih), &((ih)->ih_key))
649
#define is_statdata_le_ih(ih) is_statdata_le_key (ih_version (ih), &((ih)->ih_key))
650
 
651
//
652
// key is pointer to cpu key, result is cpu
653
//
654
static inline loff_t cpu_key_k_offset(const struct cpu_key *key)
655
{
656
        return key->on_disk_key.k_offset;
657
}
658
 
659
static inline loff_t cpu_key_k_type(const struct cpu_key *key)
660
{
661
        return key->on_disk_key.k_type;
662
}
663
 
664
static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset)
665
{
666
        key->on_disk_key.k_offset = offset;
667
}
668
 
669
static inline void set_cpu_key_k_type(struct cpu_key *key, int type)
670
{
671
        key->on_disk_key.k_type = type;
672
}
673
 
674
static inline void cpu_key_k_offset_dec(struct cpu_key *key)
675
{
676
        key->on_disk_key.k_offset--;
677
}
678
 
679
#define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
680
#define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
681
#define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
682
#define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
683
 
684
/* are these used ? */
685
#define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
686
#define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
687
#define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
688
#define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
689
 
690
#define I_K_KEY_IN_ITEM(p_s_ih, p_s_key, n_blocksize) \
691
    ( ! COMP_SHORT_KEYS(p_s_ih, p_s_key) && \
692
          I_OFF_BYTE_IN_ITEM(p_s_ih, k_offset (p_s_key), n_blocksize) )
693
 
694
/* maximal length of item */
695
#define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
696
#define MIN_ITEM_LEN 1
697
 
698
/* object identifier for root dir */
699
#define REISERFS_ROOT_OBJECTID 2
700
#define REISERFS_ROOT_PARENT_OBJECTID 1
701
extern struct reiserfs_key root_key;
702
 
703
/*
704
 * Picture represents a leaf of the S+tree
705
 *  ______________________________________________________
706
 * |      |  Array of     |                   |           |
707
 * |Block |  Object-Item  |      F r e e      |  Objects- |
708
 * | head |  Headers      |     S p a c e     |   Items   |
709
 * |______|_______________|___________________|___________|
710
 */
711
 
712
/* Header of a disk block.  More precisely, header of a formatted leaf
713
   or internal node, and not the header of an unformatted node. */
714
struct block_head {
715
        __le16 blk_level;       /* Level of a block in the tree. */
716
        __le16 blk_nr_item;     /* Number of keys/items in a block. */
717
        __le16 blk_free_space;  /* Block free space in bytes. */
718
        __le16 blk_reserved;
719
        /* dump this in v4/planA */
720
        struct reiserfs_key blk_right_delim_key;        /* kept only for compatibility */
721
};
722
 
723
#define BLKH_SIZE                     (sizeof(struct block_head))
724
#define blkh_level(p_blkh)            (le16_to_cpu((p_blkh)->blk_level))
725
#define blkh_nr_item(p_blkh)          (le16_to_cpu((p_blkh)->blk_nr_item))
726
#define blkh_free_space(p_blkh)       (le16_to_cpu((p_blkh)->blk_free_space))
727
#define blkh_reserved(p_blkh)         (le16_to_cpu((p_blkh)->blk_reserved))
728
#define set_blkh_level(p_blkh,val)    ((p_blkh)->blk_level = cpu_to_le16(val))
729
#define set_blkh_nr_item(p_blkh,val)  ((p_blkh)->blk_nr_item = cpu_to_le16(val))
730
#define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
731
#define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
732
#define blkh_right_delim_key(p_blkh)  ((p_blkh)->blk_right_delim_key)
733
#define set_blkh_right_delim_key(p_blkh,val)  ((p_blkh)->blk_right_delim_key = val)
734
 
735
/*
736
 * values for blk_level field of the struct block_head
737
 */
738
 
739
#define FREE_LEVEL 0            /* when node gets removed from the tree its
740
                                   blk_level is set to FREE_LEVEL. It is then
741
                                   used to see whether the node is still in the
742
                                   tree */
743
 
744
#define DISK_LEAF_NODE_LEVEL  1 /* Leaf node level. */
745
 
746
/* Given the buffer head of a formatted node, resolve to the block head of that node. */
747
#define B_BLK_HEAD(p_s_bh)            ((struct block_head *)((p_s_bh)->b_data))
748
/* Number of items that are in buffer. */
749
#define B_NR_ITEMS(p_s_bh)            (blkh_nr_item(B_BLK_HEAD(p_s_bh)))
750
#define B_LEVEL(p_s_bh)               (blkh_level(B_BLK_HEAD(p_s_bh)))
751
#define B_FREE_SPACE(p_s_bh)          (blkh_free_space(B_BLK_HEAD(p_s_bh)))
752
 
753
#define PUT_B_NR_ITEMS(p_s_bh,val)    do { set_blkh_nr_item(B_BLK_HEAD(p_s_bh),val); } while (0)
754
#define PUT_B_LEVEL(p_s_bh,val)       do { set_blkh_level(B_BLK_HEAD(p_s_bh),val); } while (0)
755
#define PUT_B_FREE_SPACE(p_s_bh,val)  do { set_blkh_free_space(B_BLK_HEAD(p_s_bh),val); } while (0)
756
 
757
/* Get right delimiting key. -- little endian */
758
#define B_PRIGHT_DELIM_KEY(p_s_bh)   (&(blk_right_delim_key(B_BLK_HEAD(p_s_bh))))
759
 
760
/* Does the buffer contain a disk leaf. */
761
#define B_IS_ITEMS_LEVEL(p_s_bh)     (B_LEVEL(p_s_bh) == DISK_LEAF_NODE_LEVEL)
762
 
763
/* Does the buffer contain a disk internal node */
764
#define B_IS_KEYS_LEVEL(p_s_bh)      (B_LEVEL(p_s_bh) > DISK_LEAF_NODE_LEVEL \
765
                                            && B_LEVEL(p_s_bh) <= MAX_HEIGHT)
766
 
767
/***************************************************************************/
768
/*                             STAT DATA                                   */
769
/***************************************************************************/
770
 
771
//
772
// old stat data is 32 bytes long. We are going to distinguish new one by
773
// different size
774
//
775
struct stat_data_v1 {
776
        __le16 sd_mode;         /* file type, permissions */
777
        __le16 sd_nlink;        /* number of hard links */
778
        __le16 sd_uid;          /* owner */
779
        __le16 sd_gid;          /* group */
780
        __le32 sd_size;         /* file size */
781
        __le32 sd_atime;        /* time of last access */
782
        __le32 sd_mtime;        /* time file was last modified  */
783
        __le32 sd_ctime;        /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
784
        union {
785
                __le32 sd_rdev;
786
                __le32 sd_blocks;       /* number of blocks file uses */
787
        } __attribute__ ((__packed__)) u;
788
        __le32 sd_first_direct_byte;    /* first byte of file which is stored
789
                                           in a direct item: except that if it
790
                                           equals 1 it is a symlink and if it
791
                                           equals ~(__u32)0 there is no
792
                                           direct item.  The existence of this
793
                                           field really grates on me. Let's
794
                                           replace it with a macro based on
795
                                           sd_size and our tail suppression
796
                                           policy.  Someday.  -Hans */
797
} __attribute__ ((__packed__));
798
 
799
#define SD_V1_SIZE              (sizeof(struct stat_data_v1))
800
#define stat_data_v1(ih)        (ih_version (ih) == KEY_FORMAT_3_5)
801
#define sd_v1_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
802
#define set_sd_v1_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
803
#define sd_v1_nlink(sdp)        (le16_to_cpu((sdp)->sd_nlink))
804
#define set_sd_v1_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le16(v))
805
#define sd_v1_uid(sdp)          (le16_to_cpu((sdp)->sd_uid))
806
#define set_sd_v1_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le16(v))
807
#define sd_v1_gid(sdp)          (le16_to_cpu((sdp)->sd_gid))
808
#define set_sd_v1_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le16(v))
809
#define sd_v1_size(sdp)         (le32_to_cpu((sdp)->sd_size))
810
#define set_sd_v1_size(sdp,v)   ((sdp)->sd_size = cpu_to_le32(v))
811
#define sd_v1_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
812
#define set_sd_v1_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
813
#define sd_v1_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
814
#define set_sd_v1_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
815
#define sd_v1_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
816
#define set_sd_v1_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
817
#define sd_v1_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
818
#define set_sd_v1_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
819
#define sd_v1_blocks(sdp)       (le32_to_cpu((sdp)->u.sd_blocks))
820
#define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
821
#define sd_v1_first_direct_byte(sdp) \
822
                                (le32_to_cpu((sdp)->sd_first_direct_byte))
823
#define set_sd_v1_first_direct_byte(sdp,v) \
824
                                ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
825
 
826
/* inode flags stored in sd_attrs (nee sd_reserved) */
827
 
828
/* we want common flags to have the same values as in ext2,
829
   so chattr(1) will work without problems */
830
#define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL
831
#define REISERFS_APPEND_FL    FS_APPEND_FL
832
#define REISERFS_SYNC_FL      FS_SYNC_FL
833
#define REISERFS_NOATIME_FL   FS_NOATIME_FL
834
#define REISERFS_NODUMP_FL    FS_NODUMP_FL
835
#define REISERFS_SECRM_FL     FS_SECRM_FL
836
#define REISERFS_UNRM_FL      FS_UNRM_FL
837
#define REISERFS_COMPR_FL     FS_COMPR_FL
838
#define REISERFS_NOTAIL_FL    FS_NOTAIL_FL
839
 
840
/* persistent flags that file inherits from the parent directory */
841
#define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \
842
                                REISERFS_SYNC_FL |      \
843
                                REISERFS_NOATIME_FL |   \
844
                                REISERFS_NODUMP_FL |    \
845
                                REISERFS_SECRM_FL |     \
846
                                REISERFS_COMPR_FL |     \
847
                                REISERFS_NOTAIL_FL )
848
 
849
/* Stat Data on disk (reiserfs version of UFS disk inode minus the
850
   address blocks) */
851
struct stat_data {
852
        __le16 sd_mode;         /* file type, permissions */
853
        __le16 sd_attrs;        /* persistent inode flags */
854
        __le32 sd_nlink;        /* number of hard links */
855
        __le64 sd_size;         /* file size */
856
        __le32 sd_uid;          /* owner */
857
        __le32 sd_gid;          /* group */
858
        __le32 sd_atime;        /* time of last access */
859
        __le32 sd_mtime;        /* time file was last modified  */
860
        __le32 sd_ctime;        /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
861
        __le32 sd_blocks;
862
        union {
863
                __le32 sd_rdev;
864
                __le32 sd_generation;
865
                //__le32 sd_first_direct_byte;
866
                /* first byte of file which is stored in a
867
                   direct item: except that if it equals 1
868
                   it is a symlink and if it equals
869
                   ~(__u32)0 there is no direct item.  The
870
                   existence of this field really grates
871
                   on me. Let's replace it with a macro
872
                   based on sd_size and our tail
873
                   suppression policy? */
874
        } __attribute__ ((__packed__)) u;
875
} __attribute__ ((__packed__));
876
//
877
// this is 44 bytes long
878
//
879
#define SD_SIZE (sizeof(struct stat_data))
880
#define SD_V2_SIZE              SD_SIZE
881
#define stat_data_v2(ih)        (ih_version (ih) == KEY_FORMAT_3_6)
882
#define sd_v2_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
883
#define set_sd_v2_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
884
/* sd_reserved */
885
/* set_sd_reserved */
886
#define sd_v2_nlink(sdp)        (le32_to_cpu((sdp)->sd_nlink))
887
#define set_sd_v2_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le32(v))
888
#define sd_v2_size(sdp)         (le64_to_cpu((sdp)->sd_size))
889
#define set_sd_v2_size(sdp,v)   ((sdp)->sd_size = cpu_to_le64(v))
890
#define sd_v2_uid(sdp)          (le32_to_cpu((sdp)->sd_uid))
891
#define set_sd_v2_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le32(v))
892
#define sd_v2_gid(sdp)          (le32_to_cpu((sdp)->sd_gid))
893
#define set_sd_v2_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le32(v))
894
#define sd_v2_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
895
#define set_sd_v2_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
896
#define sd_v2_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
897
#define set_sd_v2_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
898
#define sd_v2_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
899
#define set_sd_v2_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
900
#define sd_v2_blocks(sdp)       (le32_to_cpu((sdp)->sd_blocks))
901
#define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
902
#define sd_v2_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
903
#define set_sd_v2_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
904
#define sd_v2_generation(sdp)   (le32_to_cpu((sdp)->u.sd_generation))
905
#define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
906
#define sd_v2_attrs(sdp)         (le16_to_cpu((sdp)->sd_attrs))
907
#define set_sd_v2_attrs(sdp,v)   ((sdp)->sd_attrs = cpu_to_le16(v))
908
 
909
/***************************************************************************/
910
/*                      DIRECTORY STRUCTURE                                */
911
/***************************************************************************/
912
/*
913
   Picture represents the structure of directory items
914
   ________________________________________________
915
   |  Array of     |   |     |        |       |   |
916
   | directory     |N-1| N-2 | ....   |   1st |0th|
917
   | entry headers |   |     |        |       |   |
918
   |_______________|___|_____|________|_______|___|
919
                    <----   directory entries         ------>
920
 
921
 First directory item has k_offset component 1. We store "." and ".."
922
 in one item, always, we never split "." and ".." into differing
923
 items.  This makes, among other things, the code for removing
924
 directories simpler. */
925
#define SD_OFFSET  0
926
#define SD_UNIQUENESS 0
927
#define DOT_OFFSET 1
928
#define DOT_DOT_OFFSET 2
929
#define DIRENTRY_UNIQUENESS 500
930
 
931
/* */
932
#define FIRST_ITEM_OFFSET 1
933
 
934
/*
935
   Q: How to get key of object pointed to by entry from entry?
936
 
937
   A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key
938
      of object, entry points to */
939
 
940
/* NOT IMPLEMENTED:
941
   Directory will someday contain stat data of object */
942
 
943
struct reiserfs_de_head {
944
        __le32 deh_offset;      /* third component of the directory entry key */
945
        __le32 deh_dir_id;      /* objectid of the parent directory of the object, that is referenced
946
                                   by directory entry */
947
        __le32 deh_objectid;    /* objectid of the object, that is referenced by directory entry */
948
        __le16 deh_location;    /* offset of name in the whole item */
949
        __le16 deh_state;       /* whether 1) entry contains stat data (for future), and 2) whether
950
                                   entry is hidden (unlinked) */
951
} __attribute__ ((__packed__));
952
#define DEH_SIZE                  sizeof(struct reiserfs_de_head)
953
#define deh_offset(p_deh)         (le32_to_cpu((p_deh)->deh_offset))
954
#define deh_dir_id(p_deh)         (le32_to_cpu((p_deh)->deh_dir_id))
955
#define deh_objectid(p_deh)       (le32_to_cpu((p_deh)->deh_objectid))
956
#define deh_location(p_deh)       (le16_to_cpu((p_deh)->deh_location))
957
#define deh_state(p_deh)          (le16_to_cpu((p_deh)->deh_state))
958
 
959
#define put_deh_offset(p_deh,v)   ((p_deh)->deh_offset = cpu_to_le32((v)))
960
#define put_deh_dir_id(p_deh,v)   ((p_deh)->deh_dir_id = cpu_to_le32((v)))
961
#define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
962
#define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
963
#define put_deh_state(p_deh,v)    ((p_deh)->deh_state = cpu_to_le16((v)))
964
 
965
/* empty directory contains two entries "." and ".." and their headers */
966
#define EMPTY_DIR_SIZE \
967
(DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen ("..")))
968
 
969
/* old format directories have this size when empty */
970
#define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
971
 
972
#define DEH_Statdata 0          /* not used now */
973
#define DEH_Visible 2
974
 
975
/* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
976
#if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
977
#   define ADDR_UNALIGNED_BITS  (3)
978
#endif
979
 
980
/* These are only used to manipulate deh_state.
981
 * Because of this, we'll use the ext2_ bit routines,
982
 * since they are little endian */
983
#ifdef ADDR_UNALIGNED_BITS
984
 
985
#   define aligned_address(addr)           ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
986
#   define unaligned_offset(addr)          (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
987
 
988
#   define set_bit_unaligned(nr, addr)     ext2_set_bit((nr) + unaligned_offset(addr), aligned_address(addr))
989
#   define clear_bit_unaligned(nr, addr)   ext2_clear_bit((nr) + unaligned_offset(addr), aligned_address(addr))
990
#   define test_bit_unaligned(nr, addr)    ext2_test_bit((nr) + unaligned_offset(addr), aligned_address(addr))
991
 
992
#else
993
 
994
#   define set_bit_unaligned(nr, addr)     ext2_set_bit(nr, addr)
995
#   define clear_bit_unaligned(nr, addr)   ext2_clear_bit(nr, addr)
996
#   define test_bit_unaligned(nr, addr)    ext2_test_bit(nr, addr)
997
 
998
#endif
999
 
1000
#define mark_de_with_sd(deh)        set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1001
#define mark_de_without_sd(deh)     clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1002
#define mark_de_visible(deh)        set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1003
#define mark_de_hidden(deh)         clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1004
 
1005
#define de_with_sd(deh)             test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1006
#define de_visible(deh)             test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1007
#define de_hidden(deh)              !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1008
 
1009
extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid,
1010
                                   __le32 par_dirid, __le32 par_objid);
1011
extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid,
1012
                                __le32 par_dirid, __le32 par_objid);
1013
 
1014
/* array of the entry headers */
1015
 /* get item body */
1016
#define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) )
1017
#define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih)))
1018
 
1019
/* length of the directory entry in directory item. This define
1020
   calculates length of i-th directory entry using directory entry
1021
   locations from dir entry head. When it calculates length of 0-th
1022
   directory entry, it uses length of whole item in place of entry
1023
   location of the non-existent following entry in the calculation.
1024
   See picture above.*/
1025
/*
1026
#define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \
1027
((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh))))
1028
*/
1029
static inline int entry_length(const struct buffer_head *bh,
1030
                               const struct item_head *ih, int pos_in_item)
1031
{
1032
        struct reiserfs_de_head *deh;
1033
 
1034
        deh = B_I_DEH(bh, ih) + pos_in_item;
1035
        if (pos_in_item)
1036
                return deh_location(deh - 1) - deh_location(deh);
1037
 
1038
        return ih_item_len(ih) - deh_location(deh);
1039
}
1040
 
1041
/* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */
1042
#define I_ENTRY_COUNT(ih) (ih_entry_count((ih)))
1043
 
1044
/* name by bh, ih and entry_num */
1045
#define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num))))
1046
 
1047
// two entries per block (at least)
1048
#define REISERFS_MAX_NAME(block_size) 255
1049
 
1050
/* this structure is used for operations on directory entries. It is
1051
   not a disk structure. */
1052
/* When reiserfs_find_entry or search_by_entry_key find directory
1053
   entry, they return filled reiserfs_dir_entry structure */
1054
struct reiserfs_dir_entry {
1055
        struct buffer_head *de_bh;
1056
        int de_item_num;
1057
        struct item_head *de_ih;
1058
        int de_entry_num;
1059
        struct reiserfs_de_head *de_deh;
1060
        int de_entrylen;
1061
        int de_namelen;
1062
        char *de_name;
1063
        unsigned long *de_gen_number_bit_string;
1064
 
1065
        __u32 de_dir_id;
1066
        __u32 de_objectid;
1067
 
1068
        struct cpu_key de_entry_key;
1069
};
1070
 
1071
/* these defines are useful when a particular member of a reiserfs_dir_entry is needed */
1072
 
1073
/* pointer to file name, stored in entry */
1074
#define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh))
1075
 
1076
/* length of name */
1077
#define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
1078
(I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
1079
 
1080
/* hash value occupies bits from 7 up to 30 */
1081
#define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
1082
/* generation number occupies 7 bits starting from 0 up to 6 */
1083
#define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
1084
#define MAX_GENERATION_NUMBER  127
1085
 
1086
#define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
1087
 
1088
/*
1089
 * Picture represents an internal node of the reiserfs tree
1090
 *  ______________________________________________________
1091
 * |      |  Array of     |  Array of         |  Free     |
1092
 * |block |    keys       |  pointers         | space     |
1093
 * | head |      N        |      N+1          |           |
1094
 * |______|_______________|___________________|___________|
1095
 */
1096
 
1097
/***************************************************************************/
1098
/*                      DISK CHILD                                         */
1099
/***************************************************************************/
1100
/* Disk child pointer: The pointer from an internal node of the tree
1101
   to a node that is on disk. */
1102
struct disk_child {
1103
        __le32 dc_block_number; /* Disk child's block number. */
1104
        __le16 dc_size;         /* Disk child's used space.   */
1105
        __le16 dc_reserved;
1106
};
1107
 
1108
#define DC_SIZE (sizeof(struct disk_child))
1109
#define dc_block_number(dc_p)   (le32_to_cpu((dc_p)->dc_block_number))
1110
#define dc_size(dc_p)           (le16_to_cpu((dc_p)->dc_size))
1111
#define put_dc_block_number(dc_p, val)   do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
1112
#define put_dc_size(dc_p, val)   do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
1113
 
1114
/* Get disk child by buffer header and position in the tree node. */
1115
#define B_N_CHILD(p_s_bh,n_pos)  ((struct disk_child *)\
1116
((p_s_bh)->b_data+BLKH_SIZE+B_NR_ITEMS(p_s_bh)*KEY_SIZE+DC_SIZE*(n_pos)))
1117
 
1118
/* Get disk child number by buffer header and position in the tree node. */
1119
#define B_N_CHILD_NUM(p_s_bh,n_pos) (dc_block_number(B_N_CHILD(p_s_bh,n_pos)))
1120
#define PUT_B_N_CHILD_NUM(p_s_bh,n_pos, val) (put_dc_block_number(B_N_CHILD(p_s_bh,n_pos), val ))
1121
 
1122
 /* maximal value of field child_size in structure disk_child */
1123
 /* child size is the combined size of all items and their headers */
1124
#define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
1125
 
1126
/* amount of used space in buffer (not including block head) */
1127
#define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
1128
 
1129
/* max and min number of keys in internal node */
1130
#define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
1131
#define MIN_NR_KEY(bh)    (MAX_NR_KEY(bh)/2)
1132
 
1133
/***************************************************************************/
1134
/*                      PATH STRUCTURES AND DEFINES                        */
1135
/***************************************************************************/
1136
 
1137
/* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the
1138
   key.  It uses reiserfs_bread to try to find buffers in the cache given their block number.  If it
1139
   does not find them in the cache it reads them from disk.  For each node search_by_key finds using
1140
   reiserfs_bread it then uses bin_search to look through that node.  bin_search will find the
1141
   position of the block_number of the next node if it is looking through an internal node.  If it
1142
   is looking through a leaf node bin_search will find the position of the item which has key either
1143
   equal to given key, or which is the maximal key less than the given key. */
1144
 
1145
struct path_element {
1146
        struct buffer_head *pe_buffer;  /* Pointer to the buffer at the path in the tree. */
1147
        int pe_position;        /* Position in the tree node which is placed in the */
1148
        /* buffer above.                                  */
1149
};
1150
 
1151
#define MAX_HEIGHT 5            /* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */
1152
#define EXTENDED_MAX_HEIGHT         7   /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
1153
#define FIRST_PATH_ELEMENT_OFFSET   2   /* Must be equal to at least 2. */
1154
 
1155
#define ILLEGAL_PATH_ELEMENT_OFFSET 1   /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
1156
#define MAX_FEB_SIZE 6          /* this MUST be MAX_HEIGHT + 1. See about FEB below */
1157
 
1158
/* We need to keep track of who the ancestors of nodes are.  When we
1159
   perform a search we record which nodes were visited while
1160
   descending the tree looking for the node we searched for. This list
1161
   of nodes is called the path.  This information is used while
1162
   performing balancing.  Note that this path information may become
1163
   invalid, and this means we must check it when using it to see if it
1164
   is still valid. You'll need to read search_by_key and the comments
1165
   in it, especially about decrement_counters_in_path(), to understand
1166
   this structure.
1167
 
1168
Paths make the code so much harder to work with and debug.... An
1169
enormous number of bugs are due to them, and trying to write or modify
1170
code that uses them just makes my head hurt.  They are based on an
1171
excessive effort to avoid disturbing the precious VFS code.:-( The
1172
gods only know how we are going to SMP the code that uses them.
1173
znodes are the way! */
1174
 
1175
#define PATH_READA      0x1     /* do read ahead */
1176
#define PATH_READA_BACK 0x2     /* read backwards */
1177
 
1178
struct treepath {
1179
        int path_length;        /* Length of the array above.   */
1180
        int reada;
1181
        struct path_element path_elements[EXTENDED_MAX_HEIGHT]; /* Array of the path elements.  */
1182
        int pos_in_item;
1183
};
1184
 
1185
#define pos_in_item(path) ((path)->pos_in_item)
1186
 
1187
#define INITIALIZE_PATH(var) \
1188
struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
1189
 
1190
/* Get path element by path and path position. */
1191
#define PATH_OFFSET_PELEMENT(p_s_path,n_offset)  ((p_s_path)->path_elements +(n_offset))
1192
 
1193
/* Get buffer header at the path by path and path position. */
1194
#define PATH_OFFSET_PBUFFER(p_s_path,n_offset)   (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_buffer)
1195
 
1196
/* Get position in the element at the path by path and path position. */
1197
#define PATH_OFFSET_POSITION(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_position)
1198
 
1199
#define PATH_PLAST_BUFFER(p_s_path) (PATH_OFFSET_PBUFFER((p_s_path), (p_s_path)->path_length))
1200
                                /* you know, to the person who didn't
1201
                                   write this the macro name does not
1202
                                   at first suggest what it does.
1203
                                   Maybe POSITION_FROM_PATH_END? Or
1204
                                   maybe we should just focus on
1205
                                   dumping paths... -Hans */
1206
#define PATH_LAST_POSITION(p_s_path) (PATH_OFFSET_POSITION((p_s_path), (p_s_path)->path_length))
1207
 
1208
#define PATH_PITEM_HEAD(p_s_path)    B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_path),PATH_LAST_POSITION(p_s_path))
1209
 
1210
/* in do_balance leaf has h == 0 in contrast with path structure,
1211
   where root has level == 0. That is why we need these defines */
1212
#define PATH_H_PBUFFER(p_s_path, h) PATH_OFFSET_PBUFFER (p_s_path, p_s_path->path_length - (h)) /* tb->S[h] */
1213
#define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1)  /* tb->F[h] or tb->S[0]->b_parent */
1214
#define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h))
1215
#define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1)       /* tb->S[h]->b_item_order */
1216
 
1217
#define PATH_H_PATH_OFFSET(p_s_path, n_h) ((p_s_path)->path_length - (n_h))
1218
 
1219
#define get_last_bh(path) PATH_PLAST_BUFFER(path)
1220
#define get_ih(path) PATH_PITEM_HEAD(path)
1221
#define get_item_pos(path) PATH_LAST_POSITION(path)
1222
#define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path)))
1223
#define item_moved(ih,path) comp_items(ih, path)
1224
#define path_changed(ih,path) comp_items (ih, path)
1225
 
1226
/***************************************************************************/
1227
/*                       MISC                                              */
1228
/***************************************************************************/
1229
 
1230
/* Size of pointer to the unformatted node. */
1231
#define UNFM_P_SIZE (sizeof(unp_t))
1232
#define UNFM_P_SHIFT 2
1233
 
1234
// in in-core inode key is stored on le form
1235
#define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
1236
 
1237
#define MAX_UL_INT 0xffffffff
1238
#define MAX_INT    0x7ffffff
1239
#define MAX_US_INT 0xffff
1240
 
1241
// reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
1242
#define U32_MAX (~(__u32)0)
1243
 
1244
static inline loff_t max_reiserfs_offset(struct inode *inode)
1245
{
1246
        if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
1247
                return (loff_t) U32_MAX;
1248
 
1249
        return (loff_t) ((~(__u64) 0) >> 4);
1250
}
1251
 
1252
/*#define MAX_KEY_UNIQUENESS    MAX_UL_INT*/
1253
#define MAX_KEY_OBJECTID        MAX_UL_INT
1254
 
1255
#define MAX_B_NUM  MAX_UL_INT
1256
#define MAX_FC_NUM MAX_US_INT
1257
 
1258
/* the purpose is to detect overflow of an unsigned short */
1259
#define REISERFS_LINK_MAX (MAX_US_INT - 1000)
1260
 
1261
/* The following defines are used in reiserfs_insert_item and reiserfs_append_item  */
1262
#define REISERFS_KERNEL_MEM             0        /* reiserfs kernel memory mode  */
1263
#define REISERFS_USER_MEM               1       /* reiserfs user memory mode            */
1264
 
1265
#define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
1266
#define get_generation(s) atomic_read (&fs_generation(s))
1267
#define FILESYSTEM_CHANGED_TB(tb)  (get_generation((tb)->tb_sb) != (tb)->fs_gen)
1268
#define __fs_changed(gen,s) (gen != get_generation (s))
1269
#define fs_changed(gen,s) ({cond_resched(); __fs_changed(gen, s);})
1270
 
1271
/***************************************************************************/
1272
/*                  FIXATE NODES                                           */
1273
/***************************************************************************/
1274
 
1275
#define VI_TYPE_LEFT_MERGEABLE 1
1276
#define VI_TYPE_RIGHT_MERGEABLE 2
1277
 
1278
/* To make any changes in the tree we always first find node, that
1279
   contains item to be changed/deleted or place to insert a new
1280
   item. We call this node S. To do balancing we need to decide what
1281
   we will shift to left/right neighbor, or to a new node, where new
1282
   item will be etc. To make this analysis simpler we build virtual
1283
   node. Virtual node is an array of items, that will replace items of
1284
   node S. (For instance if we are going to delete an item, virtual
1285
   node does not contain it). Virtual node keeps information about
1286
   item sizes and types, mergeability of first and last items, sizes
1287
   of all entries in directory item. We use this array of items when
1288
   calculating what we can shift to neighbors and how many nodes we
1289
   have to have if we do not any shiftings, if we shift to left/right
1290
   neighbor or to both. */
1291
struct virtual_item {
1292
        int vi_index;           // index in the array of item operations
1293
        unsigned short vi_type; // left/right mergeability
1294
        unsigned short vi_item_len;     /* length of item that it will have after balancing */
1295
        struct item_head *vi_ih;
1296
        const char *vi_item;    // body of item (old or new)
1297
        const void *vi_new_data;        // 0 always but paste mode
1298
        void *vi_uarea;         // item specific area
1299
};
1300
 
1301
struct virtual_node {
1302
        char *vn_free_ptr;      /* this is a pointer to the free space in the buffer */
1303
        unsigned short vn_nr_item;      /* number of items in virtual node */
1304
        short vn_size;          /* size of node , that node would have if it has unlimited size and no balancing is performed */
1305
        short vn_mode;          /* mode of balancing (paste, insert, delete, cut) */
1306
        short vn_affected_item_num;
1307
        short vn_pos_in_item;
1308
        struct item_head *vn_ins_ih;    /* item header of inserted item, 0 for other modes */
1309
        const void *vn_data;
1310
        struct virtual_item *vn_vi;     /* array of items (including a new one, excluding item to be deleted) */
1311
};
1312
 
1313
/* used by directory items when creating virtual nodes */
1314
struct direntry_uarea {
1315
        int flags;
1316
        __u16 entry_count;
1317
        __u16 entry_sizes[1];
1318
} __attribute__ ((__packed__));
1319
 
1320
/***************************************************************************/
1321
/*                  TREE BALANCE                                           */
1322
/***************************************************************************/
1323
 
1324
/* This temporary structure is used in tree balance algorithms, and
1325
   constructed as we go to the extent that its various parts are
1326
   needed.  It contains arrays of nodes that can potentially be
1327
   involved in the balancing of node S, and parameters that define how
1328
   each of the nodes must be balanced.  Note that in these algorithms
1329
   for balancing the worst case is to need to balance the current node
1330
   S and the left and right neighbors and all of their parents plus
1331
   create a new node.  We implement S1 balancing for the leaf nodes
1332
   and S0 balancing for the internal nodes (S1 and S0 are defined in
1333
   our papers.)*/
1334
 
1335
#define MAX_FREE_BLOCK 7        /* size of the array of buffers to free at end of do_balance */
1336
 
1337
/* maximum number of FEB blocknrs on a single level */
1338
#define MAX_AMOUNT_NEEDED 2
1339
 
1340
/* someday somebody will prefix every field in this struct with tb_ */
1341
struct tree_balance {
1342
        int tb_mode;
1343
        int need_balance_dirty;
1344
        struct super_block *tb_sb;
1345
        struct reiserfs_transaction_handle *transaction_handle;
1346
        struct treepath *tb_path;
1347
        struct buffer_head *L[MAX_HEIGHT];      /* array of left neighbors of nodes in the path */
1348
        struct buffer_head *R[MAX_HEIGHT];      /* array of right neighbors of nodes in the path */
1349
        struct buffer_head *FL[MAX_HEIGHT];     /* array of fathers of the left  neighbors      */
1350
        struct buffer_head *FR[MAX_HEIGHT];     /* array of fathers of the right neighbors      */
1351
        struct buffer_head *CFL[MAX_HEIGHT];    /* array of common parents of center node and its left neighbor  */
1352
        struct buffer_head *CFR[MAX_HEIGHT];    /* array of common parents of center node and its right neighbor */
1353
 
1354
        struct buffer_head *FEB[MAX_FEB_SIZE];  /* array of empty buffers. Number of buffers in array equals
1355
                                                   cur_blknum. */
1356
        struct buffer_head *used[MAX_FEB_SIZE];
1357
        struct buffer_head *thrown[MAX_FEB_SIZE];
1358
        int lnum[MAX_HEIGHT];   /* array of number of items which must be
1359
                                   shifted to the left in order to balance the
1360
                                   current node; for leaves includes item that
1361
                                   will be partially shifted; for internal
1362
                                   nodes, it is the number of child pointers
1363
                                   rather than items. It includes the new item
1364
                                   being created. The code sometimes subtracts
1365
                                   one to get the number of wholly shifted
1366
                                   items for other purposes. */
1367
        int rnum[MAX_HEIGHT];   /* substitute right for left in comment above */
1368
        int lkey[MAX_HEIGHT];   /* array indexed by height h mapping the key delimiting L[h] and
1369
                                   S[h] to its item number within the node CFL[h] */
1370
        int rkey[MAX_HEIGHT];   /* substitute r for l in comment above */
1371
        int insert_size[MAX_HEIGHT];    /* the number of bytes by we are trying to add or remove from
1372
                                           S[h]. A negative value means removing.  */
1373
        int blknum[MAX_HEIGHT]; /* number of nodes that will replace node S[h] after
1374
                                   balancing on the level h of the tree.  If 0 then S is
1375
                                   being deleted, if 1 then S is remaining and no new nodes
1376
                                   are being created, if 2 or 3 then 1 or 2 new nodes is
1377
                                   being created */
1378
 
1379
        /* fields that are used only for balancing leaves of the tree */
1380
        int cur_blknum;         /* number of empty blocks having been already allocated                 */
1381
        int s0num;              /* number of items that fall into left most  node when S[0] splits     */
1382
        int s1num;              /* number of items that fall into first  new node when S[0] splits     */
1383
        int s2num;              /* number of items that fall into second new node when S[0] splits     */
1384
        int lbytes;             /* number of bytes which can flow to the left neighbor from the        left    */
1385
        /* most liquid item that cannot be shifted from S[0] entirely         */
1386
        /* if -1 then nothing will be partially shifted */
1387
        int rbytes;             /* number of bytes which will flow to the right neighbor from the right        */
1388
        /* most liquid item that cannot be shifted from S[0] entirely         */
1389
        /* if -1 then nothing will be partially shifted                           */
1390
        int s1bytes;            /* number of bytes which flow to the first  new node when S[0] splits   */
1391
        /* note: if S[0] splits into 3 nodes, then items do not need to be cut  */
1392
        int s2bytes;
1393
        struct buffer_head *buf_to_free[MAX_FREE_BLOCK];        /* buffers which are to be freed after do_balance finishes by unfix_nodes */
1394
        char *vn_buf;           /* kmalloced memory. Used to create
1395
                                   virtual node and keep map of
1396
                                   dirtied bitmap blocks */
1397
        int vn_buf_size;        /* size of the vn_buf */
1398
        struct virtual_node *tb_vn;     /* VN starts after bitmap of bitmap blocks */
1399
 
1400
        int fs_gen;             /* saved value of `reiserfs_generation' counter
1401
                                   see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */
1402
#ifdef DISPLACE_NEW_PACKING_LOCALITIES
1403
        struct in_core_key key; /* key pointer, to pass to block allocator or
1404
                                   another low-level subsystem */
1405
#endif
1406
};
1407
 
1408
/* These are modes of balancing */
1409
 
1410
/* When inserting an item. */
1411
#define M_INSERT        'i'
1412
/* When inserting into (directories only) or appending onto an already
1413
   existant item. */
1414
#define M_PASTE         'p'
1415
/* When deleting an item. */
1416
#define M_DELETE        'd'
1417
/* When truncating an item or removing an entry from a (directory) item. */
1418
#define M_CUT           'c'
1419
 
1420
/* used when balancing on leaf level skipped (in reiserfsck) */
1421
#define M_INTERNAL      'n'
1422
 
1423
/* When further balancing is not needed, then do_balance does not need
1424
   to be called. */
1425
#define M_SKIP_BALANCING                's'
1426
#define M_CONVERT       'v'
1427
 
1428
/* modes of leaf_move_items */
1429
#define LEAF_FROM_S_TO_L 0
1430
#define LEAF_FROM_S_TO_R 1
1431
#define LEAF_FROM_R_TO_L 2
1432
#define LEAF_FROM_L_TO_R 3
1433
#define LEAF_FROM_S_TO_SNEW 4
1434
 
1435
#define FIRST_TO_LAST 0
1436
#define LAST_TO_FIRST 1
1437
 
1438
/* used in do_balance for passing parent of node information that has
1439
   been gotten from tb struct */
1440
struct buffer_info {
1441
        struct tree_balance *tb;
1442
        struct buffer_head *bi_bh;
1443
        struct buffer_head *bi_parent;
1444
        int bi_position;
1445
};
1446
 
1447
/* there are 4 types of items: stat data, directory item, indirect, direct.
1448
+-------------------+------------+--------------+------------+
1449
|                   |  k_offset  | k_uniqueness | mergeable? |
1450
+-------------------+------------+--------------+------------+
1451
|     stat data     |   0        |      0       |   no       |
1452
+-------------------+------------+--------------+------------+
1453
| 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS|   no       |
1454
| non 1st directory | hash value |              |   yes      |
1455
|     item          |            |              |            |
1456
+-------------------+------------+--------------+------------+
1457
| indirect item     | offset + 1 |TYPE_INDIRECT |   if this is not the first indirect item of the object
1458
+-------------------+------------+--------------+------------+
1459
| direct item       | offset + 1 |TYPE_DIRECT   | if not this is not the first direct item of the object
1460
+-------------------+------------+--------------+------------+
1461
*/
1462
 
1463
struct item_operations {
1464
        int (*bytes_number) (struct item_head * ih, int block_size);
1465
        void (*decrement_key) (struct cpu_key *);
1466
        int (*is_left_mergeable) (struct reiserfs_key * ih,
1467
                                  unsigned long bsize);
1468
        void (*print_item) (struct item_head *, char *item);
1469
        void (*check_item) (struct item_head *, char *item);
1470
 
1471
        int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
1472
                          int is_affected, int insert_size);
1473
        int (*check_left) (struct virtual_item * vi, int free,
1474
                           int start_skip, int end_skip);
1475
        int (*check_right) (struct virtual_item * vi, int free);
1476
        int (*part_size) (struct virtual_item * vi, int from, int to);
1477
        int (*unit_num) (struct virtual_item * vi);
1478
        void (*print_vi) (struct virtual_item * vi);
1479
};
1480
 
1481
extern struct item_operations *item_ops[TYPE_ANY + 1];
1482
 
1483
#define op_bytes_number(ih,bsize)                    item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
1484
#define op_is_left_mergeable(key,bsize)              item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
1485
#define op_print_item(ih,item)                       item_ops[le_ih_k_type (ih)]->print_item (ih, item)
1486
#define op_check_item(ih,item)                       item_ops[le_ih_k_type (ih)]->check_item (ih, item)
1487
#define op_create_vi(vn,vi,is_affected,insert_size)  item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
1488
#define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
1489
#define op_check_right(vi,free)                      item_ops[(vi)->vi_index]->check_right (vi, free)
1490
#define op_part_size(vi,from,to)                     item_ops[(vi)->vi_index]->part_size (vi, from, to)
1491
#define op_unit_num(vi)                              item_ops[(vi)->vi_index]->unit_num (vi)
1492
#define op_print_vi(vi)                              item_ops[(vi)->vi_index]->print_vi (vi)
1493
 
1494
#define COMP_SHORT_KEYS comp_short_keys
1495
 
1496
/* number of blocks pointed to by the indirect item */
1497
#define I_UNFM_NUM(p_s_ih)      ( ih_item_len(p_s_ih) / UNFM_P_SIZE )
1498
 
1499
/* the used space within the unformatted node corresponding to pos within the item pointed to by ih */
1500
#define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
1501
 
1502
/* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */
1503
 
1504
/* get the item header */
1505
#define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1506
 
1507
/* get key */
1508
#define B_N_PDELIM_KEY(bh,item_num) ( (struct reiserfs_key * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1509
 
1510
/* get the key */
1511
#define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) )
1512
 
1513
/* get item body */
1514
#define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num))))
1515
 
1516
/* get the stat data by the buffer header and the item order */
1517
#define B_N_STAT_DATA(bh,nr) \
1518
( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) )
1519
 
1520
    /* following defines use reiserfs buffer header and item header */
1521
 
1522
/* get stat-data */
1523
#define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
1524
 
1525
// this is 3976 for size==4096
1526
#define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
1527
 
1528
/* indirect items consist of entries which contain blocknrs, pos
1529
   indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
1530
   blocknr contained by the entry pos points to */
1531
#define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)))
1532
#define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0)
1533
 
1534
struct reiserfs_iget_args {
1535
        __u32 objectid;
1536
        __u32 dirid;
1537
};
1538
 
1539
/***************************************************************************/
1540
/*                    FUNCTION DECLARATIONS                                */
1541
/***************************************************************************/
1542
 
1543
/*#ifdef __KERNEL__*/
1544
#define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
1545
 
1546
#define journal_trans_half(blocksize) \
1547
        ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))
1548
 
1549
/* journal.c see journal.c for all the comments here */
1550
 
1551
/* first block written in a commit.  */
1552
struct reiserfs_journal_desc {
1553
        __le32 j_trans_id;      /* id of commit */
1554
        __le32 j_len;           /* length of commit. len +1 is the commit block */
1555
        __le32 j_mount_id;      /* mount id of this trans */
1556
        __le32 j_realblock[1];  /* real locations for each block */
1557
};
1558
 
1559
#define get_desc_trans_id(d)   le32_to_cpu((d)->j_trans_id)
1560
#define get_desc_trans_len(d)  le32_to_cpu((d)->j_len)
1561
#define get_desc_mount_id(d)   le32_to_cpu((d)->j_mount_id)
1562
 
1563
#define set_desc_trans_id(d,val)       do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
1564
#define set_desc_trans_len(d,val)      do { (d)->j_len = cpu_to_le32 (val); } while (0)
1565
#define set_desc_mount_id(d,val)       do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
1566
 
1567
/* last block written in a commit */
1568
struct reiserfs_journal_commit {
1569
        __le32 j_trans_id;      /* must match j_trans_id from the desc block */
1570
        __le32 j_len;           /* ditto */
1571
        __le32 j_realblock[1];  /* real locations for each block */
1572
};
1573
 
1574
#define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
1575
#define get_commit_trans_len(c)        le32_to_cpu((c)->j_len)
1576
#define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
1577
 
1578
#define set_commit_trans_id(c,val)     do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
1579
#define set_commit_trans_len(c,val)    do { (c)->j_len = cpu_to_le32 (val); } while (0)
1580
 
1581
/* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the
1582
** last fully flushed transaction.  fully flushed means all the log blocks and all the real blocks are on disk,
1583
** and this transaction does not need to be replayed.
1584
*/
1585
struct reiserfs_journal_header {
1586
        __le32 j_last_flush_trans_id;   /* id of last fully flushed transaction */
1587
        __le32 j_first_unflushed_offset;        /* offset in the log of where to start replay after a crash */
1588
        __le32 j_mount_id;
1589
        /* 12 */ struct journal_params jh_journal;
1590
};
1591
 
1592
/* biggest tunable defines are right here */
1593
#define JOURNAL_BLOCK_COUNT 8192        /* number of blocks in the journal */
1594
#define JOURNAL_TRANS_MAX_DEFAULT 1024  /* biggest possible single transaction, don't change for now (8/3/99) */
1595
#define JOURNAL_TRANS_MIN_DEFAULT 256
1596
#define JOURNAL_MAX_BATCH_DEFAULT   900 /* max blocks to batch into one transaction, don't make this any bigger than 900 */
1597
#define JOURNAL_MIN_RATIO 2
1598
#define JOURNAL_MAX_COMMIT_AGE 30
1599
#define JOURNAL_MAX_TRANS_AGE 30
1600
#define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
1601
#ifdef CONFIG_QUOTA
1602
/* We need to update data and inode (atime) */
1603
#define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? 2 : 0)
1604
/* 1 balancing, 1 bitmap, 1 data per write + stat data update */
1605
#define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? \
1606
(DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0)
1607
/* same as with INIT */
1608
#define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? \
1609
(DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0)
1610
#else
1611
#define REISERFS_QUOTA_TRANS_BLOCKS(s) 0
1612
#define REISERFS_QUOTA_INIT_BLOCKS(s) 0
1613
#define REISERFS_QUOTA_DEL_BLOCKS(s) 0
1614
#endif
1615
 
1616
/* both of these can be as low as 1, or as high as you want.  The min is the
1617
** number of 4k bitmap nodes preallocated on mount. New nodes are allocated
1618
** as needed, and released when transactions are committed.  On release, if
1619
** the current number of nodes is > max, the node is freed, otherwise,
1620
** it is put on a free list for faster use later.
1621
*/
1622
#define REISERFS_MIN_BITMAP_NODES 10
1623
#define REISERFS_MAX_BITMAP_NODES 100
1624
 
1625
#define JBH_HASH_SHIFT 13       /* these are based on journal hash size of 8192 */
1626
#define JBH_HASH_MASK 8191
1627
 
1628
#define _jhashfn(sb,block)      \
1629
        (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
1630
         (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
1631
#define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
1632
 
1633
// We need these to make journal.c code more readable
1634
#define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1635
#define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1636
#define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1637
 
1638
enum reiserfs_bh_state_bits {
1639
        BH_JDirty = BH_PrivateStart,    /* buffer is in current transaction */
1640
        BH_JDirty_wait,
1641
        BH_JNew,                /* disk block was taken off free list before
1642
                                 * being in a finished transaction, or
1643
                                 * written to disk. Can be reused immed. */
1644
        BH_JPrepared,
1645
        BH_JRestore_dirty,
1646
        BH_JTest,               // debugging only will go away
1647
};
1648
 
1649
BUFFER_FNS(JDirty, journaled);
1650
TAS_BUFFER_FNS(JDirty, journaled);
1651
BUFFER_FNS(JDirty_wait, journal_dirty);
1652
TAS_BUFFER_FNS(JDirty_wait, journal_dirty);
1653
BUFFER_FNS(JNew, journal_new);
1654
TAS_BUFFER_FNS(JNew, journal_new);
1655
BUFFER_FNS(JPrepared, journal_prepared);
1656
TAS_BUFFER_FNS(JPrepared, journal_prepared);
1657
BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
1658
TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
1659
BUFFER_FNS(JTest, journal_test);
1660
TAS_BUFFER_FNS(JTest, journal_test);
1661
 
1662
/*
1663
** transaction handle which is passed around for all journal calls
1664
*/
1665
struct reiserfs_transaction_handle {
1666
        struct super_block *t_super;    /* super for this FS when journal_begin was
1667
                                           called. saves calls to reiserfs_get_super
1668
                                           also used by nested transactions to make
1669
                                           sure they are nesting on the right FS
1670
                                           _must_ be first in the handle
1671
                                         */
1672
        int t_refcount;
1673
        int t_blocks_logged;    /* number of blocks this writer has logged */
1674
        int t_blocks_allocated; /* number of blocks this writer allocated */
1675
        unsigned long t_trans_id;       /* sanity check, equals the current trans id */
1676
        void *t_handle_save;    /* save existing current->journal_info */
1677
        unsigned displace_new_blocks:1; /* if new block allocation occurres, that block
1678
                                           should be displaced from others */
1679
        struct list_head t_list;
1680
};
1681
 
1682
/* used to keep track of ordered and tail writes, attached to the buffer
1683
 * head through b_journal_head.
1684
 */
1685
struct reiserfs_jh {
1686
        struct reiserfs_journal_list *jl;
1687
        struct buffer_head *bh;
1688
        struct list_head list;
1689
};
1690
 
1691
void reiserfs_free_jh(struct buffer_head *bh);
1692
int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
1693
int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
1694
int journal_mark_dirty(struct reiserfs_transaction_handle *,
1695
                       struct super_block *, struct buffer_head *bh);
1696
 
1697
static inline int reiserfs_file_data_log(struct inode *inode)
1698
{
1699
        if (reiserfs_data_log(inode->i_sb) ||
1700
            (REISERFS_I(inode)->i_flags & i_data_log))
1701
                return 1;
1702
        return 0;
1703
}
1704
 
1705
static inline int reiserfs_transaction_running(struct super_block *s)
1706
{
1707
        struct reiserfs_transaction_handle *th = current->journal_info;
1708
        if (th && th->t_super == s)
1709
                return 1;
1710
        if (th && th->t_super == NULL)
1711
                BUG();
1712
        return 0;
1713
}
1714
 
1715
static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th)
1716
{
1717
        return th->t_blocks_allocated - th->t_blocks_logged;
1718
}
1719
 
1720
struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct
1721
                                                                    super_block
1722
                                                                    *,
1723
                                                                    int count);
1724
int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
1725
int reiserfs_commit_page(struct inode *inode, struct page *page,
1726
                         unsigned from, unsigned to);
1727
int reiserfs_flush_old_commits(struct super_block *);
1728
int reiserfs_commit_for_inode(struct inode *);
1729
int reiserfs_inode_needs_commit(struct inode *);
1730
void reiserfs_update_inode_transaction(struct inode *);
1731
void reiserfs_wait_on_write_block(struct super_block *s);
1732
void reiserfs_block_writes(struct reiserfs_transaction_handle *th);
1733
void reiserfs_allow_writes(struct super_block *s);
1734
void reiserfs_check_lock_depth(struct super_block *s, char *caller);
1735
int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh,
1736
                                 int wait);
1737
void reiserfs_restore_prepared_buffer(struct super_block *,
1738
                                      struct buffer_head *bh);
1739
int journal_init(struct super_block *, const char *j_dev_name, int old_format,
1740
                 unsigned int);
1741
int journal_release(struct reiserfs_transaction_handle *, struct super_block *);
1742
int journal_release_error(struct reiserfs_transaction_handle *,
1743
                          struct super_block *);
1744
int journal_end(struct reiserfs_transaction_handle *, struct super_block *,
1745
                unsigned long);
1746
int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *,
1747
                     unsigned long);
1748
int journal_mark_freed(struct reiserfs_transaction_handle *,
1749
                       struct super_block *, b_blocknr_t blocknr);
1750
int journal_transaction_should_end(struct reiserfs_transaction_handle *, int);
1751
int reiserfs_in_journal(struct super_block *p_s_sb, unsigned int bmap_nr,
1752
                        int bit_nr, int searchall, b_blocknr_t *next);
1753
int journal_begin(struct reiserfs_transaction_handle *,
1754
                  struct super_block *p_s_sb, unsigned long);
1755
int journal_join_abort(struct reiserfs_transaction_handle *,
1756
                       struct super_block *p_s_sb, unsigned long);
1757
void reiserfs_journal_abort(struct super_block *sb, int errno);
1758
void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...);
1759
int reiserfs_allocate_list_bitmaps(struct super_block *s,
1760
                                   struct reiserfs_list_bitmap *, unsigned int);
1761
 
1762
void add_save_link(struct reiserfs_transaction_handle *th,
1763
                   struct inode *inode, int truncate);
1764
int remove_save_link(struct inode *inode, int truncate);
1765
 
1766
/* objectid.c */
1767
__u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th);
1768
void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
1769
                               __u32 objectid_to_release);
1770
int reiserfs_convert_objectid_map_v1(struct super_block *);
1771
 
1772
/* stree.c */
1773
int B_IS_IN_TREE(const struct buffer_head *);
1774
extern void copy_item_head(struct item_head *p_v_to,
1775
                           const struct item_head *p_v_from);
1776
 
1777
// first key is in cpu form, second - le
1778
extern int comp_short_keys(const struct reiserfs_key *le_key,
1779
                           const struct cpu_key *cpu_key);
1780
extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from);
1781
 
1782
// both are in le form
1783
extern int comp_le_keys(const struct reiserfs_key *,
1784
                        const struct reiserfs_key *);
1785
extern int comp_short_le_keys(const struct reiserfs_key *,
1786
                              const struct reiserfs_key *);
1787
 
1788
//
1789
// get key version from on disk key - kludge
1790
//
1791
static inline int le_key_version(const struct reiserfs_key *key)
1792
{
1793
        int type;
1794
 
1795
        type = offset_v2_k_type(&(key->u.k_offset_v2));
1796
        if (type != TYPE_DIRECT && type != TYPE_INDIRECT
1797
            && type != TYPE_DIRENTRY)
1798
                return KEY_FORMAT_3_5;
1799
 
1800
        return KEY_FORMAT_3_6;
1801
 
1802
}
1803
 
1804
static inline void copy_key(struct reiserfs_key *to,
1805
                            const struct reiserfs_key *from)
1806
{
1807
        memcpy(to, from, KEY_SIZE);
1808
}
1809
 
1810
int comp_items(const struct item_head *stored_ih, const struct treepath *p_s_path);
1811
const struct reiserfs_key *get_rkey(const struct treepath *p_s_chk_path,
1812
                                    const struct super_block *p_s_sb);
1813
int search_by_key(struct super_block *, const struct cpu_key *,
1814
                  struct treepath *, int);
1815
#define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
1816
int search_for_position_by_key(struct super_block *p_s_sb,
1817
                               const struct cpu_key *p_s_cpu_key,
1818
                               struct treepath *p_s_search_path);
1819
extern void decrement_bcount(struct buffer_head *p_s_bh);
1820
void decrement_counters_in_path(struct treepath *p_s_search_path);
1821
void pathrelse(struct treepath *p_s_search_path);
1822
int reiserfs_check_path(struct treepath *p);
1823
void pathrelse_and_restore(struct super_block *s, struct treepath *p_s_search_path);
1824
 
1825
int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
1826
                         struct treepath *path,
1827
                         const struct cpu_key *key,
1828
                         struct item_head *ih,
1829
                         struct inode *inode, const char *body);
1830
 
1831
int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
1832
                             struct treepath *path,
1833
                             const struct cpu_key *key,
1834
                             struct inode *inode,
1835
                             const char *body, int paste_size);
1836
 
1837
int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
1838
                           struct treepath *path,
1839
                           struct cpu_key *key,
1840
                           struct inode *inode,
1841
                           struct page *page, loff_t new_file_size);
1842
 
1843
int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
1844
                         struct treepath *path,
1845
                         const struct cpu_key *key,
1846
                         struct inode *inode, struct buffer_head *p_s_un_bh);
1847
 
1848
void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
1849
                                struct inode *inode, struct reiserfs_key *key);
1850
int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
1851
                           struct inode *p_s_inode);
1852
int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
1853
                         struct inode *p_s_inode, struct page *,
1854
                         int update_timestamps);
1855
 
1856
#define i_block_size(inode) ((inode)->i_sb->s_blocksize)
1857
#define file_size(inode) ((inode)->i_size)
1858
#define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
1859
 
1860
#define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
1861
!STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
1862
 
1863
void padd_item(char *item, int total_length, int length);
1864
 
1865
/* inode.c */
1866
/* args for the create parameter of reiserfs_get_block */
1867
#define GET_BLOCK_NO_CREATE 0   /* don't create new blocks or convert tails */
1868
#define GET_BLOCK_CREATE 1      /* add anything you need to find block */
1869
#define GET_BLOCK_NO_HOLE 2     /* return -ENOENT for file holes */
1870
#define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */
1871
#define GET_BLOCK_NO_IMUX     8 /* i_mutex is not held, don't preallocate */
1872
#define GET_BLOCK_NO_DANGLE   16        /* don't leave any transactions running */
1873
 
1874
void reiserfs_read_locked_inode(struct inode *inode,
1875
                                struct reiserfs_iget_args *args);
1876
int reiserfs_find_actor(struct inode *inode, void *p);
1877
int reiserfs_init_locked_inode(struct inode *inode, void *p);
1878
void reiserfs_delete_inode(struct inode *inode);
1879
int reiserfs_write_inode(struct inode *inode, int);
1880
int reiserfs_get_block(struct inode *inode, sector_t block,
1881
                       struct buffer_head *bh_result, int create);
1882
struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1883
                                     int fh_len, int fh_type);
1884
struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1885
                                     int fh_len, int fh_type);
1886
int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1887
                       int connectable);
1888
 
1889
int reiserfs_truncate_file(struct inode *, int update_timestamps);
1890
void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset,
1891
                  int type, int key_length);
1892
void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
1893
                       int version,
1894
                       loff_t offset, int type, int length, int entry_count);
1895
struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key);
1896
 
1897
int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1898
                       struct inode *dir, int mode,
1899
                       const char *symname, loff_t i_size,
1900
                       struct dentry *dentry, struct inode *inode);
1901
 
1902
void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1903
                             struct inode *inode, loff_t size);
1904
 
1905
static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
1906
                                      struct inode *inode)
1907
{
1908
        reiserfs_update_sd_size(th, inode, inode->i_size);
1909
}
1910
 
1911
void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode);
1912
void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs);
1913
int reiserfs_setattr(struct dentry *dentry, struct iattr *attr);
1914
 
1915
/* namei.c */
1916
void set_de_name_and_namelen(struct reiserfs_dir_entry *de);
1917
int search_by_entry_key(struct super_block *sb, const struct cpu_key *key,
1918
                        struct treepath *path, struct reiserfs_dir_entry *de);
1919
struct dentry *reiserfs_get_parent(struct dentry *);
1920
/* procfs.c */
1921
 
1922
#if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
1923
#define REISERFS_PROC_INFO
1924
#else
1925
#undef REISERFS_PROC_INFO
1926
#endif
1927
 
1928
int reiserfs_proc_info_init(struct super_block *sb);
1929
int reiserfs_proc_info_done(struct super_block *sb);
1930
struct proc_dir_entry *reiserfs_proc_register_global(char *name,
1931
                                                     read_proc_t * func);
1932
void reiserfs_proc_unregister_global(const char *name);
1933
int reiserfs_proc_info_global_init(void);
1934
int reiserfs_proc_info_global_done(void);
1935
int reiserfs_global_version_in_proc(char *buffer, char **start, off_t offset,
1936
                                    int count, int *eof, void *data);
1937
 
1938
#if defined( REISERFS_PROC_INFO )
1939
 
1940
#define PROC_EXP( e )   e
1941
 
1942
#define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
1943
#define PROC_INFO_MAX( sb, field, value )                                                               \
1944
    __PINFO( sb ).field =                                                                                               \
1945
        max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
1946
#define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
1947
#define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
1948
#define PROC_INFO_BH_STAT( sb, bh, level )                                                      \
1949
    PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] );                                              \
1950
    PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) );      \
1951
    PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
1952
#else
1953
#define PROC_EXP( e )
1954
#define VOID_V ( ( void ) 0 )
1955
#define PROC_INFO_MAX( sb, field, value ) VOID_V
1956
#define PROC_INFO_INC( sb, field ) VOID_V
1957
#define PROC_INFO_ADD( sb, field, val ) VOID_V
1958
#define PROC_INFO_BH_STAT( p_s_sb, p_s_bh, n_node_level ) VOID_V
1959
#endif
1960
 
1961
/* dir.c */
1962
extern const struct inode_operations reiserfs_dir_inode_operations;
1963
extern const struct inode_operations reiserfs_symlink_inode_operations;
1964
extern const struct inode_operations reiserfs_special_inode_operations;
1965
extern const struct file_operations reiserfs_dir_operations;
1966
 
1967
/* tail_conversion.c */
1968
int direct2indirect(struct reiserfs_transaction_handle *, struct inode *,
1969
                    struct treepath *, struct buffer_head *, loff_t);
1970
int indirect2direct(struct reiserfs_transaction_handle *, struct inode *,
1971
                    struct page *, struct treepath *, const struct cpu_key *,
1972
                    loff_t, char *);
1973
void reiserfs_unmap_buffer(struct buffer_head *);
1974
 
1975
/* file.c */
1976
extern const struct inode_operations reiserfs_file_inode_operations;
1977
extern const struct file_operations reiserfs_file_operations;
1978
extern const struct address_space_operations reiserfs_address_space_operations;
1979
 
1980
/* fix_nodes.c */
1981
 
1982
int fix_nodes(int n_op_mode, struct tree_balance *p_s_tb,
1983
              struct item_head *p_s_ins_ih, const void *);
1984
void unfix_nodes(struct tree_balance *);
1985
 
1986
/* prints.c */
1987
void reiserfs_panic(struct super_block *s, const char *fmt, ...)
1988
    __attribute__ ((noreturn));
1989
void reiserfs_info(struct super_block *s, const char *fmt, ...);
1990
void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...);
1991
void print_indirect_item(struct buffer_head *bh, int item_num);
1992
void store_print_tb(struct tree_balance *tb);
1993
void print_cur_tb(char *mes);
1994
void print_de(struct reiserfs_dir_entry *de);
1995
void print_bi(struct buffer_info *bi, char *mes);
1996
#define PRINT_LEAF_ITEMS 1      /* print all items */
1997
#define PRINT_DIRECTORY_ITEMS 2 /* print directory items */
1998
#define PRINT_DIRECT_ITEMS 4    /* print contents of direct items */
1999
void print_block(struct buffer_head *bh, ...);
2000
void print_bmap(struct super_block *s, int silent);
2001
void print_bmap_block(int i, char *data, int size, int silent);
2002
/*void print_super_block (struct super_block * s, char * mes);*/
2003
void print_objectid_map(struct super_block *s);
2004
void print_block_head(struct buffer_head *bh, char *mes);
2005
void check_leaf(struct buffer_head *bh);
2006
void check_internal(struct buffer_head *bh);
2007
void print_statistics(struct super_block *s);
2008
char *reiserfs_hashname(int code);
2009
 
2010
/* lbalance.c */
2011
int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num,
2012
                    int mov_bytes, struct buffer_head *Snew);
2013
int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes);
2014
int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes);
2015
void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first,
2016
                       int del_num, int del_bytes);
2017
void leaf_insert_into_buf(struct buffer_info *bi, int before,
2018
                          struct item_head *inserted_item_ih,
2019
                          const char *inserted_item_body, int zeros_number);
2020
void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num,
2021
                          int pos_in_item, int paste_size, const char *body,
2022
                          int zeros_number);
2023
void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num,
2024
                          int pos_in_item, int cut_size);
2025
void leaf_paste_entries(struct buffer_head *bh, int item_num, int before,
2026
                        int new_entry_count, struct reiserfs_de_head *new_dehs,
2027
                        const char *records, int paste_size);
2028
/* ibalance.c */
2029
int balance_internal(struct tree_balance *, int, int, struct item_head *,
2030
                     struct buffer_head **);
2031
 
2032
/* do_balance.c */
2033
void do_balance_mark_leaf_dirty(struct tree_balance *tb,
2034
                                struct buffer_head *bh, int flag);
2035
#define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
2036
#define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
2037
 
2038
void do_balance(struct tree_balance *tb, struct item_head *ih,
2039
                const char *body, int flag);
2040
void reiserfs_invalidate_buffer(struct tree_balance *tb,
2041
                                struct buffer_head *bh);
2042
 
2043
int get_left_neighbor_position(struct tree_balance *tb, int h);
2044
int get_right_neighbor_position(struct tree_balance *tb, int h);
2045
void replace_key(struct tree_balance *tb, struct buffer_head *, int,
2046
                 struct buffer_head *, int);
2047
void make_empty_node(struct buffer_info *);
2048
struct buffer_head *get_FEB(struct tree_balance *);
2049
 
2050
/* bitmap.c */
2051
 
2052
/* structure contains hints for block allocator, and it is a container for
2053
 * arguments, such as node, search path, transaction_handle, etc. */
2054
struct __reiserfs_blocknr_hint {
2055
        struct inode *inode;    /* inode passed to allocator, if we allocate unf. nodes */
2056
        sector_t block;         /* file offset, in blocks */
2057
        struct in_core_key key;
2058
        struct treepath *path;  /* search path, used by allocator to deternine search_start by
2059
                                 * various ways */
2060
        struct reiserfs_transaction_handle *th; /* transaction handle is needed to log super blocks and
2061
                                                 * bitmap blocks changes  */
2062
        b_blocknr_t beg, end;
2063
        b_blocknr_t search_start;       /* a field used to transfer search start value (block number)
2064
                                         * between different block allocator procedures
2065
                                         * (determine_search_start() and others) */
2066
        int prealloc_size;      /* is set in determine_prealloc_size() function, used by underlayed
2067
                                 * function that do actual allocation */
2068
 
2069
        unsigned formatted_node:1;      /* the allocator uses different polices for getting disk space for
2070
                                         * formatted/unformatted blocks with/without preallocation */
2071
        unsigned preallocate:1;
2072
};
2073
 
2074
typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
2075
 
2076
int reiserfs_parse_alloc_options(struct super_block *, char *);
2077
void reiserfs_init_alloc_options(struct super_block *s);
2078
 
2079
/*
2080
 * given a directory, this will tell you what packing locality
2081
 * to use for a new object underneat it.  The locality is returned
2082
 * in disk byte order (le).
2083
 */
2084
__le32 reiserfs_choose_packing(struct inode *dir);
2085
 
2086
int reiserfs_init_bitmap_cache(struct super_block *sb);
2087
void reiserfs_free_bitmap_cache(struct super_block *sb);
2088
void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info);
2089
struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap);
2090
int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value);
2091
void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *,
2092
                         b_blocknr_t, int for_unformatted);
2093
int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int,
2094
                               int);
2095
static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb,
2096
                                             b_blocknr_t * new_blocknrs,
2097
                                             int amount_needed)
2098
{
2099
        reiserfs_blocknr_hint_t hint = {
2100
                .th = tb->transaction_handle,
2101
                .path = tb->tb_path,
2102
                .inode = NULL,
2103
                .key = tb->key,
2104
                .block = 0,
2105
                .formatted_node = 1
2106
        };
2107
        return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed,
2108
                                          0);
2109
}
2110
 
2111
static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle
2112
                                            *th, struct inode *inode,
2113
                                            b_blocknr_t * new_blocknrs,
2114
                                            struct treepath *path,
2115
                                            sector_t block)
2116
{
2117
        reiserfs_blocknr_hint_t hint = {
2118
                .th = th,
2119
                .path = path,
2120
                .inode = inode,
2121
                .block = block,
2122
                .formatted_node = 0,
2123
                .preallocate = 0
2124
        };
2125
        return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2126
}
2127
 
2128
#ifdef REISERFS_PREALLOCATE
2129
static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle
2130
                                             *th, struct inode *inode,
2131
                                             b_blocknr_t * new_blocknrs,
2132
                                             struct treepath *path,
2133
                                             sector_t block)
2134
{
2135
        reiserfs_blocknr_hint_t hint = {
2136
                .th = th,
2137
                .path = path,
2138
                .inode = inode,
2139
                .block = block,
2140
                .formatted_node = 0,
2141
                .preallocate = 1
2142
        };
2143
        return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2144
}
2145
 
2146
void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th,
2147
                               struct inode *inode);
2148
void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th);
2149
#endif
2150
 
2151
/* hashes.c */
2152
__u32 keyed_hash(const signed char *msg, int len);
2153
__u32 yura_hash(const signed char *msg, int len);
2154
__u32 r5_hash(const signed char *msg, int len);
2155
 
2156
/* the ext2 bit routines adjust for big or little endian as
2157
** appropriate for the arch, so in our laziness we use them rather
2158
** than using the bit routines they call more directly.  These
2159
** routines must be used when changing on disk bitmaps.  */
2160
#define reiserfs_test_and_set_le_bit   ext2_set_bit
2161
#define reiserfs_test_and_clear_le_bit ext2_clear_bit
2162
#define reiserfs_test_le_bit           ext2_test_bit
2163
#define reiserfs_find_next_zero_le_bit ext2_find_next_zero_bit
2164
 
2165
/* sometimes reiserfs_truncate may require to allocate few new blocks
2166
   to perform indirect2direct conversion. People probably used to
2167
   think, that truncate should work without problems on a filesystem
2168
   without free disk space. They may complain that they can not
2169
   truncate due to lack of free disk space. This spare space allows us
2170
   to not worry about it. 500 is probably too much, but it should be
2171
   absolutely safe */
2172
#define SPARE_SPACE 500
2173
 
2174
/* prototypes from ioctl.c */
2175
int reiserfs_ioctl(struct inode *inode, struct file *filp,
2176
                   unsigned int cmd, unsigned long arg);
2177
long reiserfs_compat_ioctl(struct file *filp,
2178
                   unsigned int cmd, unsigned long arg);
2179
 
2180
/* ioctl's command */
2181
#define REISERFS_IOC_UNPACK             _IOW(0xCD,1,long)
2182
/* define following flags to be the same as in ext2, so that chattr(1),
2183
   lsattr(1) will work with us. */
2184
#define REISERFS_IOC_GETFLAGS           FS_IOC_GETFLAGS
2185
#define REISERFS_IOC_SETFLAGS           FS_IOC_SETFLAGS
2186
#define REISERFS_IOC_GETVERSION         FS_IOC_GETVERSION
2187
#define REISERFS_IOC_SETVERSION         FS_IOC_SETVERSION
2188
 
2189
/* the 32 bit compat definitions with int argument */
2190
#define REISERFS_IOC32_UNPACK           _IOW(0xCD, 1, int)
2191
#define REISERFS_IOC32_GETFLAGS         FS_IOC32_GETFLAGS
2192
#define REISERFS_IOC32_SETFLAGS         FS_IOC32_SETFLAGS
2193
#define REISERFS_IOC32_GETVERSION       FS_IOC32_GETVERSION
2194
#define REISERFS_IOC32_SETVERSION       FS_IOC32_SETVERSION
2195
 
2196
/* Locking primitives */
2197
/* Right now we are still falling back to (un)lock_kernel, but eventually that
2198
   would evolve into real per-fs locks */
2199
#define reiserfs_write_lock( sb ) lock_kernel()
2200
#define reiserfs_write_unlock( sb ) unlock_kernel()
2201
 
2202
/* xattr stuff */
2203
#define REISERFS_XATTR_DIR_SEM(s) (REISERFS_SB(s)->xattr_dir_sem)
2204
 
2205
#endif                          /* _LINUX_REISER_FS_H */

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.