OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [include/] [linux/] [sched.h] - Blame information for rev 82

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
#ifndef _LINUX_SCHED_H
2
#define _LINUX_SCHED_H
3
 
4
/*
5
 * cloning flags:
6
 */
7
#define CSIGNAL         0x000000ff      /* signal mask to be sent at exit */
8
#define CLONE_VM        0x00000100      /* set if VM shared between processes */
9
#define CLONE_FS        0x00000200      /* set if fs info shared between processes */
10
#define CLONE_FILES     0x00000400      /* set if open files shared between processes */
11
#define CLONE_SIGHAND   0x00000800      /* set if signal handlers and blocked signals shared */
12
#define CLONE_PTRACE    0x00002000      /* set if we want to let tracing continue on the child too */
13
#define CLONE_VFORK     0x00004000      /* set if the parent wants the child to wake it up on mm_release */
14
#define CLONE_PARENT    0x00008000      /* set if we want to have the same parent as the cloner */
15
#define CLONE_THREAD    0x00010000      /* Same thread group? */
16
#define CLONE_NEWNS     0x00020000      /* New namespace group? */
17
#define CLONE_SYSVSEM   0x00040000      /* share system V SEM_UNDO semantics */
18
#define CLONE_SETTLS    0x00080000      /* create a new TLS for the child */
19
#define CLONE_PARENT_SETTID     0x00100000      /* set the TID in the parent */
20
#define CLONE_CHILD_CLEARTID    0x00200000      /* clear the TID in the child */
21
#define CLONE_DETACHED          0x00400000      /* Unused, ignored */
22
#define CLONE_UNTRACED          0x00800000      /* set if the tracing process can't force CLONE_PTRACE on this clone */
23
#define CLONE_CHILD_SETTID      0x01000000      /* set the TID in the child */
24
#define CLONE_STOPPED           0x02000000      /* Start in stopped state */
25
#define CLONE_NEWUTS            0x04000000      /* New utsname group? */
26
#define CLONE_NEWIPC            0x08000000      /* New ipcs */
27
#define CLONE_NEWUSER           0x10000000      /* New user namespace */
28
#define CLONE_NEWPID            0x20000000      /* New pid namespace */
29
#define CLONE_NEWNET            0x40000000      /* New network namespace */
30
 
31
/*
32
 * Scheduling policies
33
 */
34
#define SCHED_NORMAL            0
35
#define SCHED_FIFO              1
36
#define SCHED_RR                2
37
#define SCHED_BATCH             3
38
/* SCHED_ISO: reserved but not implemented yet */
39
#define SCHED_IDLE              5
40
 
41
#ifdef __KERNEL__
42
 
43
struct sched_param {
44
        int sched_priority;
45
};
46
 
47
#include <asm/param.h>  /* for HZ */
48
 
49
#include <linux/capability.h>
50
#include <linux/threads.h>
51
#include <linux/kernel.h>
52
#include <linux/types.h>
53
#include <linux/timex.h>
54
#include <linux/jiffies.h>
55
#include <linux/rbtree.h>
56
#include <linux/thread_info.h>
57
#include <linux/cpumask.h>
58
#include <linux/errno.h>
59
#include <linux/nodemask.h>
60
#include <linux/mm_types.h>
61
 
62
#include <asm/system.h>
63
#include <asm/semaphore.h>
64
#include <asm/page.h>
65
#include <asm/ptrace.h>
66
#include <asm/cputime.h>
67
 
68
#include <linux/smp.h>
69
#include <linux/sem.h>
70
#include <linux/signal.h>
71
#include <linux/securebits.h>
72
#include <linux/fs_struct.h>
73
#include <linux/compiler.h>
74
#include <linux/completion.h>
75
#include <linux/pid.h>
76
#include <linux/percpu.h>
77
#include <linux/topology.h>
78
#include <linux/proportions.h>
79
#include <linux/seccomp.h>
80
#include <linux/rcupdate.h>
81
#include <linux/futex.h>
82
#include <linux/rtmutex.h>
83
 
84
#include <linux/time.h>
85
#include <linux/param.h>
86
#include <linux/resource.h>
87
#include <linux/timer.h>
88
#include <linux/hrtimer.h>
89
#include <linux/task_io_accounting.h>
90
#include <linux/kobject.h>
91
 
92
#include <asm/processor.h>
93
 
94
struct exec_domain;
95
struct futex_pi_state;
96
struct bio;
97
 
98
/*
99
 * List of flags we want to share for kernel threads,
100
 * if only because they are not used by them anyway.
101
 */
102
#define CLONE_KERNEL    (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
103
 
104
/*
105
 * These are the constant used to fake the fixed-point load-average
106
 * counting. Some notes:
107
 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
108
 *    a load-average precision of 10 bits integer + 11 bits fractional
109
 *  - if you want to count load-averages more often, you need more
110
 *    precision, or rounding will get you. With 2-second counting freq,
111
 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
112
 *    11 bit fractions.
113
 */
114
extern unsigned long avenrun[];         /* Load averages */
115
 
116
#define FSHIFT          11              /* nr of bits of precision */
117
#define FIXED_1         (1<<FSHIFT)     /* 1.0 as fixed-point */
118
#define LOAD_FREQ       (5*HZ+1)        /* 5 sec intervals */
119
#define EXP_1           1884            /* 1/exp(5sec/1min) as fixed-point */
120
#define EXP_5           2014            /* 1/exp(5sec/5min) */
121
#define EXP_15          2037            /* 1/exp(5sec/15min) */
122
 
123
#define CALC_LOAD(load,exp,n) \
124
        load *= exp; \
125
        load += n*(FIXED_1-exp); \
126
        load >>= FSHIFT;
127
 
128
extern unsigned long total_forks;
129
extern int nr_threads;
130
DECLARE_PER_CPU(unsigned long, process_counts);
131
extern int nr_processes(void);
132
extern unsigned long nr_running(void);
133
extern unsigned long nr_uninterruptible(void);
134
extern unsigned long nr_active(void);
135
extern unsigned long nr_iowait(void);
136
extern unsigned long weighted_cpuload(const int cpu);
137
 
138
struct seq_file;
139
struct cfs_rq;
140
struct task_group;
141
#ifdef CONFIG_SCHED_DEBUG
142
extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
143
extern void proc_sched_set_task(struct task_struct *p);
144
extern void
145
print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
146
#else
147
static inline void
148
proc_sched_show_task(struct task_struct *p, struct seq_file *m)
149
{
150
}
151
static inline void proc_sched_set_task(struct task_struct *p)
152
{
153
}
154
static inline void
155
print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
156
{
157
}
158
#endif
159
 
160
/*
161
 * Task state bitmask. NOTE! These bits are also
162
 * encoded in fs/proc/array.c: get_task_state().
163
 *
164
 * We have two separate sets of flags: task->state
165
 * is about runnability, while task->exit_state are
166
 * about the task exiting. Confusing, but this way
167
 * modifying one set can't modify the other one by
168
 * mistake.
169
 */
170
#define TASK_RUNNING            0
171
#define TASK_INTERRUPTIBLE      1
172
#define TASK_UNINTERRUPTIBLE    2
173
#define TASK_STOPPED            4
174
#define TASK_TRACED             8
175
/* in tsk->exit_state */
176
#define EXIT_ZOMBIE             16
177
#define EXIT_DEAD               32
178
/* in tsk->state again */
179
#define TASK_DEAD               64
180
 
181
#define __set_task_state(tsk, state_value)              \
182
        do { (tsk)->state = (state_value); } while (0)
183
#define set_task_state(tsk, state_value)                \
184
        set_mb((tsk)->state, (state_value))
185
 
186
/*
187
 * set_current_state() includes a barrier so that the write of current->state
188
 * is correctly serialised wrt the caller's subsequent test of whether to
189
 * actually sleep:
190
 *
191
 *      set_current_state(TASK_UNINTERRUPTIBLE);
192
 *      if (do_i_need_to_sleep())
193
 *              schedule();
194
 *
195
 * If the caller does not need such serialisation then use __set_current_state()
196
 */
197
#define __set_current_state(state_value)                        \
198
        do { current->state = (state_value); } while (0)
199
#define set_current_state(state_value)          \
200
        set_mb(current->state, (state_value))
201
 
202
/* Task command name length */
203
#define TASK_COMM_LEN 16
204
 
205
#include <linux/spinlock.h>
206
 
207
/*
208
 * This serializes "schedule()" and also protects
209
 * the run-queue from deletions/modifications (but
210
 * _adding_ to the beginning of the run-queue has
211
 * a separate lock).
212
 */
213
extern rwlock_t tasklist_lock;
214
extern spinlock_t mmlist_lock;
215
 
216
struct task_struct;
217
 
218
extern void sched_init(void);
219
extern void sched_init_smp(void);
220
extern void init_idle(struct task_struct *idle, int cpu);
221
extern void init_idle_bootup_task(struct task_struct *idle);
222
 
223
extern cpumask_t nohz_cpu_mask;
224
#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
225
extern int select_nohz_load_balancer(int cpu);
226
#else
227
static inline int select_nohz_load_balancer(int cpu)
228
{
229
        return 0;
230
}
231
#endif
232
 
233
/*
234
 * Only dump TASK_* tasks. (0 for all tasks)
235
 */
236
extern void show_state_filter(unsigned long state_filter);
237
 
238
static inline void show_state(void)
239
{
240
        show_state_filter(0);
241
}
242
 
243
extern void show_regs(struct pt_regs *);
244
 
245
/*
246
 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
247
 * task), SP is the stack pointer of the first frame that should be shown in the back
248
 * trace (or NULL if the entire call-chain of the task should be shown).
249
 */
250
extern void show_stack(struct task_struct *task, unsigned long *sp);
251
 
252
void io_schedule(void);
253
long io_schedule_timeout(long timeout);
254
 
255
extern void cpu_init (void);
256
extern void trap_init(void);
257
extern void account_process_tick(struct task_struct *task, int user);
258
extern void update_process_times(int user);
259
extern void scheduler_tick(void);
260
 
261
#ifdef CONFIG_DETECT_SOFTLOCKUP
262
extern void softlockup_tick(void);
263
extern void spawn_softlockup_task(void);
264
extern void touch_softlockup_watchdog(void);
265
extern void touch_all_softlockup_watchdogs(void);
266
extern int softlockup_thresh;
267
#else
268
static inline void softlockup_tick(void)
269
{
270
}
271
static inline void spawn_softlockup_task(void)
272
{
273
}
274
static inline void touch_softlockup_watchdog(void)
275
{
276
}
277
static inline void touch_all_softlockup_watchdogs(void)
278
{
279
}
280
#endif
281
 
282
 
283
/* Attach to any functions which should be ignored in wchan output. */
284
#define __sched         __attribute__((__section__(".sched.text")))
285
 
286
/* Linker adds these: start and end of __sched functions */
287
extern char __sched_text_start[], __sched_text_end[];
288
 
289
/* Is this address in the __sched functions? */
290
extern int in_sched_functions(unsigned long addr);
291
 
292
#define MAX_SCHEDULE_TIMEOUT    LONG_MAX
293
extern signed long FASTCALL(schedule_timeout(signed long timeout));
294
extern signed long schedule_timeout_interruptible(signed long timeout);
295
extern signed long schedule_timeout_uninterruptible(signed long timeout);
296
asmlinkage void schedule(void);
297
 
298
struct nsproxy;
299
struct user_namespace;
300
 
301
/* Maximum number of active map areas.. This is a random (large) number */
302
#define DEFAULT_MAX_MAP_COUNT   65536
303
 
304
extern int sysctl_max_map_count;
305
 
306
#include <linux/aio.h>
307
 
308
extern unsigned long
309
arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
310
                       unsigned long, unsigned long);
311
extern unsigned long
312
arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
313
                          unsigned long len, unsigned long pgoff,
314
                          unsigned long flags);
315
extern void arch_unmap_area(struct mm_struct *, unsigned long);
316
extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
317
 
318
#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
319
/*
320
 * The mm counters are not protected by its page_table_lock,
321
 * so must be incremented atomically.
322
 */
323
#define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
324
#define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
325
#define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
326
#define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
327
#define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
328
 
329
#else  /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
330
/*
331
 * The mm counters are protected by its page_table_lock,
332
 * so can be incremented directly.
333
 */
334
#define set_mm_counter(mm, member, value) (mm)->_##member = (value)
335
#define get_mm_counter(mm, member) ((mm)->_##member)
336
#define add_mm_counter(mm, member, value) (mm)->_##member += (value)
337
#define inc_mm_counter(mm, member) (mm)->_##member++
338
#define dec_mm_counter(mm, member) (mm)->_##member--
339
 
340
#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
341
 
342
#define get_mm_rss(mm)                                  \
343
        (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
344
#define update_hiwater_rss(mm)  do {                    \
345
        unsigned long _rss = get_mm_rss(mm);            \
346
        if ((mm)->hiwater_rss < _rss)                   \
347
                (mm)->hiwater_rss = _rss;               \
348
} while (0)
349
#define update_hiwater_vm(mm)   do {                    \
350
        if ((mm)->hiwater_vm < (mm)->total_vm)          \
351
                (mm)->hiwater_vm = (mm)->total_vm;      \
352
} while (0)
353
 
354
extern void set_dumpable(struct mm_struct *mm, int value);
355
extern int get_dumpable(struct mm_struct *mm);
356
 
357
/* mm flags */
358
/* dumpable bits */
359
#define MMF_DUMPABLE      0  /* core dump is permitted */
360
#define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
361
#define MMF_DUMPABLE_BITS 2
362
 
363
/* coredump filter bits */
364
#define MMF_DUMP_ANON_PRIVATE   2
365
#define MMF_DUMP_ANON_SHARED    3
366
#define MMF_DUMP_MAPPED_PRIVATE 4
367
#define MMF_DUMP_MAPPED_SHARED  5
368
#define MMF_DUMP_ELF_HEADERS    6
369
#define MMF_DUMP_FILTER_SHIFT   MMF_DUMPABLE_BITS
370
#define MMF_DUMP_FILTER_BITS    5
371
#define MMF_DUMP_FILTER_MASK \
372
        (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
373
#define MMF_DUMP_FILTER_DEFAULT \
374
        ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED))
375
 
376
struct sighand_struct {
377
        atomic_t                count;
378
        struct k_sigaction      action[_NSIG];
379
        spinlock_t              siglock;
380
        wait_queue_head_t       signalfd_wqh;
381
};
382
 
383
struct pacct_struct {
384
        int                     ac_flag;
385
        long                    ac_exitcode;
386
        unsigned long           ac_mem;
387
        cputime_t               ac_utime, ac_stime;
388
        unsigned long           ac_minflt, ac_majflt;
389
};
390
 
391
/*
392
 * NOTE! "signal_struct" does not have it's own
393
 * locking, because a shared signal_struct always
394
 * implies a shared sighand_struct, so locking
395
 * sighand_struct is always a proper superset of
396
 * the locking of signal_struct.
397
 */
398
struct signal_struct {
399
        atomic_t                count;
400
        atomic_t                live;
401
 
402
        wait_queue_head_t       wait_chldexit;  /* for wait4() */
403
 
404
        /* current thread group signal load-balancing target: */
405
        struct task_struct      *curr_target;
406
 
407
        /* shared signal handling: */
408
        struct sigpending       shared_pending;
409
 
410
        /* thread group exit support */
411
        int                     group_exit_code;
412
        /* overloaded:
413
         * - notify group_exit_task when ->count is equal to notify_count
414
         * - everyone except group_exit_task is stopped during signal delivery
415
         *   of fatal signals, group_exit_task processes the signal.
416
         */
417
        struct task_struct      *group_exit_task;
418
        int                     notify_count;
419
 
420
        /* thread group stop support, overloads group_exit_code too */
421
        int                     group_stop_count;
422
        unsigned int            flags; /* see SIGNAL_* flags below */
423
 
424
        /* POSIX.1b Interval Timers */
425
        struct list_head posix_timers;
426
 
427
        /* ITIMER_REAL timer for the process */
428
        struct hrtimer real_timer;
429
        struct task_struct *tsk;
430
        ktime_t it_real_incr;
431
 
432
        /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
433
        cputime_t it_prof_expires, it_virt_expires;
434
        cputime_t it_prof_incr, it_virt_incr;
435
 
436
        /* job control IDs */
437
 
438
        /*
439
         * pgrp and session fields are deprecated.
440
         * use the task_session_Xnr and task_pgrp_Xnr routines below
441
         */
442
 
443
        union {
444
                pid_t pgrp __deprecated;
445
                pid_t __pgrp;
446
        };
447
 
448
        struct pid *tty_old_pgrp;
449
 
450
        union {
451
                pid_t session __deprecated;
452
                pid_t __session;
453
        };
454
 
455
        /* boolean value for session group leader */
456
        int leader;
457
 
458
        struct tty_struct *tty; /* NULL if no tty */
459
 
460
        /*
461
         * Cumulative resource counters for dead threads in the group,
462
         * and for reaped dead child processes forked by this group.
463
         * Live threads maintain their own counters and add to these
464
         * in __exit_signal, except for the group leader.
465
         */
466
        cputime_t utime, stime, cutime, cstime;
467
        cputime_t gtime;
468
        cputime_t cgtime;
469
        unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
470
        unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
471
        unsigned long inblock, oublock, cinblock, coublock;
472
 
473
        /*
474
         * Cumulative ns of scheduled CPU time for dead threads in the
475
         * group, not including a zombie group leader.  (This only differs
476
         * from jiffies_to_ns(utime + stime) if sched_clock uses something
477
         * other than jiffies.)
478
         */
479
        unsigned long long sum_sched_runtime;
480
 
481
        /*
482
         * We don't bother to synchronize most readers of this at all,
483
         * because there is no reader checking a limit that actually needs
484
         * to get both rlim_cur and rlim_max atomically, and either one
485
         * alone is a single word that can safely be read normally.
486
         * getrlimit/setrlimit use task_lock(current->group_leader) to
487
         * protect this instead of the siglock, because they really
488
         * have no need to disable irqs.
489
         */
490
        struct rlimit rlim[RLIM_NLIMITS];
491
 
492
        struct list_head cpu_timers[3];
493
 
494
        /* keep the process-shared keyrings here so that they do the right
495
         * thing in threads created with CLONE_THREAD */
496
#ifdef CONFIG_KEYS
497
        struct key *session_keyring;    /* keyring inherited over fork */
498
        struct key *process_keyring;    /* keyring private to this process */
499
#endif
500
#ifdef CONFIG_BSD_PROCESS_ACCT
501
        struct pacct_struct pacct;      /* per-process accounting information */
502
#endif
503
#ifdef CONFIG_TASKSTATS
504
        struct taskstats *stats;
505
#endif
506
#ifdef CONFIG_AUDIT
507
        unsigned audit_tty;
508
        struct tty_audit_buf *tty_audit_buf;
509
#endif
510
};
511
 
512
/* Context switch must be unlocked if interrupts are to be enabled */
513
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
514
# define __ARCH_WANT_UNLOCKED_CTXSW
515
#endif
516
 
517
/*
518
 * Bits in flags field of signal_struct.
519
 */
520
#define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
521
#define SIGNAL_STOP_DEQUEUED    0x00000002 /* stop signal dequeued */
522
#define SIGNAL_STOP_CONTINUED   0x00000004 /* SIGCONT since WCONTINUED reap */
523
#define SIGNAL_GROUP_EXIT       0x00000008 /* group exit in progress */
524
 
525
/*
526
 * Some day this will be a full-fledged user tracking system..
527
 */
528
struct user_struct {
529
        atomic_t __count;       /* reference count */
530
        atomic_t processes;     /* How many processes does this user have? */
531
        atomic_t files;         /* How many open files does this user have? */
532
        atomic_t sigpending;    /* How many pending signals does this user have? */
533
#ifdef CONFIG_INOTIFY_USER
534
        atomic_t inotify_watches; /* How many inotify watches does this user have? */
535
        atomic_t inotify_devs;  /* How many inotify devs does this user have opened? */
536
#endif
537
#ifdef CONFIG_POSIX_MQUEUE
538
        /* protected by mq_lock */
539
        unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
540
#endif
541
        unsigned long locked_shm; /* How many pages of mlocked shm ? */
542
 
543
#ifdef CONFIG_KEYS
544
        struct key *uid_keyring;        /* UID specific keyring */
545
        struct key *session_keyring;    /* UID's default session keyring */
546
#endif
547
 
548
        /* Hash table maintenance information */
549
        struct hlist_node uidhash_node;
550
        uid_t uid;
551
 
552
#ifdef CONFIG_FAIR_USER_SCHED
553
        struct task_group *tg;
554
#ifdef CONFIG_SYSFS
555
        struct kset kset;
556
        struct subsys_attribute user_attr;
557
        struct work_struct work;
558
#endif
559
#endif
560
};
561
 
562
#ifdef CONFIG_FAIR_USER_SCHED
563
extern int uids_kobject_init(void);
564
#else
565
static inline int uids_kobject_init(void) { return 0; }
566
#endif
567
 
568
extern struct user_struct *find_user(uid_t);
569
 
570
extern struct user_struct root_user;
571
#define INIT_USER (&root_user)
572
 
573
struct backing_dev_info;
574
struct reclaim_state;
575
 
576
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
577
struct sched_info {
578
        /* cumulative counters */
579
        unsigned long pcount;         /* # of times run on this cpu */
580
        unsigned long long cpu_time,  /* time spent on the cpu */
581
                           run_delay; /* time spent waiting on a runqueue */
582
 
583
        /* timestamps */
584
        unsigned long long last_arrival,/* when we last ran on a cpu */
585
                           last_queued; /* when we were last queued to run */
586
#ifdef CONFIG_SCHEDSTATS
587
        /* BKL stats */
588
        unsigned int bkl_count;
589
#endif
590
};
591
#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
592
 
593
#ifdef CONFIG_SCHEDSTATS
594
extern const struct file_operations proc_schedstat_operations;
595
#endif /* CONFIG_SCHEDSTATS */
596
 
597
#ifdef CONFIG_TASK_DELAY_ACCT
598
struct task_delay_info {
599
        spinlock_t      lock;
600
        unsigned int    flags;  /* Private per-task flags */
601
 
602
        /* For each stat XXX, add following, aligned appropriately
603
         *
604
         * struct timespec XXX_start, XXX_end;
605
         * u64 XXX_delay;
606
         * u32 XXX_count;
607
         *
608
         * Atomicity of updates to XXX_delay, XXX_count protected by
609
         * single lock above (split into XXX_lock if contention is an issue).
610
         */
611
 
612
        /*
613
         * XXX_count is incremented on every XXX operation, the delay
614
         * associated with the operation is added to XXX_delay.
615
         * XXX_delay contains the accumulated delay time in nanoseconds.
616
         */
617
        struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
618
        u64 blkio_delay;        /* wait for sync block io completion */
619
        u64 swapin_delay;       /* wait for swapin block io completion */
620
        u32 blkio_count;        /* total count of the number of sync block */
621
                                /* io operations performed */
622
        u32 swapin_count;       /* total count of the number of swapin block */
623
                                /* io operations performed */
624
};
625
#endif  /* CONFIG_TASK_DELAY_ACCT */
626
 
627
static inline int sched_info_on(void)
628
{
629
#ifdef CONFIG_SCHEDSTATS
630
        return 1;
631
#elif defined(CONFIG_TASK_DELAY_ACCT)
632
        extern int delayacct_on;
633
        return delayacct_on;
634
#else
635
        return 0;
636
#endif
637
}
638
 
639
enum cpu_idle_type {
640
        CPU_IDLE,
641
        CPU_NOT_IDLE,
642
        CPU_NEWLY_IDLE,
643
        CPU_MAX_IDLE_TYPES
644
};
645
 
646
/*
647
 * sched-domains (multiprocessor balancing) declarations:
648
 */
649
 
650
/*
651
 * Increase resolution of nice-level calculations:
652
 */
653
#define SCHED_LOAD_SHIFT        10
654
#define SCHED_LOAD_SCALE        (1L << SCHED_LOAD_SHIFT)
655
 
656
#define SCHED_LOAD_SCALE_FUZZ   SCHED_LOAD_SCALE
657
 
658
#ifdef CONFIG_SMP
659
#define SD_LOAD_BALANCE         1       /* Do load balancing on this domain. */
660
#define SD_BALANCE_NEWIDLE      2       /* Balance when about to become idle */
661
#define SD_BALANCE_EXEC         4       /* Balance on exec */
662
#define SD_BALANCE_FORK         8       /* Balance on fork, clone */
663
#define SD_WAKE_IDLE            16      /* Wake to idle CPU on task wakeup */
664
#define SD_WAKE_AFFINE          32      /* Wake task to waking CPU */
665
#define SD_WAKE_BALANCE         64      /* Perform balancing at task wakeup */
666
#define SD_SHARE_CPUPOWER       128     /* Domain members share cpu power */
667
#define SD_POWERSAVINGS_BALANCE 256     /* Balance for power savings */
668
#define SD_SHARE_PKG_RESOURCES  512     /* Domain members share cpu pkg resources */
669
#define SD_SERIALIZE            1024    /* Only a single load balancing instance */
670
 
671
#define BALANCE_FOR_MC_POWER    \
672
        (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
673
 
674
#define BALANCE_FOR_PKG_POWER   \
675
        ((sched_mc_power_savings || sched_smt_power_savings) ?  \
676
         SD_POWERSAVINGS_BALANCE : 0)
677
 
678
#define test_sd_parent(sd, flag)        ((sd->parent &&         \
679
                                         (sd->parent->flags & flag)) ? 1 : 0)
680
 
681
 
682
struct sched_group {
683
        struct sched_group *next;       /* Must be a circular list */
684
        cpumask_t cpumask;
685
 
686
        /*
687
         * CPU power of this group, SCHED_LOAD_SCALE being max power for a
688
         * single CPU. This is read only (except for setup, hotplug CPU).
689
         * Note : Never change cpu_power without recompute its reciprocal
690
         */
691
        unsigned int __cpu_power;
692
        /*
693
         * reciprocal value of cpu_power to avoid expensive divides
694
         * (see include/linux/reciprocal_div.h)
695
         */
696
        u32 reciprocal_cpu_power;
697
};
698
 
699
struct sched_domain {
700
        /* These fields must be setup */
701
        struct sched_domain *parent;    /* top domain must be null terminated */
702
        struct sched_domain *child;     /* bottom domain must be null terminated */
703
        struct sched_group *groups;     /* the balancing groups of the domain */
704
        cpumask_t span;                 /* span of all CPUs in this domain */
705
        unsigned long min_interval;     /* Minimum balance interval ms */
706
        unsigned long max_interval;     /* Maximum balance interval ms */
707
        unsigned int busy_factor;       /* less balancing by factor if busy */
708
        unsigned int imbalance_pct;     /* No balance until over watermark */
709
        unsigned int cache_nice_tries;  /* Leave cache hot tasks for # tries */
710
        unsigned int busy_idx;
711
        unsigned int idle_idx;
712
        unsigned int newidle_idx;
713
        unsigned int wake_idx;
714
        unsigned int forkexec_idx;
715
        int flags;                      /* See SD_* */
716
 
717
        /* Runtime fields. */
718
        unsigned long last_balance;     /* init to jiffies. units in jiffies */
719
        unsigned int balance_interval;  /* initialise to 1. units in ms. */
720
        unsigned int nr_balance_failed; /* initialise to 0 */
721
 
722
#ifdef CONFIG_SCHEDSTATS
723
        /* load_balance() stats */
724
        unsigned int lb_count[CPU_MAX_IDLE_TYPES];
725
        unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
726
        unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
727
        unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
728
        unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
729
        unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
730
        unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
731
        unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
732
 
733
        /* Active load balancing */
734
        unsigned int alb_count;
735
        unsigned int alb_failed;
736
        unsigned int alb_pushed;
737
 
738
        /* SD_BALANCE_EXEC stats */
739
        unsigned int sbe_count;
740
        unsigned int sbe_balanced;
741
        unsigned int sbe_pushed;
742
 
743
        /* SD_BALANCE_FORK stats */
744
        unsigned int sbf_count;
745
        unsigned int sbf_balanced;
746
        unsigned int sbf_pushed;
747
 
748
        /* try_to_wake_up() stats */
749
        unsigned int ttwu_wake_remote;
750
        unsigned int ttwu_move_affine;
751
        unsigned int ttwu_move_balance;
752
#endif
753
};
754
 
755
extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new);
756
 
757
#endif  /* CONFIG_SMP */
758
 
759
/*
760
 * A runqueue laden with a single nice 0 task scores a weighted_cpuload of
761
 * SCHED_LOAD_SCALE. This function returns 1 if any cpu is laden with a
762
 * task of nice 0 or enough lower priority tasks to bring up the
763
 * weighted_cpuload
764
 */
765
static inline int above_background_load(void)
766
{
767
        unsigned long cpu;
768
 
769
        for_each_online_cpu(cpu) {
770
                if (weighted_cpuload(cpu) >= SCHED_LOAD_SCALE)
771
                        return 1;
772
        }
773
        return 0;
774
}
775
 
776
struct io_context;                      /* See blkdev.h */
777
#define NGROUPS_SMALL           32
778
#define NGROUPS_PER_BLOCK       ((int)(PAGE_SIZE / sizeof(gid_t)))
779
struct group_info {
780
        int ngroups;
781
        atomic_t usage;
782
        gid_t small_block[NGROUPS_SMALL];
783
        int nblocks;
784
        gid_t *blocks[0];
785
};
786
 
787
/*
788
 * get_group_info() must be called with the owning task locked (via task_lock())
789
 * when task != current.  The reason being that the vast majority of callers are
790
 * looking at current->group_info, which can not be changed except by the
791
 * current task.  Changing current->group_info requires the task lock, too.
792
 */
793
#define get_group_info(group_info) do { \
794
        atomic_inc(&(group_info)->usage); \
795
} while (0)
796
 
797
#define put_group_info(group_info) do { \
798
        if (atomic_dec_and_test(&(group_info)->usage)) \
799
                groups_free(group_info); \
800
} while (0)
801
 
802
extern struct group_info *groups_alloc(int gidsetsize);
803
extern void groups_free(struct group_info *group_info);
804
extern int set_current_groups(struct group_info *group_info);
805
extern int groups_search(struct group_info *group_info, gid_t grp);
806
/* access the groups "array" with this macro */
807
#define GROUP_AT(gi, i) \
808
    ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
809
 
810
#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
811
extern void prefetch_stack(struct task_struct *t);
812
#else
813
static inline void prefetch_stack(struct task_struct *t) { }
814
#endif
815
 
816
struct audit_context;           /* See audit.c */
817
struct mempolicy;
818
struct pipe_inode_info;
819
struct uts_namespace;
820
 
821
struct rq;
822
struct sched_domain;
823
 
824
struct sched_class {
825
        const struct sched_class *next;
826
 
827
        void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
828
        void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
829
        void (*yield_task) (struct rq *rq);
830
 
831
        void (*check_preempt_curr) (struct rq *rq, struct task_struct *p);
832
 
833
        struct task_struct * (*pick_next_task) (struct rq *rq);
834
        void (*put_prev_task) (struct rq *rq, struct task_struct *p);
835
 
836
#ifdef CONFIG_SMP
837
        unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
838
                        struct rq *busiest, unsigned long max_load_move,
839
                        struct sched_domain *sd, enum cpu_idle_type idle,
840
                        int *all_pinned, int *this_best_prio);
841
 
842
        int (*move_one_task) (struct rq *this_rq, int this_cpu,
843
                              struct rq *busiest, struct sched_domain *sd,
844
                              enum cpu_idle_type idle);
845
#endif
846
 
847
        void (*set_curr_task) (struct rq *rq);
848
        void (*task_tick) (struct rq *rq, struct task_struct *p);
849
        void (*task_new) (struct rq *rq, struct task_struct *p);
850
};
851
 
852
struct load_weight {
853
        unsigned long weight, inv_weight;
854
};
855
 
856
/*
857
 * CFS stats for a schedulable entity (task, task-group etc)
858
 *
859
 * Current field usage histogram:
860
 *
861
 *     4 se->block_start
862
 *     4 se->run_node
863
 *     4 se->sleep_start
864
 *     6 se->load.weight
865
 */
866
struct sched_entity {
867
        struct load_weight      load;           /* for load-balancing */
868
        struct rb_node          run_node;
869
        unsigned int            on_rq;
870
 
871
        u64                     exec_start;
872
        u64                     sum_exec_runtime;
873
        u64                     vruntime;
874
        u64                     prev_sum_exec_runtime;
875
 
876
#ifdef CONFIG_SCHEDSTATS
877
        u64                     wait_start;
878
        u64                     wait_max;
879
 
880
        u64                     sleep_start;
881
        u64                     sleep_max;
882
        s64                     sum_sleep_runtime;
883
 
884
        u64                     block_start;
885
        u64                     block_max;
886
        u64                     exec_max;
887
        u64                     slice_max;
888
 
889
        u64                     nr_migrations;
890
        u64                     nr_migrations_cold;
891
        u64                     nr_failed_migrations_affine;
892
        u64                     nr_failed_migrations_running;
893
        u64                     nr_failed_migrations_hot;
894
        u64                     nr_forced_migrations;
895
        u64                     nr_forced2_migrations;
896
 
897
        u64                     nr_wakeups;
898
        u64                     nr_wakeups_sync;
899
        u64                     nr_wakeups_migrate;
900
        u64                     nr_wakeups_local;
901
        u64                     nr_wakeups_remote;
902
        u64                     nr_wakeups_affine;
903
        u64                     nr_wakeups_affine_attempts;
904
        u64                     nr_wakeups_passive;
905
        u64                     nr_wakeups_idle;
906
#endif
907
 
908
#ifdef CONFIG_FAIR_GROUP_SCHED
909
        struct sched_entity     *parent;
910
        /* rq on which this entity is (to be) queued: */
911
        struct cfs_rq           *cfs_rq;
912
        /* rq "owned" by this entity/group: */
913
        struct cfs_rq           *my_q;
914
#endif
915
};
916
 
917
struct task_struct {
918
        volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
919
        void *stack;
920
        atomic_t usage;
921
        unsigned int flags;     /* per process flags, defined below */
922
        unsigned int ptrace;
923
 
924
        int lock_depth;         /* BKL lock depth */
925
 
926
#ifdef CONFIG_SMP
927
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
928
        int oncpu;
929
#endif
930
#endif
931
 
932
        int prio, static_prio, normal_prio;
933
        struct list_head run_list;
934
        const struct sched_class *sched_class;
935
        struct sched_entity se;
936
 
937
#ifdef CONFIG_PREEMPT_NOTIFIERS
938
        /* list of struct preempt_notifier: */
939
        struct hlist_head preempt_notifiers;
940
#endif
941
 
942
        unsigned short ioprio;
943
        /*
944
         * fpu_counter contains the number of consecutive context switches
945
         * that the FPU is used. If this is over a threshold, the lazy fpu
946
         * saving becomes unlazy to save the trap. This is an unsigned char
947
         * so that after 256 times the counter wraps and the behavior turns
948
         * lazy again; this to deal with bursty apps that only use FPU for
949
         * a short time
950
         */
951
        unsigned char fpu_counter;
952
        s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
953
#ifdef CONFIG_BLK_DEV_IO_TRACE
954
        unsigned int btrace_seq;
955
#endif
956
 
957
        unsigned int policy;
958
        cpumask_t cpus_allowed;
959
        unsigned int time_slice;
960
 
961
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
962
        struct sched_info sched_info;
963
#endif
964
 
965
        struct list_head tasks;
966
        /*
967
         * ptrace_list/ptrace_children forms the list of my children
968
         * that were stolen by a ptracer.
969
         */
970
        struct list_head ptrace_children;
971
        struct list_head ptrace_list;
972
 
973
        struct mm_struct *mm, *active_mm;
974
 
975
/* task state */
976
        struct linux_binfmt *binfmt;
977
        int exit_state;
978
        int exit_code, exit_signal;
979
        int pdeath_signal;  /*  The signal sent when the parent dies  */
980
        /* ??? */
981
        unsigned int personality;
982
        unsigned did_exec:1;
983
        pid_t pid;
984
        pid_t tgid;
985
 
986
#ifdef CONFIG_CC_STACKPROTECTOR
987
        /* Canary value for the -fstack-protector gcc feature */
988
        unsigned long stack_canary;
989
#endif
990
        /*
991
         * pointers to (original) parent process, youngest child, younger sibling,
992
         * older sibling, respectively.  (p->father can be replaced with
993
         * p->parent->pid)
994
         */
995
        struct task_struct *real_parent; /* real parent process (when being debugged) */
996
        struct task_struct *parent;     /* parent process */
997
        /*
998
         * children/sibling forms the list of my children plus the
999
         * tasks I'm ptracing.
1000
         */
1001
        struct list_head children;      /* list of my children */
1002
        struct list_head sibling;       /* linkage in my parent's children list */
1003
        struct task_struct *group_leader;       /* threadgroup leader */
1004
 
1005
        /* PID/PID hash table linkage. */
1006
        struct pid_link pids[PIDTYPE_MAX];
1007
        struct list_head thread_group;
1008
 
1009
        struct completion *vfork_done;          /* for vfork() */
1010
        int __user *set_child_tid;              /* CLONE_CHILD_SETTID */
1011
        int __user *clear_child_tid;            /* CLONE_CHILD_CLEARTID */
1012
 
1013
        unsigned int rt_priority;
1014
        cputime_t utime, stime, utimescaled, stimescaled;
1015
        cputime_t gtime;
1016
        cputime_t prev_utime, prev_stime;
1017
        unsigned long nvcsw, nivcsw; /* context switch counts */
1018
        struct timespec start_time;             /* monotonic time */
1019
        struct timespec real_start_time;        /* boot based time */
1020
/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1021
        unsigned long min_flt, maj_flt;
1022
 
1023
        cputime_t it_prof_expires, it_virt_expires;
1024
        unsigned long long it_sched_expires;
1025
        struct list_head cpu_timers[3];
1026
 
1027
/* process credentials */
1028
        uid_t uid,euid,suid,fsuid;
1029
        gid_t gid,egid,sgid,fsgid;
1030
        struct group_info *group_info;
1031
        kernel_cap_t   cap_effective, cap_inheritable, cap_permitted;
1032
        unsigned keep_capabilities:1;
1033
        struct user_struct *user;
1034
#ifdef CONFIG_KEYS
1035
        struct key *request_key_auth;   /* assumed request_key authority */
1036
        struct key *thread_keyring;     /* keyring private to this thread */
1037
        unsigned char jit_keyring;      /* default keyring to attach requested keys to */
1038
#endif
1039
        char comm[TASK_COMM_LEN]; /* executable name excluding path
1040
                                     - access with [gs]et_task_comm (which lock
1041
                                       it with task_lock())
1042
                                     - initialized normally by flush_old_exec */
1043
/* file system info */
1044
        int link_count, total_link_count;
1045
#ifdef CONFIG_SYSVIPC
1046
/* ipc stuff */
1047
        struct sysv_sem sysvsem;
1048
#endif
1049
/* CPU-specific state of this task */
1050
        struct thread_struct thread;
1051
/* filesystem information */
1052
        struct fs_struct *fs;
1053
/* open file information */
1054
        struct files_struct *files;
1055
/* namespaces */
1056
        struct nsproxy *nsproxy;
1057
/* signal handlers */
1058
        struct signal_struct *signal;
1059
        struct sighand_struct *sighand;
1060
 
1061
        sigset_t blocked, real_blocked;
1062
        sigset_t saved_sigmask;         /* To be restored with TIF_RESTORE_SIGMASK */
1063
        struct sigpending pending;
1064
 
1065
        unsigned long sas_ss_sp;
1066
        size_t sas_ss_size;
1067
        int (*notifier)(void *priv);
1068
        void *notifier_data;
1069
        sigset_t *notifier_mask;
1070
#ifdef CONFIG_SECURITY
1071
        void *security;
1072
#endif
1073
        struct audit_context *audit_context;
1074
        seccomp_t seccomp;
1075
 
1076
/* Thread group tracking */
1077
        u32 parent_exec_id;
1078
        u32 self_exec_id;
1079
/* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1080
        spinlock_t alloc_lock;
1081
 
1082
        /* Protection of the PI data structures: */
1083
        spinlock_t pi_lock;
1084
 
1085
#ifdef CONFIG_RT_MUTEXES
1086
        /* PI waiters blocked on a rt_mutex held by this task */
1087
        struct plist_head pi_waiters;
1088
        /* Deadlock detection and priority inheritance handling */
1089
        struct rt_mutex_waiter *pi_blocked_on;
1090
#endif
1091
 
1092
#ifdef CONFIG_DEBUG_MUTEXES
1093
        /* mutex deadlock detection */
1094
        struct mutex_waiter *blocked_on;
1095
#endif
1096
#ifdef CONFIG_TRACE_IRQFLAGS
1097
        unsigned int irq_events;
1098
        int hardirqs_enabled;
1099
        unsigned long hardirq_enable_ip;
1100
        unsigned int hardirq_enable_event;
1101
        unsigned long hardirq_disable_ip;
1102
        unsigned int hardirq_disable_event;
1103
        int softirqs_enabled;
1104
        unsigned long softirq_disable_ip;
1105
        unsigned int softirq_disable_event;
1106
        unsigned long softirq_enable_ip;
1107
        unsigned int softirq_enable_event;
1108
        int hardirq_context;
1109
        int softirq_context;
1110
#endif
1111
#ifdef CONFIG_LOCKDEP
1112 82 tac2
# define MAX_LOCK_DEPTH 48UL
1113 62 marcus.erl
        u64 curr_chain_key;
1114
        int lockdep_depth;
1115
        struct held_lock held_locks[MAX_LOCK_DEPTH];
1116
        unsigned int lockdep_recursion;
1117
#endif
1118
 
1119
/* journalling filesystem info */
1120
        void *journal_info;
1121
 
1122
/* stacked block device info */
1123
        struct bio *bio_list, **bio_tail;
1124
 
1125
/* VM state */
1126
        struct reclaim_state *reclaim_state;
1127
 
1128
        struct backing_dev_info *backing_dev_info;
1129
 
1130
        struct io_context *io_context;
1131
 
1132
        unsigned long ptrace_message;
1133
        siginfo_t *last_siginfo; /* For ptrace use.  */
1134
#ifdef CONFIG_TASK_XACCT
1135
/* i/o counters(bytes read/written, #syscalls */
1136
        u64 rchar, wchar, syscr, syscw;
1137
#endif
1138
        struct task_io_accounting ioac;
1139
#if defined(CONFIG_TASK_XACCT)
1140
        u64 acct_rss_mem1;      /* accumulated rss usage */
1141
        u64 acct_vm_mem1;       /* accumulated virtual memory usage */
1142
        cputime_t acct_stimexpd;/* stime since last update */
1143
#endif
1144
#ifdef CONFIG_NUMA
1145
        struct mempolicy *mempolicy;
1146
        short il_next;
1147
#endif
1148
#ifdef CONFIG_CPUSETS
1149
        nodemask_t mems_allowed;
1150
        int cpuset_mems_generation;
1151
        int cpuset_mem_spread_rotor;
1152
#endif
1153
#ifdef CONFIG_CGROUPS
1154
        /* Control Group info protected by css_set_lock */
1155
        struct css_set *cgroups;
1156
        /* cg_list protected by css_set_lock and tsk->alloc_lock */
1157
        struct list_head cg_list;
1158
#endif
1159
#ifdef CONFIG_FUTEX
1160
        struct robust_list_head __user *robust_list;
1161
#ifdef CONFIG_COMPAT
1162
        struct compat_robust_list_head __user *compat_robust_list;
1163
#endif
1164
        struct list_head pi_state_list;
1165
        struct futex_pi_state *pi_state_cache;
1166
#endif
1167
        atomic_t fs_excl;       /* holding fs exclusive resources */
1168
        struct rcu_head rcu;
1169
 
1170
        /*
1171
         * cache last used pipe for splice
1172
         */
1173
        struct pipe_inode_info *splice_pipe;
1174
#ifdef  CONFIG_TASK_DELAY_ACCT
1175
        struct task_delay_info *delays;
1176
#endif
1177
#ifdef CONFIG_FAULT_INJECTION
1178
        int make_it_fail;
1179
#endif
1180
        struct prop_local_single dirties;
1181
};
1182
 
1183
/*
1184
 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1185
 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1186
 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1187
 * values are inverted: lower p->prio value means higher priority.
1188
 *
1189
 * The MAX_USER_RT_PRIO value allows the actual maximum
1190
 * RT priority to be separate from the value exported to
1191
 * user-space.  This allows kernel threads to set their
1192
 * priority to a value higher than any user task. Note:
1193
 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1194
 */
1195
 
1196
#define MAX_USER_RT_PRIO        100
1197
#define MAX_RT_PRIO             MAX_USER_RT_PRIO
1198
 
1199
#define MAX_PRIO                (MAX_RT_PRIO + 40)
1200
#define DEFAULT_PRIO            (MAX_RT_PRIO + 20)
1201
 
1202
static inline int rt_prio(int prio)
1203
{
1204
        if (unlikely(prio < MAX_RT_PRIO))
1205
                return 1;
1206
        return 0;
1207
}
1208
 
1209
static inline int rt_task(struct task_struct *p)
1210
{
1211
        return rt_prio(p->prio);
1212
}
1213
 
1214
static inline void set_task_session(struct task_struct *tsk, pid_t session)
1215
{
1216
        tsk->signal->__session = session;
1217
}
1218
 
1219
static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1220
{
1221
        tsk->signal->__pgrp = pgrp;
1222
}
1223
 
1224
static inline struct pid *task_pid(struct task_struct *task)
1225
{
1226
        return task->pids[PIDTYPE_PID].pid;
1227
}
1228
 
1229
static inline struct pid *task_tgid(struct task_struct *task)
1230
{
1231
        return task->group_leader->pids[PIDTYPE_PID].pid;
1232
}
1233
 
1234
static inline struct pid *task_pgrp(struct task_struct *task)
1235
{
1236
        return task->group_leader->pids[PIDTYPE_PGID].pid;
1237
}
1238
 
1239
static inline struct pid *task_session(struct task_struct *task)
1240
{
1241
        return task->group_leader->pids[PIDTYPE_SID].pid;
1242
}
1243
 
1244
struct pid_namespace;
1245
 
1246
/*
1247
 * the helpers to get the task's different pids as they are seen
1248
 * from various namespaces
1249
 *
1250
 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1251
 * task_xid_vnr()    : virtual id, i.e. the id seen from the namespace the task
1252
 *                     belongs to. this only makes sence when called in the
1253
 *                     context of the task that belongs to the same namespace;
1254
 * task_xid_nr_ns()  : id seen from the ns specified;
1255
 *
1256
 * set_task_vxid()   : assigns a virtual id to a task;
1257
 *
1258
 * see also pid_nr() etc in include/linux/pid.h
1259
 */
1260
 
1261
static inline pid_t task_pid_nr(struct task_struct *tsk)
1262
{
1263
        return tsk->pid;
1264
}
1265
 
1266
pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1267
 
1268
static inline pid_t task_pid_vnr(struct task_struct *tsk)
1269
{
1270
        return pid_vnr(task_pid(tsk));
1271
}
1272
 
1273
 
1274
static inline pid_t task_tgid_nr(struct task_struct *tsk)
1275
{
1276
        return tsk->tgid;
1277
}
1278
 
1279
pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1280
 
1281
static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1282
{
1283
        return pid_vnr(task_tgid(tsk));
1284
}
1285
 
1286
 
1287
static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1288
{
1289
        return tsk->signal->__pgrp;
1290
}
1291
 
1292
pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1293
 
1294
static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1295
{
1296
        return pid_vnr(task_pgrp(tsk));
1297
}
1298
 
1299
 
1300
static inline pid_t task_session_nr(struct task_struct *tsk)
1301
{
1302
        return tsk->signal->__session;
1303
}
1304
 
1305
pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1306
 
1307
static inline pid_t task_session_vnr(struct task_struct *tsk)
1308
{
1309
        return pid_vnr(task_session(tsk));
1310
}
1311
 
1312
 
1313
/**
1314
 * pid_alive - check that a task structure is not stale
1315
 * @p: Task structure to be checked.
1316
 *
1317
 * Test if a process is not yet dead (at most zombie state)
1318
 * If pid_alive fails, then pointers within the task structure
1319
 * can be stale and must not be dereferenced.
1320
 */
1321
static inline int pid_alive(struct task_struct *p)
1322
{
1323
        return p->pids[PIDTYPE_PID].pid != NULL;
1324
}
1325
 
1326
/**
1327
 * is_global_init - check if a task structure is init
1328
 * @tsk: Task structure to be checked.
1329
 *
1330
 * Check if a task structure is the first user space task the kernel created.
1331
 */
1332
static inline int is_global_init(struct task_struct *tsk)
1333
{
1334
        return tsk->pid == 1;
1335
}
1336
 
1337
/*
1338
 * is_container_init:
1339
 * check whether in the task is init in its own pid namespace.
1340
 */
1341
extern int is_container_init(struct task_struct *tsk);
1342
 
1343
extern struct pid *cad_pid;
1344
 
1345
extern void free_task(struct task_struct *tsk);
1346
#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1347
 
1348
extern void __put_task_struct(struct task_struct *t);
1349
 
1350
static inline void put_task_struct(struct task_struct *t)
1351
{
1352
        if (atomic_dec_and_test(&t->usage))
1353
                __put_task_struct(t);
1354
}
1355
 
1356
/*
1357
 * Per process flags
1358
 */
1359
#define PF_ALIGNWARN    0x00000001      /* Print alignment warning msgs */
1360
                                        /* Not implemented yet, only for 486*/
1361
#define PF_STARTING     0x00000002      /* being created */
1362
#define PF_EXITING      0x00000004      /* getting shut down */
1363
#define PF_EXITPIDONE   0x00000008      /* pi exit done on shut down */
1364
#define PF_VCPU         0x00000010      /* I'm a virtual CPU */
1365
#define PF_FORKNOEXEC   0x00000040      /* forked but didn't exec */
1366
#define PF_SUPERPRIV    0x00000100      /* used super-user privileges */
1367
#define PF_DUMPCORE     0x00000200      /* dumped core */
1368
#define PF_SIGNALED     0x00000400      /* killed by a signal */
1369
#define PF_MEMALLOC     0x00000800      /* Allocating memory */
1370
#define PF_FLUSHER      0x00001000      /* responsible for disk writeback */
1371
#define PF_USED_MATH    0x00002000      /* if unset the fpu must be initialized before use */
1372
#define PF_NOFREEZE     0x00008000      /* this thread should not be frozen */
1373
#define PF_FROZEN       0x00010000      /* frozen for system suspend */
1374
#define PF_FSTRANS      0x00020000      /* inside a filesystem transaction */
1375
#define PF_KSWAPD       0x00040000      /* I am kswapd */
1376
#define PF_SWAPOFF      0x00080000      /* I am in swapoff */
1377
#define PF_LESS_THROTTLE 0x00100000     /* Throttle me less: I clean memory */
1378
#define PF_BORROWED_MM  0x00200000      /* I am a kthread doing use_mm */
1379
#define PF_RANDOMIZE    0x00400000      /* randomize virtual address space */
1380
#define PF_SWAPWRITE    0x00800000      /* Allowed to write to swap */
1381
#define PF_SPREAD_PAGE  0x01000000      /* Spread page cache over cpuset */
1382
#define PF_SPREAD_SLAB  0x02000000      /* Spread some slab caches over cpuset */
1383
#define PF_MEMPOLICY    0x10000000      /* Non-default NUMA mempolicy */
1384
#define PF_MUTEX_TESTER 0x20000000      /* Thread belongs to the rt mutex tester */
1385
#define PF_FREEZER_SKIP 0x40000000      /* Freezer should not count it as freezeable */
1386
 
1387
/*
1388
 * Only the _current_ task can read/write to tsk->flags, but other
1389
 * tasks can access tsk->flags in readonly mode for example
1390
 * with tsk_used_math (like during threaded core dumping).
1391
 * There is however an exception to this rule during ptrace
1392
 * or during fork: the ptracer task is allowed to write to the
1393
 * child->flags of its traced child (same goes for fork, the parent
1394
 * can write to the child->flags), because we're guaranteed the
1395
 * child is not running and in turn not changing child->flags
1396
 * at the same time the parent does it.
1397
 */
1398
#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1399
#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1400
#define clear_used_math() clear_stopped_child_used_math(current)
1401
#define set_used_math() set_stopped_child_used_math(current)
1402
#define conditional_stopped_child_used_math(condition, child) \
1403
        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1404
#define conditional_used_math(condition) \
1405
        conditional_stopped_child_used_math(condition, current)
1406
#define copy_to_stopped_child_used_math(child) \
1407
        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1408
/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1409
#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1410
#define used_math() tsk_used_math(current)
1411
 
1412
#ifdef CONFIG_SMP
1413
extern int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask);
1414
#else
1415
static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1416
{
1417
        if (!cpu_isset(0, new_mask))
1418
                return -EINVAL;
1419
        return 0;
1420
}
1421
#endif
1422
 
1423
extern unsigned long long sched_clock(void);
1424
 
1425
/*
1426
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1427
 * clock constructed from sched_clock():
1428
 */
1429
extern unsigned long long cpu_clock(int cpu);
1430
 
1431
extern unsigned long long
1432
task_sched_runtime(struct task_struct *task);
1433
 
1434
/* sched_exec is called by processes performing an exec */
1435
#ifdef CONFIG_SMP
1436
extern void sched_exec(void);
1437
#else
1438
#define sched_exec()   {}
1439
#endif
1440
 
1441
extern void sched_clock_idle_sleep_event(void);
1442
extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1443
 
1444
#ifdef CONFIG_HOTPLUG_CPU
1445
extern void idle_task_exit(void);
1446
#else
1447
static inline void idle_task_exit(void) {}
1448
#endif
1449
 
1450
extern void sched_idle_next(void);
1451
 
1452
#ifdef CONFIG_SCHED_DEBUG
1453
extern unsigned int sysctl_sched_latency;
1454
extern unsigned int sysctl_sched_min_granularity;
1455
extern unsigned int sysctl_sched_wakeup_granularity;
1456
extern unsigned int sysctl_sched_batch_wakeup_granularity;
1457
extern unsigned int sysctl_sched_child_runs_first;
1458
extern unsigned int sysctl_sched_features;
1459
extern unsigned int sysctl_sched_migration_cost;
1460
extern unsigned int sysctl_sched_nr_migrate;
1461
 
1462
int sched_nr_latency_handler(struct ctl_table *table, int write,
1463
                struct file *file, void __user *buffer, size_t *length,
1464
                loff_t *ppos);
1465
#endif
1466
 
1467
extern unsigned int sysctl_sched_compat_yield;
1468
 
1469
#ifdef CONFIG_RT_MUTEXES
1470
extern int rt_mutex_getprio(struct task_struct *p);
1471
extern void rt_mutex_setprio(struct task_struct *p, int prio);
1472
extern void rt_mutex_adjust_pi(struct task_struct *p);
1473
#else
1474
static inline int rt_mutex_getprio(struct task_struct *p)
1475
{
1476
        return p->normal_prio;
1477
}
1478
# define rt_mutex_adjust_pi(p)          do { } while (0)
1479
#endif
1480
 
1481
extern void set_user_nice(struct task_struct *p, long nice);
1482
extern int task_prio(const struct task_struct *p);
1483
extern int task_nice(const struct task_struct *p);
1484
extern int can_nice(const struct task_struct *p, const int nice);
1485
extern int task_curr(const struct task_struct *p);
1486
extern int idle_cpu(int cpu);
1487
extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1488
extern struct task_struct *idle_task(int cpu);
1489
extern struct task_struct *curr_task(int cpu);
1490
extern void set_curr_task(int cpu, struct task_struct *p);
1491
 
1492
void yield(void);
1493
 
1494
/*
1495
 * The default (Linux) execution domain.
1496
 */
1497
extern struct exec_domain       default_exec_domain;
1498
 
1499
union thread_union {
1500
        struct thread_info thread_info;
1501
        unsigned long stack[THREAD_SIZE/sizeof(long)];
1502
};
1503
 
1504
#ifndef __HAVE_ARCH_KSTACK_END
1505
static inline int kstack_end(void *addr)
1506
{
1507
        /* Reliable end of stack detection:
1508
         * Some APM bios versions misalign the stack
1509
         */
1510
        return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1511
}
1512
#endif
1513
 
1514
extern union thread_union init_thread_union;
1515
extern struct task_struct init_task;
1516
 
1517
extern struct   mm_struct init_mm;
1518
 
1519
extern struct pid_namespace init_pid_ns;
1520
 
1521
/*
1522
 * find a task by one of its numerical ids
1523
 *
1524
 * find_task_by_pid_type_ns():
1525
 *      it is the most generic call - it finds a task by all id,
1526
 *      type and namespace specified
1527
 * find_task_by_pid_ns():
1528
 *      finds a task by its pid in the specified namespace
1529
 * find_task_by_vpid():
1530
 *      finds a task by its virtual pid
1531
 * find_task_by_pid():
1532
 *      finds a task by its global pid
1533
 *
1534
 * see also find_pid() etc in include/linux/pid.h
1535
 */
1536
 
1537
extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1538
                struct pid_namespace *ns);
1539
 
1540
extern struct task_struct *find_task_by_pid(pid_t nr);
1541
extern struct task_struct *find_task_by_vpid(pid_t nr);
1542
extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1543
                struct pid_namespace *ns);
1544
 
1545
extern void __set_special_pids(pid_t session, pid_t pgrp);
1546
 
1547
/* per-UID process charging. */
1548
extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1549
static inline struct user_struct *get_uid(struct user_struct *u)
1550
{
1551
        atomic_inc(&u->__count);
1552
        return u;
1553
}
1554
extern void free_uid(struct user_struct *);
1555
extern void switch_uid(struct user_struct *);
1556
extern void release_uids(struct user_namespace *ns);
1557
 
1558
#include <asm/current.h>
1559
 
1560
extern void do_timer(unsigned long ticks);
1561
 
1562
extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state));
1563
extern int FASTCALL(wake_up_process(struct task_struct * tsk));
1564
extern void FASTCALL(wake_up_new_task(struct task_struct * tsk,
1565
                                                unsigned long clone_flags));
1566
#ifdef CONFIG_SMP
1567
 extern void kick_process(struct task_struct *tsk);
1568
#else
1569
 static inline void kick_process(struct task_struct *tsk) { }
1570
#endif
1571
extern void sched_fork(struct task_struct *p, int clone_flags);
1572
extern void sched_dead(struct task_struct *p);
1573
 
1574
extern int in_group_p(gid_t);
1575
extern int in_egroup_p(gid_t);
1576
 
1577
extern void proc_caches_init(void);
1578
extern void flush_signals(struct task_struct *);
1579
extern void ignore_signals(struct task_struct *);
1580
extern void flush_signal_handlers(struct task_struct *, int force_default);
1581
extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1582
 
1583
static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1584
{
1585
        unsigned long flags;
1586
        int ret;
1587
 
1588
        spin_lock_irqsave(&tsk->sighand->siglock, flags);
1589
        ret = dequeue_signal(tsk, mask, info);
1590
        spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1591
 
1592
        return ret;
1593
}
1594
 
1595
extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1596
                              sigset_t *mask);
1597
extern void unblock_all_signals(void);
1598
extern void release_task(struct task_struct * p);
1599
extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1600
extern int send_group_sig_info(int, struct siginfo *, struct task_struct *);
1601
extern int force_sigsegv(int, struct task_struct *);
1602
extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1603
extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1604
extern int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1605
extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1606
extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1607
extern int kill_pgrp(struct pid *pid, int sig, int priv);
1608
extern int kill_pid(struct pid *pid, int sig, int priv);
1609
extern int kill_proc_info(int, struct siginfo *, pid_t);
1610
extern void do_notify_parent(struct task_struct *, int);
1611
extern void force_sig(int, struct task_struct *);
1612
extern void force_sig_specific(int, struct task_struct *);
1613
extern int send_sig(int, struct task_struct *, int);
1614
extern void zap_other_threads(struct task_struct *p);
1615
extern int kill_proc(pid_t, int, int);
1616
extern struct sigqueue *sigqueue_alloc(void);
1617
extern void sigqueue_free(struct sigqueue *);
1618
extern int send_sigqueue(int, struct sigqueue *,  struct task_struct *);
1619
extern int send_group_sigqueue(int, struct sigqueue *,  struct task_struct *);
1620
extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1621
extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1622
 
1623
static inline int kill_cad_pid(int sig, int priv)
1624
{
1625
        return kill_pid(cad_pid, sig, priv);
1626
}
1627
 
1628
/* These can be the second arg to send_sig_info/send_group_sig_info.  */
1629
#define SEND_SIG_NOINFO ((struct siginfo *) 0)
1630
#define SEND_SIG_PRIV   ((struct siginfo *) 1)
1631
#define SEND_SIG_FORCED ((struct siginfo *) 2)
1632
 
1633
static inline int is_si_special(const struct siginfo *info)
1634
{
1635
        return info <= SEND_SIG_FORCED;
1636
}
1637
 
1638
/* True if we are on the alternate signal stack.  */
1639
 
1640
static inline int on_sig_stack(unsigned long sp)
1641
{
1642
        return (sp - current->sas_ss_sp < current->sas_ss_size);
1643
}
1644
 
1645
static inline int sas_ss_flags(unsigned long sp)
1646
{
1647
        return (current->sas_ss_size == 0 ? SS_DISABLE
1648
                : on_sig_stack(sp) ? SS_ONSTACK : 0);
1649
}
1650
 
1651
/*
1652
 * Routines for handling mm_structs
1653
 */
1654
extern struct mm_struct * mm_alloc(void);
1655
 
1656
/* mmdrop drops the mm and the page tables */
1657
extern void FASTCALL(__mmdrop(struct mm_struct *));
1658
static inline void mmdrop(struct mm_struct * mm)
1659
{
1660
        if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1661
                __mmdrop(mm);
1662
}
1663
 
1664
/* mmput gets rid of the mappings and all user-space */
1665
extern void mmput(struct mm_struct *);
1666
/* Grab a reference to a task's mm, if it is not already going away */
1667
extern struct mm_struct *get_task_mm(struct task_struct *task);
1668
/* Remove the current tasks stale references to the old mm_struct */
1669
extern void mm_release(struct task_struct *, struct mm_struct *);
1670
 
1671
extern int  copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1672
extern void flush_thread(void);
1673
extern void exit_thread(void);
1674
 
1675
extern void exit_files(struct task_struct *);
1676
extern void __cleanup_signal(struct signal_struct *);
1677
extern void __cleanup_sighand(struct sighand_struct *);
1678
extern void exit_itimers(struct signal_struct *);
1679
 
1680
extern NORET_TYPE void do_group_exit(int);
1681
 
1682
extern void daemonize(const char *, ...);
1683
extern int allow_signal(int);
1684
extern int disallow_signal(int);
1685
 
1686
extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1687
extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1688
struct task_struct *fork_idle(int);
1689
 
1690
extern void set_task_comm(struct task_struct *tsk, char *from);
1691
extern void get_task_comm(char *to, struct task_struct *tsk);
1692
 
1693
#ifdef CONFIG_SMP
1694
extern void wait_task_inactive(struct task_struct * p);
1695
#else
1696
#define wait_task_inactive(p)   do { } while (0)
1697
#endif
1698
 
1699
#define remove_parent(p)        list_del_init(&(p)->sibling)
1700
#define add_parent(p)           list_add_tail(&(p)->sibling,&(p)->parent->children)
1701
 
1702
#define next_task(p)    list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1703
 
1704
#define for_each_process(p) \
1705
        for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1706
 
1707
/*
1708
 * Careful: do_each_thread/while_each_thread is a double loop so
1709
 *          'break' will not work as expected - use goto instead.
1710
 */
1711
#define do_each_thread(g, t) \
1712
        for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1713
 
1714
#define while_each_thread(g, t) \
1715
        while ((t = next_thread(t)) != g)
1716
 
1717
/* de_thread depends on thread_group_leader not being a pid based check */
1718
#define thread_group_leader(p)  (p == p->group_leader)
1719
 
1720
/* Do to the insanities of de_thread it is possible for a process
1721
 * to have the pid of the thread group leader without actually being
1722
 * the thread group leader.  For iteration through the pids in proc
1723
 * all we care about is that we have a task with the appropriate
1724
 * pid, we don't actually care if we have the right task.
1725
 */
1726
static inline int has_group_leader_pid(struct task_struct *p)
1727
{
1728
        return p->pid == p->tgid;
1729
}
1730
 
1731
static inline
1732
int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1733
{
1734
        return p1->tgid == p2->tgid;
1735
}
1736
 
1737
static inline struct task_struct *next_thread(const struct task_struct *p)
1738
{
1739
        return list_entry(rcu_dereference(p->thread_group.next),
1740
                          struct task_struct, thread_group);
1741
}
1742
 
1743
static inline int thread_group_empty(struct task_struct *p)
1744
{
1745
        return list_empty(&p->thread_group);
1746
}
1747
 
1748
#define delay_group_leader(p) \
1749
                (thread_group_leader(p) && !thread_group_empty(p))
1750
 
1751
/*
1752
 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1753
 * subscriptions and synchronises with wait4().  Also used in procfs.  Also
1754
 * pins the final release of task.io_context.  Also protects ->cpuset and
1755
 * ->cgroup.subsys[].
1756
 *
1757
 * Nests both inside and outside of read_lock(&tasklist_lock).
1758
 * It must not be nested with write_lock_irq(&tasklist_lock),
1759
 * neither inside nor outside.
1760
 */
1761
static inline void task_lock(struct task_struct *p)
1762
{
1763
        spin_lock(&p->alloc_lock);
1764
}
1765
 
1766
static inline void task_unlock(struct task_struct *p)
1767
{
1768
        spin_unlock(&p->alloc_lock);
1769
}
1770
 
1771
extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1772
                                                        unsigned long *flags);
1773
 
1774
static inline void unlock_task_sighand(struct task_struct *tsk,
1775
                                                unsigned long *flags)
1776
{
1777
        spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1778
}
1779
 
1780
#ifndef __HAVE_THREAD_FUNCTIONS
1781
 
1782
#define task_thread_info(task)  ((struct thread_info *)(task)->stack)
1783
#define task_stack_page(task)   ((task)->stack)
1784
 
1785
static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1786
{
1787
        *task_thread_info(p) = *task_thread_info(org);
1788
        task_thread_info(p)->task = p;
1789
}
1790
 
1791
static inline unsigned long *end_of_stack(struct task_struct *p)
1792
{
1793
        return (unsigned long *)(task_thread_info(p) + 1);
1794
}
1795
 
1796
#endif
1797
 
1798
/* set thread flags in other task's structures
1799
 * - see asm/thread_info.h for TIF_xxxx flags available
1800
 */
1801
static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1802
{
1803
        set_ti_thread_flag(task_thread_info(tsk), flag);
1804
}
1805
 
1806
static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1807
{
1808
        clear_ti_thread_flag(task_thread_info(tsk), flag);
1809
}
1810
 
1811
static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1812
{
1813
        return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1814
}
1815
 
1816
static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1817
{
1818
        return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1819
}
1820
 
1821
static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1822
{
1823
        return test_ti_thread_flag(task_thread_info(tsk), flag);
1824
}
1825
 
1826
static inline void set_tsk_need_resched(struct task_struct *tsk)
1827
{
1828
        set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1829
}
1830
 
1831
static inline void clear_tsk_need_resched(struct task_struct *tsk)
1832
{
1833
        clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1834
}
1835
 
1836
static inline int signal_pending(struct task_struct *p)
1837
{
1838
        return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
1839
}
1840
 
1841
static inline int need_resched(void)
1842
{
1843
        return unlikely(test_thread_flag(TIF_NEED_RESCHED));
1844
}
1845
 
1846
/*
1847
 * cond_resched() and cond_resched_lock(): latency reduction via
1848
 * explicit rescheduling in places that are safe. The return
1849
 * value indicates whether a reschedule was done in fact.
1850
 * cond_resched_lock() will drop the spinlock before scheduling,
1851
 * cond_resched_softirq() will enable bhs before scheduling.
1852
 */
1853
extern int cond_resched(void);
1854
extern int cond_resched_lock(spinlock_t * lock);
1855
extern int cond_resched_softirq(void);
1856
 
1857
/*
1858
 * Does a critical section need to be broken due to another
1859
 * task waiting?:
1860
 */
1861
#if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP)
1862
# define need_lockbreak(lock) ((lock)->break_lock)
1863
#else
1864
# define need_lockbreak(lock) 0
1865
#endif
1866
 
1867
/*
1868
 * Does a critical section need to be broken due to another
1869
 * task waiting or preemption being signalled:
1870
 */
1871
static inline int lock_need_resched(spinlock_t *lock)
1872
{
1873
        if (need_lockbreak(lock) || need_resched())
1874
                return 1;
1875
        return 0;
1876
}
1877
 
1878
/*
1879
 * Reevaluate whether the task has signals pending delivery.
1880
 * Wake the task if so.
1881
 * This is required every time the blocked sigset_t changes.
1882
 * callers must hold sighand->siglock.
1883
 */
1884
extern void recalc_sigpending_and_wake(struct task_struct *t);
1885
extern void recalc_sigpending(void);
1886
 
1887
extern void signal_wake_up(struct task_struct *t, int resume_stopped);
1888
 
1889
/*
1890
 * Wrappers for p->thread_info->cpu access. No-op on UP.
1891
 */
1892
#ifdef CONFIG_SMP
1893
 
1894
static inline unsigned int task_cpu(const struct task_struct *p)
1895
{
1896
        return task_thread_info(p)->cpu;
1897
}
1898
 
1899
extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1900
 
1901
#else
1902
 
1903
static inline unsigned int task_cpu(const struct task_struct *p)
1904
{
1905
        return 0;
1906
}
1907
 
1908
static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1909
{
1910
}
1911
 
1912
#endif /* CONFIG_SMP */
1913
 
1914
#ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
1915
extern void arch_pick_mmap_layout(struct mm_struct *mm);
1916
#else
1917
static inline void arch_pick_mmap_layout(struct mm_struct *mm)
1918
{
1919
        mm->mmap_base = TASK_UNMAPPED_BASE;
1920
        mm->get_unmapped_area = arch_get_unmapped_area;
1921
        mm->unmap_area = arch_unmap_area;
1922
}
1923
#endif
1924
 
1925
extern long sched_setaffinity(pid_t pid, cpumask_t new_mask);
1926
extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
1927
 
1928
extern int sched_mc_power_savings, sched_smt_power_savings;
1929
 
1930
extern void normalize_rt_tasks(void);
1931
 
1932
#ifdef CONFIG_FAIR_GROUP_SCHED
1933
 
1934
extern struct task_group init_task_group;
1935
 
1936
extern struct task_group *sched_create_group(void);
1937
extern void sched_destroy_group(struct task_group *tg);
1938
extern void sched_move_task(struct task_struct *tsk);
1939
extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
1940
extern unsigned long sched_group_shares(struct task_group *tg);
1941
 
1942
#endif
1943
 
1944
#ifdef CONFIG_TASK_XACCT
1945
static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
1946
{
1947
        tsk->rchar += amt;
1948
}
1949
 
1950
static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
1951
{
1952
        tsk->wchar += amt;
1953
}
1954
 
1955
static inline void inc_syscr(struct task_struct *tsk)
1956
{
1957
        tsk->syscr++;
1958
}
1959
 
1960
static inline void inc_syscw(struct task_struct *tsk)
1961
{
1962
        tsk->syscw++;
1963
}
1964
#else
1965
static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
1966
{
1967
}
1968
 
1969
static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
1970
{
1971
}
1972
 
1973
static inline void inc_syscr(struct task_struct *tsk)
1974
{
1975
}
1976
 
1977
static inline void inc_syscw(struct task_struct *tsk)
1978
{
1979
}
1980
#endif
1981
 
1982
#ifdef CONFIG_SMP
1983
void migration_init(void);
1984
#else
1985
static inline void migration_init(void)
1986
{
1987
}
1988
#endif
1989
 
1990
#endif /* __KERNEL__ */
1991
 
1992
#endif

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.