OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [include/] [linux/] [skbuff.h] - Blame information for rev 82

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 *      Definitions for the 'struct sk_buff' memory handlers.
3
 *
4
 *      Authors:
5
 *              Alan Cox, <gw4pts@gw4pts.ampr.org>
6
 *              Florian La Roche, <rzsfl@rz.uni-sb.de>
7
 *
8
 *      This program is free software; you can redistribute it and/or
9
 *      modify it under the terms of the GNU General Public License
10
 *      as published by the Free Software Foundation; either version
11
 *      2 of the License, or (at your option) any later version.
12
 */
13
 
14
#ifndef _LINUX_SKBUFF_H
15
#define _LINUX_SKBUFF_H
16
 
17
#include <linux/kernel.h>
18
#include <linux/compiler.h>
19
#include <linux/time.h>
20
#include <linux/cache.h>
21
 
22
#include <asm/atomic.h>
23
#include <asm/types.h>
24
#include <linux/spinlock.h>
25
#include <linux/net.h>
26
#include <linux/textsearch.h>
27
#include <net/checksum.h>
28
#include <linux/rcupdate.h>
29
#include <linux/dmaengine.h>
30
#include <linux/hrtimer.h>
31
 
32
#define HAVE_ALLOC_SKB          /* For the drivers to know */
33
#define HAVE_ALIGNABLE_SKB      /* Ditto 8)                */
34
 
35
/* Don't change this without changing skb_csum_unnecessary! */
36
#define CHECKSUM_NONE 0
37
#define CHECKSUM_UNNECESSARY 1
38
#define CHECKSUM_COMPLETE 2
39
#define CHECKSUM_PARTIAL 3
40
 
41
#define SKB_DATA_ALIGN(X)       (((X) + (SMP_CACHE_BYTES - 1)) & \
42
                                 ~(SMP_CACHE_BYTES - 1))
43
#define SKB_WITH_OVERHEAD(X)    \
44
        ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45
#define SKB_MAX_ORDER(X, ORDER) \
46
        SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47
#define SKB_MAX_HEAD(X)         (SKB_MAX_ORDER((X), 0))
48
#define SKB_MAX_ALLOC           (SKB_MAX_ORDER(0, 2))
49
 
50
/* A. Checksumming of received packets by device.
51
 *
52
 *      NONE: device failed to checksum this packet.
53
 *              skb->csum is undefined.
54
 *
55
 *      UNNECESSARY: device parsed packet and wouldbe verified checksum.
56
 *              skb->csum is undefined.
57
 *            It is bad option, but, unfortunately, many of vendors do this.
58
 *            Apparently with secret goal to sell you new device, when you
59
 *            will add new protocol to your host. F.e. IPv6. 8)
60
 *
61
 *      COMPLETE: the most generic way. Device supplied checksum of _all_
62
 *          the packet as seen by netif_rx in skb->csum.
63
 *          NOTE: Even if device supports only some protocols, but
64
 *          is able to produce some skb->csum, it MUST use COMPLETE,
65
 *          not UNNECESSARY.
66
 *
67
 *      PARTIAL: identical to the case for output below.  This may occur
68
 *          on a packet received directly from another Linux OS, e.g.,
69
 *          a virtualised Linux kernel on the same host.  The packet can
70
 *          be treated in the same way as UNNECESSARY except that on
71
 *          output (i.e., forwarding) the checksum must be filled in
72
 *          by the OS or the hardware.
73
 *
74
 * B. Checksumming on output.
75
 *
76
 *      NONE: skb is checksummed by protocol or csum is not required.
77
 *
78
 *      PARTIAL: device is required to csum packet as seen by hard_start_xmit
79
 *      from skb->csum_start to the end and to record the checksum
80
 *      at skb->csum_start + skb->csum_offset.
81
 *
82
 *      Device must show its capabilities in dev->features, set
83
 *      at device setup time.
84
 *      NETIF_F_HW_CSUM - it is clever device, it is able to checksum
85
 *                        everything.
86
 *      NETIF_F_NO_CSUM - loopback or reliable single hop media.
87
 *      NETIF_F_IP_CSUM - device is dumb. It is able to csum only
88
 *                        TCP/UDP over IPv4. Sigh. Vendors like this
89
 *                        way by an unknown reason. Though, see comment above
90
 *                        about CHECKSUM_UNNECESSARY. 8)
91
 *      NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
92
 *
93
 *      Any questions? No questions, good.              --ANK
94
 */
95
 
96
struct net_device;
97
struct scatterlist;
98
 
99
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
100
struct nf_conntrack {
101
        atomic_t use;
102
};
103
#endif
104
 
105
#ifdef CONFIG_BRIDGE_NETFILTER
106
struct nf_bridge_info {
107
        atomic_t use;
108
        struct net_device *physindev;
109
        struct net_device *physoutdev;
110
#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
111
        struct net_device *netoutdev;
112
#endif
113
        unsigned int mask;
114
        unsigned long data[32 / sizeof(unsigned long)];
115
};
116
#endif
117
 
118
struct sk_buff_head {
119
        /* These two members must be first. */
120
        struct sk_buff  *next;
121
        struct sk_buff  *prev;
122
 
123
        __u32           qlen;
124
        spinlock_t      lock;
125
};
126
 
127
struct sk_buff;
128
 
129
/* To allow 64K frame to be packed as single skb without frag_list */
130
#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
131
 
132
typedef struct skb_frag_struct skb_frag_t;
133
 
134
struct skb_frag_struct {
135
        struct page *page;
136
        __u32 page_offset;
137
        __u32 size;
138
};
139
 
140
/* This data is invariant across clones and lives at
141
 * the end of the header data, ie. at skb->end.
142
 */
143
struct skb_shared_info {
144
        atomic_t        dataref;
145
        unsigned short  nr_frags;
146
        unsigned short  gso_size;
147
        /* Warning: this field is not always filled in (UFO)! */
148
        unsigned short  gso_segs;
149
        unsigned short  gso_type;
150
        __be32          ip6_frag_id;
151
        struct sk_buff  *frag_list;
152
        skb_frag_t      frags[MAX_SKB_FRAGS];
153
};
154
 
155
/* We divide dataref into two halves.  The higher 16 bits hold references
156
 * to the payload part of skb->data.  The lower 16 bits hold references to
157
 * the entire skb->data.  A clone of a headerless skb holds the length of
158
 * the header in skb->hdr_len.
159
 *
160
 * All users must obey the rule that the skb->data reference count must be
161
 * greater than or equal to the payload reference count.
162
 *
163
 * Holding a reference to the payload part means that the user does not
164
 * care about modifications to the header part of skb->data.
165
 */
166
#define SKB_DATAREF_SHIFT 16
167
#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
168
 
169
 
170
enum {
171
        SKB_FCLONE_UNAVAILABLE,
172
        SKB_FCLONE_ORIG,
173
        SKB_FCLONE_CLONE,
174
};
175
 
176
enum {
177
        SKB_GSO_TCPV4 = 1 << 0,
178
        SKB_GSO_UDP = 1 << 1,
179
 
180
        /* This indicates the skb is from an untrusted source. */
181
        SKB_GSO_DODGY = 1 << 2,
182
 
183
        /* This indicates the tcp segment has CWR set. */
184
        SKB_GSO_TCP_ECN = 1 << 3,
185
 
186
        SKB_GSO_TCPV6 = 1 << 4,
187
};
188
 
189
#if BITS_PER_LONG > 32
190
#define NET_SKBUFF_DATA_USES_OFFSET 1
191
#endif
192
 
193
#ifdef NET_SKBUFF_DATA_USES_OFFSET
194
typedef unsigned int sk_buff_data_t;
195
#else
196
typedef unsigned char *sk_buff_data_t;
197
#endif
198
 
199
/**
200
 *      struct sk_buff - socket buffer
201
 *      @next: Next buffer in list
202
 *      @prev: Previous buffer in list
203
 *      @sk: Socket we are owned by
204
 *      @tstamp: Time we arrived
205
 *      @dev: Device we arrived on/are leaving by
206
 *      @transport_header: Transport layer header
207
 *      @network_header: Network layer header
208
 *      @mac_header: Link layer header
209
 *      @dst: destination entry
210
 *      @sp: the security path, used for xfrm
211
 *      @cb: Control buffer. Free for use by every layer. Put private vars here
212
 *      @len: Length of actual data
213
 *      @data_len: Data length
214
 *      @mac_len: Length of link layer header
215
 *      @hdr_len: writable header length of cloned skb
216
 *      @csum: Checksum (must include start/offset pair)
217
 *      @csum_start: Offset from skb->head where checksumming should start
218
 *      @csum_offset: Offset from csum_start where checksum should be stored
219
 *      @local_df: allow local fragmentation
220
 *      @cloned: Head may be cloned (check refcnt to be sure)
221
 *      @nohdr: Payload reference only, must not modify header
222
 *      @pkt_type: Packet class
223
 *      @fclone: skbuff clone status
224
 *      @ip_summed: Driver fed us an IP checksum
225
 *      @priority: Packet queueing priority
226
 *      @users: User count - see {datagram,tcp}.c
227
 *      @protocol: Packet protocol from driver
228
 *      @truesize: Buffer size
229
 *      @head: Head of buffer
230
 *      @data: Data head pointer
231
 *      @tail: Tail pointer
232
 *      @end: End pointer
233
 *      @destructor: Destruct function
234
 *      @mark: Generic packet mark
235
 *      @nfct: Associated connection, if any
236
 *      @ipvs_property: skbuff is owned by ipvs
237
 *      @nf_trace: netfilter packet trace flag
238
 *      @nfctinfo: Relationship of this skb to the connection
239
 *      @nfct_reasm: netfilter conntrack re-assembly pointer
240
 *      @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
241
 *      @iif: ifindex of device we arrived on
242
 *      @queue_mapping: Queue mapping for multiqueue devices
243
 *      @tc_index: Traffic control index
244
 *      @tc_verd: traffic control verdict
245
 *      @dma_cookie: a cookie to one of several possible DMA operations
246
 *              done by skb DMA functions
247
 *      @secmark: security marking
248
 */
249
 
250
struct sk_buff {
251
        /* These two members must be first. */
252
        struct sk_buff          *next;
253
        struct sk_buff          *prev;
254
 
255
        struct sock             *sk;
256
        ktime_t                 tstamp;
257
        struct net_device       *dev;
258
 
259
        struct  dst_entry       *dst;
260
        struct  sec_path        *sp;
261
 
262
        /*
263
         * This is the control buffer. It is free to use for every
264
         * layer. Please put your private variables there. If you
265
         * want to keep them across layers you have to do a skb_clone()
266
         * first. This is owned by whoever has the skb queued ATM.
267
         */
268
        char                    cb[48];
269
 
270
        unsigned int            len,
271
                                data_len;
272
        __u16                   mac_len,
273
                                hdr_len;
274
        union {
275
                __wsum          csum;
276
                struct {
277
                        __u16   csum_start;
278
                        __u16   csum_offset;
279
                };
280
        };
281
        __u32                   priority;
282
        __u8                    local_df:1,
283
                                cloned:1,
284
                                ip_summed:2,
285
                                nohdr:1,
286
                                nfctinfo:3;
287
        __u8                    pkt_type:3,
288
                                fclone:2,
289
                                ipvs_property:1,
290
                                nf_trace:1;
291
        __be16                  protocol;
292
 
293
        void                    (*destructor)(struct sk_buff *skb);
294
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
295
        struct nf_conntrack     *nfct;
296
        struct sk_buff          *nfct_reasm;
297
#endif
298
#ifdef CONFIG_BRIDGE_NETFILTER
299
        struct nf_bridge_info   *nf_bridge;
300
#endif
301
 
302
        int                     iif;
303
#ifdef CONFIG_NETDEVICES_MULTIQUEUE
304
        __u16                   queue_mapping;
305
#endif
306
#ifdef CONFIG_NET_SCHED
307
        __u16                   tc_index;       /* traffic control index */
308
#ifdef CONFIG_NET_CLS_ACT
309
        __u16                   tc_verd;        /* traffic control verdict */
310
#endif
311
#endif
312
        /* 2 byte hole */
313
 
314
#ifdef CONFIG_NET_DMA
315
        dma_cookie_t            dma_cookie;
316
#endif
317
#ifdef CONFIG_NETWORK_SECMARK
318
        __u32                   secmark;
319
#endif
320
 
321
        __u32                   mark;
322
 
323
        sk_buff_data_t          transport_header;
324
        sk_buff_data_t          network_header;
325
        sk_buff_data_t          mac_header;
326
        /* These elements must be at the end, see alloc_skb() for details.  */
327
        sk_buff_data_t          tail;
328
        sk_buff_data_t          end;
329
        unsigned char           *head,
330
                                *data;
331
        unsigned int            truesize;
332
        atomic_t                users;
333
};
334
 
335
#ifdef __KERNEL__
336
/*
337
 *      Handling routines are only of interest to the kernel
338
 */
339
#include <linux/slab.h>
340
 
341
#include <asm/system.h>
342
 
343
extern void kfree_skb(struct sk_buff *skb);
344
extern void            __kfree_skb(struct sk_buff *skb);
345
extern struct sk_buff *__alloc_skb(unsigned int size,
346
                                   gfp_t priority, int fclone, int node);
347
static inline struct sk_buff *alloc_skb(unsigned int size,
348
                                        gfp_t priority)
349
{
350
        return __alloc_skb(size, priority, 0, -1);
351
}
352
 
353
static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
354
                                               gfp_t priority)
355
{
356
        return __alloc_skb(size, priority, 1, -1);
357
}
358
 
359
extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
360
extern struct sk_buff *skb_clone(struct sk_buff *skb,
361
                                 gfp_t priority);
362
extern struct sk_buff *skb_copy(const struct sk_buff *skb,
363
                                gfp_t priority);
364
extern struct sk_buff *pskb_copy(struct sk_buff *skb,
365
                                 gfp_t gfp_mask);
366
extern int             pskb_expand_head(struct sk_buff *skb,
367
                                        int nhead, int ntail,
368
                                        gfp_t gfp_mask);
369
extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
370
                                            unsigned int headroom);
371
extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
372
                                       int newheadroom, int newtailroom,
373
                                       gfp_t priority);
374
extern int             skb_to_sgvec(struct sk_buff *skb,
375
                                    struct scatterlist *sg, int offset,
376
                                    int len);
377
extern int             skb_cow_data(struct sk_buff *skb, int tailbits,
378
                                    struct sk_buff **trailer);
379
extern int             skb_pad(struct sk_buff *skb, int pad);
380
#define dev_kfree_skb(a)        kfree_skb(a)
381
extern void           skb_over_panic(struct sk_buff *skb, int len,
382
                                     void *here);
383
extern void           skb_under_panic(struct sk_buff *skb, int len,
384
                                      void *here);
385
extern void           skb_truesize_bug(struct sk_buff *skb);
386
 
387
static inline void skb_truesize_check(struct sk_buff *skb)
388
{
389
        int len = sizeof(struct sk_buff) + skb->len;
390
 
391
        if (unlikely((int)skb->truesize < len))
392
                skb_truesize_bug(skb);
393
}
394
 
395
extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
396
                        int getfrag(void *from, char *to, int offset,
397
                        int len,int odd, struct sk_buff *skb),
398
                        void *from, int length);
399
 
400
struct skb_seq_state
401
{
402
        __u32           lower_offset;
403
        __u32           upper_offset;
404
        __u32           frag_idx;
405
        __u32           stepped_offset;
406
        struct sk_buff  *root_skb;
407
        struct sk_buff  *cur_skb;
408
        __u8            *frag_data;
409
};
410
 
411
extern void           skb_prepare_seq_read(struct sk_buff *skb,
412
                                           unsigned int from, unsigned int to,
413
                                           struct skb_seq_state *st);
414
extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
415
                                   struct skb_seq_state *st);
416
extern void           skb_abort_seq_read(struct skb_seq_state *st);
417
 
418
extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
419
                                    unsigned int to, struct ts_config *config,
420
                                    struct ts_state *state);
421
 
422
#ifdef NET_SKBUFF_DATA_USES_OFFSET
423
static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
424
{
425
        return skb->head + skb->end;
426
}
427
#else
428
static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
429
{
430
        return skb->end;
431
}
432
#endif
433
 
434
/* Internal */
435
#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
436
 
437
/**
438
 *      skb_queue_empty - check if a queue is empty
439
 *      @list: queue head
440
 *
441
 *      Returns true if the queue is empty, false otherwise.
442
 */
443
static inline int skb_queue_empty(const struct sk_buff_head *list)
444
{
445
        return list->next == (struct sk_buff *)list;
446
}
447
 
448
/**
449
 *      skb_get - reference buffer
450
 *      @skb: buffer to reference
451
 *
452
 *      Makes another reference to a socket buffer and returns a pointer
453
 *      to the buffer.
454
 */
455
static inline struct sk_buff *skb_get(struct sk_buff *skb)
456
{
457
        atomic_inc(&skb->users);
458
        return skb;
459
}
460
 
461
/*
462
 * If users == 1, we are the only owner and are can avoid redundant
463
 * atomic change.
464
 */
465
 
466
/**
467
 *      skb_cloned - is the buffer a clone
468
 *      @skb: buffer to check
469
 *
470
 *      Returns true if the buffer was generated with skb_clone() and is
471
 *      one of multiple shared copies of the buffer. Cloned buffers are
472
 *      shared data so must not be written to under normal circumstances.
473
 */
474
static inline int skb_cloned(const struct sk_buff *skb)
475
{
476
        return skb->cloned &&
477
               (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
478
}
479
 
480
/**
481
 *      skb_header_cloned - is the header a clone
482
 *      @skb: buffer to check
483
 *
484
 *      Returns true if modifying the header part of the buffer requires
485
 *      the data to be copied.
486
 */
487
static inline int skb_header_cloned(const struct sk_buff *skb)
488
{
489
        int dataref;
490
 
491
        if (!skb->cloned)
492
                return 0;
493
 
494
        dataref = atomic_read(&skb_shinfo(skb)->dataref);
495
        dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
496
        return dataref != 1;
497
}
498
 
499
/**
500
 *      skb_header_release - release reference to header
501
 *      @skb: buffer to operate on
502
 *
503
 *      Drop a reference to the header part of the buffer.  This is done
504
 *      by acquiring a payload reference.  You must not read from the header
505
 *      part of skb->data after this.
506
 */
507
static inline void skb_header_release(struct sk_buff *skb)
508
{
509
        BUG_ON(skb->nohdr);
510
        skb->nohdr = 1;
511
        atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
512
}
513
 
514
/**
515
 *      skb_shared - is the buffer shared
516
 *      @skb: buffer to check
517
 *
518
 *      Returns true if more than one person has a reference to this
519
 *      buffer.
520
 */
521
static inline int skb_shared(const struct sk_buff *skb)
522
{
523
        return atomic_read(&skb->users) != 1;
524
}
525
 
526
/**
527
 *      skb_share_check - check if buffer is shared and if so clone it
528
 *      @skb: buffer to check
529
 *      @pri: priority for memory allocation
530
 *
531
 *      If the buffer is shared the buffer is cloned and the old copy
532
 *      drops a reference. A new clone with a single reference is returned.
533
 *      If the buffer is not shared the original buffer is returned. When
534
 *      being called from interrupt status or with spinlocks held pri must
535
 *      be GFP_ATOMIC.
536
 *
537
 *      NULL is returned on a memory allocation failure.
538
 */
539
static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
540
                                              gfp_t pri)
541
{
542
        might_sleep_if(pri & __GFP_WAIT);
543
        if (skb_shared(skb)) {
544
                struct sk_buff *nskb = skb_clone(skb, pri);
545
                kfree_skb(skb);
546
                skb = nskb;
547
        }
548
        return skb;
549
}
550
 
551
/*
552
 *      Copy shared buffers into a new sk_buff. We effectively do COW on
553
 *      packets to handle cases where we have a local reader and forward
554
 *      and a couple of other messy ones. The normal one is tcpdumping
555
 *      a packet thats being forwarded.
556
 */
557
 
558
/**
559
 *      skb_unshare - make a copy of a shared buffer
560
 *      @skb: buffer to check
561
 *      @pri: priority for memory allocation
562
 *
563
 *      If the socket buffer is a clone then this function creates a new
564
 *      copy of the data, drops a reference count on the old copy and returns
565
 *      the new copy with the reference count at 1. If the buffer is not a clone
566
 *      the original buffer is returned. When called with a spinlock held or
567
 *      from interrupt state @pri must be %GFP_ATOMIC
568
 *
569
 *      %NULL is returned on a memory allocation failure.
570
 */
571
static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
572
                                          gfp_t pri)
573
{
574
        might_sleep_if(pri & __GFP_WAIT);
575
        if (skb_cloned(skb)) {
576
                struct sk_buff *nskb = skb_copy(skb, pri);
577
                kfree_skb(skb); /* Free our shared copy */
578
                skb = nskb;
579
        }
580
        return skb;
581
}
582
 
583
/**
584
 *      skb_peek
585
 *      @list_: list to peek at
586
 *
587
 *      Peek an &sk_buff. Unlike most other operations you _MUST_
588
 *      be careful with this one. A peek leaves the buffer on the
589
 *      list and someone else may run off with it. You must hold
590
 *      the appropriate locks or have a private queue to do this.
591
 *
592
 *      Returns %NULL for an empty list or a pointer to the head element.
593
 *      The reference count is not incremented and the reference is therefore
594
 *      volatile. Use with caution.
595
 */
596
static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
597
{
598
        struct sk_buff *list = ((struct sk_buff *)list_)->next;
599
        if (list == (struct sk_buff *)list_)
600
                list = NULL;
601
        return list;
602
}
603
 
604
/**
605
 *      skb_peek_tail
606
 *      @list_: list to peek at
607
 *
608
 *      Peek an &sk_buff. Unlike most other operations you _MUST_
609
 *      be careful with this one. A peek leaves the buffer on the
610
 *      list and someone else may run off with it. You must hold
611
 *      the appropriate locks or have a private queue to do this.
612
 *
613
 *      Returns %NULL for an empty list or a pointer to the tail element.
614
 *      The reference count is not incremented and the reference is therefore
615
 *      volatile. Use with caution.
616
 */
617
static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
618
{
619
        struct sk_buff *list = ((struct sk_buff *)list_)->prev;
620
        if (list == (struct sk_buff *)list_)
621
                list = NULL;
622
        return list;
623
}
624
 
625
/**
626
 *      skb_queue_len   - get queue length
627
 *      @list_: list to measure
628
 *
629
 *      Return the length of an &sk_buff queue.
630
 */
631
static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
632
{
633
        return list_->qlen;
634
}
635
 
636
/*
637
 * This function creates a split out lock class for each invocation;
638
 * this is needed for now since a whole lot of users of the skb-queue
639
 * infrastructure in drivers have different locking usage (in hardirq)
640
 * than the networking core (in softirq only). In the long run either the
641
 * network layer or drivers should need annotation to consolidate the
642
 * main types of usage into 3 classes.
643
 */
644
static inline void skb_queue_head_init(struct sk_buff_head *list)
645
{
646
        spin_lock_init(&list->lock);
647
        list->prev = list->next = (struct sk_buff *)list;
648
        list->qlen = 0;
649
}
650
 
651
static inline void skb_queue_head_init_class(struct sk_buff_head *list,
652
                struct lock_class_key *class)
653
{
654
        skb_queue_head_init(list);
655
        lockdep_set_class(&list->lock, class);
656
}
657
 
658
/*
659
 *      Insert an sk_buff at the start of a list.
660
 *
661
 *      The "__skb_xxxx()" functions are the non-atomic ones that
662
 *      can only be called with interrupts disabled.
663
 */
664
 
665
/**
666
 *      __skb_queue_after - queue a buffer at the list head
667
 *      @list: list to use
668
 *      @prev: place after this buffer
669
 *      @newsk: buffer to queue
670
 *
671
 *      Queue a buffer int the middle of a list. This function takes no locks
672
 *      and you must therefore hold required locks before calling it.
673
 *
674
 *      A buffer cannot be placed on two lists at the same time.
675
 */
676
static inline void __skb_queue_after(struct sk_buff_head *list,
677
                                     struct sk_buff *prev,
678
                                     struct sk_buff *newsk)
679
{
680
        struct sk_buff *next;
681
        list->qlen++;
682
 
683
        next = prev->next;
684
        newsk->next = next;
685
        newsk->prev = prev;
686
        next->prev  = prev->next = newsk;
687
}
688
 
689
/**
690
 *      __skb_queue_head - queue a buffer at the list head
691
 *      @list: list to use
692
 *      @newsk: buffer to queue
693
 *
694
 *      Queue a buffer at the start of a list. This function takes no locks
695
 *      and you must therefore hold required locks before calling it.
696
 *
697
 *      A buffer cannot be placed on two lists at the same time.
698
 */
699
extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
700
static inline void __skb_queue_head(struct sk_buff_head *list,
701
                                    struct sk_buff *newsk)
702
{
703
        __skb_queue_after(list, (struct sk_buff *)list, newsk);
704
}
705
 
706
/**
707
 *      __skb_queue_tail - queue a buffer at the list tail
708
 *      @list: list to use
709
 *      @newsk: buffer to queue
710
 *
711
 *      Queue a buffer at the end of a list. This function takes no locks
712
 *      and you must therefore hold required locks before calling it.
713
 *
714
 *      A buffer cannot be placed on two lists at the same time.
715
 */
716
extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
717
static inline void __skb_queue_tail(struct sk_buff_head *list,
718
                                   struct sk_buff *newsk)
719
{
720
        struct sk_buff *prev, *next;
721
 
722
        list->qlen++;
723
        next = (struct sk_buff *)list;
724
        prev = next->prev;
725
        newsk->next = next;
726
        newsk->prev = prev;
727
        next->prev  = prev->next = newsk;
728
}
729
 
730
 
731
/**
732
 *      __skb_dequeue - remove from the head of the queue
733
 *      @list: list to dequeue from
734
 *
735
 *      Remove the head of the list. This function does not take any locks
736
 *      so must be used with appropriate locks held only. The head item is
737
 *      returned or %NULL if the list is empty.
738
 */
739
extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
740
static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
741
{
742
        struct sk_buff *next, *prev, *result;
743
 
744
        prev = (struct sk_buff *) list;
745
        next = prev->next;
746
        result = NULL;
747
        if (next != prev) {
748
                result       = next;
749
                next         = next->next;
750
                list->qlen--;
751
                next->prev   = prev;
752
                prev->next   = next;
753
                result->next = result->prev = NULL;
754
        }
755
        return result;
756
}
757
 
758
 
759
/*
760
 *      Insert a packet on a list.
761
 */
762
extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
763
static inline void __skb_insert(struct sk_buff *newsk,
764
                                struct sk_buff *prev, struct sk_buff *next,
765
                                struct sk_buff_head *list)
766
{
767
        newsk->next = next;
768
        newsk->prev = prev;
769
        next->prev  = prev->next = newsk;
770
        list->qlen++;
771
}
772
 
773
/*
774
 *      Place a packet after a given packet in a list.
775
 */
776
extern void        skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
777
static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
778
{
779
        __skb_insert(newsk, old, old->next, list);
780
}
781
 
782
/*
783
 * remove sk_buff from list. _Must_ be called atomically, and with
784
 * the list known..
785
 */
786
extern void        skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
787
static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
788
{
789
        struct sk_buff *next, *prev;
790
 
791
        list->qlen--;
792
        next       = skb->next;
793
        prev       = skb->prev;
794
        skb->next  = skb->prev = NULL;
795
        next->prev = prev;
796
        prev->next = next;
797
}
798
 
799
 
800
/* XXX: more streamlined implementation */
801
 
802
/**
803
 *      __skb_dequeue_tail - remove from the tail of the queue
804
 *      @list: list to dequeue from
805
 *
806
 *      Remove the tail of the list. This function does not take any locks
807
 *      so must be used with appropriate locks held only. The tail item is
808
 *      returned or %NULL if the list is empty.
809
 */
810
extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
811
static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
812
{
813
        struct sk_buff *skb = skb_peek_tail(list);
814
        if (skb)
815
                __skb_unlink(skb, list);
816
        return skb;
817
}
818
 
819
 
820
static inline int skb_is_nonlinear(const struct sk_buff *skb)
821
{
822
        return skb->data_len;
823
}
824
 
825
static inline unsigned int skb_headlen(const struct sk_buff *skb)
826
{
827
        return skb->len - skb->data_len;
828
}
829
 
830
static inline int skb_pagelen(const struct sk_buff *skb)
831
{
832
        int i, len = 0;
833
 
834
        for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
835
                len += skb_shinfo(skb)->frags[i].size;
836
        return len + skb_headlen(skb);
837
}
838
 
839
static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
840
                                      struct page *page, int off, int size)
841
{
842
        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
843
 
844
        frag->page                = page;
845
        frag->page_offset         = off;
846
        frag->size                = size;
847
        skb_shinfo(skb)->nr_frags = i + 1;
848
}
849
 
850
#define SKB_PAGE_ASSERT(skb)    BUG_ON(skb_shinfo(skb)->nr_frags)
851
#define SKB_FRAG_ASSERT(skb)    BUG_ON(skb_shinfo(skb)->frag_list)
852
#define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
853
 
854
#ifdef NET_SKBUFF_DATA_USES_OFFSET
855
static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
856
{
857
        return skb->head + skb->tail;
858
}
859
 
860
static inline void skb_reset_tail_pointer(struct sk_buff *skb)
861
{
862
        skb->tail = skb->data - skb->head;
863
}
864
 
865
static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
866
{
867
        skb_reset_tail_pointer(skb);
868
        skb->tail += offset;
869
}
870
#else /* NET_SKBUFF_DATA_USES_OFFSET */
871
static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
872
{
873
        return skb->tail;
874
}
875
 
876
static inline void skb_reset_tail_pointer(struct sk_buff *skb)
877
{
878
        skb->tail = skb->data;
879
}
880
 
881
static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
882
{
883
        skb->tail = skb->data + offset;
884
}
885
 
886
#endif /* NET_SKBUFF_DATA_USES_OFFSET */
887
 
888
/*
889
 *      Add data to an sk_buff
890
 */
891
static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
892
{
893
        unsigned char *tmp = skb_tail_pointer(skb);
894
        SKB_LINEAR_ASSERT(skb);
895
        skb->tail += len;
896
        skb->len  += len;
897
        return tmp;
898
}
899
 
900
/**
901
 *      skb_put - add data to a buffer
902
 *      @skb: buffer to use
903
 *      @len: amount of data to add
904
 *
905
 *      This function extends the used data area of the buffer. If this would
906
 *      exceed the total buffer size the kernel will panic. A pointer to the
907
 *      first byte of the extra data is returned.
908
 */
909
static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
910
{
911
        unsigned char *tmp = skb_tail_pointer(skb);
912
        SKB_LINEAR_ASSERT(skb);
913
        skb->tail += len;
914
        skb->len  += len;
915
        if (unlikely(skb->tail > skb->end))
916
                skb_over_panic(skb, len, current_text_addr());
917
        return tmp;
918
}
919
 
920
static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
921
{
922
        skb->data -= len;
923
        skb->len  += len;
924
        return skb->data;
925
}
926
 
927
/**
928
 *      skb_push - add data to the start of a buffer
929
 *      @skb: buffer to use
930
 *      @len: amount of data to add
931
 *
932
 *      This function extends the used data area of the buffer at the buffer
933
 *      start. If this would exceed the total buffer headroom the kernel will
934
 *      panic. A pointer to the first byte of the extra data is returned.
935
 */
936
static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
937
{
938
        skb->data -= len;
939
        skb->len  += len;
940
        if (unlikely(skb->data<skb->head))
941
                skb_under_panic(skb, len, current_text_addr());
942
        return skb->data;
943
}
944
 
945
static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
946
{
947
        skb->len -= len;
948
        BUG_ON(skb->len < skb->data_len);
949
        return skb->data += len;
950
}
951
 
952
/**
953
 *      skb_pull - remove data from the start of a buffer
954
 *      @skb: buffer to use
955
 *      @len: amount of data to remove
956
 *
957
 *      This function removes data from the start of a buffer, returning
958
 *      the memory to the headroom. A pointer to the next data in the buffer
959
 *      is returned. Once the data has been pulled future pushes will overwrite
960
 *      the old data.
961
 */
962
static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
963
{
964
        return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
965
}
966
 
967
extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
968
 
969
static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
970
{
971
        if (len > skb_headlen(skb) &&
972
            !__pskb_pull_tail(skb, len-skb_headlen(skb)))
973
                return NULL;
974
        skb->len -= len;
975
        return skb->data += len;
976
}
977
 
978
static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
979
{
980
        return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
981
}
982
 
983
static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
984
{
985
        if (likely(len <= skb_headlen(skb)))
986
                return 1;
987
        if (unlikely(len > skb->len))
988
                return 0;
989
        return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
990
}
991
 
992
/**
993
 *      skb_headroom - bytes at buffer head
994
 *      @skb: buffer to check
995
 *
996
 *      Return the number of bytes of free space at the head of an &sk_buff.
997
 */
998
static inline unsigned int skb_headroom(const struct sk_buff *skb)
999
{
1000
        return skb->data - skb->head;
1001
}
1002
 
1003
/**
1004
 *      skb_tailroom - bytes at buffer end
1005
 *      @skb: buffer to check
1006
 *
1007
 *      Return the number of bytes of free space at the tail of an sk_buff
1008
 */
1009
static inline int skb_tailroom(const struct sk_buff *skb)
1010
{
1011
        return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1012
}
1013
 
1014
/**
1015
 *      skb_reserve - adjust headroom
1016
 *      @skb: buffer to alter
1017
 *      @len: bytes to move
1018
 *
1019
 *      Increase the headroom of an empty &sk_buff by reducing the tail
1020
 *      room. This is only allowed for an empty buffer.
1021
 */
1022
static inline void skb_reserve(struct sk_buff *skb, int len)
1023
{
1024
        skb->data += len;
1025
        skb->tail += len;
1026
}
1027
 
1028
#ifdef NET_SKBUFF_DATA_USES_OFFSET
1029
static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1030
{
1031
        return skb->head + skb->transport_header;
1032
}
1033
 
1034
static inline void skb_reset_transport_header(struct sk_buff *skb)
1035
{
1036
        skb->transport_header = skb->data - skb->head;
1037
}
1038
 
1039
static inline void skb_set_transport_header(struct sk_buff *skb,
1040
                                            const int offset)
1041
{
1042
        skb_reset_transport_header(skb);
1043
        skb->transport_header += offset;
1044
}
1045
 
1046
static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1047
{
1048
        return skb->head + skb->network_header;
1049
}
1050
 
1051
static inline void skb_reset_network_header(struct sk_buff *skb)
1052
{
1053
        skb->network_header = skb->data - skb->head;
1054
}
1055
 
1056
static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1057
{
1058
        skb_reset_network_header(skb);
1059
        skb->network_header += offset;
1060
}
1061
 
1062
static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1063
{
1064
        return skb->head + skb->mac_header;
1065
}
1066
 
1067
static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1068
{
1069
        return skb->mac_header != ~0U;
1070
}
1071
 
1072
static inline void skb_reset_mac_header(struct sk_buff *skb)
1073
{
1074
        skb->mac_header = skb->data - skb->head;
1075
}
1076
 
1077
static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1078
{
1079
        skb_reset_mac_header(skb);
1080
        skb->mac_header += offset;
1081
}
1082
 
1083
#else /* NET_SKBUFF_DATA_USES_OFFSET */
1084
 
1085
static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1086
{
1087
        return skb->transport_header;
1088
}
1089
 
1090
static inline void skb_reset_transport_header(struct sk_buff *skb)
1091
{
1092
        skb->transport_header = skb->data;
1093
}
1094
 
1095
static inline void skb_set_transport_header(struct sk_buff *skb,
1096
                                            const int offset)
1097
{
1098
        skb->transport_header = skb->data + offset;
1099
}
1100
 
1101
static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1102
{
1103
        return skb->network_header;
1104
}
1105
 
1106
static inline void skb_reset_network_header(struct sk_buff *skb)
1107
{
1108
        skb->network_header = skb->data;
1109
}
1110
 
1111
static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1112
{
1113
        skb->network_header = skb->data + offset;
1114
}
1115
 
1116
static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1117
{
1118
        return skb->mac_header;
1119
}
1120
 
1121
static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1122
{
1123
        return skb->mac_header != NULL;
1124
}
1125
 
1126
static inline void skb_reset_mac_header(struct sk_buff *skb)
1127
{
1128
        skb->mac_header = skb->data;
1129
}
1130
 
1131
static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1132
{
1133
        skb->mac_header = skb->data + offset;
1134
}
1135
#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1136
 
1137
static inline int skb_transport_offset(const struct sk_buff *skb)
1138
{
1139
        return skb_transport_header(skb) - skb->data;
1140
}
1141
 
1142
static inline u32 skb_network_header_len(const struct sk_buff *skb)
1143
{
1144
        return skb->transport_header - skb->network_header;
1145
}
1146
 
1147
static inline int skb_network_offset(const struct sk_buff *skb)
1148
{
1149
        return skb_network_header(skb) - skb->data;
1150
}
1151
 
1152
/*
1153
 * CPUs often take a performance hit when accessing unaligned memory
1154
 * locations. The actual performance hit varies, it can be small if the
1155
 * hardware handles it or large if we have to take an exception and fix it
1156
 * in software.
1157
 *
1158
 * Since an ethernet header is 14 bytes network drivers often end up with
1159
 * the IP header at an unaligned offset. The IP header can be aligned by
1160
 * shifting the start of the packet by 2 bytes. Drivers should do this
1161
 * with:
1162
 *
1163
 * skb_reserve(NET_IP_ALIGN);
1164
 *
1165
 * The downside to this alignment of the IP header is that the DMA is now
1166
 * unaligned. On some architectures the cost of an unaligned DMA is high
1167
 * and this cost outweighs the gains made by aligning the IP header.
1168
 *
1169
 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1170
 * to be overridden.
1171
 */
1172
#ifndef NET_IP_ALIGN
1173
#define NET_IP_ALIGN    2
1174
#endif
1175
 
1176
/*
1177
 * The networking layer reserves some headroom in skb data (via
1178
 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1179
 * the header has to grow. In the default case, if the header has to grow
1180
 * 16 bytes or less we avoid the reallocation.
1181
 *
1182
 * Unfortunately this headroom changes the DMA alignment of the resulting
1183
 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1184
 * on some architectures. An architecture can override this value,
1185
 * perhaps setting it to a cacheline in size (since that will maintain
1186
 * cacheline alignment of the DMA). It must be a power of 2.
1187
 *
1188
 * Various parts of the networking layer expect at least 16 bytes of
1189
 * headroom, you should not reduce this.
1190
 */
1191
#ifndef NET_SKB_PAD
1192
#define NET_SKB_PAD     16
1193
#endif
1194
 
1195
extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1196
 
1197
static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1198
{
1199
        if (unlikely(skb->data_len)) {
1200
                WARN_ON(1);
1201
                return;
1202
        }
1203
        skb->len = len;
1204
        skb_set_tail_pointer(skb, len);
1205
}
1206
 
1207
/**
1208
 *      skb_trim - remove end from a buffer
1209
 *      @skb: buffer to alter
1210
 *      @len: new length
1211
 *
1212
 *      Cut the length of a buffer down by removing data from the tail. If
1213
 *      the buffer is already under the length specified it is not modified.
1214
 *      The skb must be linear.
1215
 */
1216
static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1217
{
1218
        if (skb->len > len)
1219
                __skb_trim(skb, len);
1220
}
1221
 
1222
 
1223
static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1224
{
1225
        if (skb->data_len)
1226
                return ___pskb_trim(skb, len);
1227
        __skb_trim(skb, len);
1228
        return 0;
1229
}
1230
 
1231
static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1232
{
1233
        return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1234
}
1235
 
1236
/**
1237
 *      pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1238
 *      @skb: buffer to alter
1239
 *      @len: new length
1240
 *
1241
 *      This is identical to pskb_trim except that the caller knows that
1242
 *      the skb is not cloned so we should never get an error due to out-
1243
 *      of-memory.
1244
 */
1245
static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1246
{
1247
        int err = pskb_trim(skb, len);
1248
        BUG_ON(err);
1249
}
1250
 
1251
/**
1252
 *      skb_orphan - orphan a buffer
1253
 *      @skb: buffer to orphan
1254
 *
1255
 *      If a buffer currently has an owner then we call the owner's
1256
 *      destructor function and make the @skb unowned. The buffer continues
1257
 *      to exist but is no longer charged to its former owner.
1258
 */
1259
static inline void skb_orphan(struct sk_buff *skb)
1260
{
1261
        if (skb->destructor)
1262
                skb->destructor(skb);
1263
        skb->destructor = NULL;
1264
        skb->sk         = NULL;
1265
}
1266
 
1267
/**
1268
 *      __skb_queue_purge - empty a list
1269
 *      @list: list to empty
1270
 *
1271
 *      Delete all buffers on an &sk_buff list. Each buffer is removed from
1272
 *      the list and one reference dropped. This function does not take the
1273
 *      list lock and the caller must hold the relevant locks to use it.
1274
 */
1275
extern void skb_queue_purge(struct sk_buff_head *list);
1276
static inline void __skb_queue_purge(struct sk_buff_head *list)
1277
{
1278
        struct sk_buff *skb;
1279
        while ((skb = __skb_dequeue(list)) != NULL)
1280
                kfree_skb(skb);
1281
}
1282
 
1283
/**
1284
 *      __dev_alloc_skb - allocate an skbuff for receiving
1285
 *      @length: length to allocate
1286
 *      @gfp_mask: get_free_pages mask, passed to alloc_skb
1287
 *
1288
 *      Allocate a new &sk_buff and assign it a usage count of one. The
1289
 *      buffer has unspecified headroom built in. Users should allocate
1290
 *      the headroom they think they need without accounting for the
1291
 *      built in space. The built in space is used for optimisations.
1292
 *
1293
 *      %NULL is returned if there is no free memory.
1294
 */
1295
static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1296
                                              gfp_t gfp_mask)
1297
{
1298
        struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1299
        if (likely(skb))
1300
                skb_reserve(skb, NET_SKB_PAD);
1301
        return skb;
1302
}
1303
 
1304
/**
1305
 *      dev_alloc_skb - allocate an skbuff for receiving
1306
 *      @length: length to allocate
1307
 *
1308
 *      Allocate a new &sk_buff and assign it a usage count of one. The
1309
 *      buffer has unspecified headroom built in. Users should allocate
1310
 *      the headroom they think they need without accounting for the
1311
 *      built in space. The built in space is used for optimisations.
1312
 *
1313
 *      %NULL is returned if there is no free memory. Although this function
1314
 *      allocates memory it can be called from an interrupt.
1315
 */
1316
static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1317
{
1318
        return __dev_alloc_skb(length, GFP_ATOMIC);
1319
}
1320
 
1321
extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1322
                unsigned int length, gfp_t gfp_mask);
1323
 
1324
/**
1325
 *      netdev_alloc_skb - allocate an skbuff for rx on a specific device
1326
 *      @dev: network device to receive on
1327
 *      @length: length to allocate
1328
 *
1329
 *      Allocate a new &sk_buff and assign it a usage count of one. The
1330
 *      buffer has unspecified headroom built in. Users should allocate
1331
 *      the headroom they think they need without accounting for the
1332
 *      built in space. The built in space is used for optimisations.
1333
 *
1334
 *      %NULL is returned if there is no free memory. Although this function
1335
 *      allocates memory it can be called from an interrupt.
1336
 */
1337
static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1338
                unsigned int length)
1339
{
1340
        return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1341
}
1342
 
1343
/**
1344
 *      skb_clone_writable - is the header of a clone writable
1345
 *      @skb: buffer to check
1346
 *      @len: length up to which to write
1347
 *
1348
 *      Returns true if modifying the header part of the cloned buffer
1349
 *      does not requires the data to be copied.
1350
 */
1351
static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1352
{
1353
        return !skb_header_cloned(skb) &&
1354
               skb_headroom(skb) + len <= skb->hdr_len;
1355
}
1356
 
1357
static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1358
                            int cloned)
1359
{
1360
        int delta = 0;
1361
 
1362
        if (headroom < NET_SKB_PAD)
1363
                headroom = NET_SKB_PAD;
1364
        if (headroom > skb_headroom(skb))
1365
                delta = headroom - skb_headroom(skb);
1366
 
1367
        if (delta || cloned)
1368
                return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1369
                                        GFP_ATOMIC);
1370
        return 0;
1371
}
1372
 
1373
/**
1374
 *      skb_cow - copy header of skb when it is required
1375
 *      @skb: buffer to cow
1376
 *      @headroom: needed headroom
1377
 *
1378
 *      If the skb passed lacks sufficient headroom or its data part
1379
 *      is shared, data is reallocated. If reallocation fails, an error
1380
 *      is returned and original skb is not changed.
1381
 *
1382
 *      The result is skb with writable area skb->head...skb->tail
1383
 *      and at least @headroom of space at head.
1384
 */
1385
static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1386
{
1387
        return __skb_cow(skb, headroom, skb_cloned(skb));
1388
}
1389
 
1390
/**
1391
 *      skb_cow_head - skb_cow but only making the head writable
1392
 *      @skb: buffer to cow
1393
 *      @headroom: needed headroom
1394
 *
1395
 *      This function is identical to skb_cow except that we replace the
1396
 *      skb_cloned check by skb_header_cloned.  It should be used when
1397
 *      you only need to push on some header and do not need to modify
1398
 *      the data.
1399
 */
1400
static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1401
{
1402
        return __skb_cow(skb, headroom, skb_header_cloned(skb));
1403
}
1404
 
1405
/**
1406
 *      skb_padto       - pad an skbuff up to a minimal size
1407
 *      @skb: buffer to pad
1408
 *      @len: minimal length
1409
 *
1410
 *      Pads up a buffer to ensure the trailing bytes exist and are
1411
 *      blanked. If the buffer already contains sufficient data it
1412
 *      is untouched. Otherwise it is extended. Returns zero on
1413
 *      success. The skb is freed on error.
1414
 */
1415
 
1416
static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1417
{
1418
        unsigned int size = skb->len;
1419
        if (likely(size >= len))
1420
                return 0;
1421
        return skb_pad(skb, len-size);
1422
}
1423
 
1424
static inline int skb_add_data(struct sk_buff *skb,
1425
                               char __user *from, int copy)
1426
{
1427
        const int off = skb->len;
1428
 
1429
        if (skb->ip_summed == CHECKSUM_NONE) {
1430
                int err = 0;
1431
                __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1432
                                                            copy, 0, &err);
1433
                if (!err) {
1434
                        skb->csum = csum_block_add(skb->csum, csum, off);
1435
                        return 0;
1436
                }
1437
        } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1438
                return 0;
1439
 
1440
        __skb_trim(skb, off);
1441
        return -EFAULT;
1442
}
1443
 
1444
static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1445
                                   struct page *page, int off)
1446
{
1447
        if (i) {
1448
                struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1449
 
1450
                return page == frag->page &&
1451
                       off == frag->page_offset + frag->size;
1452
        }
1453
        return 0;
1454
}
1455
 
1456
static inline int __skb_linearize(struct sk_buff *skb)
1457
{
1458
        return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1459
}
1460
 
1461
/**
1462
 *      skb_linearize - convert paged skb to linear one
1463
 *      @skb: buffer to linarize
1464
 *
1465
 *      If there is no free memory -ENOMEM is returned, otherwise zero
1466
 *      is returned and the old skb data released.
1467
 */
1468
static inline int skb_linearize(struct sk_buff *skb)
1469
{
1470
        return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1471
}
1472
 
1473
/**
1474
 *      skb_linearize_cow - make sure skb is linear and writable
1475
 *      @skb: buffer to process
1476
 *
1477
 *      If there is no free memory -ENOMEM is returned, otherwise zero
1478
 *      is returned and the old skb data released.
1479
 */
1480
static inline int skb_linearize_cow(struct sk_buff *skb)
1481
{
1482
        return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1483
               __skb_linearize(skb) : 0;
1484
}
1485
 
1486
/**
1487
 *      skb_postpull_rcsum - update checksum for received skb after pull
1488
 *      @skb: buffer to update
1489
 *      @start: start of data before pull
1490
 *      @len: length of data pulled
1491
 *
1492
 *      After doing a pull on a received packet, you need to call this to
1493
 *      update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1494
 *      CHECKSUM_NONE so that it can be recomputed from scratch.
1495
 */
1496
 
1497
static inline void skb_postpull_rcsum(struct sk_buff *skb,
1498
                                      const void *start, unsigned int len)
1499
{
1500
        if (skb->ip_summed == CHECKSUM_COMPLETE)
1501
                skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1502
}
1503
 
1504
unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1505
 
1506
/**
1507
 *      pskb_trim_rcsum - trim received skb and update checksum
1508
 *      @skb: buffer to trim
1509
 *      @len: new length
1510
 *
1511
 *      This is exactly the same as pskb_trim except that it ensures the
1512
 *      checksum of received packets are still valid after the operation.
1513
 */
1514
 
1515
static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1516
{
1517
        if (likely(len >= skb->len))
1518
                return 0;
1519
        if (skb->ip_summed == CHECKSUM_COMPLETE)
1520
                skb->ip_summed = CHECKSUM_NONE;
1521
        return __pskb_trim(skb, len);
1522
}
1523
 
1524
#define skb_queue_walk(queue, skb) \
1525
                for (skb = (queue)->next;                                       \
1526
                     prefetch(skb->next), (skb != (struct sk_buff *)(queue));   \
1527
                     skb = skb->next)
1528
 
1529
#define skb_queue_walk_safe(queue, skb, tmp)                                    \
1530
                for (skb = (queue)->next, tmp = skb->next;                      \
1531
                     skb != (struct sk_buff *)(queue);                          \
1532
                     skb = tmp, tmp = skb->next)
1533
 
1534
#define skb_queue_reverse_walk(queue, skb) \
1535
                for (skb = (queue)->prev;                                       \
1536
                     prefetch(skb->prev), (skb != (struct sk_buff *)(queue));   \
1537
                     skb = skb->prev)
1538
 
1539
 
1540
extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1541
                                         int noblock, int *err);
1542
extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1543
                                     struct poll_table_struct *wait);
1544
extern int             skb_copy_datagram_iovec(const struct sk_buff *from,
1545
                                               int offset, struct iovec *to,
1546
                                               int size);
1547
extern int             skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1548
                                                        int hlen,
1549
                                                        struct iovec *iov);
1550
extern void            skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1551
extern void            skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1552
                                         unsigned int flags);
1553
extern __wsum          skb_checksum(const struct sk_buff *skb, int offset,
1554
                                    int len, __wsum csum);
1555
extern int             skb_copy_bits(const struct sk_buff *skb, int offset,
1556
                                     void *to, int len);
1557
extern int             skb_store_bits(struct sk_buff *skb, int offset,
1558
                                      const void *from, int len);
1559
extern __wsum          skb_copy_and_csum_bits(const struct sk_buff *skb,
1560
                                              int offset, u8 *to, int len,
1561
                                              __wsum csum);
1562
extern void            skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1563
extern void            skb_split(struct sk_buff *skb,
1564
                                 struct sk_buff *skb1, const u32 len);
1565
 
1566
extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1567
 
1568
static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1569
                                       int len, void *buffer)
1570
{
1571
        int hlen = skb_headlen(skb);
1572
 
1573
        if (hlen - offset >= len)
1574
                return skb->data + offset;
1575
 
1576
        if (skb_copy_bits(skb, offset, buffer, len) < 0)
1577
                return NULL;
1578
 
1579
        return buffer;
1580
}
1581
 
1582
static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1583
                                             void *to,
1584
                                             const unsigned int len)
1585
{
1586
        memcpy(to, skb->data, len);
1587
}
1588
 
1589
static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1590
                                                    const int offset, void *to,
1591
                                                    const unsigned int len)
1592
{
1593
        memcpy(to, skb->data + offset, len);
1594
}
1595
 
1596
static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1597
                                           const void *from,
1598
                                           const unsigned int len)
1599
{
1600
        memcpy(skb->data, from, len);
1601
}
1602
 
1603
static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1604
                                                  const int offset,
1605
                                                  const void *from,
1606
                                                  const unsigned int len)
1607
{
1608
        memcpy(skb->data + offset, from, len);
1609
}
1610
 
1611
extern void skb_init(void);
1612
 
1613
/**
1614
 *      skb_get_timestamp - get timestamp from a skb
1615
 *      @skb: skb to get stamp from
1616
 *      @stamp: pointer to struct timeval to store stamp in
1617
 *
1618
 *      Timestamps are stored in the skb as offsets to a base timestamp.
1619
 *      This function converts the offset back to a struct timeval and stores
1620
 *      it in stamp.
1621
 */
1622
static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1623
{
1624
        *stamp = ktime_to_timeval(skb->tstamp);
1625
}
1626
 
1627
static inline void __net_timestamp(struct sk_buff *skb)
1628
{
1629
        skb->tstamp = ktime_get_real();
1630
}
1631
 
1632
static inline ktime_t net_timedelta(ktime_t t)
1633
{
1634
        return ktime_sub(ktime_get_real(), t);
1635
}
1636
 
1637
static inline ktime_t net_invalid_timestamp(void)
1638
{
1639
        return ktime_set(0, 0);
1640
}
1641
 
1642
extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1643
extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1644
 
1645
static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1646
{
1647
        return skb->ip_summed & CHECKSUM_UNNECESSARY;
1648
}
1649
 
1650
/**
1651
 *      skb_checksum_complete - Calculate checksum of an entire packet
1652
 *      @skb: packet to process
1653
 *
1654
 *      This function calculates the checksum over the entire packet plus
1655
 *      the value of skb->csum.  The latter can be used to supply the
1656
 *      checksum of a pseudo header as used by TCP/UDP.  It returns the
1657
 *      checksum.
1658
 *
1659
 *      For protocols that contain complete checksums such as ICMP/TCP/UDP,
1660
 *      this function can be used to verify that checksum on received
1661
 *      packets.  In that case the function should return zero if the
1662
 *      checksum is correct.  In particular, this function will return zero
1663
 *      if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1664
 *      hardware has already verified the correctness of the checksum.
1665
 */
1666
static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1667
{
1668
        return skb_csum_unnecessary(skb) ?
1669
 
1670
}
1671
 
1672
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1673
extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1674
static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1675
{
1676
        if (nfct && atomic_dec_and_test(&nfct->use))
1677
                nf_conntrack_destroy(nfct);
1678
}
1679
static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1680
{
1681
        if (nfct)
1682
                atomic_inc(&nfct->use);
1683
}
1684
static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1685
{
1686
        if (skb)
1687
                atomic_inc(&skb->users);
1688
}
1689
static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1690
{
1691
        if (skb)
1692
                kfree_skb(skb);
1693
}
1694
#endif
1695
#ifdef CONFIG_BRIDGE_NETFILTER
1696
static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1697
{
1698
        if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1699
                kfree(nf_bridge);
1700
}
1701
static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1702
{
1703
        if (nf_bridge)
1704
                atomic_inc(&nf_bridge->use);
1705
}
1706
#endif /* CONFIG_BRIDGE_NETFILTER */
1707
static inline void nf_reset(struct sk_buff *skb)
1708
{
1709
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1710
        nf_conntrack_put(skb->nfct);
1711
        skb->nfct = NULL;
1712
        nf_conntrack_put_reasm(skb->nfct_reasm);
1713
        skb->nfct_reasm = NULL;
1714
#endif
1715
#ifdef CONFIG_BRIDGE_NETFILTER
1716
        nf_bridge_put(skb->nf_bridge);
1717
        skb->nf_bridge = NULL;
1718
#endif
1719
}
1720
 
1721
/* Note: This doesn't put any conntrack and bridge info in dst. */
1722
static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1723
{
1724
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1725
        dst->nfct = src->nfct;
1726
        nf_conntrack_get(src->nfct);
1727
        dst->nfctinfo = src->nfctinfo;
1728
        dst->nfct_reasm = src->nfct_reasm;
1729
        nf_conntrack_get_reasm(src->nfct_reasm);
1730
#endif
1731
#ifdef CONFIG_BRIDGE_NETFILTER
1732
        dst->nf_bridge  = src->nf_bridge;
1733
        nf_bridge_get(src->nf_bridge);
1734
#endif
1735
}
1736
 
1737
static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1738
{
1739
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1740
        nf_conntrack_put(dst->nfct);
1741
        nf_conntrack_put_reasm(dst->nfct_reasm);
1742
#endif
1743
#ifdef CONFIG_BRIDGE_NETFILTER
1744
        nf_bridge_put(dst->nf_bridge);
1745
#endif
1746
        __nf_copy(dst, src);
1747
}
1748
 
1749
#ifdef CONFIG_NETWORK_SECMARK
1750
static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1751
{
1752
        to->secmark = from->secmark;
1753
}
1754
 
1755
static inline void skb_init_secmark(struct sk_buff *skb)
1756
{
1757
        skb->secmark = 0;
1758
}
1759
#else
1760
static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1761
{ }
1762
 
1763
static inline void skb_init_secmark(struct sk_buff *skb)
1764
{ }
1765
#endif
1766
 
1767
static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1768
{
1769
#ifdef CONFIG_NETDEVICES_MULTIQUEUE
1770
        skb->queue_mapping = queue_mapping;
1771
#endif
1772
}
1773
 
1774
static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
1775
{
1776
#ifdef CONFIG_NETDEVICES_MULTIQUEUE
1777
        return skb->queue_mapping;
1778
#else
1779
        return 0;
1780
#endif
1781
}
1782
 
1783
static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1784
{
1785
#ifdef CONFIG_NETDEVICES_MULTIQUEUE
1786
        to->queue_mapping = from->queue_mapping;
1787
#endif
1788
}
1789
 
1790
static inline int skb_is_gso(const struct sk_buff *skb)
1791
{
1792
        return skb_shinfo(skb)->gso_size;
1793
}
1794
 
1795
static inline int skb_is_gso_v6(const struct sk_buff *skb)
1796
{
1797
        return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
1798
}
1799
 
1800
static inline void skb_forward_csum(struct sk_buff *skb)
1801
{
1802
        /* Unfortunately we don't support this one.  Any brave souls? */
1803
        if (skb->ip_summed == CHECKSUM_COMPLETE)
1804
                skb->ip_summed = CHECKSUM_NONE;
1805
}
1806
 
1807
#endif  /* __KERNEL__ */
1808
#endif  /* _LINUX_SKBUFF_H */

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.