1 |
62 |
marcus.erl |
/*
|
2 |
|
|
* Copyright (C) 2005 David Brownell
|
3 |
|
|
*
|
4 |
|
|
* This program is free software; you can redistribute it and/or modify
|
5 |
|
|
* it under the terms of the GNU General Public License as published by
|
6 |
|
|
* the Free Software Foundation; either version 2 of the License, or
|
7 |
|
|
* (at your option) any later version.
|
8 |
|
|
*
|
9 |
|
|
* This program is distributed in the hope that it will be useful,
|
10 |
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
11 |
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
12 |
|
|
* GNU General Public License for more details.
|
13 |
|
|
*
|
14 |
|
|
* You should have received a copy of the GNU General Public License
|
15 |
|
|
* along with this program; if not, write to the Free Software
|
16 |
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
17 |
|
|
*/
|
18 |
|
|
|
19 |
|
|
#ifndef __LINUX_SPI_H
|
20 |
|
|
#define __LINUX_SPI_H
|
21 |
|
|
|
22 |
|
|
/*
|
23 |
|
|
* INTERFACES between SPI master-side drivers and SPI infrastructure.
|
24 |
|
|
* (There's no SPI slave support for Linux yet...)
|
25 |
|
|
*/
|
26 |
|
|
extern struct bus_type spi_bus_type;
|
27 |
|
|
|
28 |
|
|
/**
|
29 |
|
|
* struct spi_device - Master side proxy for an SPI slave device
|
30 |
|
|
* @dev: Driver model representation of the device.
|
31 |
|
|
* @master: SPI controller used with the device.
|
32 |
|
|
* @max_speed_hz: Maximum clock rate to be used with this chip
|
33 |
|
|
* (on this board); may be changed by the device's driver.
|
34 |
|
|
* The spi_transfer.speed_hz can override this for each transfer.
|
35 |
|
|
* @chip_select: Chipselect, distinguishing chips handled by @master.
|
36 |
|
|
* @mode: The spi mode defines how data is clocked out and in.
|
37 |
|
|
* This may be changed by the device's driver.
|
38 |
|
|
* The "active low" default for chipselect mode can be overridden
|
39 |
|
|
* (by specifying SPI_CS_HIGH) as can the "MSB first" default for
|
40 |
|
|
* each word in a transfer (by specifying SPI_LSB_FIRST).
|
41 |
|
|
* @bits_per_word: Data transfers involve one or more words; word sizes
|
42 |
|
|
* like eight or 12 bits are common. In-memory wordsizes are
|
43 |
|
|
* powers of two bytes (e.g. 20 bit samples use 32 bits).
|
44 |
|
|
* This may be changed by the device's driver, or left at the
|
45 |
|
|
* default (0) indicating protocol words are eight bit bytes.
|
46 |
|
|
* The spi_transfer.bits_per_word can override this for each transfer.
|
47 |
|
|
* @irq: Negative, or the number passed to request_irq() to receive
|
48 |
|
|
* interrupts from this device.
|
49 |
|
|
* @controller_state: Controller's runtime state
|
50 |
|
|
* @controller_data: Board-specific definitions for controller, such as
|
51 |
|
|
* FIFO initialization parameters; from board_info.controller_data
|
52 |
|
|
* @modalias: Name of the driver to use with this device, or an alias
|
53 |
|
|
* for that name. This appears in the sysfs "modalias" attribute
|
54 |
|
|
* for driver coldplugging, and in uevents used for hotplugging
|
55 |
|
|
*
|
56 |
|
|
* A @spi_device is used to interchange data between an SPI slave
|
57 |
|
|
* (usually a discrete chip) and CPU memory.
|
58 |
|
|
*
|
59 |
|
|
* In @dev, the platform_data is used to hold information about this
|
60 |
|
|
* device that's meaningful to the device's protocol driver, but not
|
61 |
|
|
* to its controller. One example might be an identifier for a chip
|
62 |
|
|
* variant with slightly different functionality; another might be
|
63 |
|
|
* information about how this particular board wires the chip's pins.
|
64 |
|
|
*/
|
65 |
|
|
struct spi_device {
|
66 |
|
|
struct device dev;
|
67 |
|
|
struct spi_master *master;
|
68 |
|
|
u32 max_speed_hz;
|
69 |
|
|
u8 chip_select;
|
70 |
|
|
u8 mode;
|
71 |
|
|
#define SPI_CPHA 0x01 /* clock phase */
|
72 |
|
|
#define SPI_CPOL 0x02 /* clock polarity */
|
73 |
|
|
#define SPI_MODE_0 (0|0) /* (original MicroWire) */
|
74 |
|
|
#define SPI_MODE_1 (0|SPI_CPHA)
|
75 |
|
|
#define SPI_MODE_2 (SPI_CPOL|0)
|
76 |
|
|
#define SPI_MODE_3 (SPI_CPOL|SPI_CPHA)
|
77 |
|
|
#define SPI_CS_HIGH 0x04 /* chipselect active high? */
|
78 |
|
|
#define SPI_LSB_FIRST 0x08 /* per-word bits-on-wire */
|
79 |
|
|
#define SPI_3WIRE 0x10 /* SI/SO signals shared */
|
80 |
|
|
#define SPI_LOOP 0x20 /* loopback mode */
|
81 |
|
|
u8 bits_per_word;
|
82 |
|
|
int irq;
|
83 |
|
|
void *controller_state;
|
84 |
|
|
void *controller_data;
|
85 |
|
|
const char *modalias;
|
86 |
|
|
|
87 |
|
|
/*
|
88 |
|
|
* likely need more hooks for more protocol options affecting how
|
89 |
|
|
* the controller talks to each chip, like:
|
90 |
|
|
* - memory packing (12 bit samples into low bits, others zeroed)
|
91 |
|
|
* - priority
|
92 |
|
|
* - drop chipselect after each word
|
93 |
|
|
* - chipselect delays
|
94 |
|
|
* - ...
|
95 |
|
|
*/
|
96 |
|
|
};
|
97 |
|
|
|
98 |
|
|
static inline struct spi_device *to_spi_device(struct device *dev)
|
99 |
|
|
{
|
100 |
|
|
return dev ? container_of(dev, struct spi_device, dev) : NULL;
|
101 |
|
|
}
|
102 |
|
|
|
103 |
|
|
/* most drivers won't need to care about device refcounting */
|
104 |
|
|
static inline struct spi_device *spi_dev_get(struct spi_device *spi)
|
105 |
|
|
{
|
106 |
|
|
return (spi && get_device(&spi->dev)) ? spi : NULL;
|
107 |
|
|
}
|
108 |
|
|
|
109 |
|
|
static inline void spi_dev_put(struct spi_device *spi)
|
110 |
|
|
{
|
111 |
|
|
if (spi)
|
112 |
|
|
put_device(&spi->dev);
|
113 |
|
|
}
|
114 |
|
|
|
115 |
|
|
/* ctldata is for the bus_master driver's runtime state */
|
116 |
|
|
static inline void *spi_get_ctldata(struct spi_device *spi)
|
117 |
|
|
{
|
118 |
|
|
return spi->controller_state;
|
119 |
|
|
}
|
120 |
|
|
|
121 |
|
|
static inline void spi_set_ctldata(struct spi_device *spi, void *state)
|
122 |
|
|
{
|
123 |
|
|
spi->controller_state = state;
|
124 |
|
|
}
|
125 |
|
|
|
126 |
|
|
/* device driver data */
|
127 |
|
|
|
128 |
|
|
static inline void spi_set_drvdata(struct spi_device *spi, void *data)
|
129 |
|
|
{
|
130 |
|
|
dev_set_drvdata(&spi->dev, data);
|
131 |
|
|
}
|
132 |
|
|
|
133 |
|
|
static inline void *spi_get_drvdata(struct spi_device *spi)
|
134 |
|
|
{
|
135 |
|
|
return dev_get_drvdata(&spi->dev);
|
136 |
|
|
}
|
137 |
|
|
|
138 |
|
|
struct spi_message;
|
139 |
|
|
|
140 |
|
|
|
141 |
|
|
|
142 |
|
|
/**
|
143 |
|
|
* struct spi_driver - Host side "protocol" driver
|
144 |
|
|
* @probe: Binds this driver to the spi device. Drivers can verify
|
145 |
|
|
* that the device is actually present, and may need to configure
|
146 |
|
|
* characteristics (such as bits_per_word) which weren't needed for
|
147 |
|
|
* the initial configuration done during system setup.
|
148 |
|
|
* @remove: Unbinds this driver from the spi device
|
149 |
|
|
* @shutdown: Standard shutdown callback used during system state
|
150 |
|
|
* transitions such as powerdown/halt and kexec
|
151 |
|
|
* @suspend: Standard suspend callback used during system state transitions
|
152 |
|
|
* @resume: Standard resume callback used during system state transitions
|
153 |
|
|
* @driver: SPI device drivers should initialize the name and owner
|
154 |
|
|
* field of this structure.
|
155 |
|
|
*
|
156 |
|
|
* This represents the kind of device driver that uses SPI messages to
|
157 |
|
|
* interact with the hardware at the other end of a SPI link. It's called
|
158 |
|
|
* a "protocol" driver because it works through messages rather than talking
|
159 |
|
|
* directly to SPI hardware (which is what the underlying SPI controller
|
160 |
|
|
* driver does to pass those messages). These protocols are defined in the
|
161 |
|
|
* specification for the device(s) supported by the driver.
|
162 |
|
|
*
|
163 |
|
|
* As a rule, those device protocols represent the lowest level interface
|
164 |
|
|
* supported by a driver, and it will support upper level interfaces too.
|
165 |
|
|
* Examples of such upper levels include frameworks like MTD, networking,
|
166 |
|
|
* MMC, RTC, filesystem character device nodes, and hardware monitoring.
|
167 |
|
|
*/
|
168 |
|
|
struct spi_driver {
|
169 |
|
|
int (*probe)(struct spi_device *spi);
|
170 |
|
|
int (*remove)(struct spi_device *spi);
|
171 |
|
|
void (*shutdown)(struct spi_device *spi);
|
172 |
|
|
int (*suspend)(struct spi_device *spi, pm_message_t mesg);
|
173 |
|
|
int (*resume)(struct spi_device *spi);
|
174 |
|
|
struct device_driver driver;
|
175 |
|
|
};
|
176 |
|
|
|
177 |
|
|
static inline struct spi_driver *to_spi_driver(struct device_driver *drv)
|
178 |
|
|
{
|
179 |
|
|
return drv ? container_of(drv, struct spi_driver, driver) : NULL;
|
180 |
|
|
}
|
181 |
|
|
|
182 |
|
|
extern int spi_register_driver(struct spi_driver *sdrv);
|
183 |
|
|
|
184 |
|
|
/**
|
185 |
|
|
* spi_unregister_driver - reverse effect of spi_register_driver
|
186 |
|
|
* @sdrv: the driver to unregister
|
187 |
|
|
* Context: can sleep
|
188 |
|
|
*/
|
189 |
|
|
static inline void spi_unregister_driver(struct spi_driver *sdrv)
|
190 |
|
|
{
|
191 |
|
|
if (sdrv)
|
192 |
|
|
driver_unregister(&sdrv->driver);
|
193 |
|
|
}
|
194 |
|
|
|
195 |
|
|
|
196 |
|
|
/**
|
197 |
|
|
* struct spi_master - interface to SPI master controller
|
198 |
|
|
* @dev: device interface to this driver
|
199 |
|
|
* @bus_num: board-specific (and often SOC-specific) identifier for a
|
200 |
|
|
* given SPI controller.
|
201 |
|
|
* @num_chipselect: chipselects are used to distinguish individual
|
202 |
|
|
* SPI slaves, and are numbered from zero to num_chipselects.
|
203 |
|
|
* each slave has a chipselect signal, but it's common that not
|
204 |
|
|
* every chipselect is connected to a slave.
|
205 |
|
|
* @setup: updates the device mode and clocking records used by a
|
206 |
|
|
* device's SPI controller; protocol code may call this. This
|
207 |
|
|
* must fail if an unrecognized or unsupported mode is requested.
|
208 |
|
|
* It's always safe to call this unless transfers are pending on
|
209 |
|
|
* the device whose settings are being modified.
|
210 |
|
|
* @transfer: adds a message to the controller's transfer queue.
|
211 |
|
|
* @cleanup: frees controller-specific state
|
212 |
|
|
*
|
213 |
|
|
* Each SPI master controller can communicate with one or more @spi_device
|
214 |
|
|
* children. These make a small bus, sharing MOSI, MISO and SCK signals
|
215 |
|
|
* but not chip select signals. Each device may be configured to use a
|
216 |
|
|
* different clock rate, since those shared signals are ignored unless
|
217 |
|
|
* the chip is selected.
|
218 |
|
|
*
|
219 |
|
|
* The driver for an SPI controller manages access to those devices through
|
220 |
|
|
* a queue of spi_message transactions, copying data between CPU memory and
|
221 |
|
|
* an SPI slave device. For each such message it queues, it calls the
|
222 |
|
|
* message's completion function when the transaction completes.
|
223 |
|
|
*/
|
224 |
|
|
struct spi_master {
|
225 |
|
|
struct device dev;
|
226 |
|
|
|
227 |
|
|
/* other than negative (== assign one dynamically), bus_num is fully
|
228 |
|
|
* board-specific. usually that simplifies to being SOC-specific.
|
229 |
|
|
* example: one SOC has three SPI controllers, numbered 0..2,
|
230 |
|
|
* and one board's schematics might show it using SPI-2. software
|
231 |
|
|
* would normally use bus_num=2 for that controller.
|
232 |
|
|
*/
|
233 |
|
|
s16 bus_num;
|
234 |
|
|
|
235 |
|
|
/* chipselects will be integral to many controllers; some others
|
236 |
|
|
* might use board-specific GPIOs.
|
237 |
|
|
*/
|
238 |
|
|
u16 num_chipselect;
|
239 |
|
|
|
240 |
|
|
/* setup mode and clock, etc (spi driver may call many times) */
|
241 |
|
|
int (*setup)(struct spi_device *spi);
|
242 |
|
|
|
243 |
|
|
/* bidirectional bulk transfers
|
244 |
|
|
*
|
245 |
|
|
* + The transfer() method may not sleep; its main role is
|
246 |
|
|
* just to add the message to the queue.
|
247 |
|
|
* + For now there's no remove-from-queue operation, or
|
248 |
|
|
* any other request management
|
249 |
|
|
* + To a given spi_device, message queueing is pure fifo
|
250 |
|
|
*
|
251 |
|
|
* + The master's main job is to process its message queue,
|
252 |
|
|
* selecting a chip then transferring data
|
253 |
|
|
* + If there are multiple spi_device children, the i/o queue
|
254 |
|
|
* arbitration algorithm is unspecified (round robin, fifo,
|
255 |
|
|
* priority, reservations, preemption, etc)
|
256 |
|
|
*
|
257 |
|
|
* + Chipselect stays active during the entire message
|
258 |
|
|
* (unless modified by spi_transfer.cs_change != 0).
|
259 |
|
|
* + The message transfers use clock and SPI mode parameters
|
260 |
|
|
* previously established by setup() for this device
|
261 |
|
|
*/
|
262 |
|
|
int (*transfer)(struct spi_device *spi,
|
263 |
|
|
struct spi_message *mesg);
|
264 |
|
|
|
265 |
|
|
/* called on release() to free memory provided by spi_master */
|
266 |
|
|
void (*cleanup)(struct spi_device *spi);
|
267 |
|
|
};
|
268 |
|
|
|
269 |
|
|
static inline void *spi_master_get_devdata(struct spi_master *master)
|
270 |
|
|
{
|
271 |
|
|
return dev_get_drvdata(&master->dev);
|
272 |
|
|
}
|
273 |
|
|
|
274 |
|
|
static inline void spi_master_set_devdata(struct spi_master *master, void *data)
|
275 |
|
|
{
|
276 |
|
|
dev_set_drvdata(&master->dev, data);
|
277 |
|
|
}
|
278 |
|
|
|
279 |
|
|
static inline struct spi_master *spi_master_get(struct spi_master *master)
|
280 |
|
|
{
|
281 |
|
|
if (!master || !get_device(&master->dev))
|
282 |
|
|
return NULL;
|
283 |
|
|
return master;
|
284 |
|
|
}
|
285 |
|
|
|
286 |
|
|
static inline void spi_master_put(struct spi_master *master)
|
287 |
|
|
{
|
288 |
|
|
if (master)
|
289 |
|
|
put_device(&master->dev);
|
290 |
|
|
}
|
291 |
|
|
|
292 |
|
|
|
293 |
|
|
/* the spi driver core manages memory for the spi_master classdev */
|
294 |
|
|
extern struct spi_master *
|
295 |
|
|
spi_alloc_master(struct device *host, unsigned size);
|
296 |
|
|
|
297 |
|
|
extern int spi_register_master(struct spi_master *master);
|
298 |
|
|
extern void spi_unregister_master(struct spi_master *master);
|
299 |
|
|
|
300 |
|
|
extern struct spi_master *spi_busnum_to_master(u16 busnum);
|
301 |
|
|
|
302 |
|
|
/*---------------------------------------------------------------------------*/
|
303 |
|
|
|
304 |
|
|
/*
|
305 |
|
|
* I/O INTERFACE between SPI controller and protocol drivers
|
306 |
|
|
*
|
307 |
|
|
* Protocol drivers use a queue of spi_messages, each transferring data
|
308 |
|
|
* between the controller and memory buffers.
|
309 |
|
|
*
|
310 |
|
|
* The spi_messages themselves consist of a series of read+write transfer
|
311 |
|
|
* segments. Those segments always read the same number of bits as they
|
312 |
|
|
* write; but one or the other is easily ignored by passing a null buffer
|
313 |
|
|
* pointer. (This is unlike most types of I/O API, because SPI hardware
|
314 |
|
|
* is full duplex.)
|
315 |
|
|
*
|
316 |
|
|
* NOTE: Allocation of spi_transfer and spi_message memory is entirely
|
317 |
|
|
* up to the protocol driver, which guarantees the integrity of both (as
|
318 |
|
|
* well as the data buffers) for as long as the message is queued.
|
319 |
|
|
*/
|
320 |
|
|
|
321 |
|
|
/**
|
322 |
|
|
* struct spi_transfer - a read/write buffer pair
|
323 |
|
|
* @tx_buf: data to be written (dma-safe memory), or NULL
|
324 |
|
|
* @rx_buf: data to be read (dma-safe memory), or NULL
|
325 |
|
|
* @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped
|
326 |
|
|
* @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped
|
327 |
|
|
* @len: size of rx and tx buffers (in bytes)
|
328 |
|
|
* @speed_hz: Select a speed other then the device default for this
|
329 |
|
|
* transfer. If 0 the default (from @spi_device) is used.
|
330 |
|
|
* @bits_per_word: select a bits_per_word other then the device default
|
331 |
|
|
* for this transfer. If 0 the default (from @spi_device) is used.
|
332 |
|
|
* @cs_change: affects chipselect after this transfer completes
|
333 |
|
|
* @delay_usecs: microseconds to delay after this transfer before
|
334 |
|
|
* (optionally) changing the chipselect status, then starting
|
335 |
|
|
* the next transfer or completing this @spi_message.
|
336 |
|
|
* @transfer_list: transfers are sequenced through @spi_message.transfers
|
337 |
|
|
*
|
338 |
|
|
* SPI transfers always write the same number of bytes as they read.
|
339 |
|
|
* Protocol drivers should always provide @rx_buf and/or @tx_buf.
|
340 |
|
|
* In some cases, they may also want to provide DMA addresses for
|
341 |
|
|
* the data being transferred; that may reduce overhead, when the
|
342 |
|
|
* underlying driver uses dma.
|
343 |
|
|
*
|
344 |
|
|
* If the transmit buffer is null, zeroes will be shifted out
|
345 |
|
|
* while filling @rx_buf. If the receive buffer is null, the data
|
346 |
|
|
* shifted in will be discarded. Only "len" bytes shift out (or in).
|
347 |
|
|
* It's an error to try to shift out a partial word. (For example, by
|
348 |
|
|
* shifting out three bytes with word size of sixteen or twenty bits;
|
349 |
|
|
* the former uses two bytes per word, the latter uses four bytes.)
|
350 |
|
|
*
|
351 |
|
|
* In-memory data values are always in native CPU byte order, translated
|
352 |
|
|
* from the wire byte order (big-endian except with SPI_LSB_FIRST). So
|
353 |
|
|
* for example when bits_per_word is sixteen, buffers are 2N bytes long
|
354 |
|
|
* (@len = 2N) and hold N sixteen bit words in CPU byte order.
|
355 |
|
|
*
|
356 |
|
|
* When the word size of the SPI transfer is not a power-of-two multiple
|
357 |
|
|
* of eight bits, those in-memory words include extra bits. In-memory
|
358 |
|
|
* words are always seen by protocol drivers as right-justified, so the
|
359 |
|
|
* undefined (rx) or unused (tx) bits are always the most significant bits.
|
360 |
|
|
*
|
361 |
|
|
* All SPI transfers start with the relevant chipselect active. Normally
|
362 |
|
|
* it stays selected until after the last transfer in a message. Drivers
|
363 |
|
|
* can affect the chipselect signal using cs_change.
|
364 |
|
|
*
|
365 |
|
|
* (i) If the transfer isn't the last one in the message, this flag is
|
366 |
|
|
* used to make the chipselect briefly go inactive in the middle of the
|
367 |
|
|
* message. Toggling chipselect in this way may be needed to terminate
|
368 |
|
|
* a chip command, letting a single spi_message perform all of group of
|
369 |
|
|
* chip transactions together.
|
370 |
|
|
*
|
371 |
|
|
* (ii) When the transfer is the last one in the message, the chip may
|
372 |
|
|
* stay selected until the next transfer. On multi-device SPI busses
|
373 |
|
|
* with nothing blocking messages going to other devices, this is just
|
374 |
|
|
* a performance hint; starting a message to another device deselects
|
375 |
|
|
* this one. But in other cases, this can be used to ensure correctness.
|
376 |
|
|
* Some devices need protocol transactions to be built from a series of
|
377 |
|
|
* spi_message submissions, where the content of one message is determined
|
378 |
|
|
* by the results of previous messages and where the whole transaction
|
379 |
|
|
* ends when the chipselect goes intactive.
|
380 |
|
|
*
|
381 |
|
|
* The code that submits an spi_message (and its spi_transfers)
|
382 |
|
|
* to the lower layers is responsible for managing its memory.
|
383 |
|
|
* Zero-initialize every field you don't set up explicitly, to
|
384 |
|
|
* insulate against future API updates. After you submit a message
|
385 |
|
|
* and its transfers, ignore them until its completion callback.
|
386 |
|
|
*/
|
387 |
|
|
struct spi_transfer {
|
388 |
|
|
/* it's ok if tx_buf == rx_buf (right?)
|
389 |
|
|
* for MicroWire, one buffer must be null
|
390 |
|
|
* buffers must work with dma_*map_single() calls, unless
|
391 |
|
|
* spi_message.is_dma_mapped reports a pre-existing mapping
|
392 |
|
|
*/
|
393 |
|
|
const void *tx_buf;
|
394 |
|
|
void *rx_buf;
|
395 |
|
|
unsigned len;
|
396 |
|
|
|
397 |
|
|
dma_addr_t tx_dma;
|
398 |
|
|
dma_addr_t rx_dma;
|
399 |
|
|
|
400 |
|
|
unsigned cs_change:1;
|
401 |
|
|
u8 bits_per_word;
|
402 |
|
|
u16 delay_usecs;
|
403 |
|
|
u32 speed_hz;
|
404 |
|
|
|
405 |
|
|
struct list_head transfer_list;
|
406 |
|
|
};
|
407 |
|
|
|
408 |
|
|
/**
|
409 |
|
|
* struct spi_message - one multi-segment SPI transaction
|
410 |
|
|
* @transfers: list of transfer segments in this transaction
|
411 |
|
|
* @spi: SPI device to which the transaction is queued
|
412 |
|
|
* @is_dma_mapped: if true, the caller provided both dma and cpu virtual
|
413 |
|
|
* addresses for each transfer buffer
|
414 |
|
|
* @complete: called to report transaction completions
|
415 |
|
|
* @context: the argument to complete() when it's called
|
416 |
|
|
* @actual_length: the total number of bytes that were transferred in all
|
417 |
|
|
* successful segments
|
418 |
|
|
* @status: zero for success, else negative errno
|
419 |
|
|
* @queue: for use by whichever driver currently owns the message
|
420 |
|
|
* @state: for use by whichever driver currently owns the message
|
421 |
|
|
*
|
422 |
|
|
* A @spi_message is used to execute an atomic sequence of data transfers,
|
423 |
|
|
* each represented by a struct spi_transfer. The sequence is "atomic"
|
424 |
|
|
* in the sense that no other spi_message may use that SPI bus until that
|
425 |
|
|
* sequence completes. On some systems, many such sequences can execute as
|
426 |
|
|
* as single programmed DMA transfer. On all systems, these messages are
|
427 |
|
|
* queued, and might complete after transactions to other devices. Messages
|
428 |
|
|
* sent to a given spi_device are alway executed in FIFO order.
|
429 |
|
|
*
|
430 |
|
|
* The code that submits an spi_message (and its spi_transfers)
|
431 |
|
|
* to the lower layers is responsible for managing its memory.
|
432 |
|
|
* Zero-initialize every field you don't set up explicitly, to
|
433 |
|
|
* insulate against future API updates. After you submit a message
|
434 |
|
|
* and its transfers, ignore them until its completion callback.
|
435 |
|
|
*/
|
436 |
|
|
struct spi_message {
|
437 |
|
|
struct list_head transfers;
|
438 |
|
|
|
439 |
|
|
struct spi_device *spi;
|
440 |
|
|
|
441 |
|
|
unsigned is_dma_mapped:1;
|
442 |
|
|
|
443 |
|
|
/* REVISIT: we might want a flag affecting the behavior of the
|
444 |
|
|
* last transfer ... allowing things like "read 16 bit length L"
|
445 |
|
|
* immediately followed by "read L bytes". Basically imposing
|
446 |
|
|
* a specific message scheduling algorithm.
|
447 |
|
|
*
|
448 |
|
|
* Some controller drivers (message-at-a-time queue processing)
|
449 |
|
|
* could provide that as their default scheduling algorithm. But
|
450 |
|
|
* others (with multi-message pipelines) could need a flag to
|
451 |
|
|
* tell them about such special cases.
|
452 |
|
|
*/
|
453 |
|
|
|
454 |
|
|
/* completion is reported through a callback */
|
455 |
|
|
void (*complete)(void *context);
|
456 |
|
|
void *context;
|
457 |
|
|
unsigned actual_length;
|
458 |
|
|
int status;
|
459 |
|
|
|
460 |
|
|
/* for optional use by whatever driver currently owns the
|
461 |
|
|
* spi_message ... between calls to spi_async and then later
|
462 |
|
|
* complete(), that's the spi_master controller driver.
|
463 |
|
|
*/
|
464 |
|
|
struct list_head queue;
|
465 |
|
|
void *state;
|
466 |
|
|
};
|
467 |
|
|
|
468 |
|
|
static inline void spi_message_init(struct spi_message *m)
|
469 |
|
|
{
|
470 |
|
|
memset(m, 0, sizeof *m);
|
471 |
|
|
INIT_LIST_HEAD(&m->transfers);
|
472 |
|
|
}
|
473 |
|
|
|
474 |
|
|
static inline void
|
475 |
|
|
spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)
|
476 |
|
|
{
|
477 |
|
|
list_add_tail(&t->transfer_list, &m->transfers);
|
478 |
|
|
}
|
479 |
|
|
|
480 |
|
|
static inline void
|
481 |
|
|
spi_transfer_del(struct spi_transfer *t)
|
482 |
|
|
{
|
483 |
|
|
list_del(&t->transfer_list);
|
484 |
|
|
}
|
485 |
|
|
|
486 |
|
|
/* It's fine to embed message and transaction structures in other data
|
487 |
|
|
* structures so long as you don't free them while they're in use.
|
488 |
|
|
*/
|
489 |
|
|
|
490 |
|
|
static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
|
491 |
|
|
{
|
492 |
|
|
struct spi_message *m;
|
493 |
|
|
|
494 |
|
|
m = kzalloc(sizeof(struct spi_message)
|
495 |
|
|
+ ntrans * sizeof(struct spi_transfer),
|
496 |
|
|
flags);
|
497 |
|
|
if (m) {
|
498 |
|
|
int i;
|
499 |
|
|
struct spi_transfer *t = (struct spi_transfer *)(m + 1);
|
500 |
|
|
|
501 |
|
|
INIT_LIST_HEAD(&m->transfers);
|
502 |
|
|
for (i = 0; i < ntrans; i++, t++)
|
503 |
|
|
spi_message_add_tail(t, m);
|
504 |
|
|
}
|
505 |
|
|
return m;
|
506 |
|
|
}
|
507 |
|
|
|
508 |
|
|
static inline void spi_message_free(struct spi_message *m)
|
509 |
|
|
{
|
510 |
|
|
kfree(m);
|
511 |
|
|
}
|
512 |
|
|
|
513 |
|
|
/**
|
514 |
|
|
* spi_setup - setup SPI mode and clock rate
|
515 |
|
|
* @spi: the device whose settings are being modified
|
516 |
|
|
* Context: can sleep, and no requests are queued to the device
|
517 |
|
|
*
|
518 |
|
|
* SPI protocol drivers may need to update the transfer mode if the
|
519 |
|
|
* device doesn't work with its default. They may likewise need
|
520 |
|
|
* to update clock rates or word sizes from initial values. This function
|
521 |
|
|
* changes those settings, and must be called from a context that can sleep.
|
522 |
|
|
* Except for SPI_CS_HIGH, which takes effect immediately, the changes take
|
523 |
|
|
* effect the next time the device is selected and data is transferred to
|
524 |
|
|
* or from it. When this function returns, the spi device is deselected.
|
525 |
|
|
*
|
526 |
|
|
* Note that this call will fail if the protocol driver specifies an option
|
527 |
|
|
* that the underlying controller or its driver does not support. For
|
528 |
|
|
* example, not all hardware supports wire transfers using nine bit words,
|
529 |
|
|
* LSB-first wire encoding, or active-high chipselects.
|
530 |
|
|
*/
|
531 |
|
|
static inline int
|
532 |
|
|
spi_setup(struct spi_device *spi)
|
533 |
|
|
{
|
534 |
|
|
return spi->master->setup(spi);
|
535 |
|
|
}
|
536 |
|
|
|
537 |
|
|
|
538 |
|
|
/**
|
539 |
|
|
* spi_async - asynchronous SPI transfer
|
540 |
|
|
* @spi: device with which data will be exchanged
|
541 |
|
|
* @message: describes the data transfers, including completion callback
|
542 |
|
|
* Context: any (irqs may be blocked, etc)
|
543 |
|
|
*
|
544 |
|
|
* This call may be used in_irq and other contexts which can't sleep,
|
545 |
|
|
* as well as from task contexts which can sleep.
|
546 |
|
|
*
|
547 |
|
|
* The completion callback is invoked in a context which can't sleep.
|
548 |
|
|
* Before that invocation, the value of message->status is undefined.
|
549 |
|
|
* When the callback is issued, message->status holds either zero (to
|
550 |
|
|
* indicate complete success) or a negative error code. After that
|
551 |
|
|
* callback returns, the driver which issued the transfer request may
|
552 |
|
|
* deallocate the associated memory; it's no longer in use by any SPI
|
553 |
|
|
* core or controller driver code.
|
554 |
|
|
*
|
555 |
|
|
* Note that although all messages to a spi_device are handled in
|
556 |
|
|
* FIFO order, messages may go to different devices in other orders.
|
557 |
|
|
* Some device might be higher priority, or have various "hard" access
|
558 |
|
|
* time requirements, for example.
|
559 |
|
|
*
|
560 |
|
|
* On detection of any fault during the transfer, processing of
|
561 |
|
|
* the entire message is aborted, and the device is deselected.
|
562 |
|
|
* Until returning from the associated message completion callback,
|
563 |
|
|
* no other spi_message queued to that device will be processed.
|
564 |
|
|
* (This rule applies equally to all the synchronous transfer calls,
|
565 |
|
|
* which are wrappers around this core asynchronous primitive.)
|
566 |
|
|
*/
|
567 |
|
|
static inline int
|
568 |
|
|
spi_async(struct spi_device *spi, struct spi_message *message)
|
569 |
|
|
{
|
570 |
|
|
message->spi = spi;
|
571 |
|
|
return spi->master->transfer(spi, message);
|
572 |
|
|
}
|
573 |
|
|
|
574 |
|
|
/*---------------------------------------------------------------------------*/
|
575 |
|
|
|
576 |
|
|
/* All these synchronous SPI transfer routines are utilities layered
|
577 |
|
|
* over the core async transfer primitive. Here, "synchronous" means
|
578 |
|
|
* they will sleep uninterruptibly until the async transfer completes.
|
579 |
|
|
*/
|
580 |
|
|
|
581 |
|
|
extern int spi_sync(struct spi_device *spi, struct spi_message *message);
|
582 |
|
|
|
583 |
|
|
/**
|
584 |
|
|
* spi_write - SPI synchronous write
|
585 |
|
|
* @spi: device to which data will be written
|
586 |
|
|
* @buf: data buffer
|
587 |
|
|
* @len: data buffer size
|
588 |
|
|
* Context: can sleep
|
589 |
|
|
*
|
590 |
|
|
* This writes the buffer and returns zero or a negative error code.
|
591 |
|
|
* Callable only from contexts that can sleep.
|
592 |
|
|
*/
|
593 |
|
|
static inline int
|
594 |
|
|
spi_write(struct spi_device *spi, const u8 *buf, size_t len)
|
595 |
|
|
{
|
596 |
|
|
struct spi_transfer t = {
|
597 |
|
|
.tx_buf = buf,
|
598 |
|
|
.len = len,
|
599 |
|
|
};
|
600 |
|
|
struct spi_message m;
|
601 |
|
|
|
602 |
|
|
spi_message_init(&m);
|
603 |
|
|
spi_message_add_tail(&t, &m);
|
604 |
|
|
return spi_sync(spi, &m);
|
605 |
|
|
}
|
606 |
|
|
|
607 |
|
|
/**
|
608 |
|
|
* spi_read - SPI synchronous read
|
609 |
|
|
* @spi: device from which data will be read
|
610 |
|
|
* @buf: data buffer
|
611 |
|
|
* @len: data buffer size
|
612 |
|
|
* Context: can sleep
|
613 |
|
|
*
|
614 |
|
|
* This reads the buffer and returns zero or a negative error code.
|
615 |
|
|
* Callable only from contexts that can sleep.
|
616 |
|
|
*/
|
617 |
|
|
static inline int
|
618 |
|
|
spi_read(struct spi_device *spi, u8 *buf, size_t len)
|
619 |
|
|
{
|
620 |
|
|
struct spi_transfer t = {
|
621 |
|
|
.rx_buf = buf,
|
622 |
|
|
.len = len,
|
623 |
|
|
};
|
624 |
|
|
struct spi_message m;
|
625 |
|
|
|
626 |
|
|
spi_message_init(&m);
|
627 |
|
|
spi_message_add_tail(&t, &m);
|
628 |
|
|
return spi_sync(spi, &m);
|
629 |
|
|
}
|
630 |
|
|
|
631 |
|
|
/* this copies txbuf and rxbuf data; for small transfers only! */
|
632 |
|
|
extern int spi_write_then_read(struct spi_device *spi,
|
633 |
|
|
const u8 *txbuf, unsigned n_tx,
|
634 |
|
|
u8 *rxbuf, unsigned n_rx);
|
635 |
|
|
|
636 |
|
|
/**
|
637 |
|
|
* spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read
|
638 |
|
|
* @spi: device with which data will be exchanged
|
639 |
|
|
* @cmd: command to be written before data is read back
|
640 |
|
|
* Context: can sleep
|
641 |
|
|
*
|
642 |
|
|
* This returns the (unsigned) eight bit number returned by the
|
643 |
|
|
* device, or else a negative error code. Callable only from
|
644 |
|
|
* contexts that can sleep.
|
645 |
|
|
*/
|
646 |
|
|
static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd)
|
647 |
|
|
{
|
648 |
|
|
ssize_t status;
|
649 |
|
|
u8 result;
|
650 |
|
|
|
651 |
|
|
status = spi_write_then_read(spi, &cmd, 1, &result, 1);
|
652 |
|
|
|
653 |
|
|
/* return negative errno or unsigned value */
|
654 |
|
|
return (status < 0) ? status : result;
|
655 |
|
|
}
|
656 |
|
|
|
657 |
|
|
/**
|
658 |
|
|
* spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read
|
659 |
|
|
* @spi: device with which data will be exchanged
|
660 |
|
|
* @cmd: command to be written before data is read back
|
661 |
|
|
* Context: can sleep
|
662 |
|
|
*
|
663 |
|
|
* This returns the (unsigned) sixteen bit number returned by the
|
664 |
|
|
* device, or else a negative error code. Callable only from
|
665 |
|
|
* contexts that can sleep.
|
666 |
|
|
*
|
667 |
|
|
* The number is returned in wire-order, which is at least sometimes
|
668 |
|
|
* big-endian.
|
669 |
|
|
*/
|
670 |
|
|
static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
|
671 |
|
|
{
|
672 |
|
|
ssize_t status;
|
673 |
|
|
u16 result;
|
674 |
|
|
|
675 |
|
|
status = spi_write_then_read(spi, &cmd, 1, (u8 *) &result, 2);
|
676 |
|
|
|
677 |
|
|
/* return negative errno or unsigned value */
|
678 |
|
|
return (status < 0) ? status : result;
|
679 |
|
|
}
|
680 |
|
|
|
681 |
|
|
/*---------------------------------------------------------------------------*/
|
682 |
|
|
|
683 |
|
|
/*
|
684 |
|
|
* INTERFACE between board init code and SPI infrastructure.
|
685 |
|
|
*
|
686 |
|
|
* No SPI driver ever sees these SPI device table segments, but
|
687 |
|
|
* it's how the SPI core (or adapters that get hotplugged) grows
|
688 |
|
|
* the driver model tree.
|
689 |
|
|
*
|
690 |
|
|
* As a rule, SPI devices can't be probed. Instead, board init code
|
691 |
|
|
* provides a table listing the devices which are present, with enough
|
692 |
|
|
* information to bind and set up the device's driver. There's basic
|
693 |
|
|
* support for nonstatic configurations too; enough to handle adding
|
694 |
|
|
* parport adapters, or microcontrollers acting as USB-to-SPI bridges.
|
695 |
|
|
*/
|
696 |
|
|
|
697 |
|
|
/**
|
698 |
|
|
* struct spi_board_info - board-specific template for a SPI device
|
699 |
|
|
* @modalias: Initializes spi_device.modalias; identifies the driver.
|
700 |
|
|
* @platform_data: Initializes spi_device.platform_data; the particular
|
701 |
|
|
* data stored there is driver-specific.
|
702 |
|
|
* @controller_data: Initializes spi_device.controller_data; some
|
703 |
|
|
* controllers need hints about hardware setup, e.g. for DMA.
|
704 |
|
|
* @irq: Initializes spi_device.irq; depends on how the board is wired.
|
705 |
|
|
* @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits
|
706 |
|
|
* from the chip datasheet and board-specific signal quality issues.
|
707 |
|
|
* @bus_num: Identifies which spi_master parents the spi_device; unused
|
708 |
|
|
* by spi_new_device(), and otherwise depends on board wiring.
|
709 |
|
|
* @chip_select: Initializes spi_device.chip_select; depends on how
|
710 |
|
|
* the board is wired.
|
711 |
|
|
* @mode: Initializes spi_device.mode; based on the chip datasheet, board
|
712 |
|
|
* wiring (some devices support both 3WIRE and standard modes), and
|
713 |
|
|
* possibly presence of an inverter in the chipselect path.
|
714 |
|
|
*
|
715 |
|
|
* When adding new SPI devices to the device tree, these structures serve
|
716 |
|
|
* as a partial device template. They hold information which can't always
|
717 |
|
|
* be determined by drivers. Information that probe() can establish (such
|
718 |
|
|
* as the default transfer wordsize) is not included here.
|
719 |
|
|
*
|
720 |
|
|
* These structures are used in two places. Their primary role is to
|
721 |
|
|
* be stored in tables of board-specific device descriptors, which are
|
722 |
|
|
* declared early in board initialization and then used (much later) to
|
723 |
|
|
* populate a controller's device tree after the that controller's driver
|
724 |
|
|
* initializes. A secondary (and atypical) role is as a parameter to
|
725 |
|
|
* spi_new_device() call, which happens after those controller drivers
|
726 |
|
|
* are active in some dynamic board configuration models.
|
727 |
|
|
*/
|
728 |
|
|
struct spi_board_info {
|
729 |
|
|
/* the device name and module name are coupled, like platform_bus;
|
730 |
|
|
* "modalias" is normally the driver name.
|
731 |
|
|
*
|
732 |
|
|
* platform_data goes to spi_device.dev.platform_data,
|
733 |
|
|
* controller_data goes to spi_device.controller_data,
|
734 |
|
|
* irq is copied too
|
735 |
|
|
*/
|
736 |
|
|
char modalias[KOBJ_NAME_LEN];
|
737 |
|
|
const void *platform_data;
|
738 |
|
|
void *controller_data;
|
739 |
|
|
int irq;
|
740 |
|
|
|
741 |
|
|
/* slower signaling on noisy or low voltage boards */
|
742 |
|
|
u32 max_speed_hz;
|
743 |
|
|
|
744 |
|
|
|
745 |
|
|
/* bus_num is board specific and matches the bus_num of some
|
746 |
|
|
* spi_master that will probably be registered later.
|
747 |
|
|
*
|
748 |
|
|
* chip_select reflects how this chip is wired to that master;
|
749 |
|
|
* it's less than num_chipselect.
|
750 |
|
|
*/
|
751 |
|
|
u16 bus_num;
|
752 |
|
|
u16 chip_select;
|
753 |
|
|
|
754 |
|
|
/* mode becomes spi_device.mode, and is essential for chips
|
755 |
|
|
* where the default of SPI_CS_HIGH = 0 is wrong.
|
756 |
|
|
*/
|
757 |
|
|
u8 mode;
|
758 |
|
|
|
759 |
|
|
/* ... may need additional spi_device chip config data here.
|
760 |
|
|
* avoid stuff protocol drivers can set; but include stuff
|
761 |
|
|
* needed to behave without being bound to a driver:
|
762 |
|
|
* - quirks like clock rate mattering when not selected
|
763 |
|
|
*/
|
764 |
|
|
};
|
765 |
|
|
|
766 |
|
|
#ifdef CONFIG_SPI
|
767 |
|
|
extern int
|
768 |
|
|
spi_register_board_info(struct spi_board_info const *info, unsigned n);
|
769 |
|
|
#else
|
770 |
|
|
/* board init code may ignore whether SPI is configured or not */
|
771 |
|
|
static inline int
|
772 |
|
|
spi_register_board_info(struct spi_board_info const *info, unsigned n)
|
773 |
|
|
{ return 0; }
|
774 |
|
|
#endif
|
775 |
|
|
|
776 |
|
|
|
777 |
|
|
/* If you're hotplugging an adapter with devices (parport, usb, etc)
|
778 |
|
|
* use spi_new_device() to describe each device. You can also call
|
779 |
|
|
* spi_unregister_device() to start making that device vanish, but
|
780 |
|
|
* normally that would be handled by spi_unregister_master().
|
781 |
|
|
*/
|
782 |
|
|
extern struct spi_device *
|
783 |
|
|
spi_new_device(struct spi_master *, struct spi_board_info *);
|
784 |
|
|
|
785 |
|
|
static inline void
|
786 |
|
|
spi_unregister_device(struct spi_device *spi)
|
787 |
|
|
{
|
788 |
|
|
if (spi)
|
789 |
|
|
device_unregister(&spi->dev);
|
790 |
|
|
}
|
791 |
|
|
|
792 |
|
|
#endif /* __LINUX_SPI_H */
|