OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [ipc/] [sem.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 * linux/ipc/sem.c
3
 * Copyright (C) 1992 Krishna Balasubramanian
4
 * Copyright (C) 1995 Eric Schenk, Bruno Haible
5
 *
6
 * IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995):
7
 * This code underwent a massive rewrite in order to solve some problems
8
 * with the original code. In particular the original code failed to
9
 * wake up processes that were waiting for semval to go to 0 if the
10
 * value went to 0 and was then incremented rapidly enough. In solving
11
 * this problem I have also modified the implementation so that it
12
 * processes pending operations in a FIFO manner, thus give a guarantee
13
 * that processes waiting for a lock on the semaphore won't starve
14
 * unless another locking process fails to unlock.
15
 * In addition the following two changes in behavior have been introduced:
16
 * - The original implementation of semop returned the value
17
 *   last semaphore element examined on success. This does not
18
 *   match the manual page specifications, and effectively
19
 *   allows the user to read the semaphore even if they do not
20
 *   have read permissions. The implementation now returns 0
21
 *   on success as stated in the manual page.
22
 * - There is some confusion over whether the set of undo adjustments
23
 *   to be performed at exit should be done in an atomic manner.
24
 *   That is, if we are attempting to decrement the semval should we queue
25
 *   up and wait until we can do so legally?
26
 *   The original implementation attempted to do this.
27
 *   The current implementation does not do so. This is because I don't
28
 *   think it is the right thing (TM) to do, and because I couldn't
29
 *   see a clean way to get the old behavior with the new design.
30
 *   The POSIX standard and SVID should be consulted to determine
31
 *   what behavior is mandated.
32
 *
33
 * Further notes on refinement (Christoph Rohland, December 1998):
34
 * - The POSIX standard says, that the undo adjustments simply should
35
 *   redo. So the current implementation is o.K.
36
 * - The previous code had two flaws:
37
 *   1) It actively gave the semaphore to the next waiting process
38
 *      sleeping on the semaphore. Since this process did not have the
39
 *      cpu this led to many unnecessary context switches and bad
40
 *      performance. Now we only check which process should be able to
41
 *      get the semaphore and if this process wants to reduce some
42
 *      semaphore value we simply wake it up without doing the
43
 *      operation. So it has to try to get it later. Thus e.g. the
44
 *      running process may reacquire the semaphore during the current
45
 *      time slice. If it only waits for zero or increases the semaphore,
46
 *      we do the operation in advance and wake it up.
47
 *   2) It did not wake up all zero waiting processes. We try to do
48
 *      better but only get the semops right which only wait for zero or
49
 *      increase. If there are decrement operations in the operations
50
 *      array we do the same as before.
51
 *
52
 * With the incarnation of O(1) scheduler, it becomes unnecessary to perform
53
 * check/retry algorithm for waking up blocked processes as the new scheduler
54
 * is better at handling thread switch than the old one.
55
 *
56
 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
57
 *
58
 * SMP-threaded, sysctl's added
59
 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
60
 * Enforced range limit on SEM_UNDO
61
 * (c) 2001 Red Hat Inc <alan@redhat.com>
62
 * Lockless wakeup
63
 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
64
 *
65
 * support for audit of ipc object properties and permission changes
66
 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
67
 *
68
 * namespaces support
69
 * OpenVZ, SWsoft Inc.
70
 * Pavel Emelianov <xemul@openvz.org>
71
 */
72
 
73
#include <linux/slab.h>
74
#include <linux/spinlock.h>
75
#include <linux/init.h>
76
#include <linux/proc_fs.h>
77
#include <linux/time.h>
78
#include <linux/security.h>
79
#include <linux/syscalls.h>
80
#include <linux/audit.h>
81
#include <linux/capability.h>
82
#include <linux/seq_file.h>
83
#include <linux/rwsem.h>
84
#include <linux/nsproxy.h>
85
 
86
#include <asm/uaccess.h>
87
#include "util.h"
88
 
89
#define sem_ids(ns)     (*((ns)->ids[IPC_SEM_IDS]))
90
 
91
#define sem_unlock(sma)         ipc_unlock(&(sma)->sem_perm)
92
#define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
93
#define sem_buildid(id, seq)    ipc_buildid(id, seq)
94
 
95
static struct ipc_ids init_sem_ids;
96
 
97
static int newary(struct ipc_namespace *, struct ipc_params *);
98
static void freeary(struct ipc_namespace *, struct sem_array *);
99
#ifdef CONFIG_PROC_FS
100
static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
101
#endif
102
 
103
#define SEMMSL_FAST     256 /* 512 bytes on stack */
104
#define SEMOPM_FAST     64  /* ~ 372 bytes on stack */
105
 
106
/*
107
 * linked list protection:
108
 *      sem_undo.id_next,
109
 *      sem_array.sem_pending{,last},
110
 *      sem_array.sem_undo: sem_lock() for read/write
111
 *      sem_undo.proc_next: only "current" is allowed to read/write that field.
112
 *
113
 */
114
 
115
#define sc_semmsl       sem_ctls[0]
116
#define sc_semmns       sem_ctls[1]
117
#define sc_semopm       sem_ctls[2]
118
#define sc_semmni       sem_ctls[3]
119
 
120
static void __sem_init_ns(struct ipc_namespace *ns, struct ipc_ids *ids)
121
{
122
        ns->ids[IPC_SEM_IDS] = ids;
123
        ns->sc_semmsl = SEMMSL;
124
        ns->sc_semmns = SEMMNS;
125
        ns->sc_semopm = SEMOPM;
126
        ns->sc_semmni = SEMMNI;
127
        ns->used_sems = 0;
128
        ipc_init_ids(ids);
129
}
130
 
131
int sem_init_ns(struct ipc_namespace *ns)
132
{
133
        struct ipc_ids *ids;
134
 
135
        ids = kmalloc(sizeof(struct ipc_ids), GFP_KERNEL);
136
        if (ids == NULL)
137
                return -ENOMEM;
138
 
139
        __sem_init_ns(ns, ids);
140
        return 0;
141
}
142
 
143
void sem_exit_ns(struct ipc_namespace *ns)
144
{
145
        struct sem_array *sma;
146
        int next_id;
147
        int total, in_use;
148
 
149
        down_write(&sem_ids(ns).rw_mutex);
150
 
151
        in_use = sem_ids(ns).in_use;
152
 
153
        for (total = 0, next_id = 0; total < in_use; next_id++) {
154
                sma = idr_find(&sem_ids(ns).ipcs_idr, next_id);
155
                if (sma == NULL)
156
                        continue;
157
                ipc_lock_by_ptr(&sma->sem_perm);
158
                freeary(ns, sma);
159
                total++;
160
        }
161
        up_write(&sem_ids(ns).rw_mutex);
162
 
163
        kfree(ns->ids[IPC_SEM_IDS]);
164
        ns->ids[IPC_SEM_IDS] = NULL;
165
}
166
 
167
void __init sem_init (void)
168
{
169
        __sem_init_ns(&init_ipc_ns, &init_sem_ids);
170
        ipc_init_proc_interface("sysvipc/sem",
171
                                "       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
172
                                IPC_SEM_IDS, sysvipc_sem_proc_show);
173
}
174
 
175
/*
176
 * This routine is called in the paths where the rw_mutex is held to protect
177
 * access to the idr tree.
178
 */
179
static inline struct sem_array *sem_lock_check_down(struct ipc_namespace *ns,
180
                                                int id)
181
{
182
        struct kern_ipc_perm *ipcp = ipc_lock_check_down(&sem_ids(ns), id);
183
 
184
        return container_of(ipcp, struct sem_array, sem_perm);
185
}
186
 
187
/*
188
 * sem_lock_(check_) routines are called in the paths where the rw_mutex
189
 * is not held.
190
 */
191
static inline struct sem_array *sem_lock(struct ipc_namespace *ns, int id)
192
{
193
        struct kern_ipc_perm *ipcp = ipc_lock(&sem_ids(ns), id);
194
 
195
        return container_of(ipcp, struct sem_array, sem_perm);
196
}
197
 
198
static inline struct sem_array *sem_lock_check(struct ipc_namespace *ns,
199
                                                int id)
200
{
201
        struct kern_ipc_perm *ipcp = ipc_lock_check(&sem_ids(ns), id);
202
 
203
        return container_of(ipcp, struct sem_array, sem_perm);
204
}
205
 
206
static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
207
{
208
        ipc_rmid(&sem_ids(ns), &s->sem_perm);
209
}
210
 
211
/*
212
 * Lockless wakeup algorithm:
213
 * Without the check/retry algorithm a lockless wakeup is possible:
214
 * - queue.status is initialized to -EINTR before blocking.
215
 * - wakeup is performed by
216
 *      * unlinking the queue entry from sma->sem_pending
217
 *      * setting queue.status to IN_WAKEUP
218
 *        This is the notification for the blocked thread that a
219
 *        result value is imminent.
220
 *      * call wake_up_process
221
 *      * set queue.status to the final value.
222
 * - the previously blocked thread checks queue.status:
223
 *      * if it's IN_WAKEUP, then it must wait until the value changes
224
 *      * if it's not -EINTR, then the operation was completed by
225
 *        update_queue. semtimedop can return queue.status without
226
 *        performing any operation on the sem array.
227
 *      * otherwise it must acquire the spinlock and check what's up.
228
 *
229
 * The two-stage algorithm is necessary to protect against the following
230
 * races:
231
 * - if queue.status is set after wake_up_process, then the woken up idle
232
 *   thread could race forward and try (and fail) to acquire sma->lock
233
 *   before update_queue had a chance to set queue.status
234
 * - if queue.status is written before wake_up_process and if the
235
 *   blocked process is woken up by a signal between writing
236
 *   queue.status and the wake_up_process, then the woken up
237
 *   process could return from semtimedop and die by calling
238
 *   sys_exit before wake_up_process is called. Then wake_up_process
239
 *   will oops, because the task structure is already invalid.
240
 *   (yes, this happened on s390 with sysv msg).
241
 *
242
 */
243
#define IN_WAKEUP       1
244
 
245
/**
246
 * newary - Create a new semaphore set
247
 * @ns: namespace
248
 * @params: ptr to the structure that contains key, semflg and nsems
249
 *
250
 * Called with sem_ids.rw_mutex held (as a writer)
251
 */
252
 
253
static int newary(struct ipc_namespace *ns, struct ipc_params *params)
254
{
255
        int id;
256
        int retval;
257
        struct sem_array *sma;
258
        int size;
259
        key_t key = params->key;
260
        int nsems = params->u.nsems;
261
        int semflg = params->flg;
262
 
263
        if (!nsems)
264
                return -EINVAL;
265
        if (ns->used_sems + nsems > ns->sc_semmns)
266
                return -ENOSPC;
267
 
268
        size = sizeof (*sma) + nsems * sizeof (struct sem);
269
        sma = ipc_rcu_alloc(size);
270
        if (!sma) {
271
                return -ENOMEM;
272
        }
273
        memset (sma, 0, size);
274
 
275
        sma->sem_perm.mode = (semflg & S_IRWXUGO);
276
        sma->sem_perm.key = key;
277
 
278
        sma->sem_perm.security = NULL;
279
        retval = security_sem_alloc(sma);
280
        if (retval) {
281
                ipc_rcu_putref(sma);
282
                return retval;
283
        }
284
 
285
        id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
286
        if (id < 0) {
287
                security_sem_free(sma);
288
                ipc_rcu_putref(sma);
289
                return id;
290
        }
291
        ns->used_sems += nsems;
292
 
293
        sma->sem_perm.id = sem_buildid(id, sma->sem_perm.seq);
294
        sma->sem_base = (struct sem *) &sma[1];
295
        /* sma->sem_pending = NULL; */
296
        sma->sem_pending_last = &sma->sem_pending;
297
        /* sma->undo = NULL; */
298
        sma->sem_nsems = nsems;
299
        sma->sem_ctime = get_seconds();
300
        sem_unlock(sma);
301
 
302
        return sma->sem_perm.id;
303
}
304
 
305
 
306
/*
307
 * Called with sem_ids.rw_mutex and ipcp locked.
308
 */
309
static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
310
{
311
        struct sem_array *sma;
312
 
313
        sma = container_of(ipcp, struct sem_array, sem_perm);
314
        return security_sem_associate(sma, semflg);
315
}
316
 
317
/*
318
 * Called with sem_ids.rw_mutex and ipcp locked.
319
 */
320
static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
321
                                struct ipc_params *params)
322
{
323
        struct sem_array *sma;
324
 
325
        sma = container_of(ipcp, struct sem_array, sem_perm);
326
        if (params->u.nsems > sma->sem_nsems)
327
                return -EINVAL;
328
 
329
        return 0;
330
}
331
 
332
asmlinkage long sys_semget(key_t key, int nsems, int semflg)
333
{
334
        struct ipc_namespace *ns;
335
        struct ipc_ops sem_ops;
336
        struct ipc_params sem_params;
337
 
338
        ns = current->nsproxy->ipc_ns;
339
 
340
        if (nsems < 0 || nsems > ns->sc_semmsl)
341
                return -EINVAL;
342
 
343
        sem_ops.getnew = newary;
344
        sem_ops.associate = sem_security;
345
        sem_ops.more_checks = sem_more_checks;
346
 
347
        sem_params.key = key;
348
        sem_params.flg = semflg;
349
        sem_params.u.nsems = nsems;
350
 
351
        return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
352
}
353
 
354
/* Manage the doubly linked list sma->sem_pending as a FIFO:
355
 * insert new queue elements at the tail sma->sem_pending_last.
356
 */
357
static inline void append_to_queue (struct sem_array * sma,
358
                                    struct sem_queue * q)
359
{
360
        *(q->prev = sma->sem_pending_last) = q;
361
        *(sma->sem_pending_last = &q->next) = NULL;
362
}
363
 
364
static inline void prepend_to_queue (struct sem_array * sma,
365
                                     struct sem_queue * q)
366
{
367
        q->next = sma->sem_pending;
368
        *(q->prev = &sma->sem_pending) = q;
369
        if (q->next)
370
                q->next->prev = &q->next;
371
        else /* sma->sem_pending_last == &sma->sem_pending */
372
                sma->sem_pending_last = &q->next;
373
}
374
 
375
static inline void remove_from_queue (struct sem_array * sma,
376
                                      struct sem_queue * q)
377
{
378
        *(q->prev) = q->next;
379
        if (q->next)
380
                q->next->prev = q->prev;
381
        else /* sma->sem_pending_last == &q->next */
382
                sma->sem_pending_last = q->prev;
383
        q->prev = NULL; /* mark as removed */
384
}
385
 
386
/*
387
 * Determine whether a sequence of semaphore operations would succeed
388
 * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
389
 */
390
 
391
static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,
392
                             int nsops, struct sem_undo *un, int pid)
393
{
394
        int result, sem_op;
395
        struct sembuf *sop;
396
        struct sem * curr;
397
 
398
        for (sop = sops; sop < sops + nsops; sop++) {
399
                curr = sma->sem_base + sop->sem_num;
400
                sem_op = sop->sem_op;
401
                result = curr->semval;
402
 
403
                if (!sem_op && result)
404
                        goto would_block;
405
 
406
                result += sem_op;
407
                if (result < 0)
408
                        goto would_block;
409
                if (result > SEMVMX)
410
                        goto out_of_range;
411
                if (sop->sem_flg & SEM_UNDO) {
412
                        int undo = un->semadj[sop->sem_num] - sem_op;
413
                        /*
414
                         *      Exceeding the undo range is an error.
415
                         */
416
                        if (undo < (-SEMAEM - 1) || undo > SEMAEM)
417
                                goto out_of_range;
418
                }
419
                curr->semval = result;
420
        }
421
 
422
        sop--;
423
        while (sop >= sops) {
424
                sma->sem_base[sop->sem_num].sempid = pid;
425
                if (sop->sem_flg & SEM_UNDO)
426
                        un->semadj[sop->sem_num] -= sop->sem_op;
427
                sop--;
428
        }
429
 
430
        sma->sem_otime = get_seconds();
431
        return 0;
432
 
433
out_of_range:
434
        result = -ERANGE;
435
        goto undo;
436
 
437
would_block:
438
        if (sop->sem_flg & IPC_NOWAIT)
439
                result = -EAGAIN;
440
        else
441
                result = 1;
442
 
443
undo:
444
        sop--;
445
        while (sop >= sops) {
446
                sma->sem_base[sop->sem_num].semval -= sop->sem_op;
447
                sop--;
448
        }
449
 
450
        return result;
451
}
452
 
453
/* Go through the pending queue for the indicated semaphore
454
 * looking for tasks that can be completed.
455
 */
456
static void update_queue (struct sem_array * sma)
457
{
458
        int error;
459
        struct sem_queue * q;
460
 
461
        q = sma->sem_pending;
462
        while(q) {
463
                error = try_atomic_semop(sma, q->sops, q->nsops,
464
                                         q->undo, q->pid);
465
 
466
                /* Does q->sleeper still need to sleep? */
467
                if (error <= 0) {
468
                        struct sem_queue *n;
469
                        remove_from_queue(sma,q);
470
                        q->status = IN_WAKEUP;
471
                        /*
472
                         * Continue scanning. The next operation
473
                         * that must be checked depends on the type of the
474
                         * completed operation:
475
                         * - if the operation modified the array, then
476
                         *   restart from the head of the queue and
477
                         *   check for threads that might be waiting
478
                         *   for semaphore values to become 0.
479
                         * - if the operation didn't modify the array,
480
                         *   then just continue.
481
                         */
482
                        if (q->alter)
483
                                n = sma->sem_pending;
484
                        else
485
                                n = q->next;
486
                        wake_up_process(q->sleeper);
487
                        /* hands-off: q will disappear immediately after
488
                         * writing q->status.
489
                         */
490
                        smp_wmb();
491
                        q->status = error;
492
                        q = n;
493
                } else {
494
                        q = q->next;
495
                }
496
        }
497
}
498
 
499
/* The following counts are associated to each semaphore:
500
 *   semncnt        number of tasks waiting on semval being nonzero
501
 *   semzcnt        number of tasks waiting on semval being zero
502
 * This model assumes that a task waits on exactly one semaphore.
503
 * Since semaphore operations are to be performed atomically, tasks actually
504
 * wait on a whole sequence of semaphores simultaneously.
505
 * The counts we return here are a rough approximation, but still
506
 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
507
 */
508
static int count_semncnt (struct sem_array * sma, ushort semnum)
509
{
510
        int semncnt;
511
        struct sem_queue * q;
512
 
513
        semncnt = 0;
514
        for (q = sma->sem_pending; q; q = q->next) {
515
                struct sembuf * sops = q->sops;
516
                int nsops = q->nsops;
517
                int i;
518
                for (i = 0; i < nsops; i++)
519
                        if (sops[i].sem_num == semnum
520
                            && (sops[i].sem_op < 0)
521
                            && !(sops[i].sem_flg & IPC_NOWAIT))
522
                                semncnt++;
523
        }
524
        return semncnt;
525
}
526
static int count_semzcnt (struct sem_array * sma, ushort semnum)
527
{
528
        int semzcnt;
529
        struct sem_queue * q;
530
 
531
        semzcnt = 0;
532
        for (q = sma->sem_pending; q; q = q->next) {
533
                struct sembuf * sops = q->sops;
534
                int nsops = q->nsops;
535
                int i;
536
                for (i = 0; i < nsops; i++)
537
                        if (sops[i].sem_num == semnum
538
                            && (sops[i].sem_op == 0)
539
                            && !(sops[i].sem_flg & IPC_NOWAIT))
540
                                semzcnt++;
541
        }
542
        return semzcnt;
543
}
544
 
545
/* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked
546
 * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex
547
 * remains locked on exit.
548
 */
549
static void freeary(struct ipc_namespace *ns, struct sem_array *sma)
550
{
551
        struct sem_undo *un;
552
        struct sem_queue *q;
553
 
554
        /* Invalidate the existing undo structures for this semaphore set.
555
         * (They will be freed without any further action in exit_sem()
556
         * or during the next semop.)
557
         */
558
        for (un = sma->undo; un; un = un->id_next)
559
                un->semid = -1;
560
 
561
        /* Wake up all pending processes and let them fail with EIDRM. */
562
        q = sma->sem_pending;
563
        while(q) {
564
                struct sem_queue *n;
565
                /* lazy remove_from_queue: we are killing the whole queue */
566
                q->prev = NULL;
567
                n = q->next;
568
                q->status = IN_WAKEUP;
569
                wake_up_process(q->sleeper); /* doesn't sleep */
570
                smp_wmb();
571
                q->status = -EIDRM;     /* hands-off q */
572
                q = n;
573
        }
574
 
575
        /* Remove the semaphore set from the IDR */
576
        sem_rmid(ns, sma);
577
        sem_unlock(sma);
578
 
579
        ns->used_sems -= sma->sem_nsems;
580
        security_sem_free(sma);
581
        ipc_rcu_putref(sma);
582
}
583
 
584
static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
585
{
586
        switch(version) {
587
        case IPC_64:
588
                return copy_to_user(buf, in, sizeof(*in));
589
        case IPC_OLD:
590
            {
591
                struct semid_ds out;
592
 
593
                ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
594
 
595
                out.sem_otime   = in->sem_otime;
596
                out.sem_ctime   = in->sem_ctime;
597
                out.sem_nsems   = in->sem_nsems;
598
 
599
                return copy_to_user(buf, &out, sizeof(out));
600
            }
601
        default:
602
                return -EINVAL;
603
        }
604
}
605
 
606
static int semctl_nolock(struct ipc_namespace *ns, int semid, int semnum,
607
                int cmd, int version, union semun arg)
608
{
609
        int err = -EINVAL;
610
        struct sem_array *sma;
611
 
612
        switch(cmd) {
613
        case IPC_INFO:
614
        case SEM_INFO:
615
        {
616
                struct seminfo seminfo;
617
                int max_id;
618
 
619
                err = security_sem_semctl(NULL, cmd);
620
                if (err)
621
                        return err;
622
 
623
                memset(&seminfo,0,sizeof(seminfo));
624
                seminfo.semmni = ns->sc_semmni;
625
                seminfo.semmns = ns->sc_semmns;
626
                seminfo.semmsl = ns->sc_semmsl;
627
                seminfo.semopm = ns->sc_semopm;
628
                seminfo.semvmx = SEMVMX;
629
                seminfo.semmnu = SEMMNU;
630
                seminfo.semmap = SEMMAP;
631
                seminfo.semume = SEMUME;
632
                down_read(&sem_ids(ns).rw_mutex);
633
                if (cmd == SEM_INFO) {
634
                        seminfo.semusz = sem_ids(ns).in_use;
635
                        seminfo.semaem = ns->used_sems;
636
                } else {
637
                        seminfo.semusz = SEMUSZ;
638
                        seminfo.semaem = SEMAEM;
639
                }
640
                max_id = ipc_get_maxid(&sem_ids(ns));
641
                up_read(&sem_ids(ns).rw_mutex);
642
                if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo)))
643
                        return -EFAULT;
644
                return (max_id < 0) ? 0: max_id;
645
        }
646
        case SEM_STAT:
647
        {
648
                struct semid64_ds tbuf;
649
                int id;
650
 
651
                sma = sem_lock(ns, semid);
652
                if (IS_ERR(sma))
653
                        return PTR_ERR(sma);
654
 
655
                err = -EACCES;
656
                if (ipcperms (&sma->sem_perm, S_IRUGO))
657
                        goto out_unlock;
658
 
659
                err = security_sem_semctl(sma, cmd);
660
                if (err)
661
                        goto out_unlock;
662
 
663
                id = sma->sem_perm.id;
664
 
665
                memset(&tbuf, 0, sizeof(tbuf));
666
 
667
                kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
668
                tbuf.sem_otime  = sma->sem_otime;
669
                tbuf.sem_ctime  = sma->sem_ctime;
670
                tbuf.sem_nsems  = sma->sem_nsems;
671
                sem_unlock(sma);
672
                if (copy_semid_to_user (arg.buf, &tbuf, version))
673
                        return -EFAULT;
674
                return id;
675
        }
676
        default:
677
                return -EINVAL;
678
        }
679
        return err;
680
out_unlock:
681
        sem_unlock(sma);
682
        return err;
683
}
684
 
685
static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
686
                int cmd, int version, union semun arg)
687
{
688
        struct sem_array *sma;
689
        struct sem* curr;
690
        int err;
691
        ushort fast_sem_io[SEMMSL_FAST];
692
        ushort* sem_io = fast_sem_io;
693
        int nsems;
694
 
695
        sma = sem_lock_check(ns, semid);
696
        if (IS_ERR(sma))
697
                return PTR_ERR(sma);
698
 
699
        nsems = sma->sem_nsems;
700
 
701
        err = -EACCES;
702
        if (ipcperms (&sma->sem_perm, (cmd==SETVAL||cmd==SETALL)?S_IWUGO:S_IRUGO))
703
                goto out_unlock;
704
 
705
        err = security_sem_semctl(sma, cmd);
706
        if (err)
707
                goto out_unlock;
708
 
709
        err = -EACCES;
710
        switch (cmd) {
711
        case GETALL:
712
        {
713
                ushort __user *array = arg.array;
714
                int i;
715
 
716
                if(nsems > SEMMSL_FAST) {
717
                        ipc_rcu_getref(sma);
718
                        sem_unlock(sma);
719
 
720
                        sem_io = ipc_alloc(sizeof(ushort)*nsems);
721
                        if(sem_io == NULL) {
722
                                ipc_lock_by_ptr(&sma->sem_perm);
723
                                ipc_rcu_putref(sma);
724
                                sem_unlock(sma);
725
                                return -ENOMEM;
726
                        }
727
 
728
                        ipc_lock_by_ptr(&sma->sem_perm);
729
                        ipc_rcu_putref(sma);
730
                        if (sma->sem_perm.deleted) {
731
                                sem_unlock(sma);
732
                                err = -EIDRM;
733
                                goto out_free;
734
                        }
735
                }
736
 
737
                for (i = 0; i < sma->sem_nsems; i++)
738
                        sem_io[i] = sma->sem_base[i].semval;
739
                sem_unlock(sma);
740
                err = 0;
741
                if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
742
                        err = -EFAULT;
743
                goto out_free;
744
        }
745
        case SETALL:
746
        {
747
                int i;
748
                struct sem_undo *un;
749
 
750
                ipc_rcu_getref(sma);
751
                sem_unlock(sma);
752
 
753
                if(nsems > SEMMSL_FAST) {
754
                        sem_io = ipc_alloc(sizeof(ushort)*nsems);
755
                        if(sem_io == NULL) {
756
                                ipc_lock_by_ptr(&sma->sem_perm);
757
                                ipc_rcu_putref(sma);
758
                                sem_unlock(sma);
759
                                return -ENOMEM;
760
                        }
761
                }
762
 
763
                if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) {
764
                        ipc_lock_by_ptr(&sma->sem_perm);
765
                        ipc_rcu_putref(sma);
766
                        sem_unlock(sma);
767
                        err = -EFAULT;
768
                        goto out_free;
769
                }
770
 
771
                for (i = 0; i < nsems; i++) {
772
                        if (sem_io[i] > SEMVMX) {
773
                                ipc_lock_by_ptr(&sma->sem_perm);
774
                                ipc_rcu_putref(sma);
775
                                sem_unlock(sma);
776
                                err = -ERANGE;
777
                                goto out_free;
778
                        }
779
                }
780
                ipc_lock_by_ptr(&sma->sem_perm);
781
                ipc_rcu_putref(sma);
782
                if (sma->sem_perm.deleted) {
783
                        sem_unlock(sma);
784
                        err = -EIDRM;
785
                        goto out_free;
786
                }
787
 
788
                for (i = 0; i < nsems; i++)
789
                        sma->sem_base[i].semval = sem_io[i];
790
                for (un = sma->undo; un; un = un->id_next)
791
                        for (i = 0; i < nsems; i++)
792
                                un->semadj[i] = 0;
793
                sma->sem_ctime = get_seconds();
794
                /* maybe some queued-up processes were waiting for this */
795
                update_queue(sma);
796
                err = 0;
797
                goto out_unlock;
798
        }
799
        case IPC_STAT:
800
        {
801
                struct semid64_ds tbuf;
802
                memset(&tbuf,0,sizeof(tbuf));
803
                kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
804
                tbuf.sem_otime  = sma->sem_otime;
805
                tbuf.sem_ctime  = sma->sem_ctime;
806
                tbuf.sem_nsems  = sma->sem_nsems;
807
                sem_unlock(sma);
808
                if (copy_semid_to_user (arg.buf, &tbuf, version))
809
                        return -EFAULT;
810
                return 0;
811
        }
812
        /* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */
813
        }
814
        err = -EINVAL;
815
        if(semnum < 0 || semnum >= nsems)
816
                goto out_unlock;
817
 
818
        curr = &sma->sem_base[semnum];
819
 
820
        switch (cmd) {
821
        case GETVAL:
822
                err = curr->semval;
823
                goto out_unlock;
824
        case GETPID:
825
                err = curr->sempid;
826
                goto out_unlock;
827
        case GETNCNT:
828
                err = count_semncnt(sma,semnum);
829
                goto out_unlock;
830
        case GETZCNT:
831
                err = count_semzcnt(sma,semnum);
832
                goto out_unlock;
833
        case SETVAL:
834
        {
835
                int val = arg.val;
836
                struct sem_undo *un;
837
                err = -ERANGE;
838
                if (val > SEMVMX || val < 0)
839
                        goto out_unlock;
840
 
841
                for (un = sma->undo; un; un = un->id_next)
842
                        un->semadj[semnum] = 0;
843
                curr->semval = val;
844
                curr->sempid = task_tgid_vnr(current);
845
                sma->sem_ctime = get_seconds();
846
                /* maybe some queued-up processes were waiting for this */
847
                update_queue(sma);
848
                err = 0;
849
                goto out_unlock;
850
        }
851
        }
852
out_unlock:
853
        sem_unlock(sma);
854
out_free:
855
        if(sem_io != fast_sem_io)
856
                ipc_free(sem_io, sizeof(ushort)*nsems);
857
        return err;
858
}
859
 
860
struct sem_setbuf {
861
        uid_t   uid;
862
        gid_t   gid;
863
        mode_t  mode;
864
};
865
 
866
static inline unsigned long copy_semid_from_user(struct sem_setbuf *out, void __user *buf, int version)
867
{
868
        switch(version) {
869
        case IPC_64:
870
            {
871
                struct semid64_ds tbuf;
872
 
873
                if(copy_from_user(&tbuf, buf, sizeof(tbuf)))
874
                        return -EFAULT;
875
 
876
                out->uid        = tbuf.sem_perm.uid;
877
                out->gid        = tbuf.sem_perm.gid;
878
                out->mode       = tbuf.sem_perm.mode;
879
 
880
                return 0;
881
            }
882
        case IPC_OLD:
883
            {
884
                struct semid_ds tbuf_old;
885
 
886
                if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
887
                        return -EFAULT;
888
 
889
                out->uid        = tbuf_old.sem_perm.uid;
890
                out->gid        = tbuf_old.sem_perm.gid;
891
                out->mode       = tbuf_old.sem_perm.mode;
892
 
893
                return 0;
894
            }
895
        default:
896
                return -EINVAL;
897
        }
898
}
899
 
900
static int semctl_down(struct ipc_namespace *ns, int semid, int semnum,
901
                int cmd, int version, union semun arg)
902
{
903
        struct sem_array *sma;
904
        int err;
905
        struct sem_setbuf uninitialized_var(setbuf);
906
        struct kern_ipc_perm *ipcp;
907
 
908
        if(cmd == IPC_SET) {
909
                if(copy_semid_from_user (&setbuf, arg.buf, version))
910
                        return -EFAULT;
911
        }
912
        sma = sem_lock_check_down(ns, semid);
913
        if (IS_ERR(sma))
914
                return PTR_ERR(sma);
915
 
916
        ipcp = &sma->sem_perm;
917
 
918
        err = audit_ipc_obj(ipcp);
919
        if (err)
920
                goto out_unlock;
921
 
922
        if (cmd == IPC_SET) {
923
                err = audit_ipc_set_perm(0, setbuf.uid, setbuf.gid, setbuf.mode);
924
                if (err)
925
                        goto out_unlock;
926
        }
927
        if (current->euid != ipcp->cuid &&
928
            current->euid != ipcp->uid && !capable(CAP_SYS_ADMIN)) {
929
                err=-EPERM;
930
                goto out_unlock;
931
        }
932
 
933
        err = security_sem_semctl(sma, cmd);
934
        if (err)
935
                goto out_unlock;
936
 
937
        switch(cmd){
938
        case IPC_RMID:
939
                freeary(ns, sma);
940
                err = 0;
941
                break;
942
        case IPC_SET:
943
                ipcp->uid = setbuf.uid;
944
                ipcp->gid = setbuf.gid;
945
                ipcp->mode = (ipcp->mode & ~S_IRWXUGO)
946
                                | (setbuf.mode & S_IRWXUGO);
947
                sma->sem_ctime = get_seconds();
948
                sem_unlock(sma);
949
                err = 0;
950
                break;
951
        default:
952
                sem_unlock(sma);
953
                err = -EINVAL;
954
                break;
955
        }
956
        return err;
957
 
958
out_unlock:
959
        sem_unlock(sma);
960
        return err;
961
}
962
 
963
asmlinkage long sys_semctl (int semid, int semnum, int cmd, union semun arg)
964
{
965
        int err = -EINVAL;
966
        int version;
967
        struct ipc_namespace *ns;
968
 
969
        if (semid < 0)
970
                return -EINVAL;
971
 
972
        version = ipc_parse_version(&cmd);
973
        ns = current->nsproxy->ipc_ns;
974
 
975
        switch(cmd) {
976
        case IPC_INFO:
977
        case SEM_INFO:
978
        case SEM_STAT:
979
                err = semctl_nolock(ns,semid,semnum,cmd,version,arg);
980
                return err;
981
        case GETALL:
982
        case GETVAL:
983
        case GETPID:
984
        case GETNCNT:
985
        case GETZCNT:
986
        case IPC_STAT:
987
        case SETVAL:
988
        case SETALL:
989
                err = semctl_main(ns,semid,semnum,cmd,version,arg);
990
                return err;
991
        case IPC_RMID:
992
        case IPC_SET:
993
                down_write(&sem_ids(ns).rw_mutex);
994
                err = semctl_down(ns,semid,semnum,cmd,version,arg);
995
                up_write(&sem_ids(ns).rw_mutex);
996
                return err;
997
        default:
998
                return -EINVAL;
999
        }
1000
}
1001
 
1002
/* If the task doesn't already have a undo_list, then allocate one
1003
 * here.  We guarantee there is only one thread using this undo list,
1004
 * and current is THE ONE
1005
 *
1006
 * If this allocation and assignment succeeds, but later
1007
 * portions of this code fail, there is no need to free the sem_undo_list.
1008
 * Just let it stay associated with the task, and it'll be freed later
1009
 * at exit time.
1010
 *
1011
 * This can block, so callers must hold no locks.
1012
 */
1013
static inline int get_undo_list(struct sem_undo_list **undo_listp)
1014
{
1015
        struct sem_undo_list *undo_list;
1016
 
1017
        undo_list = current->sysvsem.undo_list;
1018
        if (!undo_list) {
1019
                undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1020
                if (undo_list == NULL)
1021
                        return -ENOMEM;
1022
                spin_lock_init(&undo_list->lock);
1023
                atomic_set(&undo_list->refcnt, 1);
1024
                current->sysvsem.undo_list = undo_list;
1025
        }
1026
        *undo_listp = undo_list;
1027
        return 0;
1028
}
1029
 
1030
static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1031
{
1032
        struct sem_undo **last, *un;
1033
 
1034
        last = &ulp->proc_list;
1035
        un = *last;
1036
        while(un != NULL) {
1037
                if(un->semid==semid)
1038
                        break;
1039
                if(un->semid==-1) {
1040
                        *last=un->proc_next;
1041
                        kfree(un);
1042
                } else {
1043
                        last=&un->proc_next;
1044
                }
1045
                un=*last;
1046
        }
1047
        return un;
1048
}
1049
 
1050
static struct sem_undo *find_undo(struct ipc_namespace *ns, int semid)
1051
{
1052
        struct sem_array *sma;
1053
        struct sem_undo_list *ulp;
1054
        struct sem_undo *un, *new;
1055
        int nsems;
1056
        int error;
1057
 
1058
        error = get_undo_list(&ulp);
1059
        if (error)
1060
                return ERR_PTR(error);
1061
 
1062
        spin_lock(&ulp->lock);
1063
        un = lookup_undo(ulp, semid);
1064
        spin_unlock(&ulp->lock);
1065
        if (likely(un!=NULL))
1066
                goto out;
1067
 
1068
        /* no undo structure around - allocate one. */
1069
        sma = sem_lock_check(ns, semid);
1070
        if (IS_ERR(sma))
1071
                return ERR_PTR(PTR_ERR(sma));
1072
 
1073
        nsems = sma->sem_nsems;
1074
        ipc_rcu_getref(sma);
1075
        sem_unlock(sma);
1076
 
1077
        new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1078
        if (!new) {
1079
                ipc_lock_by_ptr(&sma->sem_perm);
1080
                ipc_rcu_putref(sma);
1081
                sem_unlock(sma);
1082
                return ERR_PTR(-ENOMEM);
1083
        }
1084
        new->semadj = (short *) &new[1];
1085
        new->semid = semid;
1086
 
1087
        spin_lock(&ulp->lock);
1088
        un = lookup_undo(ulp, semid);
1089
        if (un) {
1090
                spin_unlock(&ulp->lock);
1091
                kfree(new);
1092
                ipc_lock_by_ptr(&sma->sem_perm);
1093
                ipc_rcu_putref(sma);
1094
                sem_unlock(sma);
1095
                goto out;
1096
        }
1097
        ipc_lock_by_ptr(&sma->sem_perm);
1098
        ipc_rcu_putref(sma);
1099
        if (sma->sem_perm.deleted) {
1100
                sem_unlock(sma);
1101
                spin_unlock(&ulp->lock);
1102
                kfree(new);
1103
                un = ERR_PTR(-EIDRM);
1104
                goto out;
1105
        }
1106
        new->proc_next = ulp->proc_list;
1107
        ulp->proc_list = new;
1108
        new->id_next = sma->undo;
1109
        sma->undo = new;
1110
        sem_unlock(sma);
1111
        un = new;
1112
        spin_unlock(&ulp->lock);
1113
out:
1114
        return un;
1115
}
1116
 
1117
asmlinkage long sys_semtimedop(int semid, struct sembuf __user *tsops,
1118
                        unsigned nsops, const struct timespec __user *timeout)
1119
{
1120
        int error = -EINVAL;
1121
        struct sem_array *sma;
1122
        struct sembuf fast_sops[SEMOPM_FAST];
1123
        struct sembuf* sops = fast_sops, *sop;
1124
        struct sem_undo *un;
1125
        int undos = 0, alter = 0, max;
1126
        struct sem_queue queue;
1127
        unsigned long jiffies_left = 0;
1128
        struct ipc_namespace *ns;
1129
 
1130
        ns = current->nsproxy->ipc_ns;
1131
 
1132
        if (nsops < 1 || semid < 0)
1133
                return -EINVAL;
1134
        if (nsops > ns->sc_semopm)
1135
                return -E2BIG;
1136
        if(nsops > SEMOPM_FAST) {
1137
                sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1138
                if(sops==NULL)
1139
                        return -ENOMEM;
1140
        }
1141
        if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1142
                error=-EFAULT;
1143
                goto out_free;
1144
        }
1145
        if (timeout) {
1146
                struct timespec _timeout;
1147
                if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1148
                        error = -EFAULT;
1149
                        goto out_free;
1150
                }
1151
                if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1152
                        _timeout.tv_nsec >= 1000000000L) {
1153
                        error = -EINVAL;
1154
                        goto out_free;
1155
                }
1156
                jiffies_left = timespec_to_jiffies(&_timeout);
1157
        }
1158
        max = 0;
1159
        for (sop = sops; sop < sops + nsops; sop++) {
1160
                if (sop->sem_num >= max)
1161
                        max = sop->sem_num;
1162
                if (sop->sem_flg & SEM_UNDO)
1163
                        undos = 1;
1164
                if (sop->sem_op != 0)
1165
                        alter = 1;
1166
        }
1167
 
1168
retry_undos:
1169
        if (undos) {
1170
                un = find_undo(ns, semid);
1171
                if (IS_ERR(un)) {
1172
                        error = PTR_ERR(un);
1173
                        goto out_free;
1174
                }
1175
        } else
1176
                un = NULL;
1177
 
1178
        sma = sem_lock_check(ns, semid);
1179
        if (IS_ERR(sma)) {
1180
                error = PTR_ERR(sma);
1181
                goto out_free;
1182
        }
1183
 
1184
        /*
1185
         * semid identifiers are not unique - find_undo may have
1186
         * allocated an undo structure, it was invalidated by an RMID
1187
         * and now a new array with received the same id. Check and retry.
1188
         */
1189
        if (un && un->semid == -1) {
1190
                sem_unlock(sma);
1191
                goto retry_undos;
1192
        }
1193
        error = -EFBIG;
1194
        if (max >= sma->sem_nsems)
1195
                goto out_unlock_free;
1196
 
1197
        error = -EACCES;
1198
        if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1199
                goto out_unlock_free;
1200
 
1201
        error = security_sem_semop(sma, sops, nsops, alter);
1202
        if (error)
1203
                goto out_unlock_free;
1204
 
1205
        error = try_atomic_semop (sma, sops, nsops, un, task_tgid_vnr(current));
1206
        if (error <= 0) {
1207
                if (alter && error == 0)
1208
                        update_queue (sma);
1209
                goto out_unlock_free;
1210
        }
1211
 
1212
        /* We need to sleep on this operation, so we put the current
1213
         * task into the pending queue and go to sleep.
1214
         */
1215
 
1216
        queue.sma = sma;
1217
        queue.sops = sops;
1218
        queue.nsops = nsops;
1219
        queue.undo = un;
1220
        queue.pid = task_tgid_vnr(current);
1221
        queue.id = semid;
1222
        queue.alter = alter;
1223
        if (alter)
1224
                append_to_queue(sma ,&queue);
1225
        else
1226
                prepend_to_queue(sma ,&queue);
1227
 
1228
        queue.status = -EINTR;
1229
        queue.sleeper = current;
1230
        current->state = TASK_INTERRUPTIBLE;
1231
        sem_unlock(sma);
1232
 
1233
        if (timeout)
1234
                jiffies_left = schedule_timeout(jiffies_left);
1235
        else
1236
                schedule();
1237
 
1238
        error = queue.status;
1239
        while(unlikely(error == IN_WAKEUP)) {
1240
                cpu_relax();
1241
                error = queue.status;
1242
        }
1243
 
1244
        if (error != -EINTR) {
1245
                /* fast path: update_queue already obtained all requested
1246
                 * resources */
1247
                goto out_free;
1248
        }
1249
 
1250
        sma = sem_lock(ns, semid);
1251
        if (IS_ERR(sma)) {
1252
                BUG_ON(queue.prev != NULL);
1253
                error = -EIDRM;
1254
                goto out_free;
1255
        }
1256
 
1257
        /*
1258
         * If queue.status != -EINTR we are woken up by another process
1259
         */
1260
        error = queue.status;
1261
        if (error != -EINTR) {
1262
                goto out_unlock_free;
1263
        }
1264
 
1265
        /*
1266
         * If an interrupt occurred we have to clean up the queue
1267
         */
1268
        if (timeout && jiffies_left == 0)
1269
                error = -EAGAIN;
1270
        remove_from_queue(sma,&queue);
1271
        goto out_unlock_free;
1272
 
1273
out_unlock_free:
1274
        sem_unlock(sma);
1275
out_free:
1276
        if(sops != fast_sops)
1277
                kfree(sops);
1278
        return error;
1279
}
1280
 
1281
asmlinkage long sys_semop (int semid, struct sembuf __user *tsops, unsigned nsops)
1282
{
1283
        return sys_semtimedop(semid, tsops, nsops, NULL);
1284
}
1285
 
1286
/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1287
 * parent and child tasks.
1288
 */
1289
 
1290
int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1291
{
1292
        struct sem_undo_list *undo_list;
1293
        int error;
1294
 
1295
        if (clone_flags & CLONE_SYSVSEM) {
1296
                error = get_undo_list(&undo_list);
1297
                if (error)
1298
                        return error;
1299
                atomic_inc(&undo_list->refcnt);
1300
                tsk->sysvsem.undo_list = undo_list;
1301
        } else
1302
                tsk->sysvsem.undo_list = NULL;
1303
 
1304
        return 0;
1305
}
1306
 
1307
/*
1308
 * add semadj values to semaphores, free undo structures.
1309
 * undo structures are not freed when semaphore arrays are destroyed
1310
 * so some of them may be out of date.
1311
 * IMPLEMENTATION NOTE: There is some confusion over whether the
1312
 * set of adjustments that needs to be done should be done in an atomic
1313
 * manner or not. That is, if we are attempting to decrement the semval
1314
 * should we queue up and wait until we can do so legally?
1315
 * The original implementation attempted to do this (queue and wait).
1316
 * The current implementation does not do so. The POSIX standard
1317
 * and SVID should be consulted to determine what behavior is mandated.
1318
 */
1319
void exit_sem(struct task_struct *tsk)
1320
{
1321
        struct sem_undo_list *undo_list;
1322
        struct sem_undo *u, **up;
1323
        struct ipc_namespace *ns;
1324
 
1325
        undo_list = tsk->sysvsem.undo_list;
1326
        if (!undo_list)
1327
                return;
1328
 
1329
        if (!atomic_dec_and_test(&undo_list->refcnt))
1330
                return;
1331
 
1332
        ns = tsk->nsproxy->ipc_ns;
1333
        /* There's no need to hold the semundo list lock, as current
1334
         * is the last task exiting for this undo list.
1335
         */
1336
        for (up = &undo_list->proc_list; (u = *up); *up = u->proc_next, kfree(u)) {
1337
                struct sem_array *sma;
1338
                int nsems, i;
1339
                struct sem_undo *un, **unp;
1340
                int semid;
1341
 
1342
                semid = u->semid;
1343
 
1344
                if(semid == -1)
1345
                        continue;
1346
                sma = sem_lock(ns, semid);
1347
                if (IS_ERR(sma))
1348
                        continue;
1349
 
1350
                if (u->semid == -1)
1351
                        goto next_entry;
1352
 
1353
                BUG_ON(sem_checkid(sma, u->semid));
1354
 
1355
                /* remove u from the sma->undo list */
1356
                for (unp = &sma->undo; (un = *unp); unp = &un->id_next) {
1357
                        if (u == un)
1358
                                goto found;
1359
                }
1360
                printk ("exit_sem undo list error id=%d\n", u->semid);
1361
                goto next_entry;
1362
found:
1363
                *unp = un->id_next;
1364
                /* perform adjustments registered in u */
1365
                nsems = sma->sem_nsems;
1366
                for (i = 0; i < nsems; i++) {
1367
                        struct sem * semaphore = &sma->sem_base[i];
1368
                        if (u->semadj[i]) {
1369
                                semaphore->semval += u->semadj[i];
1370
                                /*
1371
                                 * Range checks of the new semaphore value,
1372
                                 * not defined by sus:
1373
                                 * - Some unices ignore the undo entirely
1374
                                 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
1375
                                 * - some cap the value (e.g. FreeBSD caps
1376
                                 *   at 0, but doesn't enforce SEMVMX)
1377
                                 *
1378
                                 * Linux caps the semaphore value, both at 0
1379
                                 * and at SEMVMX.
1380
                                 *
1381
                                 *      Manfred <manfred@colorfullife.com>
1382
                                 */
1383
                                if (semaphore->semval < 0)
1384
                                        semaphore->semval = 0;
1385
                                if (semaphore->semval > SEMVMX)
1386
                                        semaphore->semval = SEMVMX;
1387
                                semaphore->sempid = task_tgid_vnr(current);
1388
                        }
1389
                }
1390
                sma->sem_otime = get_seconds();
1391
                /* maybe some queued-up processes were waiting for this */
1392
                update_queue(sma);
1393
next_entry:
1394
                sem_unlock(sma);
1395
        }
1396
        kfree(undo_list);
1397
}
1398
 
1399
#ifdef CONFIG_PROC_FS
1400
static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1401
{
1402
        struct sem_array *sma = it;
1403
 
1404
        return seq_printf(s,
1405
                          "%10d %10d  %4o %10lu %5u %5u %5u %5u %10lu %10lu\n",
1406
                          sma->sem_perm.key,
1407
                          sma->sem_perm.id,
1408
                          sma->sem_perm.mode,
1409
                          sma->sem_nsems,
1410
                          sma->sem_perm.uid,
1411
                          sma->sem_perm.gid,
1412
                          sma->sem_perm.cuid,
1413
                          sma->sem_perm.cgid,
1414
                          sma->sem_otime,
1415
                          sma->sem_ctime);
1416
}
1417
#endif

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.