OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [kernel/] [exit.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 *  linux/kernel/exit.c
3
 *
4
 *  Copyright (C) 1991, 1992  Linus Torvalds
5
 */
6
 
7
#include <linux/mm.h>
8
#include <linux/slab.h>
9
#include <linux/interrupt.h>
10
#include <linux/module.h>
11
#include <linux/capability.h>
12
#include <linux/completion.h>
13
#include <linux/personality.h>
14
#include <linux/tty.h>
15
#include <linux/mnt_namespace.h>
16
#include <linux/key.h>
17
#include <linux/security.h>
18
#include <linux/cpu.h>
19
#include <linux/acct.h>
20
#include <linux/tsacct_kern.h>
21
#include <linux/file.h>
22
#include <linux/binfmts.h>
23
#include <linux/nsproxy.h>
24
#include <linux/pid_namespace.h>
25
#include <linux/ptrace.h>
26
#include <linux/profile.h>
27
#include <linux/mount.h>
28
#include <linux/proc_fs.h>
29
#include <linux/kthread.h>
30
#include <linux/mempolicy.h>
31
#include <linux/taskstats_kern.h>
32
#include <linux/delayacct.h>
33
#include <linux/freezer.h>
34
#include <linux/cgroup.h>
35
#include <linux/syscalls.h>
36
#include <linux/signal.h>
37
#include <linux/posix-timers.h>
38
#include <linux/cn_proc.h>
39
#include <linux/mutex.h>
40
#include <linux/futex.h>
41
#include <linux/compat.h>
42
#include <linux/pipe_fs_i.h>
43
#include <linux/audit.h> /* for audit_free() */
44
#include <linux/resource.h>
45
#include <linux/blkdev.h>
46
#include <linux/task_io_accounting_ops.h>
47
 
48
#include <asm/uaccess.h>
49
#include <asm/unistd.h>
50
#include <asm/pgtable.h>
51
#include <asm/mmu_context.h>
52
 
53
extern void sem_exit (void);
54
 
55
static void exit_mm(struct task_struct * tsk);
56
 
57
static void __unhash_process(struct task_struct *p)
58
{
59
        nr_threads--;
60
        detach_pid(p, PIDTYPE_PID);
61
        if (thread_group_leader(p)) {
62
                detach_pid(p, PIDTYPE_PGID);
63
                detach_pid(p, PIDTYPE_SID);
64
 
65
                list_del_rcu(&p->tasks);
66
                __get_cpu_var(process_counts)--;
67
        }
68
        list_del_rcu(&p->thread_group);
69
        remove_parent(p);
70
}
71
 
72
/*
73
 * This function expects the tasklist_lock write-locked.
74
 */
75
static void __exit_signal(struct task_struct *tsk)
76
{
77
        struct signal_struct *sig = tsk->signal;
78
        struct sighand_struct *sighand;
79
 
80
        BUG_ON(!sig);
81
        BUG_ON(!atomic_read(&sig->count));
82
 
83
        rcu_read_lock();
84
        sighand = rcu_dereference(tsk->sighand);
85
        spin_lock(&sighand->siglock);
86
 
87
        posix_cpu_timers_exit(tsk);
88
        if (atomic_dec_and_test(&sig->count))
89
                posix_cpu_timers_exit_group(tsk);
90
        else {
91
                /*
92
                 * If there is any task waiting for the group exit
93
                 * then notify it:
94
                 */
95
                if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
96
                        wake_up_process(sig->group_exit_task);
97
 
98
                if (tsk == sig->curr_target)
99
                        sig->curr_target = next_thread(tsk);
100
                /*
101
                 * Accumulate here the counters for all threads but the
102
                 * group leader as they die, so they can be added into
103
                 * the process-wide totals when those are taken.
104
                 * The group leader stays around as a zombie as long
105
                 * as there are other threads.  When it gets reaped,
106
                 * the exit.c code will add its counts into these totals.
107
                 * We won't ever get here for the group leader, since it
108
                 * will have been the last reference on the signal_struct.
109
                 */
110
                sig->utime = cputime_add(sig->utime, tsk->utime);
111
                sig->stime = cputime_add(sig->stime, tsk->stime);
112
                sig->gtime = cputime_add(sig->gtime, tsk->gtime);
113
                sig->min_flt += tsk->min_flt;
114
                sig->maj_flt += tsk->maj_flt;
115
                sig->nvcsw += tsk->nvcsw;
116
                sig->nivcsw += tsk->nivcsw;
117
                sig->inblock += task_io_get_inblock(tsk);
118
                sig->oublock += task_io_get_oublock(tsk);
119
                sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
120
                sig = NULL; /* Marker for below. */
121
        }
122
 
123
        __unhash_process(tsk);
124
 
125
        tsk->signal = NULL;
126
        tsk->sighand = NULL;
127
        spin_unlock(&sighand->siglock);
128
        rcu_read_unlock();
129
 
130
        __cleanup_sighand(sighand);
131
        clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
132
        flush_sigqueue(&tsk->pending);
133
        if (sig) {
134
                flush_sigqueue(&sig->shared_pending);
135
                taskstats_tgid_free(sig);
136
                __cleanup_signal(sig);
137
        }
138
}
139
 
140
static void delayed_put_task_struct(struct rcu_head *rhp)
141
{
142
        put_task_struct(container_of(rhp, struct task_struct, rcu));
143
}
144
 
145
void release_task(struct task_struct * p)
146
{
147
        struct task_struct *leader;
148
        int zap_leader;
149
repeat:
150
        atomic_dec(&p->user->processes);
151
        proc_flush_task(p);
152
        write_lock_irq(&tasklist_lock);
153
        ptrace_unlink(p);
154
        BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
155
        __exit_signal(p);
156
 
157
        /*
158
         * If we are the last non-leader member of the thread
159
         * group, and the leader is zombie, then notify the
160
         * group leader's parent process. (if it wants notification.)
161
         */
162
        zap_leader = 0;
163
        leader = p->group_leader;
164
        if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
165
                BUG_ON(leader->exit_signal == -1);
166
                do_notify_parent(leader, leader->exit_signal);
167
                /*
168
                 * If we were the last child thread and the leader has
169
                 * exited already, and the leader's parent ignores SIGCHLD,
170
                 * then we are the one who should release the leader.
171
                 *
172
                 * do_notify_parent() will have marked it self-reaping in
173
                 * that case.
174
                 */
175
                zap_leader = (leader->exit_signal == -1);
176
        }
177
 
178
        write_unlock_irq(&tasklist_lock);
179
        release_thread(p);
180
        call_rcu(&p->rcu, delayed_put_task_struct);
181
 
182
        p = leader;
183
        if (unlikely(zap_leader))
184
                goto repeat;
185
}
186
 
187
/*
188
 * This checks not only the pgrp, but falls back on the pid if no
189
 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
190
 * without this...
191
 *
192
 * The caller must hold rcu lock or the tasklist lock.
193
 */
194
struct pid *session_of_pgrp(struct pid *pgrp)
195
{
196
        struct task_struct *p;
197
        struct pid *sid = NULL;
198
 
199
        p = pid_task(pgrp, PIDTYPE_PGID);
200
        if (p == NULL)
201
                p = pid_task(pgrp, PIDTYPE_PID);
202
        if (p != NULL)
203
                sid = task_session(p);
204
 
205
        return sid;
206
}
207
 
208
/*
209
 * Determine if a process group is "orphaned", according to the POSIX
210
 * definition in 2.2.2.52.  Orphaned process groups are not to be affected
211
 * by terminal-generated stop signals.  Newly orphaned process groups are
212
 * to receive a SIGHUP and a SIGCONT.
213
 *
214
 * "I ask you, have you ever known what it is to be an orphan?"
215
 */
216
static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
217
{
218
        struct task_struct *p;
219
        int ret = 1;
220
 
221
        do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
222
                if (p == ignored_task
223
                                || p->exit_state
224
                                || is_global_init(p->real_parent))
225
                        continue;
226
                if (task_pgrp(p->real_parent) != pgrp &&
227
                    task_session(p->real_parent) == task_session(p)) {
228
                        ret = 0;
229
                        break;
230
                }
231
        } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
232
        return ret;     /* (sighing) "Often!" */
233
}
234
 
235
int is_current_pgrp_orphaned(void)
236
{
237
        int retval;
238
 
239
        read_lock(&tasklist_lock);
240
        retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
241
        read_unlock(&tasklist_lock);
242
 
243
        return retval;
244
}
245
 
246
static int has_stopped_jobs(struct pid *pgrp)
247
{
248
        int retval = 0;
249
        struct task_struct *p;
250
 
251
        do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
252
                if (p->state != TASK_STOPPED)
253
                        continue;
254
                retval = 1;
255
                break;
256
        } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
257
        return retval;
258
}
259
 
260
/**
261
 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
262
 *
263
 * If a kernel thread is launched as a result of a system call, or if
264
 * it ever exits, it should generally reparent itself to kthreadd so it
265
 * isn't in the way of other processes and is correctly cleaned up on exit.
266
 *
267
 * The various task state such as scheduling policy and priority may have
268
 * been inherited from a user process, so we reset them to sane values here.
269
 *
270
 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
271
 */
272
static void reparent_to_kthreadd(void)
273
{
274
        write_lock_irq(&tasklist_lock);
275
 
276
        ptrace_unlink(current);
277
        /* Reparent to init */
278
        remove_parent(current);
279
        current->real_parent = current->parent = kthreadd_task;
280
        add_parent(current);
281
 
282
        /* Set the exit signal to SIGCHLD so we signal init on exit */
283
        current->exit_signal = SIGCHLD;
284
 
285
        if (task_nice(current) < 0)
286
                set_user_nice(current, 0);
287
        /* cpus_allowed? */
288
        /* rt_priority? */
289
        /* signals? */
290
        security_task_reparent_to_init(current);
291
        memcpy(current->signal->rlim, init_task.signal->rlim,
292
               sizeof(current->signal->rlim));
293
        atomic_inc(&(INIT_USER->__count));
294
        write_unlock_irq(&tasklist_lock);
295
        switch_uid(INIT_USER);
296
}
297
 
298
void __set_special_pids(pid_t session, pid_t pgrp)
299
{
300
        struct task_struct *curr = current->group_leader;
301
 
302
        if (task_session_nr(curr) != session) {
303
                detach_pid(curr, PIDTYPE_SID);
304
                set_task_session(curr, session);
305
                attach_pid(curr, PIDTYPE_SID, find_pid(session));
306
        }
307
        if (task_pgrp_nr(curr) != pgrp) {
308
                detach_pid(curr, PIDTYPE_PGID);
309
                set_task_pgrp(curr, pgrp);
310
                attach_pid(curr, PIDTYPE_PGID, find_pid(pgrp));
311
        }
312
}
313
 
314
static void set_special_pids(pid_t session, pid_t pgrp)
315
{
316
        write_lock_irq(&tasklist_lock);
317
        __set_special_pids(session, pgrp);
318
        write_unlock_irq(&tasklist_lock);
319
}
320
 
321
/*
322
 * Let kernel threads use this to say that they
323
 * allow a certain signal (since daemonize() will
324
 * have disabled all of them by default).
325
 */
326
int allow_signal(int sig)
327
{
328
        if (!valid_signal(sig) || sig < 1)
329
                return -EINVAL;
330
 
331
        spin_lock_irq(&current->sighand->siglock);
332
        sigdelset(&current->blocked, sig);
333
        if (!current->mm) {
334
                /* Kernel threads handle their own signals.
335
                   Let the signal code know it'll be handled, so
336
                   that they don't get converted to SIGKILL or
337
                   just silently dropped */
338
                current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
339
        }
340
        recalc_sigpending();
341
        spin_unlock_irq(&current->sighand->siglock);
342
        return 0;
343
}
344
 
345
EXPORT_SYMBOL(allow_signal);
346
 
347
int disallow_signal(int sig)
348
{
349
        if (!valid_signal(sig) || sig < 1)
350
                return -EINVAL;
351
 
352
        spin_lock_irq(&current->sighand->siglock);
353
        current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
354
        recalc_sigpending();
355
        spin_unlock_irq(&current->sighand->siglock);
356
        return 0;
357
}
358
 
359
EXPORT_SYMBOL(disallow_signal);
360
 
361
/*
362
 *      Put all the gunge required to become a kernel thread without
363
 *      attached user resources in one place where it belongs.
364
 */
365
 
366
void daemonize(const char *name, ...)
367
{
368
        va_list args;
369
        struct fs_struct *fs;
370
        sigset_t blocked;
371
 
372
        va_start(args, name);
373
        vsnprintf(current->comm, sizeof(current->comm), name, args);
374
        va_end(args);
375
 
376
        /*
377
         * If we were started as result of loading a module, close all of the
378
         * user space pages.  We don't need them, and if we didn't close them
379
         * they would be locked into memory.
380
         */
381
        exit_mm(current);
382
        /*
383
         * We don't want to have TIF_FREEZE set if the system-wide hibernation
384
         * or suspend transition begins right now.
385
         */
386
        current->flags |= PF_NOFREEZE;
387
 
388
        set_special_pids(1, 1);
389
        proc_clear_tty(current);
390
 
391
        /* Block and flush all signals */
392
        sigfillset(&blocked);
393
        sigprocmask(SIG_BLOCK, &blocked, NULL);
394
        flush_signals(current);
395
 
396
        /* Become as one with the init task */
397
 
398
        exit_fs(current);       /* current->fs->count--; */
399
        fs = init_task.fs;
400
        current->fs = fs;
401
        atomic_inc(&fs->count);
402
 
403
        if (current->nsproxy != init_task.nsproxy) {
404
                get_nsproxy(init_task.nsproxy);
405
                switch_task_namespaces(current, init_task.nsproxy);
406
        }
407
 
408
        exit_files(current);
409
        current->files = init_task.files;
410
        atomic_inc(&current->files->count);
411
 
412
        reparent_to_kthreadd();
413
}
414
 
415
EXPORT_SYMBOL(daemonize);
416
 
417
static void close_files(struct files_struct * files)
418
{
419
        int i, j;
420
        struct fdtable *fdt;
421
 
422
        j = 0;
423
 
424
        /*
425
         * It is safe to dereference the fd table without RCU or
426
         * ->file_lock because this is the last reference to the
427
         * files structure.
428
         */
429
        fdt = files_fdtable(files);
430
        for (;;) {
431
                unsigned long set;
432
                i = j * __NFDBITS;
433
                if (i >= fdt->max_fds)
434
                        break;
435
                set = fdt->open_fds->fds_bits[j++];
436
                while (set) {
437
                        if (set & 1) {
438
                                struct file * file = xchg(&fdt->fd[i], NULL);
439
                                if (file) {
440
                                        filp_close(file, files);
441
                                        cond_resched();
442
                                }
443
                        }
444
                        i++;
445
                        set >>= 1;
446
                }
447
        }
448
}
449
 
450
struct files_struct *get_files_struct(struct task_struct *task)
451
{
452
        struct files_struct *files;
453
 
454
        task_lock(task);
455
        files = task->files;
456
        if (files)
457
                atomic_inc(&files->count);
458
        task_unlock(task);
459
 
460
        return files;
461
}
462
 
463
void fastcall put_files_struct(struct files_struct *files)
464
{
465
        struct fdtable *fdt;
466
 
467
        if (atomic_dec_and_test(&files->count)) {
468
                close_files(files);
469
                /*
470
                 * Free the fd and fdset arrays if we expanded them.
471
                 * If the fdtable was embedded, pass files for freeing
472
                 * at the end of the RCU grace period. Otherwise,
473
                 * you can free files immediately.
474
                 */
475
                fdt = files_fdtable(files);
476
                if (fdt != &files->fdtab)
477
                        kmem_cache_free(files_cachep, files);
478
                free_fdtable(fdt);
479
        }
480
}
481
 
482
EXPORT_SYMBOL(put_files_struct);
483
 
484
void reset_files_struct(struct task_struct *tsk, struct files_struct *files)
485
{
486
        struct files_struct *old;
487
 
488
        old = tsk->files;
489
        task_lock(tsk);
490
        tsk->files = files;
491
        task_unlock(tsk);
492
        put_files_struct(old);
493
}
494
EXPORT_SYMBOL(reset_files_struct);
495
 
496
static void __exit_files(struct task_struct *tsk)
497
{
498
        struct files_struct * files = tsk->files;
499
 
500
        if (files) {
501
                task_lock(tsk);
502
                tsk->files = NULL;
503
                task_unlock(tsk);
504
                put_files_struct(files);
505
        }
506
}
507
 
508
void exit_files(struct task_struct *tsk)
509
{
510
        __exit_files(tsk);
511
}
512
 
513
static void __put_fs_struct(struct fs_struct *fs)
514
{
515
        /* No need to hold fs->lock if we are killing it */
516
        if (atomic_dec_and_test(&fs->count)) {
517
                dput(fs->root);
518
                mntput(fs->rootmnt);
519
                dput(fs->pwd);
520
                mntput(fs->pwdmnt);
521
                if (fs->altroot) {
522
                        dput(fs->altroot);
523
                        mntput(fs->altrootmnt);
524
                }
525
                kmem_cache_free(fs_cachep, fs);
526
        }
527
}
528
 
529
void put_fs_struct(struct fs_struct *fs)
530
{
531
        __put_fs_struct(fs);
532
}
533
 
534
static void __exit_fs(struct task_struct *tsk)
535
{
536
        struct fs_struct * fs = tsk->fs;
537
 
538
        if (fs) {
539
                task_lock(tsk);
540
                tsk->fs = NULL;
541
                task_unlock(tsk);
542
                __put_fs_struct(fs);
543
        }
544
}
545
 
546
void exit_fs(struct task_struct *tsk)
547
{
548
        __exit_fs(tsk);
549
}
550
 
551
EXPORT_SYMBOL_GPL(exit_fs);
552
 
553
/*
554
 * Turn us into a lazy TLB process if we
555
 * aren't already..
556
 */
557
static void exit_mm(struct task_struct * tsk)
558
{
559
        struct mm_struct *mm = tsk->mm;
560
 
561
        mm_release(tsk, mm);
562
        if (!mm)
563
                return;
564
        /*
565
         * Serialize with any possible pending coredump.
566
         * We must hold mmap_sem around checking core_waiters
567
         * and clearing tsk->mm.  The core-inducing thread
568
         * will increment core_waiters for each thread in the
569
         * group with ->mm != NULL.
570
         */
571
        down_read(&mm->mmap_sem);
572
        if (mm->core_waiters) {
573
                up_read(&mm->mmap_sem);
574
                down_write(&mm->mmap_sem);
575
                if (!--mm->core_waiters)
576
                        complete(mm->core_startup_done);
577
                up_write(&mm->mmap_sem);
578
 
579
                wait_for_completion(&mm->core_done);
580
                down_read(&mm->mmap_sem);
581
        }
582
        atomic_inc(&mm->mm_count);
583
        BUG_ON(mm != tsk->active_mm);
584
        /* more a memory barrier than a real lock */
585
        task_lock(tsk);
586
        tsk->mm = NULL;
587
        up_read(&mm->mmap_sem);
588
        enter_lazy_tlb(mm, current);
589
        /* We don't want this task to be frozen prematurely */
590
        clear_freeze_flag(tsk);
591
        task_unlock(tsk);
592
        mmput(mm);
593
}
594
 
595
static void
596
reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
597
{
598
        if (p->pdeath_signal)
599
                /* We already hold the tasklist_lock here.  */
600
                group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
601
 
602
        /* Move the child from its dying parent to the new one.  */
603
        if (unlikely(traced)) {
604
                /* Preserve ptrace links if someone else is tracing this child.  */
605
                list_del_init(&p->ptrace_list);
606
                if (p->parent != p->real_parent)
607
                        list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
608
        } else {
609
                /* If this child is being traced, then we're the one tracing it
610
                 * anyway, so let go of it.
611
                 */
612
                p->ptrace = 0;
613
                remove_parent(p);
614
                p->parent = p->real_parent;
615
                add_parent(p);
616
 
617
                if (p->state == TASK_TRACED) {
618
                        /*
619
                         * If it was at a trace stop, turn it into
620
                         * a normal stop since it's no longer being
621
                         * traced.
622
                         */
623
                        ptrace_untrace(p);
624
                }
625
        }
626
 
627
        /* If this is a threaded reparent there is no need to
628
         * notify anyone anything has happened.
629
         */
630
        if (p->real_parent->group_leader == father->group_leader)
631
                return;
632
 
633
        /* We don't want people slaying init.  */
634
        if (p->exit_signal != -1)
635
                p->exit_signal = SIGCHLD;
636
 
637
        /* If we'd notified the old parent about this child's death,
638
         * also notify the new parent.
639
         */
640
        if (!traced && p->exit_state == EXIT_ZOMBIE &&
641
            p->exit_signal != -1 && thread_group_empty(p))
642
                do_notify_parent(p, p->exit_signal);
643
 
644
        /*
645
         * process group orphan check
646
         * Case ii: Our child is in a different pgrp
647
         * than we are, and it was the only connection
648
         * outside, so the child pgrp is now orphaned.
649
         */
650
        if ((task_pgrp(p) != task_pgrp(father)) &&
651
            (task_session(p) == task_session(father))) {
652
                struct pid *pgrp = task_pgrp(p);
653
 
654
                if (will_become_orphaned_pgrp(pgrp, NULL) &&
655
                    has_stopped_jobs(pgrp)) {
656
                        __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
657
                        __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
658
                }
659
        }
660
}
661
 
662
/*
663
 * When we die, we re-parent all our children.
664
 * Try to give them to another thread in our thread
665
 * group, and if no such member exists, give it to
666
 * the child reaper process (ie "init") in our pid
667
 * space.
668
 */
669
static void forget_original_parent(struct task_struct *father)
670
{
671
        struct task_struct *p, *n, *reaper = father;
672
        struct list_head ptrace_dead;
673
 
674
        INIT_LIST_HEAD(&ptrace_dead);
675
 
676
        write_lock_irq(&tasklist_lock);
677
 
678
        do {
679
                reaper = next_thread(reaper);
680
                if (reaper == father) {
681
                        reaper = task_child_reaper(father);
682
                        break;
683
                }
684
        } while (reaper->flags & PF_EXITING);
685
 
686
        /*
687
         * There are only two places where our children can be:
688
         *
689
         * - in our child list
690
         * - in our ptraced child list
691
         *
692
         * Search them and reparent children.
693
         */
694
        list_for_each_entry_safe(p, n, &father->children, sibling) {
695
                int ptrace;
696
 
697
                ptrace = p->ptrace;
698
 
699
                /* if father isn't the real parent, then ptrace must be enabled */
700
                BUG_ON(father != p->real_parent && !ptrace);
701
 
702
                if (father == p->real_parent) {
703
                        /* reparent with a reaper, real father it's us */
704
                        p->real_parent = reaper;
705
                        reparent_thread(p, father, 0);
706
                } else {
707
                        /* reparent ptraced task to its real parent */
708
                        __ptrace_unlink (p);
709
                        if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
710
                            thread_group_empty(p))
711
                                do_notify_parent(p, p->exit_signal);
712
                }
713
 
714
                /*
715
                 * if the ptraced child is a zombie with exit_signal == -1
716
                 * we must collect it before we exit, or it will remain
717
                 * zombie forever since we prevented it from self-reap itself
718
                 * while it was being traced by us, to be able to see it in wait4.
719
                 */
720
                if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
721
                        list_add(&p->ptrace_list, &ptrace_dead);
722
        }
723
 
724
        list_for_each_entry_safe(p, n, &father->ptrace_children, ptrace_list) {
725
                p->real_parent = reaper;
726
                reparent_thread(p, father, 1);
727
        }
728
 
729
        write_unlock_irq(&tasklist_lock);
730
        BUG_ON(!list_empty(&father->children));
731
        BUG_ON(!list_empty(&father->ptrace_children));
732
 
733
        list_for_each_entry_safe(p, n, &ptrace_dead, ptrace_list) {
734
                list_del_init(&p->ptrace_list);
735
                release_task(p);
736
        }
737
 
738
}
739
 
740
/*
741
 * Send signals to all our closest relatives so that they know
742
 * to properly mourn us..
743
 */
744
static void exit_notify(struct task_struct *tsk)
745
{
746
        int state;
747
        struct task_struct *t;
748
        struct pid *pgrp;
749
 
750
        if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
751
            && !thread_group_empty(tsk)) {
752
                /*
753
                 * This occurs when there was a race between our exit
754
                 * syscall and a group signal choosing us as the one to
755
                 * wake up.  It could be that we are the only thread
756
                 * alerted to check for pending signals, but another thread
757
                 * should be woken now to take the signal since we will not.
758
                 * Now we'll wake all the threads in the group just to make
759
                 * sure someone gets all the pending signals.
760
                 */
761
                spin_lock_irq(&tsk->sighand->siglock);
762
                for (t = next_thread(tsk); t != tsk; t = next_thread(t))
763
                        if (!signal_pending(t) && !(t->flags & PF_EXITING))
764
                                recalc_sigpending_and_wake(t);
765
                spin_unlock_irq(&tsk->sighand->siglock);
766
        }
767
 
768
        /*
769
         * This does two things:
770
         *
771
         * A.  Make init inherit all the child processes
772
         * B.  Check to see if any process groups have become orphaned
773
         *      as a result of our exiting, and if they have any stopped
774
         *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
775
         */
776
        forget_original_parent(tsk);
777
        exit_task_namespaces(tsk);
778
 
779
        write_lock_irq(&tasklist_lock);
780
        /*
781
         * Check to see if any process groups have become orphaned
782
         * as a result of our exiting, and if they have any stopped
783
         * jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
784
         *
785
         * Case i: Our father is in a different pgrp than we are
786
         * and we were the only connection outside, so our pgrp
787
         * is about to become orphaned.
788
         */
789
        t = tsk->real_parent;
790
 
791
        pgrp = task_pgrp(tsk);
792
        if ((task_pgrp(t) != pgrp) &&
793
            (task_session(t) == task_session(tsk)) &&
794
            will_become_orphaned_pgrp(pgrp, tsk) &&
795
            has_stopped_jobs(pgrp)) {
796
                __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
797
                __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
798
        }
799
 
800
        /* Let father know we died
801
         *
802
         * Thread signals are configurable, but you aren't going to use
803
         * that to send signals to arbitary processes.
804
         * That stops right now.
805
         *
806
         * If the parent exec id doesn't match the exec id we saved
807
         * when we started then we know the parent has changed security
808
         * domain.
809
         *
810
         * If our self_exec id doesn't match our parent_exec_id then
811
         * we have changed execution domain as these two values started
812
         * the same after a fork.
813
         */
814
        if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
815
            ( tsk->parent_exec_id != t->self_exec_id  ||
816
              tsk->self_exec_id != tsk->parent_exec_id)
817
            && !capable(CAP_KILL))
818
                tsk->exit_signal = SIGCHLD;
819
 
820
 
821
        /* If something other than our normal parent is ptracing us, then
822
         * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
823
         * only has special meaning to our real parent.
824
         */
825
        if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
826
                int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
827
                do_notify_parent(tsk, signal);
828
        } else if (tsk->ptrace) {
829
                do_notify_parent(tsk, SIGCHLD);
830
        }
831
 
832
        state = EXIT_ZOMBIE;
833
        if (tsk->exit_signal == -1 && likely(!tsk->ptrace))
834
                state = EXIT_DEAD;
835
        tsk->exit_state = state;
836
 
837
        if (thread_group_leader(tsk) &&
838
            tsk->signal->notify_count < 0 &&
839
            tsk->signal->group_exit_task)
840
                wake_up_process(tsk->signal->group_exit_task);
841
 
842
        write_unlock_irq(&tasklist_lock);
843
 
844
        /* If the process is dead, release it - nobody will wait for it */
845
        if (state == EXIT_DEAD)
846
                release_task(tsk);
847
}
848
 
849
#ifdef CONFIG_DEBUG_STACK_USAGE
850
static void check_stack_usage(void)
851
{
852
        static DEFINE_SPINLOCK(low_water_lock);
853
        static int lowest_to_date = THREAD_SIZE;
854
        unsigned long *n = end_of_stack(current);
855
        unsigned long free;
856
 
857
        while (*n == 0)
858
                n++;
859
        free = (unsigned long)n - (unsigned long)end_of_stack(current);
860
 
861
        if (free >= lowest_to_date)
862
                return;
863
 
864
        spin_lock(&low_water_lock);
865
        if (free < lowest_to_date) {
866
                printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
867
                                "left\n",
868
                                current->comm, free);
869
                lowest_to_date = free;
870
        }
871
        spin_unlock(&low_water_lock);
872
}
873
#else
874
static inline void check_stack_usage(void) {}
875
#endif
876
 
877
static inline void exit_child_reaper(struct task_struct *tsk)
878
{
879
        if (likely(tsk->group_leader != task_child_reaper(tsk)))
880
                return;
881
 
882
        if (tsk->nsproxy->pid_ns == &init_pid_ns)
883
                panic("Attempted to kill init!");
884
 
885
        /*
886
         * @tsk is the last thread in the 'cgroup-init' and is exiting.
887
         * Terminate all remaining processes in the namespace and reap them
888
         * before exiting @tsk.
889
         *
890
         * Note that @tsk (last thread of cgroup-init) may not necessarily
891
         * be the child-reaper (i.e main thread of cgroup-init) of the
892
         * namespace i.e the child_reaper may have already exited.
893
         *
894
         * Even after a child_reaper exits, we let it inherit orphaned children,
895
         * because, pid_ns->child_reaper remains valid as long as there is
896
         * at least one living sub-thread in the cgroup init.
897
 
898
         * This living sub-thread of the cgroup-init will be notified when
899
         * a child inherited by the 'child-reaper' exits (do_notify_parent()
900
         * uses __group_send_sig_info()). Further, when reaping child processes,
901
         * do_wait() iterates over children of all living sub threads.
902
 
903
         * i.e even though 'child_reaper' thread is listed as the parent of the
904
         * orphaned children, any living sub-thread in the cgroup-init can
905
         * perform the role of the child_reaper.
906
         */
907
        zap_pid_ns_processes(tsk->nsproxy->pid_ns);
908
}
909
 
910
fastcall NORET_TYPE void do_exit(long code)
911
{
912
        struct task_struct *tsk = current;
913
        int group_dead;
914
 
915
        profile_task_exit(tsk);
916
 
917
        WARN_ON(atomic_read(&tsk->fs_excl));
918
 
919
        if (unlikely(in_interrupt()))
920
                panic("Aiee, killing interrupt handler!");
921
        if (unlikely(!tsk->pid))
922
                panic("Attempted to kill the idle task!");
923
 
924
        if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
925
                current->ptrace_message = code;
926
                ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
927
        }
928
 
929
        /*
930
         * We're taking recursive faults here in do_exit. Safest is to just
931
         * leave this task alone and wait for reboot.
932
         */
933
        if (unlikely(tsk->flags & PF_EXITING)) {
934
                printk(KERN_ALERT
935
                        "Fixing recursive fault but reboot is needed!\n");
936
                /*
937
                 * We can do this unlocked here. The futex code uses
938
                 * this flag just to verify whether the pi state
939
                 * cleanup has been done or not. In the worst case it
940
                 * loops once more. We pretend that the cleanup was
941
                 * done as there is no way to return. Either the
942
                 * OWNER_DIED bit is set by now or we push the blocked
943
                 * task into the wait for ever nirwana as well.
944
                 */
945
                tsk->flags |= PF_EXITPIDONE;
946
                if (tsk->io_context)
947
                        exit_io_context();
948
                set_current_state(TASK_UNINTERRUPTIBLE);
949
                schedule();
950
        }
951
 
952
        tsk->flags |= PF_EXITING;
953
        /*
954
         * tsk->flags are checked in the futex code to protect against
955
         * an exiting task cleaning up the robust pi futexes.
956
         */
957
        smp_mb();
958
        spin_unlock_wait(&tsk->pi_lock);
959
 
960
        if (unlikely(in_atomic()))
961
                printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
962
                                current->comm, task_pid_nr(current),
963
                                preempt_count());
964
 
965
        acct_update_integrals(tsk);
966
        if (tsk->mm) {
967
                update_hiwater_rss(tsk->mm);
968
                update_hiwater_vm(tsk->mm);
969
        }
970
        group_dead = atomic_dec_and_test(&tsk->signal->live);
971
        if (group_dead) {
972
                exit_child_reaper(tsk);
973
                hrtimer_cancel(&tsk->signal->real_timer);
974
                exit_itimers(tsk->signal);
975
        }
976
        acct_collect(code, group_dead);
977
#ifdef CONFIG_FUTEX
978
        if (unlikely(tsk->robust_list))
979
                exit_robust_list(tsk);
980
#ifdef CONFIG_COMPAT
981
        if (unlikely(tsk->compat_robust_list))
982
                compat_exit_robust_list(tsk);
983
#endif
984
#endif
985
        if (group_dead)
986
                tty_audit_exit();
987
        if (unlikely(tsk->audit_context))
988
                audit_free(tsk);
989
 
990
        tsk->exit_code = code;
991
        taskstats_exit(tsk, group_dead);
992
 
993
        exit_mm(tsk);
994
 
995
        if (group_dead)
996
                acct_process();
997
        exit_sem(tsk);
998
        __exit_files(tsk);
999
        __exit_fs(tsk);
1000
        check_stack_usage();
1001
        exit_thread();
1002
        cgroup_exit(tsk, 1);
1003
        exit_keys(tsk);
1004
 
1005
        if (group_dead && tsk->signal->leader)
1006
                disassociate_ctty(1);
1007
 
1008
        module_put(task_thread_info(tsk)->exec_domain->module);
1009
        if (tsk->binfmt)
1010
                module_put(tsk->binfmt->module);
1011
 
1012
        proc_exit_connector(tsk);
1013
        exit_notify(tsk);
1014
#ifdef CONFIG_NUMA
1015
        mpol_free(tsk->mempolicy);
1016
        tsk->mempolicy = NULL;
1017
#endif
1018
#ifdef CONFIG_FUTEX
1019
        /*
1020
         * This must happen late, after the PID is not
1021
         * hashed anymore:
1022
         */
1023
        if (unlikely(!list_empty(&tsk->pi_state_list)))
1024
                exit_pi_state_list(tsk);
1025
        if (unlikely(current->pi_state_cache))
1026
                kfree(current->pi_state_cache);
1027
#endif
1028
        /*
1029
         * Make sure we are holding no locks:
1030
         */
1031
        debug_check_no_locks_held(tsk);
1032
        /*
1033
         * We can do this unlocked here. The futex code uses this flag
1034
         * just to verify whether the pi state cleanup has been done
1035
         * or not. In the worst case it loops once more.
1036
         */
1037
        tsk->flags |= PF_EXITPIDONE;
1038
 
1039
        if (tsk->io_context)
1040
                exit_io_context();
1041
 
1042
        if (tsk->splice_pipe)
1043
                __free_pipe_info(tsk->splice_pipe);
1044
 
1045
        preempt_disable();
1046
        /* causes final put_task_struct in finish_task_switch(). */
1047
        tsk->state = TASK_DEAD;
1048
 
1049
        schedule();
1050
        BUG();
1051
        /* Avoid "noreturn function does return".  */
1052
        for (;;)
1053
                cpu_relax();    /* For when BUG is null */
1054
}
1055
 
1056
EXPORT_SYMBOL_GPL(do_exit);
1057
 
1058
NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1059
{
1060
        if (comp)
1061
                complete(comp);
1062
 
1063
        do_exit(code);
1064
}
1065
 
1066
EXPORT_SYMBOL(complete_and_exit);
1067
 
1068
asmlinkage long sys_exit(int error_code)
1069
{
1070
        do_exit((error_code&0xff)<<8);
1071
}
1072
 
1073
/*
1074
 * Take down every thread in the group.  This is called by fatal signals
1075
 * as well as by sys_exit_group (below).
1076
 */
1077
NORET_TYPE void
1078
do_group_exit(int exit_code)
1079
{
1080
        BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1081
 
1082
        if (current->signal->flags & SIGNAL_GROUP_EXIT)
1083
                exit_code = current->signal->group_exit_code;
1084
        else if (!thread_group_empty(current)) {
1085
                struct signal_struct *const sig = current->signal;
1086
                struct sighand_struct *const sighand = current->sighand;
1087
                spin_lock_irq(&sighand->siglock);
1088
                if (sig->flags & SIGNAL_GROUP_EXIT)
1089
                        /* Another thread got here before we took the lock.  */
1090
                        exit_code = sig->group_exit_code;
1091
                else {
1092
                        sig->group_exit_code = exit_code;
1093
                        zap_other_threads(current);
1094
                }
1095
                spin_unlock_irq(&sighand->siglock);
1096
        }
1097
 
1098
        do_exit(exit_code);
1099
        /* NOTREACHED */
1100
}
1101
 
1102
/*
1103
 * this kills every thread in the thread group. Note that any externally
1104
 * wait4()-ing process will get the correct exit code - even if this
1105
 * thread is not the thread group leader.
1106
 */
1107
asmlinkage void sys_exit_group(int error_code)
1108
{
1109
        do_group_exit((error_code & 0xff) << 8);
1110
}
1111
 
1112
static int eligible_child(pid_t pid, int options, struct task_struct *p)
1113
{
1114
        int err;
1115
        struct pid_namespace *ns;
1116
 
1117
        ns = current->nsproxy->pid_ns;
1118
        if (pid > 0) {
1119
                if (task_pid_nr_ns(p, ns) != pid)
1120
                        return 0;
1121
        } else if (!pid) {
1122
                if (task_pgrp_nr_ns(p, ns) != task_pgrp_vnr(current))
1123
                        return 0;
1124
        } else if (pid != -1) {
1125
                if (task_pgrp_nr_ns(p, ns) != -pid)
1126
                        return 0;
1127
        }
1128
 
1129
        /*
1130
         * Do not consider detached threads that are
1131
         * not ptraced:
1132
         */
1133
        if (p->exit_signal == -1 && !p->ptrace)
1134
                return 0;
1135
 
1136
        /* Wait for all children (clone and not) if __WALL is set;
1137
         * otherwise, wait for clone children *only* if __WCLONE is
1138
         * set; otherwise, wait for non-clone children *only*.  (Note:
1139
         * A "clone" child here is one that reports to its parent
1140
         * using a signal other than SIGCHLD.) */
1141
        if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1142
            && !(options & __WALL))
1143
                return 0;
1144
        /*
1145
         * Do not consider thread group leaders that are
1146
         * in a non-empty thread group:
1147
         */
1148
        if (delay_group_leader(p))
1149
                return 2;
1150
 
1151
        err = security_task_wait(p);
1152
        if (err)
1153
                return err;
1154
 
1155
        return 1;
1156
}
1157
 
1158
static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1159
                               int why, int status,
1160
                               struct siginfo __user *infop,
1161
                               struct rusage __user *rusagep)
1162
{
1163
        int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1164
 
1165
        put_task_struct(p);
1166
        if (!retval)
1167
                retval = put_user(SIGCHLD, &infop->si_signo);
1168
        if (!retval)
1169
                retval = put_user(0, &infop->si_errno);
1170
        if (!retval)
1171
                retval = put_user((short)why, &infop->si_code);
1172
        if (!retval)
1173
                retval = put_user(pid, &infop->si_pid);
1174
        if (!retval)
1175
                retval = put_user(uid, &infop->si_uid);
1176
        if (!retval)
1177
                retval = put_user(status, &infop->si_status);
1178
        if (!retval)
1179
                retval = pid;
1180
        return retval;
1181
}
1182
 
1183
/*
1184
 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1185
 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1186
 * the lock and this task is uninteresting.  If we return nonzero, we have
1187
 * released the lock and the system call should return.
1188
 */
1189
static int wait_task_zombie(struct task_struct *p, int noreap,
1190
                            struct siginfo __user *infop,
1191
                            int __user *stat_addr, struct rusage __user *ru)
1192
{
1193
        unsigned long state;
1194
        int retval, status, traced;
1195
        struct pid_namespace *ns;
1196
 
1197
        ns = current->nsproxy->pid_ns;
1198
 
1199
        if (unlikely(noreap)) {
1200
                pid_t pid = task_pid_nr_ns(p, ns);
1201
                uid_t uid = p->uid;
1202
                int exit_code = p->exit_code;
1203
                int why, status;
1204
 
1205
                if (unlikely(p->exit_state != EXIT_ZOMBIE))
1206
                        return 0;
1207
                if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1208
                        return 0;
1209
                get_task_struct(p);
1210
                read_unlock(&tasklist_lock);
1211
                if ((exit_code & 0x7f) == 0) {
1212
                        why = CLD_EXITED;
1213
                        status = exit_code >> 8;
1214
                } else {
1215
                        why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1216
                        status = exit_code & 0x7f;
1217
                }
1218
                return wait_noreap_copyout(p, pid, uid, why,
1219
                                           status, infop, ru);
1220
        }
1221
 
1222
        /*
1223
         * Try to move the task's state to DEAD
1224
         * only one thread is allowed to do this:
1225
         */
1226
        state = xchg(&p->exit_state, EXIT_DEAD);
1227
        if (state != EXIT_ZOMBIE) {
1228
                BUG_ON(state != EXIT_DEAD);
1229
                return 0;
1230
        }
1231
 
1232
        /* traced means p->ptrace, but not vice versa */
1233
        traced = (p->real_parent != p->parent);
1234
 
1235
        if (likely(!traced)) {
1236
                struct signal_struct *psig;
1237
                struct signal_struct *sig;
1238
 
1239
                /*
1240
                 * The resource counters for the group leader are in its
1241
                 * own task_struct.  Those for dead threads in the group
1242
                 * are in its signal_struct, as are those for the child
1243
                 * processes it has previously reaped.  All these
1244
                 * accumulate in the parent's signal_struct c* fields.
1245
                 *
1246
                 * We don't bother to take a lock here to protect these
1247
                 * p->signal fields, because they are only touched by
1248
                 * __exit_signal, which runs with tasklist_lock
1249
                 * write-locked anyway, and so is excluded here.  We do
1250
                 * need to protect the access to p->parent->signal fields,
1251
                 * as other threads in the parent group can be right
1252
                 * here reaping other children at the same time.
1253
                 */
1254
                spin_lock_irq(&p->parent->sighand->siglock);
1255
                psig = p->parent->signal;
1256
                sig = p->signal;
1257
                psig->cutime =
1258
                        cputime_add(psig->cutime,
1259
                        cputime_add(p->utime,
1260
                        cputime_add(sig->utime,
1261
                                    sig->cutime)));
1262
                psig->cstime =
1263
                        cputime_add(psig->cstime,
1264
                        cputime_add(p->stime,
1265
                        cputime_add(sig->stime,
1266
                                    sig->cstime)));
1267
                psig->cgtime =
1268
                        cputime_add(psig->cgtime,
1269
                        cputime_add(p->gtime,
1270
                        cputime_add(sig->gtime,
1271
                                    sig->cgtime)));
1272
                psig->cmin_flt +=
1273
                        p->min_flt + sig->min_flt + sig->cmin_flt;
1274
                psig->cmaj_flt +=
1275
                        p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1276
                psig->cnvcsw +=
1277
                        p->nvcsw + sig->nvcsw + sig->cnvcsw;
1278
                psig->cnivcsw +=
1279
                        p->nivcsw + sig->nivcsw + sig->cnivcsw;
1280
                psig->cinblock +=
1281
                        task_io_get_inblock(p) +
1282
                        sig->inblock + sig->cinblock;
1283
                psig->coublock +=
1284
                        task_io_get_oublock(p) +
1285
                        sig->oublock + sig->coublock;
1286
                spin_unlock_irq(&p->parent->sighand->siglock);
1287
        }
1288
 
1289
        /*
1290
         * Now we are sure this task is interesting, and no other
1291
         * thread can reap it because we set its state to EXIT_DEAD.
1292
         */
1293
        read_unlock(&tasklist_lock);
1294
 
1295
        retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1296
        status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1297
                ? p->signal->group_exit_code : p->exit_code;
1298
        if (!retval && stat_addr)
1299
                retval = put_user(status, stat_addr);
1300
        if (!retval && infop)
1301
                retval = put_user(SIGCHLD, &infop->si_signo);
1302
        if (!retval && infop)
1303
                retval = put_user(0, &infop->si_errno);
1304
        if (!retval && infop) {
1305
                int why;
1306
 
1307
                if ((status & 0x7f) == 0) {
1308
                        why = CLD_EXITED;
1309
                        status >>= 8;
1310
                } else {
1311
                        why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1312
                        status &= 0x7f;
1313
                }
1314
                retval = put_user((short)why, &infop->si_code);
1315
                if (!retval)
1316
                        retval = put_user(status, &infop->si_status);
1317
        }
1318
        if (!retval && infop)
1319
                retval = put_user(task_pid_nr_ns(p, ns), &infop->si_pid);
1320
        if (!retval && infop)
1321
                retval = put_user(p->uid, &infop->si_uid);
1322
        if (!retval)
1323
                retval = task_pid_nr_ns(p, ns);
1324
 
1325
        if (traced) {
1326
                write_lock_irq(&tasklist_lock);
1327
                /* We dropped tasklist, ptracer could die and untrace */
1328
                ptrace_unlink(p);
1329
                /*
1330
                 * If this is not a detached task, notify the parent.
1331
                 * If it's still not detached after that, don't release
1332
                 * it now.
1333
                 */
1334
                if (p->exit_signal != -1) {
1335
                        do_notify_parent(p, p->exit_signal);
1336
                        if (p->exit_signal != -1) {
1337
                                p->exit_state = EXIT_ZOMBIE;
1338
                                p = NULL;
1339
                        }
1340
                }
1341
                write_unlock_irq(&tasklist_lock);
1342
        }
1343
        if (p != NULL)
1344
                release_task(p);
1345
 
1346
        return retval;
1347
}
1348
 
1349
/*
1350
 * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1351
 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1352
 * the lock and this task is uninteresting.  If we return nonzero, we have
1353
 * released the lock and the system call should return.
1354
 */
1355
static int wait_task_stopped(struct task_struct *p, int delayed_group_leader,
1356
                             int noreap, struct siginfo __user *infop,
1357
                             int __user *stat_addr, struct rusage __user *ru)
1358
{
1359
        int retval, exit_code;
1360
        pid_t pid;
1361
 
1362
        if (!p->exit_code)
1363
                return 0;
1364
        if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1365
            p->signal->group_stop_count > 0)
1366
                /*
1367
                 * A group stop is in progress and this is the group leader.
1368
                 * We won't report until all threads have stopped.
1369
                 */
1370
                return 0;
1371
 
1372
        /*
1373
         * Now we are pretty sure this task is interesting.
1374
         * Make sure it doesn't get reaped out from under us while we
1375
         * give up the lock and then examine it below.  We don't want to
1376
         * keep holding onto the tasklist_lock while we call getrusage and
1377
         * possibly take page faults for user memory.
1378
         */
1379
        pid = task_pid_nr_ns(p, current->nsproxy->pid_ns);
1380
        get_task_struct(p);
1381
        read_unlock(&tasklist_lock);
1382
 
1383
        if (unlikely(noreap)) {
1384
                uid_t uid = p->uid;
1385
                int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1386
 
1387
                exit_code = p->exit_code;
1388
                if (unlikely(!exit_code) || unlikely(p->exit_state))
1389
                        goto bail_ref;
1390
                return wait_noreap_copyout(p, pid, uid,
1391
                                           why, exit_code,
1392
                                           infop, ru);
1393
        }
1394
 
1395
        write_lock_irq(&tasklist_lock);
1396
 
1397
        /*
1398
         * This uses xchg to be atomic with the thread resuming and setting
1399
         * it.  It must also be done with the write lock held to prevent a
1400
         * race with the EXIT_ZOMBIE case.
1401
         */
1402
        exit_code = xchg(&p->exit_code, 0);
1403
        if (unlikely(p->exit_state)) {
1404
                /*
1405
                 * The task resumed and then died.  Let the next iteration
1406
                 * catch it in EXIT_ZOMBIE.  Note that exit_code might
1407
                 * already be zero here if it resumed and did _exit(0).
1408
                 * The task itself is dead and won't touch exit_code again;
1409
                 * other processors in this function are locked out.
1410
                 */
1411
                p->exit_code = exit_code;
1412
                exit_code = 0;
1413
        }
1414
        if (unlikely(exit_code == 0)) {
1415
                /*
1416
                 * Another thread in this function got to it first, or it
1417
                 * resumed, or it resumed and then died.
1418
                 */
1419
                write_unlock_irq(&tasklist_lock);
1420
bail_ref:
1421
                put_task_struct(p);
1422
                /*
1423
                 * We are returning to the wait loop without having successfully
1424
                 * removed the process and having released the lock. We cannot
1425
                 * continue, since the "p" task pointer is potentially stale.
1426
                 *
1427
                 * Return -EAGAIN, and do_wait() will restart the loop from the
1428
                 * beginning. Do _not_ re-acquire the lock.
1429
                 */
1430
                return -EAGAIN;
1431
        }
1432
 
1433
        /* move to end of parent's list to avoid starvation */
1434
        remove_parent(p);
1435
        add_parent(p);
1436
 
1437
        write_unlock_irq(&tasklist_lock);
1438
 
1439
        retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1440
        if (!retval && stat_addr)
1441
                retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1442
        if (!retval && infop)
1443
                retval = put_user(SIGCHLD, &infop->si_signo);
1444
        if (!retval && infop)
1445
                retval = put_user(0, &infop->si_errno);
1446
        if (!retval && infop)
1447
                retval = put_user((short)((p->ptrace & PT_PTRACED)
1448
                                          ? CLD_TRAPPED : CLD_STOPPED),
1449
                                  &infop->si_code);
1450
        if (!retval && infop)
1451
                retval = put_user(exit_code, &infop->si_status);
1452
        if (!retval && infop)
1453
                retval = put_user(pid, &infop->si_pid);
1454
        if (!retval && infop)
1455
                retval = put_user(p->uid, &infop->si_uid);
1456
        if (!retval)
1457
                retval = pid;
1458
        put_task_struct(p);
1459
 
1460
        BUG_ON(!retval);
1461
        return retval;
1462
}
1463
 
1464
/*
1465
 * Handle do_wait work for one task in a live, non-stopped state.
1466
 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1467
 * the lock and this task is uninteresting.  If we return nonzero, we have
1468
 * released the lock and the system call should return.
1469
 */
1470
static int wait_task_continued(struct task_struct *p, int noreap,
1471
                               struct siginfo __user *infop,
1472
                               int __user *stat_addr, struct rusage __user *ru)
1473
{
1474
        int retval;
1475
        pid_t pid;
1476
        uid_t uid;
1477
        struct pid_namespace *ns;
1478
 
1479
        if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1480
                return 0;
1481
 
1482
        spin_lock_irq(&p->sighand->siglock);
1483
        /* Re-check with the lock held.  */
1484
        if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1485
                spin_unlock_irq(&p->sighand->siglock);
1486
                return 0;
1487
        }
1488
        if (!noreap)
1489
                p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1490
        spin_unlock_irq(&p->sighand->siglock);
1491
 
1492
        ns = current->nsproxy->pid_ns;
1493
        pid = task_pid_nr_ns(p, ns);
1494
        uid = p->uid;
1495
        get_task_struct(p);
1496
        read_unlock(&tasklist_lock);
1497
 
1498
        if (!infop) {
1499
                retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1500
                put_task_struct(p);
1501
                if (!retval && stat_addr)
1502
                        retval = put_user(0xffff, stat_addr);
1503
                if (!retval)
1504
                        retval = task_pid_nr_ns(p, ns);
1505
        } else {
1506
                retval = wait_noreap_copyout(p, pid, uid,
1507
                                             CLD_CONTINUED, SIGCONT,
1508
                                             infop, ru);
1509
                BUG_ON(retval == 0);
1510
        }
1511
 
1512
        return retval;
1513
}
1514
 
1515
 
1516
static inline int my_ptrace_child(struct task_struct *p)
1517
{
1518
        if (!(p->ptrace & PT_PTRACED))
1519
                return 0;
1520
        if (!(p->ptrace & PT_ATTACHED))
1521
                return 1;
1522
        /*
1523
         * This child was PTRACE_ATTACH'd.  We should be seeing it only if
1524
         * we are the attacher.  If we are the real parent, this is a race
1525
         * inside ptrace_attach.  It is waiting for the tasklist_lock,
1526
         * which we have to switch the parent links, but has already set
1527
         * the flags in p->ptrace.
1528
         */
1529
        return (p->parent != p->real_parent);
1530
}
1531
 
1532
static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1533
                    int __user *stat_addr, struct rusage __user *ru)
1534
{
1535
        DECLARE_WAITQUEUE(wait, current);
1536
        struct task_struct *tsk;
1537
        int flag, retval;
1538
        int allowed, denied;
1539
 
1540
        add_wait_queue(&current->signal->wait_chldexit,&wait);
1541
repeat:
1542
        /*
1543
         * We will set this flag if we see any child that might later
1544
         * match our criteria, even if we are not able to reap it yet.
1545
         */
1546
        flag = 0;
1547
        allowed = denied = 0;
1548
        current->state = TASK_INTERRUPTIBLE;
1549
        read_lock(&tasklist_lock);
1550
        tsk = current;
1551
        do {
1552
                struct task_struct *p;
1553
                int ret;
1554
 
1555
                list_for_each_entry(p, &tsk->children, sibling) {
1556
                        ret = eligible_child(pid, options, p);
1557
                        if (!ret)
1558
                                continue;
1559
 
1560
                        if (unlikely(ret < 0)) {
1561
                                denied = ret;
1562
                                continue;
1563
                        }
1564
                        allowed = 1;
1565
 
1566
                        switch (p->state) {
1567
                        case TASK_TRACED:
1568
                                /*
1569
                                 * When we hit the race with PTRACE_ATTACH,
1570
                                 * we will not report this child.  But the
1571
                                 * race means it has not yet been moved to
1572
                                 * our ptrace_children list, so we need to
1573
                                 * set the flag here to avoid a spurious ECHILD
1574
                                 * when the race happens with the only child.
1575
                                 */
1576
                                flag = 1;
1577
                                if (!my_ptrace_child(p))
1578
                                        continue;
1579
                                /*FALLTHROUGH*/
1580
                        case TASK_STOPPED:
1581
                                /*
1582
                                 * It's stopped now, so it might later
1583
                                 * continue, exit, or stop again.
1584
                                 */
1585
                                flag = 1;
1586
                                if (!(options & WUNTRACED) &&
1587
                                    !my_ptrace_child(p))
1588
                                        continue;
1589
                                retval = wait_task_stopped(p, ret == 2,
1590
                                                           (options & WNOWAIT),
1591
                                                           infop,
1592
                                                           stat_addr, ru);
1593
                                if (retval == -EAGAIN)
1594
                                        goto repeat;
1595
                                if (retval != 0) /* He released the lock.  */
1596
                                        goto end;
1597
                                break;
1598
                        default:
1599
                        // case EXIT_DEAD:
1600
                                if (p->exit_state == EXIT_DEAD)
1601
                                        continue;
1602
                        // case EXIT_ZOMBIE:
1603
                                if (p->exit_state == EXIT_ZOMBIE) {
1604
                                        /*
1605
                                         * Eligible but we cannot release
1606
                                         * it yet:
1607
                                         */
1608
                                        if (ret == 2)
1609
                                                goto check_continued;
1610
                                        if (!likely(options & WEXITED))
1611
                                                continue;
1612
                                        retval = wait_task_zombie(
1613
                                                p, (options & WNOWAIT),
1614
                                                infop, stat_addr, ru);
1615
                                        /* He released the lock.  */
1616
                                        if (retval != 0)
1617
                                                goto end;
1618
                                        break;
1619
                                }
1620
check_continued:
1621
                                /*
1622
                                 * It's running now, so it might later
1623
                                 * exit, stop, or stop and then continue.
1624
                                 */
1625
                                flag = 1;
1626
                                if (!unlikely(options & WCONTINUED))
1627
                                        continue;
1628
                                retval = wait_task_continued(
1629
                                        p, (options & WNOWAIT),
1630
                                        infop, stat_addr, ru);
1631
                                if (retval != 0) /* He released the lock.  */
1632
                                        goto end;
1633
                                break;
1634
                        }
1635
                }
1636
                if (!flag) {
1637
                        list_for_each_entry(p, &tsk->ptrace_children,
1638
                                            ptrace_list) {
1639
                                if (!eligible_child(pid, options, p))
1640
                                        continue;
1641
                                flag = 1;
1642
                                break;
1643
                        }
1644
                }
1645
                if (options & __WNOTHREAD)
1646
                        break;
1647
                tsk = next_thread(tsk);
1648
                BUG_ON(tsk->signal != current->signal);
1649
        } while (tsk != current);
1650
 
1651
        read_unlock(&tasklist_lock);
1652
        if (flag) {
1653
                retval = 0;
1654
                if (options & WNOHANG)
1655
                        goto end;
1656
                retval = -ERESTARTSYS;
1657
                if (signal_pending(current))
1658
                        goto end;
1659
                schedule();
1660
                goto repeat;
1661
        }
1662
        retval = -ECHILD;
1663
        if (unlikely(denied) && !allowed)
1664
                retval = denied;
1665
end:
1666
        current->state = TASK_RUNNING;
1667
        remove_wait_queue(&current->signal->wait_chldexit,&wait);
1668
        if (infop) {
1669
                if (retval > 0)
1670
                retval = 0;
1671
                else {
1672
                        /*
1673
                         * For a WNOHANG return, clear out all the fields
1674
                         * we would set so the user can easily tell the
1675
                         * difference.
1676
                         */
1677
                        if (!retval)
1678
                                retval = put_user(0, &infop->si_signo);
1679
                        if (!retval)
1680
                                retval = put_user(0, &infop->si_errno);
1681
                        if (!retval)
1682
                                retval = put_user(0, &infop->si_code);
1683
                        if (!retval)
1684
                                retval = put_user(0, &infop->si_pid);
1685
                        if (!retval)
1686
                                retval = put_user(0, &infop->si_uid);
1687
                        if (!retval)
1688
                                retval = put_user(0, &infop->si_status);
1689
                }
1690
        }
1691
        return retval;
1692
}
1693
 
1694
asmlinkage long sys_waitid(int which, pid_t pid,
1695
                           struct siginfo __user *infop, int options,
1696
                           struct rusage __user *ru)
1697
{
1698
        long ret;
1699
 
1700
        if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1701
                return -EINVAL;
1702
        if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1703
                return -EINVAL;
1704
 
1705
        switch (which) {
1706
        case P_ALL:
1707
                pid = -1;
1708
                break;
1709
        case P_PID:
1710
                if (pid <= 0)
1711
                        return -EINVAL;
1712
                break;
1713
        case P_PGID:
1714
                if (pid <= 0)
1715
                        return -EINVAL;
1716
                pid = -pid;
1717
                break;
1718
        default:
1719
                return -EINVAL;
1720
        }
1721
 
1722
        ret = do_wait(pid, options, infop, NULL, ru);
1723
 
1724
        /* avoid REGPARM breakage on x86: */
1725
        prevent_tail_call(ret);
1726
        return ret;
1727
}
1728
 
1729
asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1730
                          int options, struct rusage __user *ru)
1731
{
1732
        long ret;
1733
 
1734
        if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1735
                        __WNOTHREAD|__WCLONE|__WALL))
1736
                return -EINVAL;
1737
        ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1738
 
1739
        /* avoid REGPARM breakage on x86: */
1740
        prevent_tail_call(ret);
1741
        return ret;
1742
}
1743
 
1744
#ifdef __ARCH_WANT_SYS_WAITPID
1745
 
1746
/*
1747
 * sys_waitpid() remains for compatibility. waitpid() should be
1748
 * implemented by calling sys_wait4() from libc.a.
1749
 */
1750
asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1751
{
1752
        return sys_wait4(pid, stat_addr, options, NULL);
1753
}
1754
 
1755
#endif

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.