OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [kernel/] [futex.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 *  Fast Userspace Mutexes (which I call "Futexes!").
3
 *  (C) Rusty Russell, IBM 2002
4
 *
5
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7
 *
8
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
9
 *  (C) Copyright 2003, 2004 Jamie Lokier
10
 *
11
 *  Robust futex support started by Ingo Molnar
12
 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13
 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14
 *
15
 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16
 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17
 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18
 *
19
 *  PRIVATE futexes by Eric Dumazet
20
 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21
 *
22
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23
 *  enough at me, Linus for the original (flawed) idea, Matthew
24
 *  Kirkwood for proof-of-concept implementation.
25
 *
26
 *  "The futexes are also cursed."
27
 *  "But they come in a choice of three flavours!"
28
 *
29
 *  This program is free software; you can redistribute it and/or modify
30
 *  it under the terms of the GNU General Public License as published by
31
 *  the Free Software Foundation; either version 2 of the License, or
32
 *  (at your option) any later version.
33
 *
34
 *  This program is distributed in the hope that it will be useful,
35
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
36
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
37
 *  GNU General Public License for more details.
38
 *
39
 *  You should have received a copy of the GNU General Public License
40
 *  along with this program; if not, write to the Free Software
41
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
42
 */
43
#include <linux/slab.h>
44
#include <linux/poll.h>
45
#include <linux/fs.h>
46
#include <linux/file.h>
47
#include <linux/jhash.h>
48
#include <linux/init.h>
49
#include <linux/futex.h>
50
#include <linux/mount.h>
51
#include <linux/pagemap.h>
52
#include <linux/syscalls.h>
53
#include <linux/signal.h>
54
#include <linux/module.h>
55
#include <linux/magic.h>
56
#include <linux/pid.h>
57
#include <linux/nsproxy.h>
58
 
59
#include <asm/futex.h>
60
 
61
#include "rtmutex_common.h"
62
 
63
#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
64
 
65
/*
66
 * Priority Inheritance state:
67
 */
68
struct futex_pi_state {
69
        /*
70
         * list of 'owned' pi_state instances - these have to be
71
         * cleaned up in do_exit() if the task exits prematurely:
72
         */
73
        struct list_head list;
74
 
75
        /*
76
         * The PI object:
77
         */
78
        struct rt_mutex pi_mutex;
79
 
80
        struct task_struct *owner;
81
        atomic_t refcount;
82
 
83
        union futex_key key;
84
};
85
 
86
/*
87
 * We use this hashed waitqueue instead of a normal wait_queue_t, so
88
 * we can wake only the relevant ones (hashed queues may be shared).
89
 *
90
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
91
 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
92
 * The order of wakup is always to make the first condition true, then
93
 * wake up q->waiters, then make the second condition true.
94
 */
95
struct futex_q {
96
        struct plist_node list;
97
        wait_queue_head_t waiters;
98
 
99
        /* Which hash list lock to use: */
100
        spinlock_t *lock_ptr;
101
 
102
        /* Key which the futex is hashed on: */
103
        union futex_key key;
104
 
105
        /* For fd, sigio sent using these: */
106
        int fd;
107
        struct file *filp;
108
 
109
        /* Optional priority inheritance state: */
110
        struct futex_pi_state *pi_state;
111
        struct task_struct *task;
112
};
113
 
114
/*
115
 * Split the global futex_lock into every hash list lock.
116
 */
117
struct futex_hash_bucket {
118
        spinlock_t lock;
119
        struct plist_head chain;
120
};
121
 
122
static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
123
 
124
/* Futex-fs vfsmount entry: */
125
static struct vfsmount *futex_mnt;
126
 
127
/*
128
 * Take mm->mmap_sem, when futex is shared
129
 */
130
static inline void futex_lock_mm(struct rw_semaphore *fshared)
131
{
132
        if (fshared)
133
                down_read(fshared);
134
}
135
 
136
/*
137
 * Release mm->mmap_sem, when the futex is shared
138
 */
139
static inline void futex_unlock_mm(struct rw_semaphore *fshared)
140
{
141
        if (fshared)
142
                up_read(fshared);
143
}
144
 
145
/*
146
 * We hash on the keys returned from get_futex_key (see below).
147
 */
148
static struct futex_hash_bucket *hash_futex(union futex_key *key)
149
{
150
        u32 hash = jhash2((u32*)&key->both.word,
151
                          (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
152
                          key->both.offset);
153
        return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
154
}
155
 
156
/*
157
 * Return 1 if two futex_keys are equal, 0 otherwise.
158
 */
159
static inline int match_futex(union futex_key *key1, union futex_key *key2)
160
{
161
        return (key1->both.word == key2->both.word
162
                && key1->both.ptr == key2->both.ptr
163
                && key1->both.offset == key2->both.offset);
164
}
165
 
166
/**
167
 * get_futex_key - Get parameters which are the keys for a futex.
168
 * @uaddr: virtual address of the futex
169
 * @shared: NULL for a PROCESS_PRIVATE futex,
170
 *      &current->mm->mmap_sem for a PROCESS_SHARED futex
171
 * @key: address where result is stored.
172
 *
173
 * Returns a negative error code or 0
174
 * The key words are stored in *key on success.
175
 *
176
 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
177
 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
178
 * We can usually work out the index without swapping in the page.
179
 *
180
 * fshared is NULL for PROCESS_PRIVATE futexes
181
 * For other futexes, it points to &current->mm->mmap_sem and
182
 * caller must have taken the reader lock. but NOT any spinlocks.
183
 */
184
static int get_futex_key(u32 __user *uaddr, struct rw_semaphore *fshared,
185
                         union futex_key *key)
186
{
187
        unsigned long address = (unsigned long)uaddr;
188
        struct mm_struct *mm = current->mm;
189
        struct vm_area_struct *vma;
190
        struct page *page;
191
        int err;
192
 
193
        /*
194
         * The futex address must be "naturally" aligned.
195
         */
196
        key->both.offset = address % PAGE_SIZE;
197
        if (unlikely((address % sizeof(u32)) != 0))
198
                return -EINVAL;
199
        address -= key->both.offset;
200
 
201
        /*
202
         * PROCESS_PRIVATE futexes are fast.
203
         * As the mm cannot disappear under us and the 'key' only needs
204
         * virtual address, we dont even have to find the underlying vma.
205
         * Note : We do have to check 'uaddr' is a valid user address,
206
         *        but access_ok() should be faster than find_vma()
207
         */
208
        if (!fshared) {
209
                if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
210
                        return -EFAULT;
211
                key->private.mm = mm;
212
                key->private.address = address;
213
                return 0;
214
        }
215
        /*
216
         * The futex is hashed differently depending on whether
217
         * it's in a shared or private mapping.  So check vma first.
218
         */
219
        vma = find_extend_vma(mm, address);
220
        if (unlikely(!vma))
221
                return -EFAULT;
222
 
223
        /*
224
         * Permissions.
225
         */
226
        if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
227
                return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
228
 
229
        /*
230
         * Private mappings are handled in a simple way.
231
         *
232
         * NOTE: When userspace waits on a MAP_SHARED mapping, even if
233
         * it's a read-only handle, it's expected that futexes attach to
234
         * the object not the particular process.  Therefore we use
235
         * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
236
         * mappings of _writable_ handles.
237
         */
238
        if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
239
                key->both.offset |= FUT_OFF_MMSHARED; /* reference taken on mm */
240
                key->private.mm = mm;
241
                key->private.address = address;
242
                return 0;
243
        }
244
 
245
        /*
246
         * Linear file mappings are also simple.
247
         */
248
        key->shared.inode = vma->vm_file->f_path.dentry->d_inode;
249
        key->both.offset |= FUT_OFF_INODE; /* inode-based key. */
250
        if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
251
                key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT)
252
                                     + vma->vm_pgoff);
253
                return 0;
254
        }
255
 
256
        /*
257
         * We could walk the page table to read the non-linear
258
         * pte, and get the page index without fetching the page
259
         * from swap.  But that's a lot of code to duplicate here
260
         * for a rare case, so we simply fetch the page.
261
         */
262
        err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
263
        if (err >= 0) {
264
                key->shared.pgoff =
265
                        page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
266
                put_page(page);
267
                return 0;
268
        }
269
        return err;
270
}
271
 
272
/*
273
 * Take a reference to the resource addressed by a key.
274
 * Can be called while holding spinlocks.
275
 *
276
 */
277
static void get_futex_key_refs(union futex_key *key)
278
{
279
        if (key->both.ptr == 0)
280
                return;
281
        switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
282
                case FUT_OFF_INODE:
283
                        atomic_inc(&key->shared.inode->i_count);
284
                        break;
285
                case FUT_OFF_MMSHARED:
286
                        atomic_inc(&key->private.mm->mm_count);
287
                        break;
288
        }
289
}
290
 
291
/*
292
 * Drop a reference to the resource addressed by a key.
293
 * The hash bucket spinlock must not be held.
294
 */
295
static void drop_futex_key_refs(union futex_key *key)
296
{
297
        if (!key->both.ptr)
298
                return;
299
        switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
300
                case FUT_OFF_INODE:
301
                        iput(key->shared.inode);
302
                        break;
303
                case FUT_OFF_MMSHARED:
304
                        mmdrop(key->private.mm);
305
                        break;
306
        }
307
}
308
 
309
static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
310
{
311
        u32 curval;
312
 
313
        pagefault_disable();
314
        curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
315
        pagefault_enable();
316
 
317
        return curval;
318
}
319
 
320
static int get_futex_value_locked(u32 *dest, u32 __user *from)
321
{
322
        int ret;
323
 
324
        pagefault_disable();
325
        ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
326
        pagefault_enable();
327
 
328
        return ret ? -EFAULT : 0;
329
}
330
 
331
/*
332
 * Fault handling.
333
 * if fshared is non NULL, current->mm->mmap_sem is already held
334
 */
335
static int futex_handle_fault(unsigned long address,
336
                              struct rw_semaphore *fshared, int attempt)
337
{
338
        struct vm_area_struct * vma;
339
        struct mm_struct *mm = current->mm;
340
        int ret = -EFAULT;
341
 
342
        if (attempt > 2)
343
                return ret;
344
 
345
        if (!fshared)
346
                down_read(&mm->mmap_sem);
347
        vma = find_vma(mm, address);
348
        if (vma && address >= vma->vm_start &&
349
            (vma->vm_flags & VM_WRITE)) {
350
                int fault;
351
                fault = handle_mm_fault(mm, vma, address, 1);
352
                if (unlikely((fault & VM_FAULT_ERROR))) {
353
#if 0
354
                        /* XXX: let's do this when we verify it is OK */
355
                        if (ret & VM_FAULT_OOM)
356
                                ret = -ENOMEM;
357
#endif
358
                } else {
359
                        ret = 0;
360
                        if (fault & VM_FAULT_MAJOR)
361
                                current->maj_flt++;
362
                        else
363
                                current->min_flt++;
364
                }
365
        }
366
        if (!fshared)
367
                up_read(&mm->mmap_sem);
368
        return ret;
369
}
370
 
371
/*
372
 * PI code:
373
 */
374
static int refill_pi_state_cache(void)
375
{
376
        struct futex_pi_state *pi_state;
377
 
378
        if (likely(current->pi_state_cache))
379
                return 0;
380
 
381
        pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
382
 
383
        if (!pi_state)
384
                return -ENOMEM;
385
 
386
        INIT_LIST_HEAD(&pi_state->list);
387
        /* pi_mutex gets initialized later */
388
        pi_state->owner = NULL;
389
        atomic_set(&pi_state->refcount, 1);
390
 
391
        current->pi_state_cache = pi_state;
392
 
393
        return 0;
394
}
395
 
396
static struct futex_pi_state * alloc_pi_state(void)
397
{
398
        struct futex_pi_state *pi_state = current->pi_state_cache;
399
 
400
        WARN_ON(!pi_state);
401
        current->pi_state_cache = NULL;
402
 
403
        return pi_state;
404
}
405
 
406
static void free_pi_state(struct futex_pi_state *pi_state)
407
{
408
        if (!atomic_dec_and_test(&pi_state->refcount))
409
                return;
410
 
411
        /*
412
         * If pi_state->owner is NULL, the owner is most probably dying
413
         * and has cleaned up the pi_state already
414
         */
415
        if (pi_state->owner) {
416
                spin_lock_irq(&pi_state->owner->pi_lock);
417
                list_del_init(&pi_state->list);
418
                spin_unlock_irq(&pi_state->owner->pi_lock);
419
 
420
                rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
421
        }
422
 
423
        if (current->pi_state_cache)
424
                kfree(pi_state);
425
        else {
426
                /*
427
                 * pi_state->list is already empty.
428
                 * clear pi_state->owner.
429
                 * refcount is at 0 - put it back to 1.
430
                 */
431
                pi_state->owner = NULL;
432
                atomic_set(&pi_state->refcount, 1);
433
                current->pi_state_cache = pi_state;
434
        }
435
}
436
 
437
/*
438
 * Look up the task based on what TID userspace gave us.
439
 * We dont trust it.
440
 */
441
static struct task_struct * futex_find_get_task(pid_t pid)
442
{
443
        struct task_struct *p;
444
 
445
        rcu_read_lock();
446
        p = find_task_by_vpid(pid);
447
        if (!p || ((current->euid != p->euid) && (current->euid != p->uid)))
448
                p = ERR_PTR(-ESRCH);
449
        else
450
                get_task_struct(p);
451
 
452
        rcu_read_unlock();
453
 
454
        return p;
455
}
456
 
457
/*
458
 * This task is holding PI mutexes at exit time => bad.
459
 * Kernel cleans up PI-state, but userspace is likely hosed.
460
 * (Robust-futex cleanup is separate and might save the day for userspace.)
461
 */
462
void exit_pi_state_list(struct task_struct *curr)
463
{
464
        struct list_head *next, *head = &curr->pi_state_list;
465
        struct futex_pi_state *pi_state;
466
        struct futex_hash_bucket *hb;
467
        union futex_key key;
468
 
469
        /*
470
         * We are a ZOMBIE and nobody can enqueue itself on
471
         * pi_state_list anymore, but we have to be careful
472
         * versus waiters unqueueing themselves:
473
         */
474
        spin_lock_irq(&curr->pi_lock);
475
        while (!list_empty(head)) {
476
 
477
                next = head->next;
478
                pi_state = list_entry(next, struct futex_pi_state, list);
479
                key = pi_state->key;
480
                hb = hash_futex(&key);
481
                spin_unlock_irq(&curr->pi_lock);
482
 
483
                spin_lock(&hb->lock);
484
 
485
                spin_lock_irq(&curr->pi_lock);
486
                /*
487
                 * We dropped the pi-lock, so re-check whether this
488
                 * task still owns the PI-state:
489
                 */
490
                if (head->next != next) {
491
                        spin_unlock(&hb->lock);
492
                        continue;
493
                }
494
 
495
                WARN_ON(pi_state->owner != curr);
496
                WARN_ON(list_empty(&pi_state->list));
497
                list_del_init(&pi_state->list);
498
                pi_state->owner = NULL;
499
                spin_unlock_irq(&curr->pi_lock);
500
 
501
                rt_mutex_unlock(&pi_state->pi_mutex);
502
 
503
                spin_unlock(&hb->lock);
504
 
505
                spin_lock_irq(&curr->pi_lock);
506
        }
507
        spin_unlock_irq(&curr->pi_lock);
508
}
509
 
510
static int
511
lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
512
                union futex_key *key, struct futex_pi_state **ps)
513
{
514
        struct futex_pi_state *pi_state = NULL;
515
        struct futex_q *this, *next;
516
        struct plist_head *head;
517
        struct task_struct *p;
518
        pid_t pid = uval & FUTEX_TID_MASK;
519
 
520
        head = &hb->chain;
521
 
522
        plist_for_each_entry_safe(this, next, head, list) {
523
                if (match_futex(&this->key, key)) {
524
                        /*
525
                         * Another waiter already exists - bump up
526
                         * the refcount and return its pi_state:
527
                         */
528
                        pi_state = this->pi_state;
529
                        /*
530
                         * Userspace might have messed up non PI and PI futexes
531
                         */
532
                        if (unlikely(!pi_state))
533
                                return -EINVAL;
534
 
535
                        WARN_ON(!atomic_read(&pi_state->refcount));
536
                        WARN_ON(pid && pi_state->owner &&
537
                                pi_state->owner->pid != pid);
538
 
539
                        atomic_inc(&pi_state->refcount);
540
                        *ps = pi_state;
541
 
542
                        return 0;
543
                }
544
        }
545
 
546
        /*
547
         * We are the first waiter - try to look up the real owner and attach
548
         * the new pi_state to it, but bail out when TID = 0
549
         */
550
        if (!pid)
551
                return -ESRCH;
552
        p = futex_find_get_task(pid);
553
        if (IS_ERR(p))
554
                return PTR_ERR(p);
555
 
556
        /*
557
         * We need to look at the task state flags to figure out,
558
         * whether the task is exiting. To protect against the do_exit
559
         * change of the task flags, we do this protected by
560
         * p->pi_lock:
561
         */
562
        spin_lock_irq(&p->pi_lock);
563
        if (unlikely(p->flags & PF_EXITING)) {
564
                /*
565
                 * The task is on the way out. When PF_EXITPIDONE is
566
                 * set, we know that the task has finished the
567
                 * cleanup:
568
                 */
569
                int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
570
 
571
                spin_unlock_irq(&p->pi_lock);
572
                put_task_struct(p);
573
                return ret;
574
        }
575
 
576
        pi_state = alloc_pi_state();
577
 
578
        /*
579
         * Initialize the pi_mutex in locked state and make 'p'
580
         * the owner of it:
581
         */
582
        rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
583
 
584
        /* Store the key for possible exit cleanups: */
585
        pi_state->key = *key;
586
 
587
        WARN_ON(!list_empty(&pi_state->list));
588
        list_add(&pi_state->list, &p->pi_state_list);
589
        pi_state->owner = p;
590
        spin_unlock_irq(&p->pi_lock);
591
 
592
        put_task_struct(p);
593
 
594
        *ps = pi_state;
595
 
596
        return 0;
597
}
598
 
599
/*
600
 * The hash bucket lock must be held when this is called.
601
 * Afterwards, the futex_q must not be accessed.
602
 */
603
static void wake_futex(struct futex_q *q)
604
{
605
        plist_del(&q->list, &q->list.plist);
606
        if (q->filp)
607
                send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
608
        /*
609
         * The lock in wake_up_all() is a crucial memory barrier after the
610
         * plist_del() and also before assigning to q->lock_ptr.
611
         */
612
        wake_up_all(&q->waiters);
613
        /*
614
         * The waiting task can free the futex_q as soon as this is written,
615
         * without taking any locks.  This must come last.
616
         *
617
         * A memory barrier is required here to prevent the following store
618
         * to lock_ptr from getting ahead of the wakeup. Clearing the lock
619
         * at the end of wake_up_all() does not prevent this store from
620
         * moving.
621
         */
622
        smp_wmb();
623
        q->lock_ptr = NULL;
624
}
625
 
626
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
627
{
628
        struct task_struct *new_owner;
629
        struct futex_pi_state *pi_state = this->pi_state;
630
        u32 curval, newval;
631
 
632
        if (!pi_state)
633
                return -EINVAL;
634
 
635
        spin_lock(&pi_state->pi_mutex.wait_lock);
636
        new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
637
 
638
        /*
639
         * This happens when we have stolen the lock and the original
640
         * pending owner did not enqueue itself back on the rt_mutex.
641
         * Thats not a tragedy. We know that way, that a lock waiter
642
         * is on the fly. We make the futex_q waiter the pending owner.
643
         */
644
        if (!new_owner)
645
                new_owner = this->task;
646
 
647
        /*
648
         * We pass it to the next owner. (The WAITERS bit is always
649
         * kept enabled while there is PI state around. We must also
650
         * preserve the owner died bit.)
651
         */
652
        if (!(uval & FUTEX_OWNER_DIED)) {
653
                int ret = 0;
654
 
655
                newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
656
 
657
                curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
658
 
659
                if (curval == -EFAULT)
660
                        ret = -EFAULT;
661
                else if (curval != uval)
662
                        ret = -EINVAL;
663
                if (ret) {
664
                        spin_unlock(&pi_state->pi_mutex.wait_lock);
665
                        return ret;
666
                }
667
        }
668
 
669
        spin_lock_irq(&pi_state->owner->pi_lock);
670
        WARN_ON(list_empty(&pi_state->list));
671
        list_del_init(&pi_state->list);
672
        spin_unlock_irq(&pi_state->owner->pi_lock);
673
 
674
        spin_lock_irq(&new_owner->pi_lock);
675
        WARN_ON(!list_empty(&pi_state->list));
676
        list_add(&pi_state->list, &new_owner->pi_state_list);
677
        pi_state->owner = new_owner;
678
        spin_unlock_irq(&new_owner->pi_lock);
679
 
680
        spin_unlock(&pi_state->pi_mutex.wait_lock);
681
        rt_mutex_unlock(&pi_state->pi_mutex);
682
 
683
        return 0;
684
}
685
 
686
static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
687
{
688
        u32 oldval;
689
 
690
        /*
691
         * There is no waiter, so we unlock the futex. The owner died
692
         * bit has not to be preserved here. We are the owner:
693
         */
694
        oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
695
 
696
        if (oldval == -EFAULT)
697
                return oldval;
698
        if (oldval != uval)
699
                return -EAGAIN;
700
 
701
        return 0;
702
}
703
 
704
/*
705
 * Express the locking dependencies for lockdep:
706
 */
707
static inline void
708
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
709
{
710
        if (hb1 <= hb2) {
711
                spin_lock(&hb1->lock);
712
                if (hb1 < hb2)
713
                        spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
714
        } else { /* hb1 > hb2 */
715
                spin_lock(&hb2->lock);
716
                spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
717
        }
718
}
719
 
720
/*
721
 * Wake up all waiters hashed on the physical page that is mapped
722
 * to this virtual address:
723
 */
724
static int futex_wake(u32 __user *uaddr, struct rw_semaphore *fshared,
725
                      int nr_wake)
726
{
727
        struct futex_hash_bucket *hb;
728
        struct futex_q *this, *next;
729
        struct plist_head *head;
730
        union futex_key key;
731
        int ret;
732
 
733
        futex_lock_mm(fshared);
734
 
735
        ret = get_futex_key(uaddr, fshared, &key);
736
        if (unlikely(ret != 0))
737
                goto out;
738
 
739
        hb = hash_futex(&key);
740
        spin_lock(&hb->lock);
741
        head = &hb->chain;
742
 
743
        plist_for_each_entry_safe(this, next, head, list) {
744
                if (match_futex (&this->key, &key)) {
745
                        if (this->pi_state) {
746
                                ret = -EINVAL;
747
                                break;
748
                        }
749
                        wake_futex(this);
750
                        if (++ret >= nr_wake)
751
                                break;
752
                }
753
        }
754
 
755
        spin_unlock(&hb->lock);
756
out:
757
        futex_unlock_mm(fshared);
758
        return ret;
759
}
760
 
761
/*
762
 * Wake up all waiters hashed on the physical page that is mapped
763
 * to this virtual address:
764
 */
765
static int
766
futex_wake_op(u32 __user *uaddr1, struct rw_semaphore *fshared,
767
              u32 __user *uaddr2,
768
              int nr_wake, int nr_wake2, int op)
769
{
770
        union futex_key key1, key2;
771
        struct futex_hash_bucket *hb1, *hb2;
772
        struct plist_head *head;
773
        struct futex_q *this, *next;
774
        int ret, op_ret, attempt = 0;
775
 
776
retryfull:
777
        futex_lock_mm(fshared);
778
 
779
        ret = get_futex_key(uaddr1, fshared, &key1);
780
        if (unlikely(ret != 0))
781
                goto out;
782
        ret = get_futex_key(uaddr2, fshared, &key2);
783
        if (unlikely(ret != 0))
784
                goto out;
785
 
786
        hb1 = hash_futex(&key1);
787
        hb2 = hash_futex(&key2);
788
 
789
retry:
790
        double_lock_hb(hb1, hb2);
791
 
792
        op_ret = futex_atomic_op_inuser(op, uaddr2);
793
        if (unlikely(op_ret < 0)) {
794
                u32 dummy;
795
 
796
                spin_unlock(&hb1->lock);
797
                if (hb1 != hb2)
798
                        spin_unlock(&hb2->lock);
799
 
800
#ifndef CONFIG_MMU
801
                /*
802
                 * we don't get EFAULT from MMU faults if we don't have an MMU,
803
                 * but we might get them from range checking
804
                 */
805
                ret = op_ret;
806
                goto out;
807
#endif
808
 
809
                if (unlikely(op_ret != -EFAULT)) {
810
                        ret = op_ret;
811
                        goto out;
812
                }
813
 
814
                /*
815
                 * futex_atomic_op_inuser needs to both read and write
816
                 * *(int __user *)uaddr2, but we can't modify it
817
                 * non-atomically.  Therefore, if get_user below is not
818
                 * enough, we need to handle the fault ourselves, while
819
                 * still holding the mmap_sem.
820
                 */
821
                if (attempt++) {
822
                        ret = futex_handle_fault((unsigned long)uaddr2,
823
                                                 fshared, attempt);
824
                        if (ret)
825
                                goto out;
826
                        goto retry;
827
                }
828
 
829
                /*
830
                 * If we would have faulted, release mmap_sem,
831
                 * fault it in and start all over again.
832
                 */
833
                futex_unlock_mm(fshared);
834
 
835
                ret = get_user(dummy, uaddr2);
836
                if (ret)
837
                        return ret;
838
 
839
                goto retryfull;
840
        }
841
 
842
        head = &hb1->chain;
843
 
844
        plist_for_each_entry_safe(this, next, head, list) {
845
                if (match_futex (&this->key, &key1)) {
846
                        wake_futex(this);
847
                        if (++ret >= nr_wake)
848
                                break;
849
                }
850
        }
851
 
852
        if (op_ret > 0) {
853
                head = &hb2->chain;
854
 
855
                op_ret = 0;
856
                plist_for_each_entry_safe(this, next, head, list) {
857
                        if (match_futex (&this->key, &key2)) {
858
                                wake_futex(this);
859
                                if (++op_ret >= nr_wake2)
860
                                        break;
861
                        }
862
                }
863
                ret += op_ret;
864
        }
865
 
866
        spin_unlock(&hb1->lock);
867
        if (hb1 != hb2)
868
                spin_unlock(&hb2->lock);
869
out:
870
        futex_unlock_mm(fshared);
871
 
872
        return ret;
873
}
874
 
875
/*
876
 * Requeue all waiters hashed on one physical page to another
877
 * physical page.
878
 */
879
static int futex_requeue(u32 __user *uaddr1, struct rw_semaphore *fshared,
880
                         u32 __user *uaddr2,
881
                         int nr_wake, int nr_requeue, u32 *cmpval)
882
{
883
        union futex_key key1, key2;
884
        struct futex_hash_bucket *hb1, *hb2;
885
        struct plist_head *head1;
886
        struct futex_q *this, *next;
887
        int ret, drop_count = 0;
888
 
889
 retry:
890
        futex_lock_mm(fshared);
891
 
892
        ret = get_futex_key(uaddr1, fshared, &key1);
893
        if (unlikely(ret != 0))
894
                goto out;
895
        ret = get_futex_key(uaddr2, fshared, &key2);
896
        if (unlikely(ret != 0))
897
                goto out;
898
 
899
        hb1 = hash_futex(&key1);
900
        hb2 = hash_futex(&key2);
901
 
902
        double_lock_hb(hb1, hb2);
903
 
904
        if (likely(cmpval != NULL)) {
905
                u32 curval;
906
 
907
                ret = get_futex_value_locked(&curval, uaddr1);
908
 
909
                if (unlikely(ret)) {
910
                        spin_unlock(&hb1->lock);
911
                        if (hb1 != hb2)
912
                                spin_unlock(&hb2->lock);
913
 
914
                        /*
915
                         * If we would have faulted, release mmap_sem, fault
916
                         * it in and start all over again.
917
                         */
918
                        futex_unlock_mm(fshared);
919
 
920
                        ret = get_user(curval, uaddr1);
921
 
922
                        if (!ret)
923
                                goto retry;
924
 
925
                        return ret;
926
                }
927
                if (curval != *cmpval) {
928
                        ret = -EAGAIN;
929
                        goto out_unlock;
930
                }
931
        }
932
 
933
        head1 = &hb1->chain;
934
        plist_for_each_entry_safe(this, next, head1, list) {
935
                if (!match_futex (&this->key, &key1))
936
                        continue;
937
                if (++ret <= nr_wake) {
938
                        wake_futex(this);
939
                } else {
940
                        /*
941
                         * If key1 and key2 hash to the same bucket, no need to
942
                         * requeue.
943
                         */
944
                        if (likely(head1 != &hb2->chain)) {
945
                                plist_del(&this->list, &hb1->chain);
946
                                plist_add(&this->list, &hb2->chain);
947
                                this->lock_ptr = &hb2->lock;
948
#ifdef CONFIG_DEBUG_PI_LIST
949
                                this->list.plist.lock = &hb2->lock;
950
#endif
951
                        }
952
                        this->key = key2;
953
                        get_futex_key_refs(&key2);
954
                        drop_count++;
955
 
956
                        if (ret - nr_wake >= nr_requeue)
957
                                break;
958
                }
959
        }
960
 
961
out_unlock:
962
        spin_unlock(&hb1->lock);
963
        if (hb1 != hb2)
964
                spin_unlock(&hb2->lock);
965
 
966
        /* drop_futex_key_refs() must be called outside the spinlocks. */
967
        while (--drop_count >= 0)
968
                drop_futex_key_refs(&key1);
969
 
970
out:
971
        futex_unlock_mm(fshared);
972
        return ret;
973
}
974
 
975
/* The key must be already stored in q->key. */
976
static inline struct futex_hash_bucket *
977
queue_lock(struct futex_q *q, int fd, struct file *filp)
978
{
979
        struct futex_hash_bucket *hb;
980
 
981
        q->fd = fd;
982
        q->filp = filp;
983
 
984
        init_waitqueue_head(&q->waiters);
985
 
986
        get_futex_key_refs(&q->key);
987
        hb = hash_futex(&q->key);
988
        q->lock_ptr = &hb->lock;
989
 
990
        spin_lock(&hb->lock);
991
        return hb;
992
}
993
 
994
static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
995
{
996
        int prio;
997
 
998
        /*
999
         * The priority used to register this element is
1000
         * - either the real thread-priority for the real-time threads
1001
         * (i.e. threads with a priority lower than MAX_RT_PRIO)
1002
         * - or MAX_RT_PRIO for non-RT threads.
1003
         * Thus, all RT-threads are woken first in priority order, and
1004
         * the others are woken last, in FIFO order.
1005
         */
1006
        prio = min(current->normal_prio, MAX_RT_PRIO);
1007
 
1008
        plist_node_init(&q->list, prio);
1009
#ifdef CONFIG_DEBUG_PI_LIST
1010
        q->list.plist.lock = &hb->lock;
1011
#endif
1012
        plist_add(&q->list, &hb->chain);
1013
        q->task = current;
1014
        spin_unlock(&hb->lock);
1015
}
1016
 
1017
static inline void
1018
queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1019
{
1020
        spin_unlock(&hb->lock);
1021
        drop_futex_key_refs(&q->key);
1022
}
1023
 
1024
/*
1025
 * queue_me and unqueue_me must be called as a pair, each
1026
 * exactly once.  They are called with the hashed spinlock held.
1027
 */
1028
 
1029
/* The key must be already stored in q->key. */
1030
static void queue_me(struct futex_q *q, int fd, struct file *filp)
1031
{
1032
        struct futex_hash_bucket *hb;
1033
 
1034
        hb = queue_lock(q, fd, filp);
1035
        __queue_me(q, hb);
1036
}
1037
 
1038
/* Return 1 if we were still queued (ie. 0 means we were woken) */
1039
static int unqueue_me(struct futex_q *q)
1040
{
1041
        spinlock_t *lock_ptr;
1042
        int ret = 0;
1043
 
1044
        /* In the common case we don't take the spinlock, which is nice. */
1045
 retry:
1046
        lock_ptr = q->lock_ptr;
1047
        barrier();
1048
        if (lock_ptr != NULL) {
1049
                spin_lock(lock_ptr);
1050
                /*
1051
                 * q->lock_ptr can change between reading it and
1052
                 * spin_lock(), causing us to take the wrong lock.  This
1053
                 * corrects the race condition.
1054
                 *
1055
                 * Reasoning goes like this: if we have the wrong lock,
1056
                 * q->lock_ptr must have changed (maybe several times)
1057
                 * between reading it and the spin_lock().  It can
1058
                 * change again after the spin_lock() but only if it was
1059
                 * already changed before the spin_lock().  It cannot,
1060
                 * however, change back to the original value.  Therefore
1061
                 * we can detect whether we acquired the correct lock.
1062
                 */
1063
                if (unlikely(lock_ptr != q->lock_ptr)) {
1064
                        spin_unlock(lock_ptr);
1065
                        goto retry;
1066
                }
1067
                WARN_ON(plist_node_empty(&q->list));
1068
                plist_del(&q->list, &q->list.plist);
1069
 
1070
                BUG_ON(q->pi_state);
1071
 
1072
                spin_unlock(lock_ptr);
1073
                ret = 1;
1074
        }
1075
 
1076
        drop_futex_key_refs(&q->key);
1077
        return ret;
1078
}
1079
 
1080
/*
1081
 * PI futexes can not be requeued and must remove themself from the
1082
 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1083
 * and dropped here.
1084
 */
1085
static void unqueue_me_pi(struct futex_q *q)
1086
{
1087
        WARN_ON(plist_node_empty(&q->list));
1088
        plist_del(&q->list, &q->list.plist);
1089
 
1090
        BUG_ON(!q->pi_state);
1091
        free_pi_state(q->pi_state);
1092
        q->pi_state = NULL;
1093
 
1094
        spin_unlock(q->lock_ptr);
1095
 
1096
        drop_futex_key_refs(&q->key);
1097
}
1098
 
1099
/*
1100
 * Fixup the pi_state owner with the new owner.
1101
 *
1102
 * Must be called with hash bucket lock held and mm->sem held for non
1103
 * private futexes.
1104
 */
1105
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1106
                                struct task_struct *newowner)
1107
{
1108
        u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1109
        struct futex_pi_state *pi_state = q->pi_state;
1110
        u32 uval, curval, newval;
1111
        int ret;
1112
 
1113
        /* Owner died? */
1114
        if (pi_state->owner != NULL) {
1115
                spin_lock_irq(&pi_state->owner->pi_lock);
1116
                WARN_ON(list_empty(&pi_state->list));
1117
                list_del_init(&pi_state->list);
1118
                spin_unlock_irq(&pi_state->owner->pi_lock);
1119
        } else
1120
                newtid |= FUTEX_OWNER_DIED;
1121
 
1122
        pi_state->owner = newowner;
1123
 
1124
        spin_lock_irq(&newowner->pi_lock);
1125
        WARN_ON(!list_empty(&pi_state->list));
1126
        list_add(&pi_state->list, &newowner->pi_state_list);
1127
        spin_unlock_irq(&newowner->pi_lock);
1128
 
1129
        /*
1130
         * We own it, so we have to replace the pending owner
1131
         * TID. This must be atomic as we have preserve the
1132
         * owner died bit here.
1133
         */
1134
        ret = get_futex_value_locked(&uval, uaddr);
1135
 
1136
        while (!ret) {
1137
                newval = (uval & FUTEX_OWNER_DIED) | newtid;
1138
 
1139
                curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1140
 
1141
                if (curval == -EFAULT)
1142
                        ret = -EFAULT;
1143
                if (curval == uval)
1144
                        break;
1145
                uval = curval;
1146
        }
1147
        return ret;
1148
}
1149
 
1150
/*
1151
 * In case we must use restart_block to restart a futex_wait,
1152
 * we encode in the 'flags' shared capability
1153
 */
1154
#define FLAGS_SHARED  1
1155
 
1156
static long futex_wait_restart(struct restart_block *restart);
1157
 
1158
static int futex_wait(u32 __user *uaddr, struct rw_semaphore *fshared,
1159
                      u32 val, ktime_t *abs_time)
1160
{
1161
        struct task_struct *curr = current;
1162
        DECLARE_WAITQUEUE(wait, curr);
1163
        struct futex_hash_bucket *hb;
1164
        struct futex_q q;
1165
        u32 uval;
1166
        int ret;
1167
        struct hrtimer_sleeper t;
1168
        int rem = 0;
1169
 
1170
        q.pi_state = NULL;
1171
 retry:
1172
        futex_lock_mm(fshared);
1173
 
1174
        ret = get_futex_key(uaddr, fshared, &q.key);
1175
        if (unlikely(ret != 0))
1176
                goto out_release_sem;
1177
 
1178
        hb = queue_lock(&q, -1, NULL);
1179
 
1180
        /*
1181
         * Access the page AFTER the futex is queued.
1182
         * Order is important:
1183
         *
1184
         *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1185
         *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1186
         *
1187
         * The basic logical guarantee of a futex is that it blocks ONLY
1188
         * if cond(var) is known to be true at the time of blocking, for
1189
         * any cond.  If we queued after testing *uaddr, that would open
1190
         * a race condition where we could block indefinitely with
1191
         * cond(var) false, which would violate the guarantee.
1192
         *
1193
         * A consequence is that futex_wait() can return zero and absorb
1194
         * a wakeup when *uaddr != val on entry to the syscall.  This is
1195
         * rare, but normal.
1196
         *
1197
         * for shared futexes, we hold the mmap semaphore, so the mapping
1198
         * cannot have changed since we looked it up in get_futex_key.
1199
         */
1200
        ret = get_futex_value_locked(&uval, uaddr);
1201
 
1202
        if (unlikely(ret)) {
1203
                queue_unlock(&q, hb);
1204
 
1205
                /*
1206
                 * If we would have faulted, release mmap_sem, fault it in and
1207
                 * start all over again.
1208
                 */
1209
                futex_unlock_mm(fshared);
1210
 
1211
                ret = get_user(uval, uaddr);
1212
 
1213
                if (!ret)
1214
                        goto retry;
1215
                return ret;
1216
        }
1217
        ret = -EWOULDBLOCK;
1218
        if (uval != val)
1219
                goto out_unlock_release_sem;
1220
 
1221
        /* Only actually queue if *uaddr contained val.  */
1222
        __queue_me(&q, hb);
1223
 
1224
        /*
1225
         * Now the futex is queued and we have checked the data, we
1226
         * don't want to hold mmap_sem while we sleep.
1227
         */
1228
        futex_unlock_mm(fshared);
1229
 
1230
        /*
1231
         * There might have been scheduling since the queue_me(), as we
1232
         * cannot hold a spinlock across the get_user() in case it
1233
         * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1234
         * queueing ourselves into the futex hash.  This code thus has to
1235
         * rely on the futex_wake() code removing us from hash when it
1236
         * wakes us up.
1237
         */
1238
 
1239
        /* add_wait_queue is the barrier after __set_current_state. */
1240
        __set_current_state(TASK_INTERRUPTIBLE);
1241
        add_wait_queue(&q.waiters, &wait);
1242
        /*
1243
         * !plist_node_empty() is safe here without any lock.
1244
         * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1245
         */
1246
        if (likely(!plist_node_empty(&q.list))) {
1247
                if (!abs_time)
1248
                        schedule();
1249
                else {
1250
                        hrtimer_init(&t.timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1251
                        hrtimer_init_sleeper(&t, current);
1252
                        t.timer.expires = *abs_time;
1253
 
1254
                        hrtimer_start(&t.timer, t.timer.expires, HRTIMER_MODE_ABS);
1255
 
1256
                        /*
1257
                         * the timer could have already expired, in which
1258
                         * case current would be flagged for rescheduling.
1259
                         * Don't bother calling schedule.
1260
                         */
1261
                        if (likely(t.task))
1262
                                schedule();
1263
 
1264
                        hrtimer_cancel(&t.timer);
1265
 
1266
                        /* Flag if a timeout occured */
1267
                        rem = (t.task == NULL);
1268
                }
1269
        }
1270
        __set_current_state(TASK_RUNNING);
1271
 
1272
        /*
1273
         * NOTE: we don't remove ourselves from the waitqueue because
1274
         * we are the only user of it.
1275
         */
1276
 
1277
        /* If we were woken (and unqueued), we succeeded, whatever. */
1278
        if (!unqueue_me(&q))
1279
                return 0;
1280
        if (rem)
1281
                return -ETIMEDOUT;
1282
 
1283
        /*
1284
         * We expect signal_pending(current), but another thread may
1285
         * have handled it for us already.
1286
         */
1287
        if (!abs_time)
1288
                return -ERESTARTSYS;
1289
        else {
1290
                struct restart_block *restart;
1291
                restart = &current_thread_info()->restart_block;
1292
                restart->fn = futex_wait_restart;
1293
                restart->futex.uaddr = (u32 *)uaddr;
1294
                restart->futex.val = val;
1295
                restart->futex.time = abs_time->tv64;
1296
                restart->futex.flags = 0;
1297
 
1298
                if (fshared)
1299
                        restart->futex.flags |= FLAGS_SHARED;
1300
                return -ERESTART_RESTARTBLOCK;
1301
        }
1302
 
1303
 out_unlock_release_sem:
1304
        queue_unlock(&q, hb);
1305
 
1306
 out_release_sem:
1307
        futex_unlock_mm(fshared);
1308
        return ret;
1309
}
1310
 
1311
 
1312
static long futex_wait_restart(struct restart_block *restart)
1313
{
1314
        u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1315
        struct rw_semaphore *fshared = NULL;
1316
        ktime_t t;
1317
 
1318
        t.tv64 = restart->futex.time;
1319
        restart->fn = do_no_restart_syscall;
1320
        if (restart->futex.flags & FLAGS_SHARED)
1321
                fshared = &current->mm->mmap_sem;
1322
        return (long)futex_wait(uaddr, fshared, restart->futex.val, &t);
1323
}
1324
 
1325
 
1326
/*
1327
 * Userspace tried a 0 -> TID atomic transition of the futex value
1328
 * and failed. The kernel side here does the whole locking operation:
1329
 * if there are waiters then it will block, it does PI, etc. (Due to
1330
 * races the kernel might see a 0 value of the futex too.)
1331
 */
1332
static int futex_lock_pi(u32 __user *uaddr, struct rw_semaphore *fshared,
1333
                         int detect, ktime_t *time, int trylock)
1334
{
1335
        struct hrtimer_sleeper timeout, *to = NULL;
1336
        struct task_struct *curr = current;
1337
        struct futex_hash_bucket *hb;
1338
        u32 uval, newval, curval;
1339
        struct futex_q q;
1340
        int ret, lock_taken, ownerdied = 0, attempt = 0;
1341
 
1342
        if (refill_pi_state_cache())
1343
                return -ENOMEM;
1344
 
1345
        if (time) {
1346
                to = &timeout;
1347
                hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
1348
                hrtimer_init_sleeper(to, current);
1349
                to->timer.expires = *time;
1350
        }
1351
 
1352
        q.pi_state = NULL;
1353
 retry:
1354
        futex_lock_mm(fshared);
1355
 
1356
        ret = get_futex_key(uaddr, fshared, &q.key);
1357
        if (unlikely(ret != 0))
1358
                goto out_release_sem;
1359
 
1360
 retry_unlocked:
1361
        hb = queue_lock(&q, -1, NULL);
1362
 
1363
 retry_locked:
1364
        ret = lock_taken = 0;
1365
 
1366
        /*
1367
         * To avoid races, we attempt to take the lock here again
1368
         * (by doing a 0 -> TID atomic cmpxchg), while holding all
1369
         * the locks. It will most likely not succeed.
1370
         */
1371
        newval = task_pid_vnr(current);
1372
 
1373
        curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
1374
 
1375
        if (unlikely(curval == -EFAULT))
1376
                goto uaddr_faulted;
1377
 
1378
        /*
1379
         * Detect deadlocks. In case of REQUEUE_PI this is a valid
1380
         * situation and we return success to user space.
1381
         */
1382
        if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
1383
                ret = -EDEADLK;
1384
                goto out_unlock_release_sem;
1385
        }
1386
 
1387
        /*
1388
         * Surprise - we got the lock. Just return to userspace:
1389
         */
1390
        if (unlikely(!curval))
1391
                goto out_unlock_release_sem;
1392
 
1393
        uval = curval;
1394
 
1395
        /*
1396
         * Set the WAITERS flag, so the owner will know it has someone
1397
         * to wake at next unlock
1398
         */
1399
        newval = curval | FUTEX_WAITERS;
1400
 
1401
        /*
1402
         * There are two cases, where a futex might have no owner (the
1403
         * owner TID is 0): OWNER_DIED. We take over the futex in this
1404
         * case. We also do an unconditional take over, when the owner
1405
         * of the futex died.
1406
         *
1407
         * This is safe as we are protected by the hash bucket lock !
1408
         */
1409
        if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
1410
                /* Keep the OWNER_DIED bit */
1411
                newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current);
1412
                ownerdied = 0;
1413
                lock_taken = 1;
1414
        }
1415
 
1416
        curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1417
 
1418
        if (unlikely(curval == -EFAULT))
1419
                goto uaddr_faulted;
1420
        if (unlikely(curval != uval))
1421
                goto retry_locked;
1422
 
1423
        /*
1424
         * We took the lock due to owner died take over.
1425
         */
1426
        if (unlikely(lock_taken))
1427
                goto out_unlock_release_sem;
1428
 
1429
        /*
1430
         * We dont have the lock. Look up the PI state (or create it if
1431
         * we are the first waiter):
1432
         */
1433
        ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
1434
 
1435
        if (unlikely(ret)) {
1436
                switch (ret) {
1437
 
1438
                case -EAGAIN:
1439
                        /*
1440
                         * Task is exiting and we just wait for the
1441
                         * exit to complete.
1442
                         */
1443
                        queue_unlock(&q, hb);
1444
                        futex_unlock_mm(fshared);
1445
                        cond_resched();
1446
                        goto retry;
1447
 
1448
                case -ESRCH:
1449
                        /*
1450
                         * No owner found for this futex. Check if the
1451
                         * OWNER_DIED bit is set to figure out whether
1452
                         * this is a robust futex or not.
1453
                         */
1454
                        if (get_futex_value_locked(&curval, uaddr))
1455
                                goto uaddr_faulted;
1456
 
1457
                        /*
1458
                         * We simply start over in case of a robust
1459
                         * futex. The code above will take the futex
1460
                         * and return happy.
1461
                         */
1462
                        if (curval & FUTEX_OWNER_DIED) {
1463
                                ownerdied = 1;
1464
                                goto retry_locked;
1465
                        }
1466
                default:
1467
                        goto out_unlock_release_sem;
1468
                }
1469
        }
1470
 
1471
        /*
1472
         * Only actually queue now that the atomic ops are done:
1473
         */
1474
        __queue_me(&q, hb);
1475
 
1476
        /*
1477
         * Now the futex is queued and we have checked the data, we
1478
         * don't want to hold mmap_sem while we sleep.
1479
         */
1480
        futex_unlock_mm(fshared);
1481
 
1482
        WARN_ON(!q.pi_state);
1483
        /*
1484
         * Block on the PI mutex:
1485
         */
1486
        if (!trylock)
1487
                ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1488
        else {
1489
                ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1490
                /* Fixup the trylock return value: */
1491
                ret = ret ? 0 : -EWOULDBLOCK;
1492
        }
1493
 
1494
        futex_lock_mm(fshared);
1495
        spin_lock(q.lock_ptr);
1496
 
1497
        if (!ret) {
1498
                /*
1499
                 * Got the lock. We might not be the anticipated owner
1500
                 * if we did a lock-steal - fix up the PI-state in
1501
                 * that case:
1502
                 */
1503
                if (q.pi_state->owner != curr)
1504
                        ret = fixup_pi_state_owner(uaddr, &q, curr);
1505
        } else {
1506
                /*
1507
                 * Catch the rare case, where the lock was released
1508
                 * when we were on the way back before we locked the
1509
                 * hash bucket.
1510
                 */
1511
                if (q.pi_state->owner == curr) {
1512
                        /*
1513
                         * Try to get the rt_mutex now. This might
1514
                         * fail as some other task acquired the
1515
                         * rt_mutex after we removed ourself from the
1516
                         * rt_mutex waiters list.
1517
                         */
1518
                        if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1519
                                ret = 0;
1520
                        else {
1521
                                /*
1522
                                 * pi_state is incorrect, some other
1523
                                 * task did a lock steal and we
1524
                                 * returned due to timeout or signal
1525
                                 * without taking the rt_mutex. Too
1526
                                 * late. We can access the
1527
                                 * rt_mutex_owner without locking, as
1528
                                 * the other task is now blocked on
1529
                                 * the hash bucket lock. Fix the state
1530
                                 * up.
1531
                                 */
1532
                                struct task_struct *owner;
1533
                                int res;
1534
 
1535
                                owner = rt_mutex_owner(&q.pi_state->pi_mutex);
1536
                                res = fixup_pi_state_owner(uaddr, &q, owner);
1537
 
1538
                                WARN_ON(rt_mutex_owner(&q.pi_state->pi_mutex) !=
1539
                                        owner);
1540
 
1541
                                /* propagate -EFAULT, if the fixup failed */
1542
                                if (res)
1543
                                        ret = res;
1544
                        }
1545
                } else {
1546
                        /*
1547
                         * Paranoia check. If we did not take the lock
1548
                         * in the trylock above, then we should not be
1549
                         * the owner of the rtmutex, neither the real
1550
                         * nor the pending one:
1551
                         */
1552
                        if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1553
                                printk(KERN_ERR "futex_lock_pi: ret = %d "
1554
                                       "pi-mutex: %p pi-state %p\n", ret,
1555
                                       q.pi_state->pi_mutex.owner,
1556
                                       q.pi_state->owner);
1557
                }
1558
        }
1559
 
1560
        /* Unqueue and drop the lock */
1561
        unqueue_me_pi(&q);
1562
        futex_unlock_mm(fshared);
1563
 
1564
        return ret != -EINTR ? ret : -ERESTARTNOINTR;
1565
 
1566
 out_unlock_release_sem:
1567
        queue_unlock(&q, hb);
1568
 
1569
 out_release_sem:
1570
        futex_unlock_mm(fshared);
1571
        return ret;
1572
 
1573
 uaddr_faulted:
1574
        /*
1575
         * We have to r/w  *(int __user *)uaddr, but we can't modify it
1576
         * non-atomically.  Therefore, if get_user below is not
1577
         * enough, we need to handle the fault ourselves, while
1578
         * still holding the mmap_sem.
1579
         *
1580
         * ... and hb->lock. :-) --ANK
1581
         */
1582
        queue_unlock(&q, hb);
1583
 
1584
        if (attempt++) {
1585
                ret = futex_handle_fault((unsigned long)uaddr, fshared,
1586
                                         attempt);
1587
                if (ret)
1588
                        goto out_release_sem;
1589
                goto retry_unlocked;
1590
        }
1591
 
1592
        futex_unlock_mm(fshared);
1593
 
1594
        ret = get_user(uval, uaddr);
1595
        if (!ret && (uval != -EFAULT))
1596
                goto retry;
1597
 
1598
        return ret;
1599
}
1600
 
1601
/*
1602
 * Userspace attempted a TID -> 0 atomic transition, and failed.
1603
 * This is the in-kernel slowpath: we look up the PI state (if any),
1604
 * and do the rt-mutex unlock.
1605
 */
1606
static int futex_unlock_pi(u32 __user *uaddr, struct rw_semaphore *fshared)
1607
{
1608
        struct futex_hash_bucket *hb;
1609
        struct futex_q *this, *next;
1610
        u32 uval;
1611
        struct plist_head *head;
1612
        union futex_key key;
1613
        int ret, attempt = 0;
1614
 
1615
retry:
1616
        if (get_user(uval, uaddr))
1617
                return -EFAULT;
1618
        /*
1619
         * We release only a lock we actually own:
1620
         */
1621
        if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
1622
                return -EPERM;
1623
        /*
1624
         * First take all the futex related locks:
1625
         */
1626
        futex_lock_mm(fshared);
1627
 
1628
        ret = get_futex_key(uaddr, fshared, &key);
1629
        if (unlikely(ret != 0))
1630
                goto out;
1631
 
1632
        hb = hash_futex(&key);
1633
retry_unlocked:
1634
        spin_lock(&hb->lock);
1635
 
1636
        /*
1637
         * To avoid races, try to do the TID -> 0 atomic transition
1638
         * again. If it succeeds then we can return without waking
1639
         * anyone else up:
1640
         */
1641
        if (!(uval & FUTEX_OWNER_DIED))
1642
                uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
1643
 
1644
 
1645
        if (unlikely(uval == -EFAULT))
1646
                goto pi_faulted;
1647
        /*
1648
         * Rare case: we managed to release the lock atomically,
1649
         * no need to wake anyone else up:
1650
         */
1651
        if (unlikely(uval == task_pid_vnr(current)))
1652
                goto out_unlock;
1653
 
1654
        /*
1655
         * Ok, other tasks may need to be woken up - check waiters
1656
         * and do the wakeup if necessary:
1657
         */
1658
        head = &hb->chain;
1659
 
1660
        plist_for_each_entry_safe(this, next, head, list) {
1661
                if (!match_futex (&this->key, &key))
1662
                        continue;
1663
                ret = wake_futex_pi(uaddr, uval, this);
1664
                /*
1665
                 * The atomic access to the futex value
1666
                 * generated a pagefault, so retry the
1667
                 * user-access and the wakeup:
1668
                 */
1669
                if (ret == -EFAULT)
1670
                        goto pi_faulted;
1671
                goto out_unlock;
1672
        }
1673
        /*
1674
         * No waiters - kernel unlocks the futex:
1675
         */
1676
        if (!(uval & FUTEX_OWNER_DIED)) {
1677
                ret = unlock_futex_pi(uaddr, uval);
1678
                if (ret == -EFAULT)
1679
                        goto pi_faulted;
1680
        }
1681
 
1682
out_unlock:
1683
        spin_unlock(&hb->lock);
1684
out:
1685
        futex_unlock_mm(fshared);
1686
 
1687
        return ret;
1688
 
1689
pi_faulted:
1690
        /*
1691
         * We have to r/w  *(int __user *)uaddr, but we can't modify it
1692
         * non-atomically.  Therefore, if get_user below is not
1693
         * enough, we need to handle the fault ourselves, while
1694
         * still holding the mmap_sem.
1695
         *
1696
         * ... and hb->lock. --ANK
1697
         */
1698
        spin_unlock(&hb->lock);
1699
 
1700
        if (attempt++) {
1701
                ret = futex_handle_fault((unsigned long)uaddr, fshared,
1702
                                         attempt);
1703
                if (ret)
1704
                        goto out;
1705
                uval = 0;
1706
                goto retry_unlocked;
1707
        }
1708
 
1709
        futex_unlock_mm(fshared);
1710
 
1711
        ret = get_user(uval, uaddr);
1712
        if (!ret && (uval != -EFAULT))
1713
                goto retry;
1714
 
1715
        return ret;
1716
}
1717
 
1718
static int futex_close(struct inode *inode, struct file *filp)
1719
{
1720
        struct futex_q *q = filp->private_data;
1721
 
1722
        unqueue_me(q);
1723
        kfree(q);
1724
 
1725
        return 0;
1726
}
1727
 
1728
/* This is one-shot: once it's gone off you need a new fd */
1729
static unsigned int futex_poll(struct file *filp,
1730
                               struct poll_table_struct *wait)
1731
{
1732
        struct futex_q *q = filp->private_data;
1733
        int ret = 0;
1734
 
1735
        poll_wait(filp, &q->waiters, wait);
1736
 
1737
        /*
1738
         * plist_node_empty() is safe here without any lock.
1739
         * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
1740
         */
1741
        if (plist_node_empty(&q->list))
1742
                ret = POLLIN | POLLRDNORM;
1743
 
1744
        return ret;
1745
}
1746
 
1747
static const struct file_operations futex_fops = {
1748
        .release        = futex_close,
1749
        .poll           = futex_poll,
1750
};
1751
 
1752
/*
1753
 * Signal allows caller to avoid the race which would occur if they
1754
 * set the sigio stuff up afterwards.
1755
 */
1756
static int futex_fd(u32 __user *uaddr, int signal)
1757
{
1758
        struct futex_q *q;
1759
        struct file *filp;
1760
        int ret, err;
1761
        struct rw_semaphore *fshared;
1762
        static unsigned long printk_interval;
1763
 
1764
        if (printk_timed_ratelimit(&printk_interval, 60 * 60 * 1000)) {
1765
                printk(KERN_WARNING "Process `%s' used FUTEX_FD, which "
1766
                       "will be removed from the kernel in June 2007\n",
1767
                       current->comm);
1768
        }
1769
 
1770
        ret = -EINVAL;
1771
        if (!valid_signal(signal))
1772
                goto out;
1773
 
1774
        ret = get_unused_fd();
1775
        if (ret < 0)
1776
                goto out;
1777
        filp = get_empty_filp();
1778
        if (!filp) {
1779
                put_unused_fd(ret);
1780
                ret = -ENFILE;
1781
                goto out;
1782
        }
1783
        filp->f_op = &futex_fops;
1784
        filp->f_path.mnt = mntget(futex_mnt);
1785
        filp->f_path.dentry = dget(futex_mnt->mnt_root);
1786
        filp->f_mapping = filp->f_path.dentry->d_inode->i_mapping;
1787
 
1788
        if (signal) {
1789
                err = __f_setown(filp, task_pid(current), PIDTYPE_PID, 1);
1790
                if (err < 0) {
1791
                        goto error;
1792
                }
1793
                filp->f_owner.signum = signal;
1794
        }
1795
 
1796
        q = kmalloc(sizeof(*q), GFP_KERNEL);
1797
        if (!q) {
1798
                err = -ENOMEM;
1799
                goto error;
1800
        }
1801
        q->pi_state = NULL;
1802
 
1803
        fshared = &current->mm->mmap_sem;
1804
        down_read(fshared);
1805
        err = get_futex_key(uaddr, fshared, &q->key);
1806
 
1807
        if (unlikely(err != 0)) {
1808
                up_read(fshared);
1809
                kfree(q);
1810
                goto error;
1811
        }
1812
 
1813
        /*
1814
         * queue_me() must be called before releasing mmap_sem, because
1815
         * key->shared.inode needs to be referenced while holding it.
1816
         */
1817
        filp->private_data = q;
1818
 
1819
        queue_me(q, ret, filp);
1820
        up_read(fshared);
1821
 
1822
        /* Now we map fd to filp, so userspace can access it */
1823
        fd_install(ret, filp);
1824
out:
1825
        return ret;
1826
error:
1827
        put_unused_fd(ret);
1828
        put_filp(filp);
1829
        ret = err;
1830
        goto out;
1831
}
1832
 
1833
/*
1834
 * Support for robust futexes: the kernel cleans up held futexes at
1835
 * thread exit time.
1836
 *
1837
 * Implementation: user-space maintains a per-thread list of locks it
1838
 * is holding. Upon do_exit(), the kernel carefully walks this list,
1839
 * and marks all locks that are owned by this thread with the
1840
 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1841
 * always manipulated with the lock held, so the list is private and
1842
 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1843
 * field, to allow the kernel to clean up if the thread dies after
1844
 * acquiring the lock, but just before it could have added itself to
1845
 * the list. There can only be one such pending lock.
1846
 */
1847
 
1848
/**
1849
 * sys_set_robust_list - set the robust-futex list head of a task
1850
 * @head: pointer to the list-head
1851
 * @len: length of the list-head, as userspace expects
1852
 */
1853
asmlinkage long
1854
sys_set_robust_list(struct robust_list_head __user *head,
1855
                    size_t len)
1856
{
1857
        /*
1858
         * The kernel knows only one size for now:
1859
         */
1860
        if (unlikely(len != sizeof(*head)))
1861
                return -EINVAL;
1862
 
1863
        current->robust_list = head;
1864
 
1865
        return 0;
1866
}
1867
 
1868
/**
1869
 * sys_get_robust_list - get the robust-futex list head of a task
1870
 * @pid: pid of the process [zero for current task]
1871
 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1872
 * @len_ptr: pointer to a length field, the kernel fills in the header size
1873
 */
1874
asmlinkage long
1875
sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
1876
                    size_t __user *len_ptr)
1877
{
1878
        struct robust_list_head __user *head;
1879
        unsigned long ret;
1880
 
1881
        if (!pid)
1882
                head = current->robust_list;
1883
        else {
1884
                struct task_struct *p;
1885
 
1886
                ret = -ESRCH;
1887
                rcu_read_lock();
1888
                p = find_task_by_vpid(pid);
1889
                if (!p)
1890
                        goto err_unlock;
1891
                ret = -EPERM;
1892
                if ((current->euid != p->euid) && (current->euid != p->uid) &&
1893
                                !capable(CAP_SYS_PTRACE))
1894
                        goto err_unlock;
1895
                head = p->robust_list;
1896
                rcu_read_unlock();
1897
        }
1898
 
1899
        if (put_user(sizeof(*head), len_ptr))
1900
                return -EFAULT;
1901
        return put_user(head, head_ptr);
1902
 
1903
err_unlock:
1904
        rcu_read_unlock();
1905
 
1906
        return ret;
1907
}
1908
 
1909
/*
1910
 * Process a futex-list entry, check whether it's owned by the
1911
 * dying task, and do notification if so:
1912
 */
1913
int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
1914
{
1915
        u32 uval, nval, mval;
1916
 
1917
retry:
1918
        if (get_user(uval, uaddr))
1919
                return -1;
1920
 
1921
        if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
1922
                /*
1923
                 * Ok, this dying thread is truly holding a futex
1924
                 * of interest. Set the OWNER_DIED bit atomically
1925
                 * via cmpxchg, and if the value had FUTEX_WAITERS
1926
                 * set, wake up a waiter (if any). (We have to do a
1927
                 * futex_wake() even if OWNER_DIED is already set -
1928
                 * to handle the rare but possible case of recursive
1929
                 * thread-death.) The rest of the cleanup is done in
1930
                 * userspace.
1931
                 */
1932
                mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1933
                nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1934
 
1935
                if (nval == -EFAULT)
1936
                        return -1;
1937
 
1938
                if (nval != uval)
1939
                        goto retry;
1940
 
1941
                /*
1942
                 * Wake robust non-PI futexes here. The wakeup of
1943
                 * PI futexes happens in exit_pi_state():
1944
                 */
1945
                if (!pi && (uval & FUTEX_WAITERS))
1946
                                futex_wake(uaddr, &curr->mm->mmap_sem, 1);
1947
        }
1948
        return 0;
1949
}
1950
 
1951
/*
1952
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1953
 */
1954
static inline int fetch_robust_entry(struct robust_list __user **entry,
1955
                                     struct robust_list __user * __user *head,
1956
                                     int *pi)
1957
{
1958
        unsigned long uentry;
1959
 
1960
        if (get_user(uentry, (unsigned long __user *)head))
1961
                return -EFAULT;
1962
 
1963
        *entry = (void __user *)(uentry & ~1UL);
1964
        *pi = uentry & 1;
1965
 
1966
        return 0;
1967
}
1968
 
1969
/*
1970
 * Walk curr->robust_list (very carefully, it's a userspace list!)
1971
 * and mark any locks found there dead, and notify any waiters.
1972
 *
1973
 * We silently return on any sign of list-walking problem.
1974
 */
1975
void exit_robust_list(struct task_struct *curr)
1976
{
1977
        struct robust_list_head __user *head = curr->robust_list;
1978
        struct robust_list __user *entry, *next_entry, *pending;
1979
        unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
1980
        unsigned long futex_offset;
1981
        int rc;
1982
 
1983
        /*
1984
         * Fetch the list head (which was registered earlier, via
1985
         * sys_set_robust_list()):
1986
         */
1987
        if (fetch_robust_entry(&entry, &head->list.next, &pi))
1988
                return;
1989
        /*
1990
         * Fetch the relative futex offset:
1991
         */
1992
        if (get_user(futex_offset, &head->futex_offset))
1993
                return;
1994
        /*
1995
         * Fetch any possibly pending lock-add first, and handle it
1996
         * if it exists:
1997
         */
1998
        if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
1999
                return;
2000
 
2001
        next_entry = NULL;      /* avoid warning with gcc */
2002
        while (entry != &head->list) {
2003
                /*
2004
                 * Fetch the next entry in the list before calling
2005
                 * handle_futex_death:
2006
                 */
2007
                rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2008
                /*
2009
                 * A pending lock might already be on the list, so
2010
                 * don't process it twice:
2011
                 */
2012
                if (entry != pending)
2013
                        if (handle_futex_death((void __user *)entry + futex_offset,
2014
                                                curr, pi))
2015
                                return;
2016
                if (rc)
2017
                        return;
2018
                entry = next_entry;
2019
                pi = next_pi;
2020
                /*
2021
                 * Avoid excessively long or circular lists:
2022
                 */
2023
                if (!--limit)
2024
                        break;
2025
 
2026
                cond_resched();
2027
        }
2028
 
2029
        if (pending)
2030
                handle_futex_death((void __user *)pending + futex_offset,
2031
                                   curr, pip);
2032
}
2033
 
2034
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2035
                u32 __user *uaddr2, u32 val2, u32 val3)
2036
{
2037
        int ret;
2038
        int cmd = op & FUTEX_CMD_MASK;
2039
        struct rw_semaphore *fshared = NULL;
2040
 
2041
        if (!(op & FUTEX_PRIVATE_FLAG))
2042
                fshared = &current->mm->mmap_sem;
2043
 
2044
        switch (cmd) {
2045
        case FUTEX_WAIT:
2046
                ret = futex_wait(uaddr, fshared, val, timeout);
2047
                break;
2048
        case FUTEX_WAKE:
2049
                ret = futex_wake(uaddr, fshared, val);
2050
                break;
2051
        case FUTEX_FD:
2052
                /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
2053
                ret = futex_fd(uaddr, val);
2054
                break;
2055
        case FUTEX_REQUEUE:
2056
                ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
2057
                break;
2058
        case FUTEX_CMP_REQUEUE:
2059
                ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
2060
                break;
2061
        case FUTEX_WAKE_OP:
2062
                ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2063
                break;
2064
        case FUTEX_LOCK_PI:
2065
                ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2066
                break;
2067
        case FUTEX_UNLOCK_PI:
2068
                ret = futex_unlock_pi(uaddr, fshared);
2069
                break;
2070
        case FUTEX_TRYLOCK_PI:
2071
                ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2072
                break;
2073
        default:
2074
                ret = -ENOSYS;
2075
        }
2076
        return ret;
2077
}
2078
 
2079
 
2080
asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
2081
                          struct timespec __user *utime, u32 __user *uaddr2,
2082
                          u32 val3)
2083
{
2084
        struct timespec ts;
2085
        ktime_t t, *tp = NULL;
2086
        u32 val2 = 0;
2087
        int cmd = op & FUTEX_CMD_MASK;
2088
 
2089
        if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI)) {
2090
                if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2091
                        return -EFAULT;
2092
                if (!timespec_valid(&ts))
2093
                        return -EINVAL;
2094
 
2095
                t = timespec_to_ktime(ts);
2096
                if (cmd == FUTEX_WAIT)
2097
                        t = ktime_add(ktime_get(), t);
2098
                tp = &t;
2099
        }
2100
        /*
2101
         * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
2102
         * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2103
         */
2104
        if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2105
            cmd == FUTEX_WAKE_OP)
2106
                val2 = (u32) (unsigned long) utime;
2107
 
2108
        return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2109
}
2110
 
2111
static int futexfs_get_sb(struct file_system_type *fs_type,
2112
                          int flags, const char *dev_name, void *data,
2113
                          struct vfsmount *mnt)
2114
{
2115
        return get_sb_pseudo(fs_type, "futex", NULL, FUTEXFS_SUPER_MAGIC, mnt);
2116
}
2117
 
2118
static struct file_system_type futex_fs_type = {
2119
        .name           = "futexfs",
2120
        .get_sb         = futexfs_get_sb,
2121
        .kill_sb        = kill_anon_super,
2122
};
2123
 
2124
static int __init init(void)
2125
{
2126
        int i = register_filesystem(&futex_fs_type);
2127
 
2128
        if (i)
2129
                return i;
2130
 
2131
        futex_mnt = kern_mount(&futex_fs_type);
2132
        if (IS_ERR(futex_mnt)) {
2133
                unregister_filesystem(&futex_fs_type);
2134
                return PTR_ERR(futex_mnt);
2135
        }
2136
 
2137
        for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2138
                plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2139
                spin_lock_init(&futex_queues[i].lock);
2140
        }
2141
        return 0;
2142
}
2143
__initcall(init);

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.