OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [kernel/] [kexec.c] - Blame information for rev 78

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 * kexec.c - kexec system call
3
 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
4
 *
5
 * This source code is licensed under the GNU General Public License,
6
 * Version 2.  See the file COPYING for more details.
7
 */
8
 
9
#include <linux/capability.h>
10
#include <linux/mm.h>
11
#include <linux/file.h>
12
#include <linux/slab.h>
13
#include <linux/fs.h>
14
#include <linux/kexec.h>
15
#include <linux/spinlock.h>
16
#include <linux/list.h>
17
#include <linux/highmem.h>
18
#include <linux/syscalls.h>
19
#include <linux/reboot.h>
20
#include <linux/ioport.h>
21
#include <linux/hardirq.h>
22
#include <linux/elf.h>
23
#include <linux/elfcore.h>
24
#include <linux/utsrelease.h>
25
#include <linux/utsname.h>
26
#include <linux/numa.h>
27
 
28
#include <asm/page.h>
29
#include <asm/uaccess.h>
30
#include <asm/io.h>
31
#include <asm/system.h>
32
#include <asm/semaphore.h>
33
#include <asm/sections.h>
34
 
35
/* Per cpu memory for storing cpu states in case of system crash. */
36
note_buf_t* crash_notes;
37
 
38
/* vmcoreinfo stuff */
39
unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
40
u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
41
size_t vmcoreinfo_size;
42
size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
43
 
44
/* Location of the reserved area for the crash kernel */
45
struct resource crashk_res = {
46
        .name  = "Crash kernel",
47
        .start = 0,
48
        .end   = 0,
49
        .flags = IORESOURCE_BUSY | IORESOURCE_MEM
50
};
51
 
52
int kexec_should_crash(struct task_struct *p)
53
{
54
        if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
55
                return 1;
56
        return 0;
57
}
58
 
59
/*
60
 * When kexec transitions to the new kernel there is a one-to-one
61
 * mapping between physical and virtual addresses.  On processors
62
 * where you can disable the MMU this is trivial, and easy.  For
63
 * others it is still a simple predictable page table to setup.
64
 *
65
 * In that environment kexec copies the new kernel to its final
66
 * resting place.  This means I can only support memory whose
67
 * physical address can fit in an unsigned long.  In particular
68
 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
69
 * If the assembly stub has more restrictive requirements
70
 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
71
 * defined more restrictively in <asm/kexec.h>.
72
 *
73
 * The code for the transition from the current kernel to the
74
 * the new kernel is placed in the control_code_buffer, whose size
75
 * is given by KEXEC_CONTROL_CODE_SIZE.  In the best case only a single
76
 * page of memory is necessary, but some architectures require more.
77
 * Because this memory must be identity mapped in the transition from
78
 * virtual to physical addresses it must live in the range
79
 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
80
 * modifiable.
81
 *
82
 * The assembly stub in the control code buffer is passed a linked list
83
 * of descriptor pages detailing the source pages of the new kernel,
84
 * and the destination addresses of those source pages.  As this data
85
 * structure is not used in the context of the current OS, it must
86
 * be self-contained.
87
 *
88
 * The code has been made to work with highmem pages and will use a
89
 * destination page in its final resting place (if it happens
90
 * to allocate it).  The end product of this is that most of the
91
 * physical address space, and most of RAM can be used.
92
 *
93
 * Future directions include:
94
 *  - allocating a page table with the control code buffer identity
95
 *    mapped, to simplify machine_kexec and make kexec_on_panic more
96
 *    reliable.
97
 */
98
 
99
/*
100
 * KIMAGE_NO_DEST is an impossible destination address..., for
101
 * allocating pages whose destination address we do not care about.
102
 */
103
#define KIMAGE_NO_DEST (-1UL)
104
 
105
static int kimage_is_destination_range(struct kimage *image,
106
                                       unsigned long start, unsigned long end);
107
static struct page *kimage_alloc_page(struct kimage *image,
108
                                       gfp_t gfp_mask,
109
                                       unsigned long dest);
110
 
111
static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
112
                            unsigned long nr_segments,
113
                            struct kexec_segment __user *segments)
114
{
115
        size_t segment_bytes;
116
        struct kimage *image;
117
        unsigned long i;
118
        int result;
119
 
120
        /* Allocate a controlling structure */
121
        result = -ENOMEM;
122
        image = kzalloc(sizeof(*image), GFP_KERNEL);
123
        if (!image)
124
                goto out;
125
 
126
        image->head = 0;
127
        image->entry = &image->head;
128
        image->last_entry = &image->head;
129
        image->control_page = ~0; /* By default this does not apply */
130
        image->start = entry;
131
        image->type = KEXEC_TYPE_DEFAULT;
132
 
133
        /* Initialize the list of control pages */
134
        INIT_LIST_HEAD(&image->control_pages);
135
 
136
        /* Initialize the list of destination pages */
137
        INIT_LIST_HEAD(&image->dest_pages);
138
 
139
        /* Initialize the list of unuseable pages */
140
        INIT_LIST_HEAD(&image->unuseable_pages);
141
 
142
        /* Read in the segments */
143
        image->nr_segments = nr_segments;
144
        segment_bytes = nr_segments * sizeof(*segments);
145
        result = copy_from_user(image->segment, segments, segment_bytes);
146
        if (result)
147
                goto out;
148
 
149
        /*
150
         * Verify we have good destination addresses.  The caller is
151
         * responsible for making certain we don't attempt to load
152
         * the new image into invalid or reserved areas of RAM.  This
153
         * just verifies it is an address we can use.
154
         *
155
         * Since the kernel does everything in page size chunks ensure
156
         * the destination addreses are page aligned.  Too many
157
         * special cases crop of when we don't do this.  The most
158
         * insidious is getting overlapping destination addresses
159
         * simply because addresses are changed to page size
160
         * granularity.
161
         */
162
        result = -EADDRNOTAVAIL;
163
        for (i = 0; i < nr_segments; i++) {
164
                unsigned long mstart, mend;
165
 
166
                mstart = image->segment[i].mem;
167
                mend   = mstart + image->segment[i].memsz;
168
                if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
169
                        goto out;
170
                if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
171
                        goto out;
172
        }
173
 
174
        /* Verify our destination addresses do not overlap.
175
         * If we alloed overlapping destination addresses
176
         * through very weird things can happen with no
177
         * easy explanation as one segment stops on another.
178
         */
179
        result = -EINVAL;
180
        for (i = 0; i < nr_segments; i++) {
181
                unsigned long mstart, mend;
182
                unsigned long j;
183
 
184
                mstart = image->segment[i].mem;
185
                mend   = mstart + image->segment[i].memsz;
186
                for (j = 0; j < i; j++) {
187
                        unsigned long pstart, pend;
188
                        pstart = image->segment[j].mem;
189
                        pend   = pstart + image->segment[j].memsz;
190
                        /* Do the segments overlap ? */
191
                        if ((mend > pstart) && (mstart < pend))
192
                                goto out;
193
                }
194
        }
195
 
196
        /* Ensure our buffer sizes are strictly less than
197
         * our memory sizes.  This should always be the case,
198
         * and it is easier to check up front than to be surprised
199
         * later on.
200
         */
201
        result = -EINVAL;
202
        for (i = 0; i < nr_segments; i++) {
203
                if (image->segment[i].bufsz > image->segment[i].memsz)
204
                        goto out;
205
        }
206
 
207
        result = 0;
208
out:
209
        if (result == 0)
210
                *rimage = image;
211
        else
212
                kfree(image);
213
 
214
        return result;
215
 
216
}
217
 
218
static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
219
                                unsigned long nr_segments,
220
                                struct kexec_segment __user *segments)
221
{
222
        int result;
223
        struct kimage *image;
224
 
225
        /* Allocate and initialize a controlling structure */
226
        image = NULL;
227
        result = do_kimage_alloc(&image, entry, nr_segments, segments);
228
        if (result)
229
                goto out;
230
 
231
        *rimage = image;
232
 
233
        /*
234
         * Find a location for the control code buffer, and add it
235
         * the vector of segments so that it's pages will also be
236
         * counted as destination pages.
237
         */
238
        result = -ENOMEM;
239
        image->control_code_page = kimage_alloc_control_pages(image,
240
                                           get_order(KEXEC_CONTROL_CODE_SIZE));
241
        if (!image->control_code_page) {
242
                printk(KERN_ERR "Could not allocate control_code_buffer\n");
243
                goto out;
244
        }
245
 
246
        result = 0;
247
 out:
248
        if (result == 0)
249
                *rimage = image;
250
        else
251
                kfree(image);
252
 
253
        return result;
254
}
255
 
256
static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
257
                                unsigned long nr_segments,
258
                                struct kexec_segment __user *segments)
259
{
260
        int result;
261
        struct kimage *image;
262
        unsigned long i;
263
 
264
        image = NULL;
265
        /* Verify we have a valid entry point */
266
        if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
267
                result = -EADDRNOTAVAIL;
268
                goto out;
269
        }
270
 
271
        /* Allocate and initialize a controlling structure */
272
        result = do_kimage_alloc(&image, entry, nr_segments, segments);
273
        if (result)
274
                goto out;
275
 
276
        /* Enable the special crash kernel control page
277
         * allocation policy.
278
         */
279
        image->control_page = crashk_res.start;
280
        image->type = KEXEC_TYPE_CRASH;
281
 
282
        /*
283
         * Verify we have good destination addresses.  Normally
284
         * the caller is responsible for making certain we don't
285
         * attempt to load the new image into invalid or reserved
286
         * areas of RAM.  But crash kernels are preloaded into a
287
         * reserved area of ram.  We must ensure the addresses
288
         * are in the reserved area otherwise preloading the
289
         * kernel could corrupt things.
290
         */
291
        result = -EADDRNOTAVAIL;
292
        for (i = 0; i < nr_segments; i++) {
293
                unsigned long mstart, mend;
294
 
295
                mstart = image->segment[i].mem;
296
                mend = mstart + image->segment[i].memsz - 1;
297
                /* Ensure we are within the crash kernel limits */
298
                if ((mstart < crashk_res.start) || (mend > crashk_res.end))
299
                        goto out;
300
        }
301
 
302
        /*
303
         * Find a location for the control code buffer, and add
304
         * the vector of segments so that it's pages will also be
305
         * counted as destination pages.
306
         */
307
        result = -ENOMEM;
308
        image->control_code_page = kimage_alloc_control_pages(image,
309
                                           get_order(KEXEC_CONTROL_CODE_SIZE));
310
        if (!image->control_code_page) {
311
                printk(KERN_ERR "Could not allocate control_code_buffer\n");
312
                goto out;
313
        }
314
 
315
        result = 0;
316
out:
317
        if (result == 0)
318
                *rimage = image;
319
        else
320
                kfree(image);
321
 
322
        return result;
323
}
324
 
325
static int kimage_is_destination_range(struct kimage *image,
326
                                        unsigned long start,
327
                                        unsigned long end)
328
{
329
        unsigned long i;
330
 
331
        for (i = 0; i < image->nr_segments; i++) {
332
                unsigned long mstart, mend;
333
 
334
                mstart = image->segment[i].mem;
335
                mend = mstart + image->segment[i].memsz;
336
                if ((end > mstart) && (start < mend))
337
                        return 1;
338
        }
339
 
340
        return 0;
341
}
342
 
343
static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
344
{
345
        struct page *pages;
346
 
347
        pages = alloc_pages(gfp_mask, order);
348
        if (pages) {
349
                unsigned int count, i;
350
                pages->mapping = NULL;
351
                set_page_private(pages, order);
352
                count = 1 << order;
353
                for (i = 0; i < count; i++)
354
                        SetPageReserved(pages + i);
355
        }
356
 
357
        return pages;
358
}
359
 
360
static void kimage_free_pages(struct page *page)
361
{
362
        unsigned int order, count, i;
363
 
364
        order = page_private(page);
365
        count = 1 << order;
366
        for (i = 0; i < count; i++)
367
                ClearPageReserved(page + i);
368
        __free_pages(page, order);
369
}
370
 
371
static void kimage_free_page_list(struct list_head *list)
372
{
373
        struct list_head *pos, *next;
374
 
375
        list_for_each_safe(pos, next, list) {
376
                struct page *page;
377
 
378
                page = list_entry(pos, struct page, lru);
379
                list_del(&page->lru);
380
                kimage_free_pages(page);
381
        }
382
}
383
 
384
static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
385
                                                        unsigned int order)
386
{
387
        /* Control pages are special, they are the intermediaries
388
         * that are needed while we copy the rest of the pages
389
         * to their final resting place.  As such they must
390
         * not conflict with either the destination addresses
391
         * or memory the kernel is already using.
392
         *
393
         * The only case where we really need more than one of
394
         * these are for architectures where we cannot disable
395
         * the MMU and must instead generate an identity mapped
396
         * page table for all of the memory.
397
         *
398
         * At worst this runs in O(N) of the image size.
399
         */
400
        struct list_head extra_pages;
401
        struct page *pages;
402
        unsigned int count;
403
 
404
        count = 1 << order;
405
        INIT_LIST_HEAD(&extra_pages);
406
 
407
        /* Loop while I can allocate a page and the page allocated
408
         * is a destination page.
409
         */
410
        do {
411
                unsigned long pfn, epfn, addr, eaddr;
412
 
413
                pages = kimage_alloc_pages(GFP_KERNEL, order);
414
                if (!pages)
415
                        break;
416
                pfn   = page_to_pfn(pages);
417
                epfn  = pfn + count;
418
                addr  = pfn << PAGE_SHIFT;
419
                eaddr = epfn << PAGE_SHIFT;
420
                if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
421
                              kimage_is_destination_range(image, addr, eaddr)) {
422
                        list_add(&pages->lru, &extra_pages);
423
                        pages = NULL;
424
                }
425
        } while (!pages);
426
 
427
        if (pages) {
428
                /* Remember the allocated page... */
429
                list_add(&pages->lru, &image->control_pages);
430
 
431
                /* Because the page is already in it's destination
432
                 * location we will never allocate another page at
433
                 * that address.  Therefore kimage_alloc_pages
434
                 * will not return it (again) and we don't need
435
                 * to give it an entry in image->segment[].
436
                 */
437
        }
438
        /* Deal with the destination pages I have inadvertently allocated.
439
         *
440
         * Ideally I would convert multi-page allocations into single
441
         * page allocations, and add everyting to image->dest_pages.
442
         *
443
         * For now it is simpler to just free the pages.
444
         */
445
        kimage_free_page_list(&extra_pages);
446
 
447
        return pages;
448
}
449
 
450
static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
451
                                                      unsigned int order)
452
{
453
        /* Control pages are special, they are the intermediaries
454
         * that are needed while we copy the rest of the pages
455
         * to their final resting place.  As such they must
456
         * not conflict with either the destination addresses
457
         * or memory the kernel is already using.
458
         *
459
         * Control pages are also the only pags we must allocate
460
         * when loading a crash kernel.  All of the other pages
461
         * are specified by the segments and we just memcpy
462
         * into them directly.
463
         *
464
         * The only case where we really need more than one of
465
         * these are for architectures where we cannot disable
466
         * the MMU and must instead generate an identity mapped
467
         * page table for all of the memory.
468
         *
469
         * Given the low demand this implements a very simple
470
         * allocator that finds the first hole of the appropriate
471
         * size in the reserved memory region, and allocates all
472
         * of the memory up to and including the hole.
473
         */
474
        unsigned long hole_start, hole_end, size;
475
        struct page *pages;
476
 
477
        pages = NULL;
478
        size = (1 << order) << PAGE_SHIFT;
479
        hole_start = (image->control_page + (size - 1)) & ~(size - 1);
480
        hole_end   = hole_start + size - 1;
481
        while (hole_end <= crashk_res.end) {
482
                unsigned long i;
483
 
484
                if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT)
485
                        break;
486
                if (hole_end > crashk_res.end)
487
                        break;
488
                /* See if I overlap any of the segments */
489
                for (i = 0; i < image->nr_segments; i++) {
490
                        unsigned long mstart, mend;
491
 
492
                        mstart = image->segment[i].mem;
493
                        mend   = mstart + image->segment[i].memsz - 1;
494
                        if ((hole_end >= mstart) && (hole_start <= mend)) {
495
                                /* Advance the hole to the end of the segment */
496
                                hole_start = (mend + (size - 1)) & ~(size - 1);
497
                                hole_end   = hole_start + size - 1;
498
                                break;
499
                        }
500
                }
501
                /* If I don't overlap any segments I have found my hole! */
502
                if (i == image->nr_segments) {
503
                        pages = pfn_to_page(hole_start >> PAGE_SHIFT);
504
                        break;
505
                }
506
        }
507
        if (pages)
508
                image->control_page = hole_end;
509
 
510
        return pages;
511
}
512
 
513
 
514
struct page *kimage_alloc_control_pages(struct kimage *image,
515
                                         unsigned int order)
516
{
517
        struct page *pages = NULL;
518
 
519
        switch (image->type) {
520
        case KEXEC_TYPE_DEFAULT:
521
                pages = kimage_alloc_normal_control_pages(image, order);
522
                break;
523
        case KEXEC_TYPE_CRASH:
524
                pages = kimage_alloc_crash_control_pages(image, order);
525
                break;
526
        }
527
 
528
        return pages;
529
}
530
 
531
static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
532
{
533
        if (*image->entry != 0)
534
                image->entry++;
535
 
536
        if (image->entry == image->last_entry) {
537
                kimage_entry_t *ind_page;
538
                struct page *page;
539
 
540
                page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
541
                if (!page)
542
                        return -ENOMEM;
543
 
544
                ind_page = page_address(page);
545
                *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
546
                image->entry = ind_page;
547
                image->last_entry = ind_page +
548
                                      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
549
        }
550
        *image->entry = entry;
551
        image->entry++;
552
        *image->entry = 0;
553
 
554
        return 0;
555
}
556
 
557
static int kimage_set_destination(struct kimage *image,
558
                                   unsigned long destination)
559
{
560
        int result;
561
 
562
        destination &= PAGE_MASK;
563
        result = kimage_add_entry(image, destination | IND_DESTINATION);
564
        if (result == 0)
565
                image->destination = destination;
566
 
567
        return result;
568
}
569
 
570
 
571
static int kimage_add_page(struct kimage *image, unsigned long page)
572
{
573
        int result;
574
 
575
        page &= PAGE_MASK;
576
        result = kimage_add_entry(image, page | IND_SOURCE);
577
        if (result == 0)
578
                image->destination += PAGE_SIZE;
579
 
580
        return result;
581
}
582
 
583
 
584
static void kimage_free_extra_pages(struct kimage *image)
585
{
586
        /* Walk through and free any extra destination pages I may have */
587
        kimage_free_page_list(&image->dest_pages);
588
 
589
        /* Walk through and free any unuseable pages I have cached */
590
        kimage_free_page_list(&image->unuseable_pages);
591
 
592
}
593
static int kimage_terminate(struct kimage *image)
594
{
595
        if (*image->entry != 0)
596
                image->entry++;
597
 
598
        *image->entry = IND_DONE;
599
 
600
        return 0;
601
}
602
 
603
#define for_each_kimage_entry(image, ptr, entry) \
604
        for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
605
                ptr = (entry & IND_INDIRECTION)? \
606
                        phys_to_virt((entry & PAGE_MASK)): ptr +1)
607
 
608
static void kimage_free_entry(kimage_entry_t entry)
609
{
610
        struct page *page;
611
 
612
        page = pfn_to_page(entry >> PAGE_SHIFT);
613
        kimage_free_pages(page);
614
}
615
 
616
static void kimage_free(struct kimage *image)
617
{
618
        kimage_entry_t *ptr, entry;
619
        kimage_entry_t ind = 0;
620
 
621
        if (!image)
622
                return;
623
 
624
        kimage_free_extra_pages(image);
625
        for_each_kimage_entry(image, ptr, entry) {
626
                if (entry & IND_INDIRECTION) {
627
                        /* Free the previous indirection page */
628
                        if (ind & IND_INDIRECTION)
629
                                kimage_free_entry(ind);
630
                        /* Save this indirection page until we are
631
                         * done with it.
632
                         */
633
                        ind = entry;
634
                }
635
                else if (entry & IND_SOURCE)
636
                        kimage_free_entry(entry);
637
        }
638
        /* Free the final indirection page */
639
        if (ind & IND_INDIRECTION)
640
                kimage_free_entry(ind);
641
 
642
        /* Handle any machine specific cleanup */
643
        machine_kexec_cleanup(image);
644
 
645
        /* Free the kexec control pages... */
646
        kimage_free_page_list(&image->control_pages);
647
        kfree(image);
648
}
649
 
650
static kimage_entry_t *kimage_dst_used(struct kimage *image,
651
                                        unsigned long page)
652
{
653
        kimage_entry_t *ptr, entry;
654
        unsigned long destination = 0;
655
 
656
        for_each_kimage_entry(image, ptr, entry) {
657
                if (entry & IND_DESTINATION)
658
                        destination = entry & PAGE_MASK;
659
                else if (entry & IND_SOURCE) {
660
                        if (page == destination)
661
                                return ptr;
662
                        destination += PAGE_SIZE;
663
                }
664
        }
665
 
666
        return NULL;
667
}
668
 
669
static struct page *kimage_alloc_page(struct kimage *image,
670
                                        gfp_t gfp_mask,
671
                                        unsigned long destination)
672
{
673
        /*
674
         * Here we implement safeguards to ensure that a source page
675
         * is not copied to its destination page before the data on
676
         * the destination page is no longer useful.
677
         *
678
         * To do this we maintain the invariant that a source page is
679
         * either its own destination page, or it is not a
680
         * destination page at all.
681
         *
682
         * That is slightly stronger than required, but the proof
683
         * that no problems will not occur is trivial, and the
684
         * implementation is simply to verify.
685
         *
686
         * When allocating all pages normally this algorithm will run
687
         * in O(N) time, but in the worst case it will run in O(N^2)
688
         * time.   If the runtime is a problem the data structures can
689
         * be fixed.
690
         */
691
        struct page *page;
692
        unsigned long addr;
693
 
694
        /*
695
         * Walk through the list of destination pages, and see if I
696
         * have a match.
697
         */
698
        list_for_each_entry(page, &image->dest_pages, lru) {
699
                addr = page_to_pfn(page) << PAGE_SHIFT;
700
                if (addr == destination) {
701
                        list_del(&page->lru);
702
                        return page;
703
                }
704
        }
705
        page = NULL;
706
        while (1) {
707
                kimage_entry_t *old;
708
 
709
                /* Allocate a page, if we run out of memory give up */
710
                page = kimage_alloc_pages(gfp_mask, 0);
711
                if (!page)
712
                        return NULL;
713
                /* If the page cannot be used file it away */
714
                if (page_to_pfn(page) >
715
                                (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
716
                        list_add(&page->lru, &image->unuseable_pages);
717
                        continue;
718
                }
719
                addr = page_to_pfn(page) << PAGE_SHIFT;
720
 
721
                /* If it is the destination page we want use it */
722
                if (addr == destination)
723
                        break;
724
 
725
                /* If the page is not a destination page use it */
726
                if (!kimage_is_destination_range(image, addr,
727
                                                  addr + PAGE_SIZE))
728
                        break;
729
 
730
                /*
731
                 * I know that the page is someones destination page.
732
                 * See if there is already a source page for this
733
                 * destination page.  And if so swap the source pages.
734
                 */
735
                old = kimage_dst_used(image, addr);
736
                if (old) {
737
                        /* If so move it */
738
                        unsigned long old_addr;
739
                        struct page *old_page;
740
 
741
                        old_addr = *old & PAGE_MASK;
742
                        old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
743
                        copy_highpage(page, old_page);
744
                        *old = addr | (*old & ~PAGE_MASK);
745
 
746
                        /* The old page I have found cannot be a
747
                         * destination page, so return it.
748
                         */
749
                        addr = old_addr;
750
                        page = old_page;
751
                        break;
752
                }
753
                else {
754
                        /* Place the page on the destination list I
755
                         * will use it later.
756
                         */
757
                        list_add(&page->lru, &image->dest_pages);
758
                }
759
        }
760
 
761
        return page;
762
}
763
 
764
static int kimage_load_normal_segment(struct kimage *image,
765
                                         struct kexec_segment *segment)
766
{
767
        unsigned long maddr;
768
        unsigned long ubytes, mbytes;
769
        int result;
770
        unsigned char __user *buf;
771
 
772
        result = 0;
773
        buf = segment->buf;
774
        ubytes = segment->bufsz;
775
        mbytes = segment->memsz;
776
        maddr = segment->mem;
777
 
778
        result = kimage_set_destination(image, maddr);
779
        if (result < 0)
780
                goto out;
781
 
782
        while (mbytes) {
783
                struct page *page;
784
                char *ptr;
785
                size_t uchunk, mchunk;
786
 
787
                page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
788
                if (!page) {
789
                        result  = -ENOMEM;
790
                        goto out;
791
                }
792
                result = kimage_add_page(image, page_to_pfn(page)
793
                                                                << PAGE_SHIFT);
794
                if (result < 0)
795
                        goto out;
796
 
797
                ptr = kmap(page);
798
                /* Start with a clear page */
799
                memset(ptr, 0, PAGE_SIZE);
800
                ptr += maddr & ~PAGE_MASK;
801
                mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
802
                if (mchunk > mbytes)
803
                        mchunk = mbytes;
804
 
805
                uchunk = mchunk;
806
                if (uchunk > ubytes)
807
                        uchunk = ubytes;
808
 
809
                result = copy_from_user(ptr, buf, uchunk);
810
                kunmap(page);
811
                if (result) {
812
                        result = (result < 0) ? result : -EIO;
813
                        goto out;
814
                }
815
                ubytes -= uchunk;
816
                maddr  += mchunk;
817
                buf    += mchunk;
818
                mbytes -= mchunk;
819
        }
820
out:
821
        return result;
822
}
823
 
824
static int kimage_load_crash_segment(struct kimage *image,
825
                                        struct kexec_segment *segment)
826
{
827
        /* For crash dumps kernels we simply copy the data from
828
         * user space to it's destination.
829
         * We do things a page at a time for the sake of kmap.
830
         */
831
        unsigned long maddr;
832
        unsigned long ubytes, mbytes;
833
        int result;
834
        unsigned char __user *buf;
835
 
836
        result = 0;
837
        buf = segment->buf;
838
        ubytes = segment->bufsz;
839
        mbytes = segment->memsz;
840
        maddr = segment->mem;
841
        while (mbytes) {
842
                struct page *page;
843
                char *ptr;
844
                size_t uchunk, mchunk;
845
 
846
                page = pfn_to_page(maddr >> PAGE_SHIFT);
847
                if (!page) {
848
                        result  = -ENOMEM;
849
                        goto out;
850
                }
851
                ptr = kmap(page);
852
                ptr += maddr & ~PAGE_MASK;
853
                mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
854
                if (mchunk > mbytes)
855
                        mchunk = mbytes;
856
 
857
                uchunk = mchunk;
858
                if (uchunk > ubytes) {
859
                        uchunk = ubytes;
860
                        /* Zero the trailing part of the page */
861
                        memset(ptr + uchunk, 0, mchunk - uchunk);
862
                }
863
                result = copy_from_user(ptr, buf, uchunk);
864
                kexec_flush_icache_page(page);
865
                kunmap(page);
866
                if (result) {
867
                        result = (result < 0) ? result : -EIO;
868
                        goto out;
869
                }
870
                ubytes -= uchunk;
871
                maddr  += mchunk;
872
                buf    += mchunk;
873
                mbytes -= mchunk;
874
        }
875
out:
876
        return result;
877
}
878
 
879
static int kimage_load_segment(struct kimage *image,
880
                                struct kexec_segment *segment)
881
{
882
        int result = -ENOMEM;
883
 
884
        switch (image->type) {
885
        case KEXEC_TYPE_DEFAULT:
886
                result = kimage_load_normal_segment(image, segment);
887
                break;
888
        case KEXEC_TYPE_CRASH:
889
                result = kimage_load_crash_segment(image, segment);
890
                break;
891
        }
892
 
893
        return result;
894
}
895
 
896
/*
897
 * Exec Kernel system call: for obvious reasons only root may call it.
898
 *
899
 * This call breaks up into three pieces.
900
 * - A generic part which loads the new kernel from the current
901
 *   address space, and very carefully places the data in the
902
 *   allocated pages.
903
 *
904
 * - A generic part that interacts with the kernel and tells all of
905
 *   the devices to shut down.  Preventing on-going dmas, and placing
906
 *   the devices in a consistent state so a later kernel can
907
 *   reinitialize them.
908
 *
909
 * - A machine specific part that includes the syscall number
910
 *   and the copies the image to it's final destination.  And
911
 *   jumps into the image at entry.
912
 *
913
 * kexec does not sync, or unmount filesystems so if you need
914
 * that to happen you need to do that yourself.
915
 */
916
struct kimage *kexec_image;
917
struct kimage *kexec_crash_image;
918
/*
919
 * A home grown binary mutex.
920
 * Nothing can wait so this mutex is safe to use
921
 * in interrupt context :)
922
 */
923
static int kexec_lock;
924
 
925
asmlinkage long sys_kexec_load(unsigned long entry, unsigned long nr_segments,
926
                                struct kexec_segment __user *segments,
927
                                unsigned long flags)
928
{
929
        struct kimage **dest_image, *image;
930
        int locked;
931
        int result;
932
 
933
        /* We only trust the superuser with rebooting the system. */
934
        if (!capable(CAP_SYS_BOOT))
935
                return -EPERM;
936
 
937
        /*
938
         * Verify we have a legal set of flags
939
         * This leaves us room for future extensions.
940
         */
941
        if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
942
                return -EINVAL;
943
 
944
        /* Verify we are on the appropriate architecture */
945
        if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
946
                ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
947
                return -EINVAL;
948
 
949
        /* Put an artificial cap on the number
950
         * of segments passed to kexec_load.
951
         */
952
        if (nr_segments > KEXEC_SEGMENT_MAX)
953
                return -EINVAL;
954
 
955
        image = NULL;
956
        result = 0;
957
 
958
        /* Because we write directly to the reserved memory
959
         * region when loading crash kernels we need a mutex here to
960
         * prevent multiple crash  kernels from attempting to load
961
         * simultaneously, and to prevent a crash kernel from loading
962
         * over the top of a in use crash kernel.
963
         *
964
         * KISS: always take the mutex.
965
         */
966
        locked = xchg(&kexec_lock, 1);
967
        if (locked)
968
                return -EBUSY;
969
 
970
        dest_image = &kexec_image;
971
        if (flags & KEXEC_ON_CRASH)
972
                dest_image = &kexec_crash_image;
973
        if (nr_segments > 0) {
974
                unsigned long i;
975
 
976
                /* Loading another kernel to reboot into */
977
                if ((flags & KEXEC_ON_CRASH) == 0)
978
                        result = kimage_normal_alloc(&image, entry,
979
                                                        nr_segments, segments);
980
                /* Loading another kernel to switch to if this one crashes */
981
                else if (flags & KEXEC_ON_CRASH) {
982
                        /* Free any current crash dump kernel before
983
                         * we corrupt it.
984
                         */
985
                        kimage_free(xchg(&kexec_crash_image, NULL));
986
                        result = kimage_crash_alloc(&image, entry,
987
                                                     nr_segments, segments);
988
                }
989
                if (result)
990
                        goto out;
991
 
992
                result = machine_kexec_prepare(image);
993
                if (result)
994
                        goto out;
995
 
996
                for (i = 0; i < nr_segments; i++) {
997
                        result = kimage_load_segment(image, &image->segment[i]);
998
                        if (result)
999
                                goto out;
1000
                }
1001
                result = kimage_terminate(image);
1002
                if (result)
1003
                        goto out;
1004
        }
1005
        /* Install the new kernel, and  Uninstall the old */
1006
        image = xchg(dest_image, image);
1007
 
1008
out:
1009
        locked = xchg(&kexec_lock, 0); /* Release the mutex */
1010
        BUG_ON(!locked);
1011
        kimage_free(image);
1012
 
1013
        return result;
1014
}
1015
 
1016
#ifdef CONFIG_COMPAT
1017
asmlinkage long compat_sys_kexec_load(unsigned long entry,
1018
                                unsigned long nr_segments,
1019
                                struct compat_kexec_segment __user *segments,
1020
                                unsigned long flags)
1021
{
1022
        struct compat_kexec_segment in;
1023
        struct kexec_segment out, __user *ksegments;
1024
        unsigned long i, result;
1025
 
1026
        /* Don't allow clients that don't understand the native
1027
         * architecture to do anything.
1028
         */
1029
        if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1030
                return -EINVAL;
1031
 
1032
        if (nr_segments > KEXEC_SEGMENT_MAX)
1033
                return -EINVAL;
1034
 
1035
        ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1036
        for (i=0; i < nr_segments; i++) {
1037
                result = copy_from_user(&in, &segments[i], sizeof(in));
1038
                if (result)
1039
                        return -EFAULT;
1040
 
1041
                out.buf   = compat_ptr(in.buf);
1042
                out.bufsz = in.bufsz;
1043
                out.mem   = in.mem;
1044
                out.memsz = in.memsz;
1045
 
1046
                result = copy_to_user(&ksegments[i], &out, sizeof(out));
1047
                if (result)
1048
                        return -EFAULT;
1049
        }
1050
 
1051
        return sys_kexec_load(entry, nr_segments, ksegments, flags);
1052
}
1053
#endif
1054
 
1055
void crash_kexec(struct pt_regs *regs)
1056
{
1057
        int locked;
1058
 
1059
 
1060
        /* Take the kexec_lock here to prevent sys_kexec_load
1061
         * running on one cpu from replacing the crash kernel
1062
         * we are using after a panic on a different cpu.
1063
         *
1064
         * If the crash kernel was not located in a fixed area
1065
         * of memory the xchg(&kexec_crash_image) would be
1066
         * sufficient.  But since I reuse the memory...
1067
         */
1068
        locked = xchg(&kexec_lock, 1);
1069
        if (!locked) {
1070
                if (kexec_crash_image) {
1071
                        struct pt_regs fixed_regs;
1072
                        crash_setup_regs(&fixed_regs, regs);
1073
                        crash_save_vmcoreinfo();
1074
                        machine_crash_shutdown(&fixed_regs);
1075
                        machine_kexec(kexec_crash_image);
1076
                }
1077
                locked = xchg(&kexec_lock, 0);
1078
                BUG_ON(!locked);
1079
        }
1080
}
1081
 
1082
static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1083
                            size_t data_len)
1084
{
1085
        struct elf_note note;
1086
 
1087
        note.n_namesz = strlen(name) + 1;
1088
        note.n_descsz = data_len;
1089
        note.n_type   = type;
1090
        memcpy(buf, &note, sizeof(note));
1091
        buf += (sizeof(note) + 3)/4;
1092
        memcpy(buf, name, note.n_namesz);
1093
        buf += (note.n_namesz + 3)/4;
1094
        memcpy(buf, data, note.n_descsz);
1095
        buf += (note.n_descsz + 3)/4;
1096
 
1097
        return buf;
1098
}
1099
 
1100
static void final_note(u32 *buf)
1101
{
1102
        struct elf_note note;
1103
 
1104
        note.n_namesz = 0;
1105
        note.n_descsz = 0;
1106
        note.n_type   = 0;
1107
        memcpy(buf, &note, sizeof(note));
1108
}
1109
 
1110
void crash_save_cpu(struct pt_regs *regs, int cpu)
1111
{
1112
        struct elf_prstatus prstatus;
1113
        u32 *buf;
1114
 
1115
        if ((cpu < 0) || (cpu >= NR_CPUS))
1116
                return;
1117
 
1118
        /* Using ELF notes here is opportunistic.
1119
         * I need a well defined structure format
1120
         * for the data I pass, and I need tags
1121
         * on the data to indicate what information I have
1122
         * squirrelled away.  ELF notes happen to provide
1123
         * all of that, so there is no need to invent something new.
1124
         */
1125
        buf = (u32*)per_cpu_ptr(crash_notes, cpu);
1126
        if (!buf)
1127
                return;
1128
        memset(&prstatus, 0, sizeof(prstatus));
1129
        prstatus.pr_pid = current->pid;
1130
        elf_core_copy_regs(&prstatus.pr_reg, regs);
1131
        buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1132
                              &prstatus, sizeof(prstatus));
1133
        final_note(buf);
1134
}
1135
 
1136
static int __init crash_notes_memory_init(void)
1137
{
1138
        /* Allocate memory for saving cpu registers. */
1139
        crash_notes = alloc_percpu(note_buf_t);
1140
        if (!crash_notes) {
1141
                printk("Kexec: Memory allocation for saving cpu register"
1142
                " states failed\n");
1143
                return -ENOMEM;
1144
        }
1145
        return 0;
1146
}
1147
module_init(crash_notes_memory_init)
1148
 
1149
 
1150
/*
1151
 * parsing the "crashkernel" commandline
1152
 *
1153
 * this code is intended to be called from architecture specific code
1154
 */
1155
 
1156
 
1157
/*
1158
 * This function parses command lines in the format
1159
 *
1160
 *   crashkernel=ramsize-range:size[,...][@offset]
1161
 *
1162
 * The function returns 0 on success and -EINVAL on failure.
1163
 */
1164
static int __init parse_crashkernel_mem(char                    *cmdline,
1165
                                        unsigned long long      system_ram,
1166
                                        unsigned long long      *crash_size,
1167
                                        unsigned long long      *crash_base)
1168
{
1169
        char *cur = cmdline, *tmp;
1170
 
1171
        /* for each entry of the comma-separated list */
1172
        do {
1173
                unsigned long long start, end = ULLONG_MAX, size;
1174
 
1175
                /* get the start of the range */
1176
                start = memparse(cur, &tmp);
1177
                if (cur == tmp) {
1178
                        pr_warning("crashkernel: Memory value expected\n");
1179
                        return -EINVAL;
1180
                }
1181
                cur = tmp;
1182
                if (*cur != '-') {
1183
                        pr_warning("crashkernel: '-' expected\n");
1184
                        return -EINVAL;
1185
                }
1186
                cur++;
1187
 
1188
                /* if no ':' is here, than we read the end */
1189
                if (*cur != ':') {
1190
                        end = memparse(cur, &tmp);
1191
                        if (cur == tmp) {
1192
                                pr_warning("crashkernel: Memory "
1193
                                                "value expected\n");
1194
                                return -EINVAL;
1195
                        }
1196
                        cur = tmp;
1197
                        if (end <= start) {
1198
                                pr_warning("crashkernel: end <= start\n");
1199
                                return -EINVAL;
1200
                        }
1201
                }
1202
 
1203
                if (*cur != ':') {
1204
                        pr_warning("crashkernel: ':' expected\n");
1205
                        return -EINVAL;
1206
                }
1207
                cur++;
1208
 
1209
                size = memparse(cur, &tmp);
1210
                if (cur == tmp) {
1211
                        pr_warning("Memory value expected\n");
1212
                        return -EINVAL;
1213
                }
1214
                cur = tmp;
1215
                if (size >= system_ram) {
1216
                        pr_warning("crashkernel: invalid size\n");
1217
                        return -EINVAL;
1218
                }
1219
 
1220
                /* match ? */
1221
                if (system_ram >= start && system_ram <= end) {
1222
                        *crash_size = size;
1223
                        break;
1224
                }
1225
        } while (*cur++ == ',');
1226
 
1227
        if (*crash_size > 0) {
1228
                while (*cur != ' ' && *cur != '@')
1229
                        cur++;
1230
                if (*cur == '@') {
1231
                        cur++;
1232
                        *crash_base = memparse(cur, &tmp);
1233
                        if (cur == tmp) {
1234
                                pr_warning("Memory value expected "
1235
                                                "after '@'\n");
1236
                                return -EINVAL;
1237
                        }
1238
                }
1239
        }
1240
 
1241
        return 0;
1242
}
1243
 
1244
/*
1245
 * That function parses "simple" (old) crashkernel command lines like
1246
 *
1247
 *      crashkernel=size[@offset]
1248
 *
1249
 * It returns 0 on success and -EINVAL on failure.
1250
 */
1251
static int __init parse_crashkernel_simple(char                 *cmdline,
1252
                                           unsigned long long   *crash_size,
1253
                                           unsigned long long   *crash_base)
1254
{
1255
        char *cur = cmdline;
1256
 
1257
        *crash_size = memparse(cmdline, &cur);
1258
        if (cmdline == cur) {
1259
                pr_warning("crashkernel: memory value expected\n");
1260
                return -EINVAL;
1261
        }
1262
 
1263
        if (*cur == '@')
1264
                *crash_base = memparse(cur+1, &cur);
1265
 
1266
        return 0;
1267
}
1268
 
1269
/*
1270
 * That function is the entry point for command line parsing and should be
1271
 * called from the arch-specific code.
1272
 */
1273
int __init parse_crashkernel(char                *cmdline,
1274
                             unsigned long long system_ram,
1275
                             unsigned long long *crash_size,
1276
                             unsigned long long *crash_base)
1277
{
1278
        char    *p = cmdline, *ck_cmdline = NULL;
1279
        char    *first_colon, *first_space;
1280
 
1281
        BUG_ON(!crash_size || !crash_base);
1282
        *crash_size = 0;
1283
        *crash_base = 0;
1284
 
1285
        /* find crashkernel and use the last one if there are more */
1286
        p = strstr(p, "crashkernel=");
1287
        while (p) {
1288
                ck_cmdline = p;
1289
                p = strstr(p+1, "crashkernel=");
1290
        }
1291
 
1292
        if (!ck_cmdline)
1293
                return -EINVAL;
1294
 
1295
        ck_cmdline += 12; /* strlen("crashkernel=") */
1296
 
1297
        /*
1298
         * if the commandline contains a ':', then that's the extended
1299
         * syntax -- if not, it must be the classic syntax
1300
         */
1301
        first_colon = strchr(ck_cmdline, ':');
1302
        first_space = strchr(ck_cmdline, ' ');
1303
        if (first_colon && (!first_space || first_colon < first_space))
1304
                return parse_crashkernel_mem(ck_cmdline, system_ram,
1305
                                crash_size, crash_base);
1306
        else
1307
                return parse_crashkernel_simple(ck_cmdline, crash_size,
1308
                                crash_base);
1309
 
1310
        return 0;
1311
}
1312
 
1313
 
1314
 
1315
void crash_save_vmcoreinfo(void)
1316
{
1317
        u32 *buf;
1318
 
1319
        if (!vmcoreinfo_size)
1320
                return;
1321
 
1322
        vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds());
1323
 
1324
        buf = (u32 *)vmcoreinfo_note;
1325
 
1326
        buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1327
                              vmcoreinfo_size);
1328
 
1329
        final_note(buf);
1330
}
1331
 
1332
void vmcoreinfo_append_str(const char *fmt, ...)
1333
{
1334
        va_list args;
1335
        char buf[0x50];
1336
        int r;
1337
 
1338
        va_start(args, fmt);
1339
        r = vsnprintf(buf, sizeof(buf), fmt, args);
1340
        va_end(args);
1341
 
1342
        if (r + vmcoreinfo_size > vmcoreinfo_max_size)
1343
                r = vmcoreinfo_max_size - vmcoreinfo_size;
1344
 
1345
        memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1346
 
1347
        vmcoreinfo_size += r;
1348
}
1349
 
1350
/*
1351
 * provide an empty default implementation here -- architecture
1352
 * code may override this
1353
 */
1354
void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void)
1355
{}
1356
 
1357
unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void)
1358
{
1359
        return __pa((unsigned long)(char *)&vmcoreinfo_note);
1360
}
1361
 
1362
static int __init crash_save_vmcoreinfo_init(void)
1363
{
1364
        vmcoreinfo_append_str("OSRELEASE=%s\n", init_uts_ns.name.release);
1365
        vmcoreinfo_append_str("PAGESIZE=%ld\n", PAGE_SIZE);
1366
 
1367
        VMCOREINFO_SYMBOL(init_uts_ns);
1368
        VMCOREINFO_SYMBOL(node_online_map);
1369
        VMCOREINFO_SYMBOL(swapper_pg_dir);
1370
        VMCOREINFO_SYMBOL(_stext);
1371
 
1372
#ifndef CONFIG_NEED_MULTIPLE_NODES
1373
        VMCOREINFO_SYMBOL(mem_map);
1374
        VMCOREINFO_SYMBOL(contig_page_data);
1375
#endif
1376
#ifdef CONFIG_SPARSEMEM
1377
        VMCOREINFO_SYMBOL(mem_section);
1378
        VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1379
        VMCOREINFO_SIZE(mem_section);
1380
        VMCOREINFO_OFFSET(mem_section, section_mem_map);
1381
#endif
1382
        VMCOREINFO_SIZE(page);
1383
        VMCOREINFO_SIZE(pglist_data);
1384
        VMCOREINFO_SIZE(zone);
1385
        VMCOREINFO_SIZE(free_area);
1386
        VMCOREINFO_SIZE(list_head);
1387
        VMCOREINFO_TYPEDEF_SIZE(nodemask_t);
1388
        VMCOREINFO_OFFSET(page, flags);
1389
        VMCOREINFO_OFFSET(page, _count);
1390
        VMCOREINFO_OFFSET(page, mapping);
1391
        VMCOREINFO_OFFSET(page, lru);
1392
        VMCOREINFO_OFFSET(pglist_data, node_zones);
1393
        VMCOREINFO_OFFSET(pglist_data, nr_zones);
1394
#ifdef CONFIG_FLAT_NODE_MEM_MAP
1395
        VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1396
#endif
1397
        VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1398
        VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1399
        VMCOREINFO_OFFSET(pglist_data, node_id);
1400
        VMCOREINFO_OFFSET(zone, free_area);
1401
        VMCOREINFO_OFFSET(zone, vm_stat);
1402
        VMCOREINFO_OFFSET(zone, spanned_pages);
1403
        VMCOREINFO_OFFSET(free_area, free_list);
1404
        VMCOREINFO_OFFSET(list_head, next);
1405
        VMCOREINFO_OFFSET(list_head, prev);
1406
        VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1407
        VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1408
        VMCOREINFO_NUMBER(NR_FREE_PAGES);
1409
 
1410
        arch_crash_save_vmcoreinfo();
1411
 
1412
        return 0;
1413
}
1414
 
1415
module_init(crash_save_vmcoreinfo_init)

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.