OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [kernel/] [mutex.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 * kernel/mutex.c
3
 *
4
 * Mutexes: blocking mutual exclusion locks
5
 *
6
 * Started by Ingo Molnar:
7
 *
8
 *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9
 *
10
 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11
 * David Howells for suggestions and improvements.
12
 *
13
 * Also see Documentation/mutex-design.txt.
14
 */
15
#include <linux/mutex.h>
16
#include <linux/sched.h>
17
#include <linux/module.h>
18
#include <linux/spinlock.h>
19
#include <linux/interrupt.h>
20
#include <linux/debug_locks.h>
21
 
22
/*
23
 * In the DEBUG case we are using the "NULL fastpath" for mutexes,
24
 * which forces all calls into the slowpath:
25
 */
26
#ifdef CONFIG_DEBUG_MUTEXES
27
# include "mutex-debug.h"
28
# include <asm-generic/mutex-null.h>
29
#else
30
# include "mutex.h"
31
# include <asm/mutex.h>
32
#endif
33
 
34
/***
35
 * mutex_init - initialize the mutex
36
 * @lock: the mutex to be initialized
37
 *
38
 * Initialize the mutex to unlocked state.
39
 *
40
 * It is not allowed to initialize an already locked mutex.
41
 */
42
void
43
__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
44
{
45
        atomic_set(&lock->count, 1);
46
        spin_lock_init(&lock->wait_lock);
47
        INIT_LIST_HEAD(&lock->wait_list);
48
 
49
        debug_mutex_init(lock, name, key);
50
}
51
 
52
EXPORT_SYMBOL(__mutex_init);
53
 
54
#ifndef CONFIG_DEBUG_LOCK_ALLOC
55
/*
56
 * We split the mutex lock/unlock logic into separate fastpath and
57
 * slowpath functions, to reduce the register pressure on the fastpath.
58
 * We also put the fastpath first in the kernel image, to make sure the
59
 * branch is predicted by the CPU as default-untaken.
60
 */
61
static void fastcall noinline __sched
62
__mutex_lock_slowpath(atomic_t *lock_count);
63
 
64
/***
65
 * mutex_lock - acquire the mutex
66
 * @lock: the mutex to be acquired
67
 *
68
 * Lock the mutex exclusively for this task. If the mutex is not
69
 * available right now, it will sleep until it can get it.
70
 *
71
 * The mutex must later on be released by the same task that
72
 * acquired it. Recursive locking is not allowed. The task
73
 * may not exit without first unlocking the mutex. Also, kernel
74
 * memory where the mutex resides mutex must not be freed with
75
 * the mutex still locked. The mutex must first be initialized
76
 * (or statically defined) before it can be locked. memset()-ing
77
 * the mutex to 0 is not allowed.
78
 *
79
 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
80
 *   checks that will enforce the restrictions and will also do
81
 *   deadlock debugging. )
82
 *
83
 * This function is similar to (but not equivalent to) down().
84
 */
85
void inline fastcall __sched mutex_lock(struct mutex *lock)
86
{
87
        might_sleep();
88
        /*
89
         * The locking fastpath is the 1->0 transition from
90
         * 'unlocked' into 'locked' state.
91
         */
92
        __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
93
}
94
 
95
EXPORT_SYMBOL(mutex_lock);
96
#endif
97
 
98
static void fastcall noinline __sched
99
__mutex_unlock_slowpath(atomic_t *lock_count);
100
 
101
/***
102
 * mutex_unlock - release the mutex
103
 * @lock: the mutex to be released
104
 *
105
 * Unlock a mutex that has been locked by this task previously.
106
 *
107
 * This function must not be used in interrupt context. Unlocking
108
 * of a not locked mutex is not allowed.
109
 *
110
 * This function is similar to (but not equivalent to) up().
111
 */
112
void fastcall __sched mutex_unlock(struct mutex *lock)
113
{
114
        /*
115
         * The unlocking fastpath is the 0->1 transition from 'locked'
116
         * into 'unlocked' state:
117
         */
118
        __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
119
}
120
 
121
EXPORT_SYMBOL(mutex_unlock);
122
 
123
/*
124
 * Lock a mutex (possibly interruptible), slowpath:
125
 */
126
static inline int __sched
127
__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
128
                unsigned long ip)
129
{
130
        struct task_struct *task = current;
131
        struct mutex_waiter waiter;
132
        unsigned int old_val;
133
        unsigned long flags;
134
 
135
        spin_lock_mutex(&lock->wait_lock, flags);
136
 
137
        debug_mutex_lock_common(lock, &waiter);
138
        mutex_acquire(&lock->dep_map, subclass, 0, ip);
139
        debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
140
 
141
        /* add waiting tasks to the end of the waitqueue (FIFO): */
142
        list_add_tail(&waiter.list, &lock->wait_list);
143
        waiter.task = task;
144
 
145
        old_val = atomic_xchg(&lock->count, -1);
146
        if (old_val == 1)
147
                goto done;
148
 
149
        lock_contended(&lock->dep_map, ip);
150
 
151
        for (;;) {
152
                /*
153
                 * Lets try to take the lock again - this is needed even if
154
                 * we get here for the first time (shortly after failing to
155
                 * acquire the lock), to make sure that we get a wakeup once
156
                 * it's unlocked. Later on, if we sleep, this is the
157
                 * operation that gives us the lock. We xchg it to -1, so
158
                 * that when we release the lock, we properly wake up the
159
                 * other waiters:
160
                 */
161
                old_val = atomic_xchg(&lock->count, -1);
162
                if (old_val == 1)
163
                        break;
164
 
165
                /*
166
                 * got a signal? (This code gets eliminated in the
167
                 * TASK_UNINTERRUPTIBLE case.)
168
                 */
169
                if (unlikely(state == TASK_INTERRUPTIBLE &&
170
                                                signal_pending(task))) {
171
                        mutex_remove_waiter(lock, &waiter, task_thread_info(task));
172
                        mutex_release(&lock->dep_map, 1, ip);
173
                        spin_unlock_mutex(&lock->wait_lock, flags);
174
 
175
                        debug_mutex_free_waiter(&waiter);
176
                        return -EINTR;
177
                }
178
                __set_task_state(task, state);
179
 
180
                /* didnt get the lock, go to sleep: */
181
                spin_unlock_mutex(&lock->wait_lock, flags);
182
                schedule();
183
                spin_lock_mutex(&lock->wait_lock, flags);
184
        }
185
 
186
done:
187
        lock_acquired(&lock->dep_map);
188
        /* got the lock - rejoice! */
189
        mutex_remove_waiter(lock, &waiter, task_thread_info(task));
190
        debug_mutex_set_owner(lock, task_thread_info(task));
191
 
192
        /* set it to 0 if there are no waiters left: */
193
        if (likely(list_empty(&lock->wait_list)))
194
                atomic_set(&lock->count, 0);
195
 
196
        spin_unlock_mutex(&lock->wait_lock, flags);
197
 
198
        debug_mutex_free_waiter(&waiter);
199
 
200
        return 0;
201
}
202
 
203
#ifdef CONFIG_DEBUG_LOCK_ALLOC
204
void __sched
205
mutex_lock_nested(struct mutex *lock, unsigned int subclass)
206
{
207
        might_sleep();
208
        __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, _RET_IP_);
209
}
210
 
211
EXPORT_SYMBOL_GPL(mutex_lock_nested);
212
 
213
int __sched
214
mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
215
{
216
        might_sleep();
217
        return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, subclass, _RET_IP_);
218
}
219
 
220
EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
221
#endif
222
 
223
/*
224
 * Release the lock, slowpath:
225
 */
226
static fastcall inline void
227
__mutex_unlock_common_slowpath(atomic_t *lock_count, int nested)
228
{
229
        struct mutex *lock = container_of(lock_count, struct mutex, count);
230
        unsigned long flags;
231
 
232
        spin_lock_mutex(&lock->wait_lock, flags);
233
        mutex_release(&lock->dep_map, nested, _RET_IP_);
234
        debug_mutex_unlock(lock);
235
 
236
        /*
237
         * some architectures leave the lock unlocked in the fastpath failure
238
         * case, others need to leave it locked. In the later case we have to
239
         * unlock it here
240
         */
241
        if (__mutex_slowpath_needs_to_unlock())
242
                atomic_set(&lock->count, 1);
243
 
244
        if (!list_empty(&lock->wait_list)) {
245
                /* get the first entry from the wait-list: */
246
                struct mutex_waiter *waiter =
247
                                list_entry(lock->wait_list.next,
248
                                           struct mutex_waiter, list);
249
 
250
                debug_mutex_wake_waiter(lock, waiter);
251
 
252
                wake_up_process(waiter->task);
253
        }
254
 
255
        debug_mutex_clear_owner(lock);
256
 
257
        spin_unlock_mutex(&lock->wait_lock, flags);
258
}
259
 
260
/*
261
 * Release the lock, slowpath:
262
 */
263
static fastcall noinline void
264
__mutex_unlock_slowpath(atomic_t *lock_count)
265
{
266
        __mutex_unlock_common_slowpath(lock_count, 1);
267
}
268
 
269
#ifndef CONFIG_DEBUG_LOCK_ALLOC
270
/*
271
 * Here come the less common (and hence less performance-critical) APIs:
272
 * mutex_lock_interruptible() and mutex_trylock().
273
 */
274
static int fastcall noinline __sched
275
__mutex_lock_interruptible_slowpath(atomic_t *lock_count);
276
 
277
/***
278
 * mutex_lock_interruptible - acquire the mutex, interruptable
279
 * @lock: the mutex to be acquired
280
 *
281
 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
282
 * been acquired or sleep until the mutex becomes available. If a
283
 * signal arrives while waiting for the lock then this function
284
 * returns -EINTR.
285
 *
286
 * This function is similar to (but not equivalent to) down_interruptible().
287
 */
288
int fastcall __sched mutex_lock_interruptible(struct mutex *lock)
289
{
290
        might_sleep();
291
        return __mutex_fastpath_lock_retval
292
                        (&lock->count, __mutex_lock_interruptible_slowpath);
293
}
294
 
295
EXPORT_SYMBOL(mutex_lock_interruptible);
296
 
297
static void fastcall noinline __sched
298
__mutex_lock_slowpath(atomic_t *lock_count)
299
{
300
        struct mutex *lock = container_of(lock_count, struct mutex, count);
301
 
302
        __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, _RET_IP_);
303
}
304
 
305
static int fastcall noinline __sched
306
__mutex_lock_interruptible_slowpath(atomic_t *lock_count)
307
{
308
        struct mutex *lock = container_of(lock_count, struct mutex, count);
309
 
310
        return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0, _RET_IP_);
311
}
312
#endif
313
 
314
/*
315
 * Spinlock based trylock, we take the spinlock and check whether we
316
 * can get the lock:
317
 */
318
static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
319
{
320
        struct mutex *lock = container_of(lock_count, struct mutex, count);
321
        unsigned long flags;
322
        int prev;
323
 
324
        spin_lock_mutex(&lock->wait_lock, flags);
325
 
326
        prev = atomic_xchg(&lock->count, -1);
327
        if (likely(prev == 1)) {
328
                debug_mutex_set_owner(lock, current_thread_info());
329
                mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
330
        }
331
        /* Set it back to 0 if there are no waiters: */
332
        if (likely(list_empty(&lock->wait_list)))
333
                atomic_set(&lock->count, 0);
334
 
335
        spin_unlock_mutex(&lock->wait_lock, flags);
336
 
337
        return prev == 1;
338
}
339
 
340
/***
341
 * mutex_trylock - try acquire the mutex, without waiting
342
 * @lock: the mutex to be acquired
343
 *
344
 * Try to acquire the mutex atomically. Returns 1 if the mutex
345
 * has been acquired successfully, and 0 on contention.
346
 *
347
 * NOTE: this function follows the spin_trylock() convention, so
348
 * it is negated to the down_trylock() return values! Be careful
349
 * about this when converting semaphore users to mutexes.
350
 *
351
 * This function must not be used in interrupt context. The
352
 * mutex must be released by the same task that acquired it.
353
 */
354
int fastcall __sched mutex_trylock(struct mutex *lock)
355
{
356
        return __mutex_fastpath_trylock(&lock->count,
357
                                        __mutex_trylock_slowpath);
358
}
359
 
360
EXPORT_SYMBOL(mutex_trylock);

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.