OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [kernel/] [pid.c] - Blame information for rev 79

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 * Generic pidhash and scalable, time-bounded PID allocator
3
 *
4
 * (C) 2002-2003 William Irwin, IBM
5
 * (C) 2004 William Irwin, Oracle
6
 * (C) 2002-2004 Ingo Molnar, Red Hat
7
 *
8
 * pid-structures are backing objects for tasks sharing a given ID to chain
9
 * against. There is very little to them aside from hashing them and
10
 * parking tasks using given ID's on a list.
11
 *
12
 * The hash is always changed with the tasklist_lock write-acquired,
13
 * and the hash is only accessed with the tasklist_lock at least
14
 * read-acquired, so there's no additional SMP locking needed here.
15
 *
16
 * We have a list of bitmap pages, which bitmaps represent the PID space.
17
 * Allocating and freeing PIDs is completely lockless. The worst-case
18
 * allocation scenario when all but one out of 1 million PIDs possible are
19
 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20
 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
21
 *
22
 * Pid namespaces:
23
 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24
 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25
 *     Many thanks to Oleg Nesterov for comments and help
26
 *
27
 */
28
 
29
#include <linux/mm.h>
30
#include <linux/module.h>
31
#include <linux/slab.h>
32
#include <linux/init.h>
33
#include <linux/bootmem.h>
34
#include <linux/hash.h>
35
#include <linux/pid_namespace.h>
36
#include <linux/init_task.h>
37
#include <linux/syscalls.h>
38
 
39
#define pid_hashfn(nr, ns)      \
40
        hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
41
static struct hlist_head *pid_hash;
42
static int pidhash_shift;
43
struct pid init_struct_pid = INIT_STRUCT_PID;
44
static struct kmem_cache *pid_ns_cachep;
45
 
46
int pid_max = PID_MAX_DEFAULT;
47
 
48
#define RESERVED_PIDS           300
49
 
50
int pid_max_min = RESERVED_PIDS + 1;
51
int pid_max_max = PID_MAX_LIMIT;
52
 
53
#define BITS_PER_PAGE           (PAGE_SIZE*8)
54
#define BITS_PER_PAGE_MASK      (BITS_PER_PAGE-1)
55
 
56
static inline int mk_pid(struct pid_namespace *pid_ns,
57
                struct pidmap *map, int off)
58
{
59
        return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
60
}
61
 
62
#define find_next_offset(map, off)                                      \
63
                find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
64
 
65
/*
66
 * PID-map pages start out as NULL, they get allocated upon
67
 * first use and are never deallocated. This way a low pid_max
68
 * value does not cause lots of bitmaps to be allocated, but
69
 * the scheme scales to up to 4 million PIDs, runtime.
70
 */
71
struct pid_namespace init_pid_ns = {
72
        .kref = {
73
                .refcount       = ATOMIC_INIT(2),
74
        },
75
        .pidmap = {
76
                [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
77
        },
78
        .last_pid = 0,
79
        .level = 0,
80
        .child_reaper = &init_task,
81
};
82
EXPORT_SYMBOL_GPL(init_pid_ns);
83
 
84
int is_container_init(struct task_struct *tsk)
85
{
86
        int ret = 0;
87
        struct pid *pid;
88
 
89
        rcu_read_lock();
90
        pid = task_pid(tsk);
91
        if (pid != NULL && pid->numbers[pid->level].nr == 1)
92
                ret = 1;
93
        rcu_read_unlock();
94
 
95
        return ret;
96
}
97
EXPORT_SYMBOL(is_container_init);
98
 
99
/*
100
 * Note: disable interrupts while the pidmap_lock is held as an
101
 * interrupt might come in and do read_lock(&tasklist_lock).
102
 *
103
 * If we don't disable interrupts there is a nasty deadlock between
104
 * detach_pid()->free_pid() and another cpu that does
105
 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
106
 * read_lock(&tasklist_lock);
107
 *
108
 * After we clean up the tasklist_lock and know there are no
109
 * irq handlers that take it we can leave the interrupts enabled.
110
 * For now it is easier to be safe than to prove it can't happen.
111
 */
112
 
113
static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
114
 
115
static fastcall void free_pidmap(struct pid_namespace *pid_ns, int pid)
116
{
117
        struct pidmap *map = pid_ns->pidmap + pid / BITS_PER_PAGE;
118
        int offset = pid & BITS_PER_PAGE_MASK;
119
 
120
        clear_bit(offset, map->page);
121
        atomic_inc(&map->nr_free);
122
}
123
 
124
static int alloc_pidmap(struct pid_namespace *pid_ns)
125
{
126
        int i, offset, max_scan, pid, last = pid_ns->last_pid;
127
        struct pidmap *map;
128
 
129
        pid = last + 1;
130
        if (pid >= pid_max)
131
                pid = RESERVED_PIDS;
132
        offset = pid & BITS_PER_PAGE_MASK;
133
        map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
134
        max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
135
        for (i = 0; i <= max_scan; ++i) {
136
                if (unlikely(!map->page)) {
137
                        void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
138
                        /*
139
                         * Free the page if someone raced with us
140
                         * installing it:
141
                         */
142
                        spin_lock_irq(&pidmap_lock);
143
                        if (map->page)
144
                                kfree(page);
145
                        else
146
                                map->page = page;
147
                        spin_unlock_irq(&pidmap_lock);
148
                        if (unlikely(!map->page))
149
                                break;
150
                }
151
                if (likely(atomic_read(&map->nr_free))) {
152
                        do {
153
                                if (!test_and_set_bit(offset, map->page)) {
154
                                        atomic_dec(&map->nr_free);
155
                                        pid_ns->last_pid = pid;
156
                                        return pid;
157
                                }
158
                                offset = find_next_offset(map, offset);
159
                                pid = mk_pid(pid_ns, map, offset);
160
                        /*
161
                         * find_next_offset() found a bit, the pid from it
162
                         * is in-bounds, and if we fell back to the last
163
                         * bitmap block and the final block was the same
164
                         * as the starting point, pid is before last_pid.
165
                         */
166
                        } while (offset < BITS_PER_PAGE && pid < pid_max &&
167
                                        (i != max_scan || pid < last ||
168
                                            !((last+1) & BITS_PER_PAGE_MASK)));
169
                }
170
                if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
171
                        ++map;
172
                        offset = 0;
173
                } else {
174
                        map = &pid_ns->pidmap[0];
175
                        offset = RESERVED_PIDS;
176
                        if (unlikely(last == offset))
177
                                break;
178
                }
179
                pid = mk_pid(pid_ns, map, offset);
180
        }
181
        return -1;
182
}
183
 
184
static int next_pidmap(struct pid_namespace *pid_ns, int last)
185
{
186
        int offset;
187
        struct pidmap *map, *end;
188
 
189
        offset = (last + 1) & BITS_PER_PAGE_MASK;
190
        map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
191
        end = &pid_ns->pidmap[PIDMAP_ENTRIES];
192
        for (; map < end; map++, offset = 0) {
193
                if (unlikely(!map->page))
194
                        continue;
195
                offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
196
                if (offset < BITS_PER_PAGE)
197
                        return mk_pid(pid_ns, map, offset);
198
        }
199
        return -1;
200
}
201
 
202
fastcall void put_pid(struct pid *pid)
203
{
204
        struct pid_namespace *ns;
205
 
206
        if (!pid)
207
                return;
208
 
209
        ns = pid->numbers[pid->level].ns;
210
        if ((atomic_read(&pid->count) == 1) ||
211
             atomic_dec_and_test(&pid->count)) {
212
                kmem_cache_free(ns->pid_cachep, pid);
213
                put_pid_ns(ns);
214
        }
215
}
216
EXPORT_SYMBOL_GPL(put_pid);
217
 
218
static void delayed_put_pid(struct rcu_head *rhp)
219
{
220
        struct pid *pid = container_of(rhp, struct pid, rcu);
221
        put_pid(pid);
222
}
223
 
224
fastcall void free_pid(struct pid *pid)
225
{
226
        /* We can be called with write_lock_irq(&tasklist_lock) held */
227
        int i;
228
        unsigned long flags;
229
 
230
        spin_lock_irqsave(&pidmap_lock, flags);
231
        for (i = 0; i <= pid->level; i++)
232
                hlist_del_rcu(&pid->numbers[i].pid_chain);
233
        spin_unlock_irqrestore(&pidmap_lock, flags);
234
 
235
        for (i = 0; i <= pid->level; i++)
236
                free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr);
237
 
238
        call_rcu(&pid->rcu, delayed_put_pid);
239
}
240
 
241
struct pid *alloc_pid(struct pid_namespace *ns)
242
{
243
        struct pid *pid;
244
        enum pid_type type;
245
        int i, nr;
246
        struct pid_namespace *tmp;
247
        struct upid *upid;
248
 
249
        pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
250
        if (!pid)
251
                goto out;
252
 
253
        tmp = ns;
254
        for (i = ns->level; i >= 0; i--) {
255
                nr = alloc_pidmap(tmp);
256
                if (nr < 0)
257
                        goto out_free;
258
 
259
                pid->numbers[i].nr = nr;
260
                pid->numbers[i].ns = tmp;
261
                tmp = tmp->parent;
262
        }
263
 
264
        get_pid_ns(ns);
265
        pid->level = ns->level;
266
        atomic_set(&pid->count, 1);
267
        for (type = 0; type < PIDTYPE_MAX; ++type)
268
                INIT_HLIST_HEAD(&pid->tasks[type]);
269
 
270
        spin_lock_irq(&pidmap_lock);
271
        for (i = ns->level; i >= 0; i--) {
272
                upid = &pid->numbers[i];
273
                hlist_add_head_rcu(&upid->pid_chain,
274
                                &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
275
        }
276
        spin_unlock_irq(&pidmap_lock);
277
 
278
out:
279
        return pid;
280
 
281
out_free:
282
        for (i++; i <= ns->level; i++)
283
                free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr);
284
 
285
        kmem_cache_free(ns->pid_cachep, pid);
286
        pid = NULL;
287
        goto out;
288
}
289
 
290
struct pid * fastcall find_pid_ns(int nr, struct pid_namespace *ns)
291
{
292
        struct hlist_node *elem;
293
        struct upid *pnr;
294
 
295
        hlist_for_each_entry_rcu(pnr, elem,
296
                        &pid_hash[pid_hashfn(nr, ns)], pid_chain)
297
                if (pnr->nr == nr && pnr->ns == ns)
298
                        return container_of(pnr, struct pid,
299
                                        numbers[ns->level]);
300
 
301
        return NULL;
302
}
303
EXPORT_SYMBOL_GPL(find_pid_ns);
304
 
305
struct pid *find_vpid(int nr)
306
{
307
        return find_pid_ns(nr, current->nsproxy->pid_ns);
308
}
309
EXPORT_SYMBOL_GPL(find_vpid);
310
 
311
struct pid *find_pid(int nr)
312
{
313
        return find_pid_ns(nr, &init_pid_ns);
314
}
315
EXPORT_SYMBOL_GPL(find_pid);
316
 
317
/*
318
 * attach_pid() must be called with the tasklist_lock write-held.
319
 */
320
int fastcall attach_pid(struct task_struct *task, enum pid_type type,
321
                struct pid *pid)
322
{
323
        struct pid_link *link;
324
 
325
        link = &task->pids[type];
326
        link->pid = pid;
327
        hlist_add_head_rcu(&link->node, &pid->tasks[type]);
328
 
329
        return 0;
330
}
331
 
332
void fastcall detach_pid(struct task_struct *task, enum pid_type type)
333
{
334
        struct pid_link *link;
335
        struct pid *pid;
336
        int tmp;
337
 
338
        link = &task->pids[type];
339
        pid = link->pid;
340
 
341
        hlist_del_rcu(&link->node);
342
        link->pid = NULL;
343
 
344
        for (tmp = PIDTYPE_MAX; --tmp >= 0; )
345
                if (!hlist_empty(&pid->tasks[tmp]))
346
                        return;
347
 
348
        free_pid(pid);
349
}
350
 
351
/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
352
void fastcall transfer_pid(struct task_struct *old, struct task_struct *new,
353
                           enum pid_type type)
354
{
355
        new->pids[type].pid = old->pids[type].pid;
356
        hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
357
        old->pids[type].pid = NULL;
358
}
359
 
360
struct task_struct * fastcall pid_task(struct pid *pid, enum pid_type type)
361
{
362
        struct task_struct *result = NULL;
363
        if (pid) {
364
                struct hlist_node *first;
365
                first = rcu_dereference(pid->tasks[type].first);
366
                if (first)
367
                        result = hlist_entry(first, struct task_struct, pids[(type)].node);
368
        }
369
        return result;
370
}
371
 
372
/*
373
 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
374
 */
375
struct task_struct *find_task_by_pid_type_ns(int type, int nr,
376
                struct pid_namespace *ns)
377
{
378
        return pid_task(find_pid_ns(nr, ns), type);
379
}
380
 
381
EXPORT_SYMBOL(find_task_by_pid_type_ns);
382
 
383
struct task_struct *find_task_by_pid(pid_t nr)
384
{
385
        return find_task_by_pid_type_ns(PIDTYPE_PID, nr, &init_pid_ns);
386
}
387
EXPORT_SYMBOL(find_task_by_pid);
388
 
389
struct task_struct *find_task_by_vpid(pid_t vnr)
390
{
391
        return find_task_by_pid_type_ns(PIDTYPE_PID, vnr,
392
                        current->nsproxy->pid_ns);
393
}
394
EXPORT_SYMBOL(find_task_by_vpid);
395
 
396
struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
397
{
398
        return find_task_by_pid_type_ns(PIDTYPE_PID, nr, ns);
399
}
400
EXPORT_SYMBOL(find_task_by_pid_ns);
401
 
402
struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
403
{
404
        struct pid *pid;
405
        rcu_read_lock();
406
        pid = get_pid(task->pids[type].pid);
407
        rcu_read_unlock();
408
        return pid;
409
}
410
 
411
struct task_struct *fastcall get_pid_task(struct pid *pid, enum pid_type type)
412
{
413
        struct task_struct *result;
414
        rcu_read_lock();
415
        result = pid_task(pid, type);
416
        if (result)
417
                get_task_struct(result);
418
        rcu_read_unlock();
419
        return result;
420
}
421
 
422
struct pid *find_get_pid(pid_t nr)
423
{
424
        struct pid *pid;
425
 
426
        rcu_read_lock();
427
        pid = get_pid(find_vpid(nr));
428
        rcu_read_unlock();
429
 
430
        return pid;
431
}
432
 
433
pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
434
{
435
        struct upid *upid;
436
        pid_t nr = 0;
437
 
438
        if (pid && ns->level <= pid->level) {
439
                upid = &pid->numbers[ns->level];
440
                if (upid->ns == ns)
441
                        nr = upid->nr;
442
        }
443
        return nr;
444
}
445
 
446
pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
447
{
448
        return pid_nr_ns(task_pid(tsk), ns);
449
}
450
EXPORT_SYMBOL(task_pid_nr_ns);
451
 
452
pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
453
{
454
        return pid_nr_ns(task_tgid(tsk), ns);
455
}
456
EXPORT_SYMBOL(task_tgid_nr_ns);
457
 
458
pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
459
{
460
        return pid_nr_ns(task_pgrp(tsk), ns);
461
}
462
EXPORT_SYMBOL(task_pgrp_nr_ns);
463
 
464
pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
465
{
466
        return pid_nr_ns(task_session(tsk), ns);
467
}
468
EXPORT_SYMBOL(task_session_nr_ns);
469
 
470
/*
471
 * Used by proc to find the first pid that is greater then or equal to nr.
472
 *
473
 * If there is a pid at nr this function is exactly the same as find_pid.
474
 */
475
struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
476
{
477
        struct pid *pid;
478
 
479
        do {
480
                pid = find_pid_ns(nr, ns);
481
                if (pid)
482
                        break;
483
                nr = next_pidmap(ns, nr);
484
        } while (nr > 0);
485
 
486
        return pid;
487
}
488
EXPORT_SYMBOL_GPL(find_get_pid);
489
 
490
struct pid_cache {
491
        int nr_ids;
492
        char name[16];
493
        struct kmem_cache *cachep;
494
        struct list_head list;
495
};
496
 
497
static LIST_HEAD(pid_caches_lh);
498
static DEFINE_MUTEX(pid_caches_mutex);
499
 
500
/*
501
 * creates the kmem cache to allocate pids from.
502
 * @nr_ids: the number of numerical ids this pid will have to carry
503
 */
504
 
505
static struct kmem_cache *create_pid_cachep(int nr_ids)
506
{
507
        struct pid_cache *pcache;
508
        struct kmem_cache *cachep;
509
 
510
        mutex_lock(&pid_caches_mutex);
511
        list_for_each_entry (pcache, &pid_caches_lh, list)
512
                if (pcache->nr_ids == nr_ids)
513
                        goto out;
514
 
515
        pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
516
        if (pcache == NULL)
517
                goto err_alloc;
518
 
519
        snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
520
        cachep = kmem_cache_create(pcache->name,
521
                        sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
522
                        0, SLAB_HWCACHE_ALIGN, NULL);
523
        if (cachep == NULL)
524
                goto err_cachep;
525
 
526
        pcache->nr_ids = nr_ids;
527
        pcache->cachep = cachep;
528
        list_add(&pcache->list, &pid_caches_lh);
529
out:
530
        mutex_unlock(&pid_caches_mutex);
531
        return pcache->cachep;
532
 
533
err_cachep:
534
        kfree(pcache);
535
err_alloc:
536
        mutex_unlock(&pid_caches_mutex);
537
        return NULL;
538
}
539
 
540
#ifdef CONFIG_PID_NS
541
static struct pid_namespace *create_pid_namespace(int level)
542
{
543
        struct pid_namespace *ns;
544
        int i;
545
 
546
        ns = kmem_cache_alloc(pid_ns_cachep, GFP_KERNEL);
547
        if (ns == NULL)
548
                goto out;
549
 
550
        ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
551
        if (!ns->pidmap[0].page)
552
                goto out_free;
553
 
554
        ns->pid_cachep = create_pid_cachep(level + 1);
555
        if (ns->pid_cachep == NULL)
556
                goto out_free_map;
557
 
558
        kref_init(&ns->kref);
559
        ns->last_pid = 0;
560
        ns->child_reaper = NULL;
561
        ns->level = level;
562
 
563
        set_bit(0, ns->pidmap[0].page);
564
        atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
565
 
566
        for (i = 1; i < PIDMAP_ENTRIES; i++) {
567
                ns->pidmap[i].page = 0;
568
                atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
569
        }
570
 
571
        return ns;
572
 
573
out_free_map:
574
        kfree(ns->pidmap[0].page);
575
out_free:
576
        kmem_cache_free(pid_ns_cachep, ns);
577
out:
578
        return ERR_PTR(-ENOMEM);
579
}
580
 
581
static void destroy_pid_namespace(struct pid_namespace *ns)
582
{
583
        int i;
584
 
585
        for (i = 0; i < PIDMAP_ENTRIES; i++)
586
                kfree(ns->pidmap[i].page);
587
        kmem_cache_free(pid_ns_cachep, ns);
588
}
589
 
590
struct pid_namespace *copy_pid_ns(unsigned long flags, struct pid_namespace *old_ns)
591
{
592
        struct pid_namespace *new_ns;
593
 
594
        BUG_ON(!old_ns);
595
        new_ns = get_pid_ns(old_ns);
596
        if (!(flags & CLONE_NEWPID))
597
                goto out;
598
 
599
        new_ns = ERR_PTR(-EINVAL);
600
        if (flags & CLONE_THREAD)
601
                goto out_put;
602
 
603
        new_ns = create_pid_namespace(old_ns->level + 1);
604
        if (!IS_ERR(new_ns))
605
                new_ns->parent = get_pid_ns(old_ns);
606
 
607
out_put:
608
        put_pid_ns(old_ns);
609
out:
610
        return new_ns;
611
}
612
 
613
void free_pid_ns(struct kref *kref)
614
{
615
        struct pid_namespace *ns, *parent;
616
 
617
        ns = container_of(kref, struct pid_namespace, kref);
618
 
619
        parent = ns->parent;
620
        destroy_pid_namespace(ns);
621
 
622
        if (parent != NULL)
623
                put_pid_ns(parent);
624
}
625
#endif /* CONFIG_PID_NS */
626
 
627
void zap_pid_ns_processes(struct pid_namespace *pid_ns)
628
{
629
        int nr;
630
        int rc;
631
 
632
        /*
633
         * The last thread in the cgroup-init thread group is terminating.
634
         * Find remaining pid_ts in the namespace, signal and wait for them
635
         * to exit.
636
         *
637
         * Note:  This signals each threads in the namespace - even those that
638
         *        belong to the same thread group, To avoid this, we would have
639
         *        to walk the entire tasklist looking a processes in this
640
         *        namespace, but that could be unnecessarily expensive if the
641
         *        pid namespace has just a few processes. Or we need to
642
         *        maintain a tasklist for each pid namespace.
643
         *
644
         */
645
        read_lock(&tasklist_lock);
646
        nr = next_pidmap(pid_ns, 1);
647
        while (nr > 0) {
648
                kill_proc_info(SIGKILL, SEND_SIG_PRIV, nr);
649
                nr = next_pidmap(pid_ns, nr);
650
        }
651
        read_unlock(&tasklist_lock);
652
 
653
        do {
654
                clear_thread_flag(TIF_SIGPENDING);
655
                rc = sys_wait4(-1, NULL, __WALL, NULL);
656
        } while (rc != -ECHILD);
657
 
658
 
659
        /* Child reaper for the pid namespace is going away */
660
        pid_ns->child_reaper = NULL;
661
        return;
662
}
663
 
664
/*
665
 * The pid hash table is scaled according to the amount of memory in the
666
 * machine.  From a minimum of 16 slots up to 4096 slots at one gigabyte or
667
 * more.
668
 */
669
void __init pidhash_init(void)
670
{
671
        int i, pidhash_size;
672
        unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT);
673
 
674
        pidhash_shift = max(4, fls(megabytes * 4));
675
        pidhash_shift = min(12, pidhash_shift);
676
        pidhash_size = 1 << pidhash_shift;
677
 
678
        printk("PID hash table entries: %d (order: %d, %Zd bytes)\n",
679
                pidhash_size, pidhash_shift,
680
                pidhash_size * sizeof(struct hlist_head));
681
 
682
        pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash)));
683
        if (!pid_hash)
684
                panic("Could not alloc pidhash!\n");
685
        for (i = 0; i < pidhash_size; i++)
686
                INIT_HLIST_HEAD(&pid_hash[i]);
687
}
688
 
689
void __init pidmap_init(void)
690
{
691
        init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
692
        /* Reserve PID 0. We never call free_pidmap(0) */
693
        set_bit(0, init_pid_ns.pidmap[0].page);
694
        atomic_dec(&init_pid_ns.pidmap[0].nr_free);
695
 
696
        init_pid_ns.pid_cachep = create_pid_cachep(1);
697
        if (init_pid_ns.pid_cachep == NULL)
698
                panic("Can't create pid_1 cachep\n");
699
 
700
        pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
701
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.