| 1 |
62 |
marcus.erl |
/*
|
| 2 |
|
|
* Generic pidhash and scalable, time-bounded PID allocator
|
| 3 |
|
|
*
|
| 4 |
|
|
* (C) 2002-2003 William Irwin, IBM
|
| 5 |
|
|
* (C) 2004 William Irwin, Oracle
|
| 6 |
|
|
* (C) 2002-2004 Ingo Molnar, Red Hat
|
| 7 |
|
|
*
|
| 8 |
|
|
* pid-structures are backing objects for tasks sharing a given ID to chain
|
| 9 |
|
|
* against. There is very little to them aside from hashing them and
|
| 10 |
|
|
* parking tasks using given ID's on a list.
|
| 11 |
|
|
*
|
| 12 |
|
|
* The hash is always changed with the tasklist_lock write-acquired,
|
| 13 |
|
|
* and the hash is only accessed with the tasklist_lock at least
|
| 14 |
|
|
* read-acquired, so there's no additional SMP locking needed here.
|
| 15 |
|
|
*
|
| 16 |
|
|
* We have a list of bitmap pages, which bitmaps represent the PID space.
|
| 17 |
|
|
* Allocating and freeing PIDs is completely lockless. The worst-case
|
| 18 |
|
|
* allocation scenario when all but one out of 1 million PIDs possible are
|
| 19 |
|
|
* allocated already: the scanning of 32 list entries and at most PAGE_SIZE
|
| 20 |
|
|
* bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
|
| 21 |
|
|
*
|
| 22 |
|
|
* Pid namespaces:
|
| 23 |
|
|
* (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
|
| 24 |
|
|
* (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
|
| 25 |
|
|
* Many thanks to Oleg Nesterov for comments and help
|
| 26 |
|
|
*
|
| 27 |
|
|
*/
|
| 28 |
|
|
|
| 29 |
|
|
#include <linux/mm.h>
|
| 30 |
|
|
#include <linux/module.h>
|
| 31 |
|
|
#include <linux/slab.h>
|
| 32 |
|
|
#include <linux/init.h>
|
| 33 |
|
|
#include <linux/bootmem.h>
|
| 34 |
|
|
#include <linux/hash.h>
|
| 35 |
|
|
#include <linux/pid_namespace.h>
|
| 36 |
|
|
#include <linux/init_task.h>
|
| 37 |
|
|
#include <linux/syscalls.h>
|
| 38 |
|
|
|
| 39 |
|
|
#define pid_hashfn(nr, ns) \
|
| 40 |
|
|
hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
|
| 41 |
|
|
static struct hlist_head *pid_hash;
|
| 42 |
|
|
static int pidhash_shift;
|
| 43 |
|
|
struct pid init_struct_pid = INIT_STRUCT_PID;
|
| 44 |
|
|
static struct kmem_cache *pid_ns_cachep;
|
| 45 |
|
|
|
| 46 |
|
|
int pid_max = PID_MAX_DEFAULT;
|
| 47 |
|
|
|
| 48 |
|
|
#define RESERVED_PIDS 300
|
| 49 |
|
|
|
| 50 |
|
|
int pid_max_min = RESERVED_PIDS + 1;
|
| 51 |
|
|
int pid_max_max = PID_MAX_LIMIT;
|
| 52 |
|
|
|
| 53 |
|
|
#define BITS_PER_PAGE (PAGE_SIZE*8)
|
| 54 |
|
|
#define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
|
| 55 |
|
|
|
| 56 |
|
|
static inline int mk_pid(struct pid_namespace *pid_ns,
|
| 57 |
|
|
struct pidmap *map, int off)
|
| 58 |
|
|
{
|
| 59 |
|
|
return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
|
| 60 |
|
|
}
|
| 61 |
|
|
|
| 62 |
|
|
#define find_next_offset(map, off) \
|
| 63 |
|
|
find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
|
| 64 |
|
|
|
| 65 |
|
|
/*
|
| 66 |
|
|
* PID-map pages start out as NULL, they get allocated upon
|
| 67 |
|
|
* first use and are never deallocated. This way a low pid_max
|
| 68 |
|
|
* value does not cause lots of bitmaps to be allocated, but
|
| 69 |
|
|
* the scheme scales to up to 4 million PIDs, runtime.
|
| 70 |
|
|
*/
|
| 71 |
|
|
struct pid_namespace init_pid_ns = {
|
| 72 |
|
|
.kref = {
|
| 73 |
|
|
.refcount = ATOMIC_INIT(2),
|
| 74 |
|
|
},
|
| 75 |
|
|
.pidmap = {
|
| 76 |
|
|
[ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
|
| 77 |
|
|
},
|
| 78 |
|
|
.last_pid = 0,
|
| 79 |
|
|
.level = 0,
|
| 80 |
|
|
.child_reaper = &init_task,
|
| 81 |
|
|
};
|
| 82 |
|
|
EXPORT_SYMBOL_GPL(init_pid_ns);
|
| 83 |
|
|
|
| 84 |
|
|
int is_container_init(struct task_struct *tsk)
|
| 85 |
|
|
{
|
| 86 |
|
|
int ret = 0;
|
| 87 |
|
|
struct pid *pid;
|
| 88 |
|
|
|
| 89 |
|
|
rcu_read_lock();
|
| 90 |
|
|
pid = task_pid(tsk);
|
| 91 |
|
|
if (pid != NULL && pid->numbers[pid->level].nr == 1)
|
| 92 |
|
|
ret = 1;
|
| 93 |
|
|
rcu_read_unlock();
|
| 94 |
|
|
|
| 95 |
|
|
return ret;
|
| 96 |
|
|
}
|
| 97 |
|
|
EXPORT_SYMBOL(is_container_init);
|
| 98 |
|
|
|
| 99 |
|
|
/*
|
| 100 |
|
|
* Note: disable interrupts while the pidmap_lock is held as an
|
| 101 |
|
|
* interrupt might come in and do read_lock(&tasklist_lock).
|
| 102 |
|
|
*
|
| 103 |
|
|
* If we don't disable interrupts there is a nasty deadlock between
|
| 104 |
|
|
* detach_pid()->free_pid() and another cpu that does
|
| 105 |
|
|
* spin_lock(&pidmap_lock) followed by an interrupt routine that does
|
| 106 |
|
|
* read_lock(&tasklist_lock);
|
| 107 |
|
|
*
|
| 108 |
|
|
* After we clean up the tasklist_lock and know there are no
|
| 109 |
|
|
* irq handlers that take it we can leave the interrupts enabled.
|
| 110 |
|
|
* For now it is easier to be safe than to prove it can't happen.
|
| 111 |
|
|
*/
|
| 112 |
|
|
|
| 113 |
|
|
static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
|
| 114 |
|
|
|
| 115 |
|
|
static fastcall void free_pidmap(struct pid_namespace *pid_ns, int pid)
|
| 116 |
|
|
{
|
| 117 |
|
|
struct pidmap *map = pid_ns->pidmap + pid / BITS_PER_PAGE;
|
| 118 |
|
|
int offset = pid & BITS_PER_PAGE_MASK;
|
| 119 |
|
|
|
| 120 |
|
|
clear_bit(offset, map->page);
|
| 121 |
|
|
atomic_inc(&map->nr_free);
|
| 122 |
|
|
}
|
| 123 |
|
|
|
| 124 |
|
|
static int alloc_pidmap(struct pid_namespace *pid_ns)
|
| 125 |
|
|
{
|
| 126 |
|
|
int i, offset, max_scan, pid, last = pid_ns->last_pid;
|
| 127 |
|
|
struct pidmap *map;
|
| 128 |
|
|
|
| 129 |
|
|
pid = last + 1;
|
| 130 |
|
|
if (pid >= pid_max)
|
| 131 |
|
|
pid = RESERVED_PIDS;
|
| 132 |
|
|
offset = pid & BITS_PER_PAGE_MASK;
|
| 133 |
|
|
map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
|
| 134 |
|
|
max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
|
| 135 |
|
|
for (i = 0; i <= max_scan; ++i) {
|
| 136 |
|
|
if (unlikely(!map->page)) {
|
| 137 |
|
|
void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
|
| 138 |
|
|
/*
|
| 139 |
|
|
* Free the page if someone raced with us
|
| 140 |
|
|
* installing it:
|
| 141 |
|
|
*/
|
| 142 |
|
|
spin_lock_irq(&pidmap_lock);
|
| 143 |
|
|
if (map->page)
|
| 144 |
|
|
kfree(page);
|
| 145 |
|
|
else
|
| 146 |
|
|
map->page = page;
|
| 147 |
|
|
spin_unlock_irq(&pidmap_lock);
|
| 148 |
|
|
if (unlikely(!map->page))
|
| 149 |
|
|
break;
|
| 150 |
|
|
}
|
| 151 |
|
|
if (likely(atomic_read(&map->nr_free))) {
|
| 152 |
|
|
do {
|
| 153 |
|
|
if (!test_and_set_bit(offset, map->page)) {
|
| 154 |
|
|
atomic_dec(&map->nr_free);
|
| 155 |
|
|
pid_ns->last_pid = pid;
|
| 156 |
|
|
return pid;
|
| 157 |
|
|
}
|
| 158 |
|
|
offset = find_next_offset(map, offset);
|
| 159 |
|
|
pid = mk_pid(pid_ns, map, offset);
|
| 160 |
|
|
/*
|
| 161 |
|
|
* find_next_offset() found a bit, the pid from it
|
| 162 |
|
|
* is in-bounds, and if we fell back to the last
|
| 163 |
|
|
* bitmap block and the final block was the same
|
| 164 |
|
|
* as the starting point, pid is before last_pid.
|
| 165 |
|
|
*/
|
| 166 |
|
|
} while (offset < BITS_PER_PAGE && pid < pid_max &&
|
| 167 |
|
|
(i != max_scan || pid < last ||
|
| 168 |
|
|
!((last+1) & BITS_PER_PAGE_MASK)));
|
| 169 |
|
|
}
|
| 170 |
|
|
if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
|
| 171 |
|
|
++map;
|
| 172 |
|
|
offset = 0;
|
| 173 |
|
|
} else {
|
| 174 |
|
|
map = &pid_ns->pidmap[0];
|
| 175 |
|
|
offset = RESERVED_PIDS;
|
| 176 |
|
|
if (unlikely(last == offset))
|
| 177 |
|
|
break;
|
| 178 |
|
|
}
|
| 179 |
|
|
pid = mk_pid(pid_ns, map, offset);
|
| 180 |
|
|
}
|
| 181 |
|
|
return -1;
|
| 182 |
|
|
}
|
| 183 |
|
|
|
| 184 |
|
|
static int next_pidmap(struct pid_namespace *pid_ns, int last)
|
| 185 |
|
|
{
|
| 186 |
|
|
int offset;
|
| 187 |
|
|
struct pidmap *map, *end;
|
| 188 |
|
|
|
| 189 |
|
|
offset = (last + 1) & BITS_PER_PAGE_MASK;
|
| 190 |
|
|
map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
|
| 191 |
|
|
end = &pid_ns->pidmap[PIDMAP_ENTRIES];
|
| 192 |
|
|
for (; map < end; map++, offset = 0) {
|
| 193 |
|
|
if (unlikely(!map->page))
|
| 194 |
|
|
continue;
|
| 195 |
|
|
offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
|
| 196 |
|
|
if (offset < BITS_PER_PAGE)
|
| 197 |
|
|
return mk_pid(pid_ns, map, offset);
|
| 198 |
|
|
}
|
| 199 |
|
|
return -1;
|
| 200 |
|
|
}
|
| 201 |
|
|
|
| 202 |
|
|
fastcall void put_pid(struct pid *pid)
|
| 203 |
|
|
{
|
| 204 |
|
|
struct pid_namespace *ns;
|
| 205 |
|
|
|
| 206 |
|
|
if (!pid)
|
| 207 |
|
|
return;
|
| 208 |
|
|
|
| 209 |
|
|
ns = pid->numbers[pid->level].ns;
|
| 210 |
|
|
if ((atomic_read(&pid->count) == 1) ||
|
| 211 |
|
|
atomic_dec_and_test(&pid->count)) {
|
| 212 |
|
|
kmem_cache_free(ns->pid_cachep, pid);
|
| 213 |
|
|
put_pid_ns(ns);
|
| 214 |
|
|
}
|
| 215 |
|
|
}
|
| 216 |
|
|
EXPORT_SYMBOL_GPL(put_pid);
|
| 217 |
|
|
|
| 218 |
|
|
static void delayed_put_pid(struct rcu_head *rhp)
|
| 219 |
|
|
{
|
| 220 |
|
|
struct pid *pid = container_of(rhp, struct pid, rcu);
|
| 221 |
|
|
put_pid(pid);
|
| 222 |
|
|
}
|
| 223 |
|
|
|
| 224 |
|
|
fastcall void free_pid(struct pid *pid)
|
| 225 |
|
|
{
|
| 226 |
|
|
/* We can be called with write_lock_irq(&tasklist_lock) held */
|
| 227 |
|
|
int i;
|
| 228 |
|
|
unsigned long flags;
|
| 229 |
|
|
|
| 230 |
|
|
spin_lock_irqsave(&pidmap_lock, flags);
|
| 231 |
|
|
for (i = 0; i <= pid->level; i++)
|
| 232 |
|
|
hlist_del_rcu(&pid->numbers[i].pid_chain);
|
| 233 |
|
|
spin_unlock_irqrestore(&pidmap_lock, flags);
|
| 234 |
|
|
|
| 235 |
|
|
for (i = 0; i <= pid->level; i++)
|
| 236 |
|
|
free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr);
|
| 237 |
|
|
|
| 238 |
|
|
call_rcu(&pid->rcu, delayed_put_pid);
|
| 239 |
|
|
}
|
| 240 |
|
|
|
| 241 |
|
|
struct pid *alloc_pid(struct pid_namespace *ns)
|
| 242 |
|
|
{
|
| 243 |
|
|
struct pid *pid;
|
| 244 |
|
|
enum pid_type type;
|
| 245 |
|
|
int i, nr;
|
| 246 |
|
|
struct pid_namespace *tmp;
|
| 247 |
|
|
struct upid *upid;
|
| 248 |
|
|
|
| 249 |
|
|
pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
|
| 250 |
|
|
if (!pid)
|
| 251 |
|
|
goto out;
|
| 252 |
|
|
|
| 253 |
|
|
tmp = ns;
|
| 254 |
|
|
for (i = ns->level; i >= 0; i--) {
|
| 255 |
|
|
nr = alloc_pidmap(tmp);
|
| 256 |
|
|
if (nr < 0)
|
| 257 |
|
|
goto out_free;
|
| 258 |
|
|
|
| 259 |
|
|
pid->numbers[i].nr = nr;
|
| 260 |
|
|
pid->numbers[i].ns = tmp;
|
| 261 |
|
|
tmp = tmp->parent;
|
| 262 |
|
|
}
|
| 263 |
|
|
|
| 264 |
|
|
get_pid_ns(ns);
|
| 265 |
|
|
pid->level = ns->level;
|
| 266 |
|
|
atomic_set(&pid->count, 1);
|
| 267 |
|
|
for (type = 0; type < PIDTYPE_MAX; ++type)
|
| 268 |
|
|
INIT_HLIST_HEAD(&pid->tasks[type]);
|
| 269 |
|
|
|
| 270 |
|
|
spin_lock_irq(&pidmap_lock);
|
| 271 |
|
|
for (i = ns->level; i >= 0; i--) {
|
| 272 |
|
|
upid = &pid->numbers[i];
|
| 273 |
|
|
hlist_add_head_rcu(&upid->pid_chain,
|
| 274 |
|
|
&pid_hash[pid_hashfn(upid->nr, upid->ns)]);
|
| 275 |
|
|
}
|
| 276 |
|
|
spin_unlock_irq(&pidmap_lock);
|
| 277 |
|
|
|
| 278 |
|
|
out:
|
| 279 |
|
|
return pid;
|
| 280 |
|
|
|
| 281 |
|
|
out_free:
|
| 282 |
|
|
for (i++; i <= ns->level; i++)
|
| 283 |
|
|
free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr);
|
| 284 |
|
|
|
| 285 |
|
|
kmem_cache_free(ns->pid_cachep, pid);
|
| 286 |
|
|
pid = NULL;
|
| 287 |
|
|
goto out;
|
| 288 |
|
|
}
|
| 289 |
|
|
|
| 290 |
|
|
struct pid * fastcall find_pid_ns(int nr, struct pid_namespace *ns)
|
| 291 |
|
|
{
|
| 292 |
|
|
struct hlist_node *elem;
|
| 293 |
|
|
struct upid *pnr;
|
| 294 |
|
|
|
| 295 |
|
|
hlist_for_each_entry_rcu(pnr, elem,
|
| 296 |
|
|
&pid_hash[pid_hashfn(nr, ns)], pid_chain)
|
| 297 |
|
|
if (pnr->nr == nr && pnr->ns == ns)
|
| 298 |
|
|
return container_of(pnr, struct pid,
|
| 299 |
|
|
numbers[ns->level]);
|
| 300 |
|
|
|
| 301 |
|
|
return NULL;
|
| 302 |
|
|
}
|
| 303 |
|
|
EXPORT_SYMBOL_GPL(find_pid_ns);
|
| 304 |
|
|
|
| 305 |
|
|
struct pid *find_vpid(int nr)
|
| 306 |
|
|
{
|
| 307 |
|
|
return find_pid_ns(nr, current->nsproxy->pid_ns);
|
| 308 |
|
|
}
|
| 309 |
|
|
EXPORT_SYMBOL_GPL(find_vpid);
|
| 310 |
|
|
|
| 311 |
|
|
struct pid *find_pid(int nr)
|
| 312 |
|
|
{
|
| 313 |
|
|
return find_pid_ns(nr, &init_pid_ns);
|
| 314 |
|
|
}
|
| 315 |
|
|
EXPORT_SYMBOL_GPL(find_pid);
|
| 316 |
|
|
|
| 317 |
|
|
/*
|
| 318 |
|
|
* attach_pid() must be called with the tasklist_lock write-held.
|
| 319 |
|
|
*/
|
| 320 |
|
|
int fastcall attach_pid(struct task_struct *task, enum pid_type type,
|
| 321 |
|
|
struct pid *pid)
|
| 322 |
|
|
{
|
| 323 |
|
|
struct pid_link *link;
|
| 324 |
|
|
|
| 325 |
|
|
link = &task->pids[type];
|
| 326 |
|
|
link->pid = pid;
|
| 327 |
|
|
hlist_add_head_rcu(&link->node, &pid->tasks[type]);
|
| 328 |
|
|
|
| 329 |
|
|
return 0;
|
| 330 |
|
|
}
|
| 331 |
|
|
|
| 332 |
|
|
void fastcall detach_pid(struct task_struct *task, enum pid_type type)
|
| 333 |
|
|
{
|
| 334 |
|
|
struct pid_link *link;
|
| 335 |
|
|
struct pid *pid;
|
| 336 |
|
|
int tmp;
|
| 337 |
|
|
|
| 338 |
|
|
link = &task->pids[type];
|
| 339 |
|
|
pid = link->pid;
|
| 340 |
|
|
|
| 341 |
|
|
hlist_del_rcu(&link->node);
|
| 342 |
|
|
link->pid = NULL;
|
| 343 |
|
|
|
| 344 |
|
|
for (tmp = PIDTYPE_MAX; --tmp >= 0; )
|
| 345 |
|
|
if (!hlist_empty(&pid->tasks[tmp]))
|
| 346 |
|
|
return;
|
| 347 |
|
|
|
| 348 |
|
|
free_pid(pid);
|
| 349 |
|
|
}
|
| 350 |
|
|
|
| 351 |
|
|
/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
|
| 352 |
|
|
void fastcall transfer_pid(struct task_struct *old, struct task_struct *new,
|
| 353 |
|
|
enum pid_type type)
|
| 354 |
|
|
{
|
| 355 |
|
|
new->pids[type].pid = old->pids[type].pid;
|
| 356 |
|
|
hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
|
| 357 |
|
|
old->pids[type].pid = NULL;
|
| 358 |
|
|
}
|
| 359 |
|
|
|
| 360 |
|
|
struct task_struct * fastcall pid_task(struct pid *pid, enum pid_type type)
|
| 361 |
|
|
{
|
| 362 |
|
|
struct task_struct *result = NULL;
|
| 363 |
|
|
if (pid) {
|
| 364 |
|
|
struct hlist_node *first;
|
| 365 |
|
|
first = rcu_dereference(pid->tasks[type].first);
|
| 366 |
|
|
if (first)
|
| 367 |
|
|
result = hlist_entry(first, struct task_struct, pids[(type)].node);
|
| 368 |
|
|
}
|
| 369 |
|
|
return result;
|
| 370 |
|
|
}
|
| 371 |
|
|
|
| 372 |
|
|
/*
|
| 373 |
|
|
* Must be called under rcu_read_lock() or with tasklist_lock read-held.
|
| 374 |
|
|
*/
|
| 375 |
|
|
struct task_struct *find_task_by_pid_type_ns(int type, int nr,
|
| 376 |
|
|
struct pid_namespace *ns)
|
| 377 |
|
|
{
|
| 378 |
|
|
return pid_task(find_pid_ns(nr, ns), type);
|
| 379 |
|
|
}
|
| 380 |
|
|
|
| 381 |
|
|
EXPORT_SYMBOL(find_task_by_pid_type_ns);
|
| 382 |
|
|
|
| 383 |
|
|
struct task_struct *find_task_by_pid(pid_t nr)
|
| 384 |
|
|
{
|
| 385 |
|
|
return find_task_by_pid_type_ns(PIDTYPE_PID, nr, &init_pid_ns);
|
| 386 |
|
|
}
|
| 387 |
|
|
EXPORT_SYMBOL(find_task_by_pid);
|
| 388 |
|
|
|
| 389 |
|
|
struct task_struct *find_task_by_vpid(pid_t vnr)
|
| 390 |
|
|
{
|
| 391 |
|
|
return find_task_by_pid_type_ns(PIDTYPE_PID, vnr,
|
| 392 |
|
|
current->nsproxy->pid_ns);
|
| 393 |
|
|
}
|
| 394 |
|
|
EXPORT_SYMBOL(find_task_by_vpid);
|
| 395 |
|
|
|
| 396 |
|
|
struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
|
| 397 |
|
|
{
|
| 398 |
|
|
return find_task_by_pid_type_ns(PIDTYPE_PID, nr, ns);
|
| 399 |
|
|
}
|
| 400 |
|
|
EXPORT_SYMBOL(find_task_by_pid_ns);
|
| 401 |
|
|
|
| 402 |
|
|
struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
|
| 403 |
|
|
{
|
| 404 |
|
|
struct pid *pid;
|
| 405 |
|
|
rcu_read_lock();
|
| 406 |
|
|
pid = get_pid(task->pids[type].pid);
|
| 407 |
|
|
rcu_read_unlock();
|
| 408 |
|
|
return pid;
|
| 409 |
|
|
}
|
| 410 |
|
|
|
| 411 |
|
|
struct task_struct *fastcall get_pid_task(struct pid *pid, enum pid_type type)
|
| 412 |
|
|
{
|
| 413 |
|
|
struct task_struct *result;
|
| 414 |
|
|
rcu_read_lock();
|
| 415 |
|
|
result = pid_task(pid, type);
|
| 416 |
|
|
if (result)
|
| 417 |
|
|
get_task_struct(result);
|
| 418 |
|
|
rcu_read_unlock();
|
| 419 |
|
|
return result;
|
| 420 |
|
|
}
|
| 421 |
|
|
|
| 422 |
|
|
struct pid *find_get_pid(pid_t nr)
|
| 423 |
|
|
{
|
| 424 |
|
|
struct pid *pid;
|
| 425 |
|
|
|
| 426 |
|
|
rcu_read_lock();
|
| 427 |
|
|
pid = get_pid(find_vpid(nr));
|
| 428 |
|
|
rcu_read_unlock();
|
| 429 |
|
|
|
| 430 |
|
|
return pid;
|
| 431 |
|
|
}
|
| 432 |
|
|
|
| 433 |
|
|
pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
|
| 434 |
|
|
{
|
| 435 |
|
|
struct upid *upid;
|
| 436 |
|
|
pid_t nr = 0;
|
| 437 |
|
|
|
| 438 |
|
|
if (pid && ns->level <= pid->level) {
|
| 439 |
|
|
upid = &pid->numbers[ns->level];
|
| 440 |
|
|
if (upid->ns == ns)
|
| 441 |
|
|
nr = upid->nr;
|
| 442 |
|
|
}
|
| 443 |
|
|
return nr;
|
| 444 |
|
|
}
|
| 445 |
|
|
|
| 446 |
|
|
pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
|
| 447 |
|
|
{
|
| 448 |
|
|
return pid_nr_ns(task_pid(tsk), ns);
|
| 449 |
|
|
}
|
| 450 |
|
|
EXPORT_SYMBOL(task_pid_nr_ns);
|
| 451 |
|
|
|
| 452 |
|
|
pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
|
| 453 |
|
|
{
|
| 454 |
|
|
return pid_nr_ns(task_tgid(tsk), ns);
|
| 455 |
|
|
}
|
| 456 |
|
|
EXPORT_SYMBOL(task_tgid_nr_ns);
|
| 457 |
|
|
|
| 458 |
|
|
pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
|
| 459 |
|
|
{
|
| 460 |
|
|
return pid_nr_ns(task_pgrp(tsk), ns);
|
| 461 |
|
|
}
|
| 462 |
|
|
EXPORT_SYMBOL(task_pgrp_nr_ns);
|
| 463 |
|
|
|
| 464 |
|
|
pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
|
| 465 |
|
|
{
|
| 466 |
|
|
return pid_nr_ns(task_session(tsk), ns);
|
| 467 |
|
|
}
|
| 468 |
|
|
EXPORT_SYMBOL(task_session_nr_ns);
|
| 469 |
|
|
|
| 470 |
|
|
/*
|
| 471 |
|
|
* Used by proc to find the first pid that is greater then or equal to nr.
|
| 472 |
|
|
*
|
| 473 |
|
|
* If there is a pid at nr this function is exactly the same as find_pid.
|
| 474 |
|
|
*/
|
| 475 |
|
|
struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
|
| 476 |
|
|
{
|
| 477 |
|
|
struct pid *pid;
|
| 478 |
|
|
|
| 479 |
|
|
do {
|
| 480 |
|
|
pid = find_pid_ns(nr, ns);
|
| 481 |
|
|
if (pid)
|
| 482 |
|
|
break;
|
| 483 |
|
|
nr = next_pidmap(ns, nr);
|
| 484 |
|
|
} while (nr > 0);
|
| 485 |
|
|
|
| 486 |
|
|
return pid;
|
| 487 |
|
|
}
|
| 488 |
|
|
EXPORT_SYMBOL_GPL(find_get_pid);
|
| 489 |
|
|
|
| 490 |
|
|
struct pid_cache {
|
| 491 |
|
|
int nr_ids;
|
| 492 |
|
|
char name[16];
|
| 493 |
|
|
struct kmem_cache *cachep;
|
| 494 |
|
|
struct list_head list;
|
| 495 |
|
|
};
|
| 496 |
|
|
|
| 497 |
|
|
static LIST_HEAD(pid_caches_lh);
|
| 498 |
|
|
static DEFINE_MUTEX(pid_caches_mutex);
|
| 499 |
|
|
|
| 500 |
|
|
/*
|
| 501 |
|
|
* creates the kmem cache to allocate pids from.
|
| 502 |
|
|
* @nr_ids: the number of numerical ids this pid will have to carry
|
| 503 |
|
|
*/
|
| 504 |
|
|
|
| 505 |
|
|
static struct kmem_cache *create_pid_cachep(int nr_ids)
|
| 506 |
|
|
{
|
| 507 |
|
|
struct pid_cache *pcache;
|
| 508 |
|
|
struct kmem_cache *cachep;
|
| 509 |
|
|
|
| 510 |
|
|
mutex_lock(&pid_caches_mutex);
|
| 511 |
|
|
list_for_each_entry (pcache, &pid_caches_lh, list)
|
| 512 |
|
|
if (pcache->nr_ids == nr_ids)
|
| 513 |
|
|
goto out;
|
| 514 |
|
|
|
| 515 |
|
|
pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
|
| 516 |
|
|
if (pcache == NULL)
|
| 517 |
|
|
goto err_alloc;
|
| 518 |
|
|
|
| 519 |
|
|
snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
|
| 520 |
|
|
cachep = kmem_cache_create(pcache->name,
|
| 521 |
|
|
sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
|
| 522 |
|
|
0, SLAB_HWCACHE_ALIGN, NULL);
|
| 523 |
|
|
if (cachep == NULL)
|
| 524 |
|
|
goto err_cachep;
|
| 525 |
|
|
|
| 526 |
|
|
pcache->nr_ids = nr_ids;
|
| 527 |
|
|
pcache->cachep = cachep;
|
| 528 |
|
|
list_add(&pcache->list, &pid_caches_lh);
|
| 529 |
|
|
out:
|
| 530 |
|
|
mutex_unlock(&pid_caches_mutex);
|
| 531 |
|
|
return pcache->cachep;
|
| 532 |
|
|
|
| 533 |
|
|
err_cachep:
|
| 534 |
|
|
kfree(pcache);
|
| 535 |
|
|
err_alloc:
|
| 536 |
|
|
mutex_unlock(&pid_caches_mutex);
|
| 537 |
|
|
return NULL;
|
| 538 |
|
|
}
|
| 539 |
|
|
|
| 540 |
|
|
#ifdef CONFIG_PID_NS
|
| 541 |
|
|
static struct pid_namespace *create_pid_namespace(int level)
|
| 542 |
|
|
{
|
| 543 |
|
|
struct pid_namespace *ns;
|
| 544 |
|
|
int i;
|
| 545 |
|
|
|
| 546 |
|
|
ns = kmem_cache_alloc(pid_ns_cachep, GFP_KERNEL);
|
| 547 |
|
|
if (ns == NULL)
|
| 548 |
|
|
goto out;
|
| 549 |
|
|
|
| 550 |
|
|
ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
|
| 551 |
|
|
if (!ns->pidmap[0].page)
|
| 552 |
|
|
goto out_free;
|
| 553 |
|
|
|
| 554 |
|
|
ns->pid_cachep = create_pid_cachep(level + 1);
|
| 555 |
|
|
if (ns->pid_cachep == NULL)
|
| 556 |
|
|
goto out_free_map;
|
| 557 |
|
|
|
| 558 |
|
|
kref_init(&ns->kref);
|
| 559 |
|
|
ns->last_pid = 0;
|
| 560 |
|
|
ns->child_reaper = NULL;
|
| 561 |
|
|
ns->level = level;
|
| 562 |
|
|
|
| 563 |
|
|
set_bit(0, ns->pidmap[0].page);
|
| 564 |
|
|
atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
|
| 565 |
|
|
|
| 566 |
|
|
for (i = 1; i < PIDMAP_ENTRIES; i++) {
|
| 567 |
|
|
ns->pidmap[i].page = 0;
|
| 568 |
|
|
atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
|
| 569 |
|
|
}
|
| 570 |
|
|
|
| 571 |
|
|
return ns;
|
| 572 |
|
|
|
| 573 |
|
|
out_free_map:
|
| 574 |
|
|
kfree(ns->pidmap[0].page);
|
| 575 |
|
|
out_free:
|
| 576 |
|
|
kmem_cache_free(pid_ns_cachep, ns);
|
| 577 |
|
|
out:
|
| 578 |
|
|
return ERR_PTR(-ENOMEM);
|
| 579 |
|
|
}
|
| 580 |
|
|
|
| 581 |
|
|
static void destroy_pid_namespace(struct pid_namespace *ns)
|
| 582 |
|
|
{
|
| 583 |
|
|
int i;
|
| 584 |
|
|
|
| 585 |
|
|
for (i = 0; i < PIDMAP_ENTRIES; i++)
|
| 586 |
|
|
kfree(ns->pidmap[i].page);
|
| 587 |
|
|
kmem_cache_free(pid_ns_cachep, ns);
|
| 588 |
|
|
}
|
| 589 |
|
|
|
| 590 |
|
|
struct pid_namespace *copy_pid_ns(unsigned long flags, struct pid_namespace *old_ns)
|
| 591 |
|
|
{
|
| 592 |
|
|
struct pid_namespace *new_ns;
|
| 593 |
|
|
|
| 594 |
|
|
BUG_ON(!old_ns);
|
| 595 |
|
|
new_ns = get_pid_ns(old_ns);
|
| 596 |
|
|
if (!(flags & CLONE_NEWPID))
|
| 597 |
|
|
goto out;
|
| 598 |
|
|
|
| 599 |
|
|
new_ns = ERR_PTR(-EINVAL);
|
| 600 |
|
|
if (flags & CLONE_THREAD)
|
| 601 |
|
|
goto out_put;
|
| 602 |
|
|
|
| 603 |
|
|
new_ns = create_pid_namespace(old_ns->level + 1);
|
| 604 |
|
|
if (!IS_ERR(new_ns))
|
| 605 |
|
|
new_ns->parent = get_pid_ns(old_ns);
|
| 606 |
|
|
|
| 607 |
|
|
out_put:
|
| 608 |
|
|
put_pid_ns(old_ns);
|
| 609 |
|
|
out:
|
| 610 |
|
|
return new_ns;
|
| 611 |
|
|
}
|
| 612 |
|
|
|
| 613 |
|
|
void free_pid_ns(struct kref *kref)
|
| 614 |
|
|
{
|
| 615 |
|
|
struct pid_namespace *ns, *parent;
|
| 616 |
|
|
|
| 617 |
|
|
ns = container_of(kref, struct pid_namespace, kref);
|
| 618 |
|
|
|
| 619 |
|
|
parent = ns->parent;
|
| 620 |
|
|
destroy_pid_namespace(ns);
|
| 621 |
|
|
|
| 622 |
|
|
if (parent != NULL)
|
| 623 |
|
|
put_pid_ns(parent);
|
| 624 |
|
|
}
|
| 625 |
|
|
#endif /* CONFIG_PID_NS */
|
| 626 |
|
|
|
| 627 |
|
|
void zap_pid_ns_processes(struct pid_namespace *pid_ns)
|
| 628 |
|
|
{
|
| 629 |
|
|
int nr;
|
| 630 |
|
|
int rc;
|
| 631 |
|
|
|
| 632 |
|
|
/*
|
| 633 |
|
|
* The last thread in the cgroup-init thread group is terminating.
|
| 634 |
|
|
* Find remaining pid_ts in the namespace, signal and wait for them
|
| 635 |
|
|
* to exit.
|
| 636 |
|
|
*
|
| 637 |
|
|
* Note: This signals each threads in the namespace - even those that
|
| 638 |
|
|
* belong to the same thread group, To avoid this, we would have
|
| 639 |
|
|
* to walk the entire tasklist looking a processes in this
|
| 640 |
|
|
* namespace, but that could be unnecessarily expensive if the
|
| 641 |
|
|
* pid namespace has just a few processes. Or we need to
|
| 642 |
|
|
* maintain a tasklist for each pid namespace.
|
| 643 |
|
|
*
|
| 644 |
|
|
*/
|
| 645 |
|
|
read_lock(&tasklist_lock);
|
| 646 |
|
|
nr = next_pidmap(pid_ns, 1);
|
| 647 |
|
|
while (nr > 0) {
|
| 648 |
|
|
kill_proc_info(SIGKILL, SEND_SIG_PRIV, nr);
|
| 649 |
|
|
nr = next_pidmap(pid_ns, nr);
|
| 650 |
|
|
}
|
| 651 |
|
|
read_unlock(&tasklist_lock);
|
| 652 |
|
|
|
| 653 |
|
|
do {
|
| 654 |
|
|
clear_thread_flag(TIF_SIGPENDING);
|
| 655 |
|
|
rc = sys_wait4(-1, NULL, __WALL, NULL);
|
| 656 |
|
|
} while (rc != -ECHILD);
|
| 657 |
|
|
|
| 658 |
|
|
|
| 659 |
|
|
/* Child reaper for the pid namespace is going away */
|
| 660 |
|
|
pid_ns->child_reaper = NULL;
|
| 661 |
|
|
return;
|
| 662 |
|
|
}
|
| 663 |
|
|
|
| 664 |
|
|
/*
|
| 665 |
|
|
* The pid hash table is scaled according to the amount of memory in the
|
| 666 |
|
|
* machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
|
| 667 |
|
|
* more.
|
| 668 |
|
|
*/
|
| 669 |
|
|
void __init pidhash_init(void)
|
| 670 |
|
|
{
|
| 671 |
|
|
int i, pidhash_size;
|
| 672 |
|
|
unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT);
|
| 673 |
|
|
|
| 674 |
|
|
pidhash_shift = max(4, fls(megabytes * 4));
|
| 675 |
|
|
pidhash_shift = min(12, pidhash_shift);
|
| 676 |
|
|
pidhash_size = 1 << pidhash_shift;
|
| 677 |
|
|
|
| 678 |
|
|
printk("PID hash table entries: %d (order: %d, %Zd bytes)\n",
|
| 679 |
|
|
pidhash_size, pidhash_shift,
|
| 680 |
|
|
pidhash_size * sizeof(struct hlist_head));
|
| 681 |
|
|
|
| 682 |
|
|
pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash)));
|
| 683 |
|
|
if (!pid_hash)
|
| 684 |
|
|
panic("Could not alloc pidhash!\n");
|
| 685 |
|
|
for (i = 0; i < pidhash_size; i++)
|
| 686 |
|
|
INIT_HLIST_HEAD(&pid_hash[i]);
|
| 687 |
|
|
}
|
| 688 |
|
|
|
| 689 |
|
|
void __init pidmap_init(void)
|
| 690 |
|
|
{
|
| 691 |
|
|
init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
|
| 692 |
|
|
/* Reserve PID 0. We never call free_pidmap(0) */
|
| 693 |
|
|
set_bit(0, init_pid_ns.pidmap[0].page);
|
| 694 |
|
|
atomic_dec(&init_pid_ns.pidmap[0].nr_free);
|
| 695 |
|
|
|
| 696 |
|
|
init_pid_ns.pid_cachep = create_pid_cachep(1);
|
| 697 |
|
|
if (init_pid_ns.pid_cachep == NULL)
|
| 698 |
|
|
panic("Can't create pid_1 cachep\n");
|
| 699 |
|
|
|
| 700 |
|
|
pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
|
| 701 |
|
|
}
|