OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [kernel/] [profile.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 *  linux/kernel/profile.c
3
 *  Simple profiling. Manages a direct-mapped profile hit count buffer,
4
 *  with configurable resolution, support for restricting the cpus on
5
 *  which profiling is done, and switching between cpu time and
6
 *  schedule() calls via kernel command line parameters passed at boot.
7
 *
8
 *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
9
 *      Red Hat, July 2004
10
 *  Consolidation of architecture support code for profiling,
11
 *      William Irwin, Oracle, July 2004
12
 *  Amortized hit count accounting via per-cpu open-addressed hashtables
13
 *      to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
14
 */
15
 
16
#include <linux/module.h>
17
#include <linux/profile.h>
18
#include <linux/bootmem.h>
19
#include <linux/notifier.h>
20
#include <linux/mm.h>
21
#include <linux/cpumask.h>
22
#include <linux/cpu.h>
23
#include <linux/profile.h>
24
#include <linux/highmem.h>
25
#include <linux/mutex.h>
26
#include <asm/sections.h>
27
#include <asm/semaphore.h>
28
#include <asm/irq_regs.h>
29
#include <asm/ptrace.h>
30
 
31
struct profile_hit {
32
        u32 pc, hits;
33
};
34
#define PROFILE_GRPSHIFT        3
35
#define PROFILE_GRPSZ           (1 << PROFILE_GRPSHIFT)
36
#define NR_PROFILE_HIT          (PAGE_SIZE/sizeof(struct profile_hit))
37
#define NR_PROFILE_GRP          (NR_PROFILE_HIT/PROFILE_GRPSZ)
38
 
39
/* Oprofile timer tick hook */
40
static int (*timer_hook)(struct pt_regs *) __read_mostly;
41
 
42
static atomic_t *prof_buffer;
43
static unsigned long prof_len, prof_shift;
44
 
45
int prof_on __read_mostly;
46
EXPORT_SYMBOL_GPL(prof_on);
47
 
48
static cpumask_t prof_cpu_mask = CPU_MASK_ALL;
49
#ifdef CONFIG_SMP
50
static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
51
static DEFINE_PER_CPU(int, cpu_profile_flip);
52
static DEFINE_MUTEX(profile_flip_mutex);
53
#endif /* CONFIG_SMP */
54
 
55
static int __init profile_setup(char * str)
56
{
57
        static char __initdata schedstr[] = "schedule";
58
        static char __initdata sleepstr[] = "sleep";
59
        static char __initdata kvmstr[] = "kvm";
60
        int par;
61
 
62
        if (!strncmp(str, sleepstr, strlen(sleepstr))) {
63
#ifdef CONFIG_SCHEDSTATS
64
                prof_on = SLEEP_PROFILING;
65
                if (str[strlen(sleepstr)] == ',')
66
                        str += strlen(sleepstr) + 1;
67
                if (get_option(&str, &par))
68
                        prof_shift = par;
69
                printk(KERN_INFO
70
                        "kernel sleep profiling enabled (shift: %ld)\n",
71
                        prof_shift);
72
#else
73
                printk(KERN_WARNING
74
                        "kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
75
#endif /* CONFIG_SCHEDSTATS */
76
        } else if (!strncmp(str, schedstr, strlen(schedstr))) {
77
                prof_on = SCHED_PROFILING;
78
                if (str[strlen(schedstr)] == ',')
79
                        str += strlen(schedstr) + 1;
80
                if (get_option(&str, &par))
81
                        prof_shift = par;
82
                printk(KERN_INFO
83
                        "kernel schedule profiling enabled (shift: %ld)\n",
84
                        prof_shift);
85
        } else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
86
                prof_on = KVM_PROFILING;
87
                if (str[strlen(kvmstr)] == ',')
88
                        str += strlen(kvmstr) + 1;
89
                if (get_option(&str, &par))
90
                        prof_shift = par;
91
                printk(KERN_INFO
92
                        "kernel KVM profiling enabled (shift: %ld)\n",
93
                        prof_shift);
94
        } else if (get_option(&str, &par)) {
95
                prof_shift = par;
96
                prof_on = CPU_PROFILING;
97
                printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
98
                        prof_shift);
99
        }
100
        return 1;
101
}
102
__setup("profile=", profile_setup);
103
 
104
 
105
void __init profile_init(void)
106
{
107
        if (!prof_on)
108
                return;
109
 
110
        /* only text is profiled */
111
        prof_len = (_etext - _stext) >> prof_shift;
112
        prof_buffer = alloc_bootmem(prof_len*sizeof(atomic_t));
113
}
114
 
115
/* Profile event notifications */
116
 
117
#ifdef CONFIG_PROFILING
118
 
119
static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
120
static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
121
static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
122
 
123
void profile_task_exit(struct task_struct * task)
124
{
125
        blocking_notifier_call_chain(&task_exit_notifier, 0, task);
126
}
127
 
128
int profile_handoff_task(struct task_struct * task)
129
{
130
        int ret;
131
        ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
132
        return (ret == NOTIFY_OK) ? 1 : 0;
133
}
134
 
135
void profile_munmap(unsigned long addr)
136
{
137
        blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
138
}
139
 
140
int task_handoff_register(struct notifier_block * n)
141
{
142
        return atomic_notifier_chain_register(&task_free_notifier, n);
143
}
144
 
145
int task_handoff_unregister(struct notifier_block * n)
146
{
147
        return atomic_notifier_chain_unregister(&task_free_notifier, n);
148
}
149
 
150
int profile_event_register(enum profile_type type, struct notifier_block * n)
151
{
152
        int err = -EINVAL;
153
 
154
        switch (type) {
155
                case PROFILE_TASK_EXIT:
156
                        err = blocking_notifier_chain_register(
157
                                        &task_exit_notifier, n);
158
                        break;
159
                case PROFILE_MUNMAP:
160
                        err = blocking_notifier_chain_register(
161
                                        &munmap_notifier, n);
162
                        break;
163
        }
164
 
165
        return err;
166
}
167
 
168
 
169
int profile_event_unregister(enum profile_type type, struct notifier_block * n)
170
{
171
        int err = -EINVAL;
172
 
173
        switch (type) {
174
                case PROFILE_TASK_EXIT:
175
                        err = blocking_notifier_chain_unregister(
176
                                        &task_exit_notifier, n);
177
                        break;
178
                case PROFILE_MUNMAP:
179
                        err = blocking_notifier_chain_unregister(
180
                                        &munmap_notifier, n);
181
                        break;
182
        }
183
 
184
        return err;
185
}
186
 
187
int register_timer_hook(int (*hook)(struct pt_regs *))
188
{
189
        if (timer_hook)
190
                return -EBUSY;
191
        timer_hook = hook;
192
        return 0;
193
}
194
 
195
void unregister_timer_hook(int (*hook)(struct pt_regs *))
196
{
197
        WARN_ON(hook != timer_hook);
198
        timer_hook = NULL;
199
        /* make sure all CPUs see the NULL hook */
200
        synchronize_sched();  /* Allow ongoing interrupts to complete. */
201
}
202
 
203
EXPORT_SYMBOL_GPL(register_timer_hook);
204
EXPORT_SYMBOL_GPL(unregister_timer_hook);
205
EXPORT_SYMBOL_GPL(task_handoff_register);
206
EXPORT_SYMBOL_GPL(task_handoff_unregister);
207
EXPORT_SYMBOL_GPL(profile_event_register);
208
EXPORT_SYMBOL_GPL(profile_event_unregister);
209
 
210
#endif /* CONFIG_PROFILING */
211
 
212
 
213
#ifdef CONFIG_SMP
214
/*
215
 * Each cpu has a pair of open-addressed hashtables for pending
216
 * profile hits. read_profile() IPI's all cpus to request them
217
 * to flip buffers and flushes their contents to prof_buffer itself.
218
 * Flip requests are serialized by the profile_flip_mutex. The sole
219
 * use of having a second hashtable is for avoiding cacheline
220
 * contention that would otherwise happen during flushes of pending
221
 * profile hits required for the accuracy of reported profile hits
222
 * and so resurrect the interrupt livelock issue.
223
 *
224
 * The open-addressed hashtables are indexed by profile buffer slot
225
 * and hold the number of pending hits to that profile buffer slot on
226
 * a cpu in an entry. When the hashtable overflows, all pending hits
227
 * are accounted to their corresponding profile buffer slots with
228
 * atomic_add() and the hashtable emptied. As numerous pending hits
229
 * may be accounted to a profile buffer slot in a hashtable entry,
230
 * this amortizes a number of atomic profile buffer increments likely
231
 * to be far larger than the number of entries in the hashtable,
232
 * particularly given that the number of distinct profile buffer
233
 * positions to which hits are accounted during short intervals (e.g.
234
 * several seconds) is usually very small. Exclusion from buffer
235
 * flipping is provided by interrupt disablement (note that for
236
 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
237
 * process context).
238
 * The hash function is meant to be lightweight as opposed to strong,
239
 * and was vaguely inspired by ppc64 firmware-supported inverted
240
 * pagetable hash functions, but uses a full hashtable full of finite
241
 * collision chains, not just pairs of them.
242
 *
243
 * -- wli
244
 */
245
static void __profile_flip_buffers(void *unused)
246
{
247
        int cpu = smp_processor_id();
248
 
249
        per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
250
}
251
 
252
static void profile_flip_buffers(void)
253
{
254
        int i, j, cpu;
255
 
256
        mutex_lock(&profile_flip_mutex);
257
        j = per_cpu(cpu_profile_flip, get_cpu());
258
        put_cpu();
259
        on_each_cpu(__profile_flip_buffers, NULL, 0, 1);
260
        for_each_online_cpu(cpu) {
261
                struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
262
                for (i = 0; i < NR_PROFILE_HIT; ++i) {
263
                        if (!hits[i].hits) {
264
                                if (hits[i].pc)
265
                                        hits[i].pc = 0;
266
                                continue;
267
                        }
268
                        atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
269
                        hits[i].hits = hits[i].pc = 0;
270
                }
271
        }
272
        mutex_unlock(&profile_flip_mutex);
273
}
274
 
275
static void profile_discard_flip_buffers(void)
276
{
277
        int i, cpu;
278
 
279
        mutex_lock(&profile_flip_mutex);
280
        i = per_cpu(cpu_profile_flip, get_cpu());
281
        put_cpu();
282
        on_each_cpu(__profile_flip_buffers, NULL, 0, 1);
283
        for_each_online_cpu(cpu) {
284
                struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
285
                memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
286
        }
287
        mutex_unlock(&profile_flip_mutex);
288
}
289
 
290
void profile_hits(int type, void *__pc, unsigned int nr_hits)
291
{
292
        unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
293
        int i, j, cpu;
294
        struct profile_hit *hits;
295
 
296
        if (prof_on != type || !prof_buffer)
297
                return;
298
        pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
299
        i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
300
        secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
301
        cpu = get_cpu();
302
        hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
303
        if (!hits) {
304
                put_cpu();
305
                return;
306
        }
307
        /*
308
         * We buffer the global profiler buffer into a per-CPU
309
         * queue and thus reduce the number of global (and possibly
310
         * NUMA-alien) accesses. The write-queue is self-coalescing:
311
         */
312
        local_irq_save(flags);
313
        do {
314
                for (j = 0; j < PROFILE_GRPSZ; ++j) {
315
                        if (hits[i + j].pc == pc) {
316
                                hits[i + j].hits += nr_hits;
317
                                goto out;
318
                        } else if (!hits[i + j].hits) {
319
                                hits[i + j].pc = pc;
320
                                hits[i + j].hits = nr_hits;
321
                                goto out;
322
                        }
323
                }
324
                i = (i + secondary) & (NR_PROFILE_HIT - 1);
325
        } while (i != primary);
326
 
327
        /*
328
         * Add the current hit(s) and flush the write-queue out
329
         * to the global buffer:
330
         */
331
        atomic_add(nr_hits, &prof_buffer[pc]);
332
        for (i = 0; i < NR_PROFILE_HIT; ++i) {
333
                atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
334
                hits[i].pc = hits[i].hits = 0;
335
        }
336
out:
337
        local_irq_restore(flags);
338
        put_cpu();
339
}
340
 
341
static int __devinit profile_cpu_callback(struct notifier_block *info,
342
                                        unsigned long action, void *__cpu)
343
{
344
        int node, cpu = (unsigned long)__cpu;
345
        struct page *page;
346
 
347
        switch (action) {
348
        case CPU_UP_PREPARE:
349
        case CPU_UP_PREPARE_FROZEN:
350
                node = cpu_to_node(cpu);
351
                per_cpu(cpu_profile_flip, cpu) = 0;
352
                if (!per_cpu(cpu_profile_hits, cpu)[1]) {
353
                        page = alloc_pages_node(node,
354
                                        GFP_KERNEL | __GFP_ZERO,
355
                                        0);
356
                        if (!page)
357
                                return NOTIFY_BAD;
358
                        per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
359
                }
360
                if (!per_cpu(cpu_profile_hits, cpu)[0]) {
361
                        page = alloc_pages_node(node,
362
                                        GFP_KERNEL | __GFP_ZERO,
363
                                        0);
364
                        if (!page)
365
                                goto out_free;
366
                        per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
367
                }
368
                break;
369
        out_free:
370
                page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
371
                per_cpu(cpu_profile_hits, cpu)[1] = NULL;
372
                __free_page(page);
373
                return NOTIFY_BAD;
374
        case CPU_ONLINE:
375
        case CPU_ONLINE_FROZEN:
376
                cpu_set(cpu, prof_cpu_mask);
377
                break;
378
        case CPU_UP_CANCELED:
379
        case CPU_UP_CANCELED_FROZEN:
380
        case CPU_DEAD:
381
        case CPU_DEAD_FROZEN:
382
                cpu_clear(cpu, prof_cpu_mask);
383
                if (per_cpu(cpu_profile_hits, cpu)[0]) {
384
                        page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
385
                        per_cpu(cpu_profile_hits, cpu)[0] = NULL;
386
                        __free_page(page);
387
                }
388
                if (per_cpu(cpu_profile_hits, cpu)[1]) {
389
                        page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
390
                        per_cpu(cpu_profile_hits, cpu)[1] = NULL;
391
                        __free_page(page);
392
                }
393
                break;
394
        }
395
        return NOTIFY_OK;
396
}
397
#else /* !CONFIG_SMP */
398
#define profile_flip_buffers()          do { } while (0)
399
#define profile_discard_flip_buffers()  do { } while (0)
400
#define profile_cpu_callback            NULL
401
 
402
void profile_hits(int type, void *__pc, unsigned int nr_hits)
403
{
404
        unsigned long pc;
405
 
406
        if (prof_on != type || !prof_buffer)
407
                return;
408
        pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
409
        atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
410
}
411
#endif /* !CONFIG_SMP */
412
 
413
EXPORT_SYMBOL_GPL(profile_hits);
414
 
415
void profile_tick(int type)
416
{
417
        struct pt_regs *regs = get_irq_regs();
418
 
419
        if (type == CPU_PROFILING && timer_hook)
420
                timer_hook(regs);
421
        if (!user_mode(regs) && cpu_isset(smp_processor_id(), prof_cpu_mask))
422
                profile_hit(type, (void *)profile_pc(regs));
423
}
424
 
425
#ifdef CONFIG_PROC_FS
426
#include <linux/proc_fs.h>
427
#include <asm/uaccess.h>
428
#include <asm/ptrace.h>
429
 
430
static int prof_cpu_mask_read_proc (char *page, char **start, off_t off,
431
                        int count, int *eof, void *data)
432
{
433
        int len = cpumask_scnprintf(page, count, *(cpumask_t *)data);
434
        if (count - len < 2)
435
                return -EINVAL;
436
        len += sprintf(page + len, "\n");
437
        return len;
438
}
439
 
440
static int prof_cpu_mask_write_proc (struct file *file, const char __user *buffer,
441
                                        unsigned long count, void *data)
442
{
443
        cpumask_t *mask = (cpumask_t *)data;
444
        unsigned long full_count = count, err;
445
        cpumask_t new_value;
446
 
447
        err = cpumask_parse_user(buffer, count, new_value);
448
        if (err)
449
                return err;
450
 
451
        *mask = new_value;
452
        return full_count;
453
}
454
 
455
void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
456
{
457
        struct proc_dir_entry *entry;
458
 
459
        /* create /proc/irq/prof_cpu_mask */
460
        if (!(entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir)))
461
                return;
462
        entry->data = (void *)&prof_cpu_mask;
463
        entry->read_proc = prof_cpu_mask_read_proc;
464
        entry->write_proc = prof_cpu_mask_write_proc;
465
}
466
 
467
/*
468
 * This function accesses profiling information. The returned data is
469
 * binary: the sampling step and the actual contents of the profile
470
 * buffer. Use of the program readprofile is recommended in order to
471
 * get meaningful info out of these data.
472
 */
473
static ssize_t
474
read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
475
{
476
        unsigned long p = *ppos;
477
        ssize_t read;
478
        char * pnt;
479
        unsigned int sample_step = 1 << prof_shift;
480
 
481
        profile_flip_buffers();
482
        if (p >= (prof_len+1)*sizeof(unsigned int))
483
                return 0;
484
        if (count > (prof_len+1)*sizeof(unsigned int) - p)
485
                count = (prof_len+1)*sizeof(unsigned int) - p;
486
        read = 0;
487
 
488
        while (p < sizeof(unsigned int) && count > 0) {
489
                if (put_user(*((char *)(&sample_step)+p),buf))
490
                        return -EFAULT;
491
                buf++; p++; count--; read++;
492
        }
493
        pnt = (char *)prof_buffer + p - sizeof(atomic_t);
494
        if (copy_to_user(buf,(void *)pnt,count))
495
                return -EFAULT;
496
        read += count;
497
        *ppos += read;
498
        return read;
499
}
500
 
501
/*
502
 * Writing to /proc/profile resets the counters
503
 *
504
 * Writing a 'profiling multiplier' value into it also re-sets the profiling
505
 * interrupt frequency, on architectures that support this.
506
 */
507
static ssize_t write_profile(struct file *file, const char __user *buf,
508
                             size_t count, loff_t *ppos)
509
{
510
#ifdef CONFIG_SMP
511
        extern int setup_profiling_timer (unsigned int multiplier);
512
 
513
        if (count == sizeof(int)) {
514
                unsigned int multiplier;
515
 
516
                if (copy_from_user(&multiplier, buf, sizeof(int)))
517
                        return -EFAULT;
518
 
519
                if (setup_profiling_timer(multiplier))
520
                        return -EINVAL;
521
        }
522
#endif
523
        profile_discard_flip_buffers();
524
        memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
525
        return count;
526
}
527
 
528
static const struct file_operations proc_profile_operations = {
529
        .read           = read_profile,
530
        .write          = write_profile,
531
};
532
 
533
#ifdef CONFIG_SMP
534
static void __init profile_nop(void *unused)
535
{
536
}
537
 
538
static int __init create_hash_tables(void)
539
{
540
        int cpu;
541
 
542
        for_each_online_cpu(cpu) {
543
                int node = cpu_to_node(cpu);
544
                struct page *page;
545
 
546
                page = alloc_pages_node(node,
547
                                GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
548
                                0);
549
                if (!page)
550
                        goto out_cleanup;
551
                per_cpu(cpu_profile_hits, cpu)[1]
552
                                = (struct profile_hit *)page_address(page);
553
                page = alloc_pages_node(node,
554
                                GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
555
                                0);
556
                if (!page)
557
                        goto out_cleanup;
558
                per_cpu(cpu_profile_hits, cpu)[0]
559
                                = (struct profile_hit *)page_address(page);
560
        }
561
        return 0;
562
out_cleanup:
563
        prof_on = 0;
564
        smp_mb();
565
        on_each_cpu(profile_nop, NULL, 0, 1);
566
        for_each_online_cpu(cpu) {
567
                struct page *page;
568
 
569
                if (per_cpu(cpu_profile_hits, cpu)[0]) {
570
                        page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
571
                        per_cpu(cpu_profile_hits, cpu)[0] = NULL;
572
                        __free_page(page);
573
                }
574
                if (per_cpu(cpu_profile_hits, cpu)[1]) {
575
                        page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
576
                        per_cpu(cpu_profile_hits, cpu)[1] = NULL;
577
                        __free_page(page);
578
                }
579
        }
580
        return -1;
581
}
582
#else
583
#define create_hash_tables()                    ({ 0; })
584
#endif
585
 
586
static int __init create_proc_profile(void)
587
{
588
        struct proc_dir_entry *entry;
589
 
590
        if (!prof_on)
591
                return 0;
592
        if (create_hash_tables())
593
                return -1;
594
        if (!(entry = create_proc_entry("profile", S_IWUSR | S_IRUGO, NULL)))
595
                return 0;
596
        entry->proc_fops = &proc_profile_operations;
597
        entry->size = (1+prof_len) * sizeof(atomic_t);
598
        hotcpu_notifier(profile_cpu_callback, 0);
599
        return 0;
600
}
601
module_init(create_proc_profile);
602
#endif /* CONFIG_PROC_FS */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.