1 |
62 |
marcus.erl |
/*
|
2 |
|
|
* linux/kernel/profile.c
|
3 |
|
|
* Simple profiling. Manages a direct-mapped profile hit count buffer,
|
4 |
|
|
* with configurable resolution, support for restricting the cpus on
|
5 |
|
|
* which profiling is done, and switching between cpu time and
|
6 |
|
|
* schedule() calls via kernel command line parameters passed at boot.
|
7 |
|
|
*
|
8 |
|
|
* Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
|
9 |
|
|
* Red Hat, July 2004
|
10 |
|
|
* Consolidation of architecture support code for profiling,
|
11 |
|
|
* William Irwin, Oracle, July 2004
|
12 |
|
|
* Amortized hit count accounting via per-cpu open-addressed hashtables
|
13 |
|
|
* to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
|
14 |
|
|
*/
|
15 |
|
|
|
16 |
|
|
#include <linux/module.h>
|
17 |
|
|
#include <linux/profile.h>
|
18 |
|
|
#include <linux/bootmem.h>
|
19 |
|
|
#include <linux/notifier.h>
|
20 |
|
|
#include <linux/mm.h>
|
21 |
|
|
#include <linux/cpumask.h>
|
22 |
|
|
#include <linux/cpu.h>
|
23 |
|
|
#include <linux/profile.h>
|
24 |
|
|
#include <linux/highmem.h>
|
25 |
|
|
#include <linux/mutex.h>
|
26 |
|
|
#include <asm/sections.h>
|
27 |
|
|
#include <asm/semaphore.h>
|
28 |
|
|
#include <asm/irq_regs.h>
|
29 |
|
|
#include <asm/ptrace.h>
|
30 |
|
|
|
31 |
|
|
struct profile_hit {
|
32 |
|
|
u32 pc, hits;
|
33 |
|
|
};
|
34 |
|
|
#define PROFILE_GRPSHIFT 3
|
35 |
|
|
#define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT)
|
36 |
|
|
#define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit))
|
37 |
|
|
#define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ)
|
38 |
|
|
|
39 |
|
|
/* Oprofile timer tick hook */
|
40 |
|
|
static int (*timer_hook)(struct pt_regs *) __read_mostly;
|
41 |
|
|
|
42 |
|
|
static atomic_t *prof_buffer;
|
43 |
|
|
static unsigned long prof_len, prof_shift;
|
44 |
|
|
|
45 |
|
|
int prof_on __read_mostly;
|
46 |
|
|
EXPORT_SYMBOL_GPL(prof_on);
|
47 |
|
|
|
48 |
|
|
static cpumask_t prof_cpu_mask = CPU_MASK_ALL;
|
49 |
|
|
#ifdef CONFIG_SMP
|
50 |
|
|
static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
|
51 |
|
|
static DEFINE_PER_CPU(int, cpu_profile_flip);
|
52 |
|
|
static DEFINE_MUTEX(profile_flip_mutex);
|
53 |
|
|
#endif /* CONFIG_SMP */
|
54 |
|
|
|
55 |
|
|
static int __init profile_setup(char * str)
|
56 |
|
|
{
|
57 |
|
|
static char __initdata schedstr[] = "schedule";
|
58 |
|
|
static char __initdata sleepstr[] = "sleep";
|
59 |
|
|
static char __initdata kvmstr[] = "kvm";
|
60 |
|
|
int par;
|
61 |
|
|
|
62 |
|
|
if (!strncmp(str, sleepstr, strlen(sleepstr))) {
|
63 |
|
|
#ifdef CONFIG_SCHEDSTATS
|
64 |
|
|
prof_on = SLEEP_PROFILING;
|
65 |
|
|
if (str[strlen(sleepstr)] == ',')
|
66 |
|
|
str += strlen(sleepstr) + 1;
|
67 |
|
|
if (get_option(&str, &par))
|
68 |
|
|
prof_shift = par;
|
69 |
|
|
printk(KERN_INFO
|
70 |
|
|
"kernel sleep profiling enabled (shift: %ld)\n",
|
71 |
|
|
prof_shift);
|
72 |
|
|
#else
|
73 |
|
|
printk(KERN_WARNING
|
74 |
|
|
"kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
|
75 |
|
|
#endif /* CONFIG_SCHEDSTATS */
|
76 |
|
|
} else if (!strncmp(str, schedstr, strlen(schedstr))) {
|
77 |
|
|
prof_on = SCHED_PROFILING;
|
78 |
|
|
if (str[strlen(schedstr)] == ',')
|
79 |
|
|
str += strlen(schedstr) + 1;
|
80 |
|
|
if (get_option(&str, &par))
|
81 |
|
|
prof_shift = par;
|
82 |
|
|
printk(KERN_INFO
|
83 |
|
|
"kernel schedule profiling enabled (shift: %ld)\n",
|
84 |
|
|
prof_shift);
|
85 |
|
|
} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
|
86 |
|
|
prof_on = KVM_PROFILING;
|
87 |
|
|
if (str[strlen(kvmstr)] == ',')
|
88 |
|
|
str += strlen(kvmstr) + 1;
|
89 |
|
|
if (get_option(&str, &par))
|
90 |
|
|
prof_shift = par;
|
91 |
|
|
printk(KERN_INFO
|
92 |
|
|
"kernel KVM profiling enabled (shift: %ld)\n",
|
93 |
|
|
prof_shift);
|
94 |
|
|
} else if (get_option(&str, &par)) {
|
95 |
|
|
prof_shift = par;
|
96 |
|
|
prof_on = CPU_PROFILING;
|
97 |
|
|
printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
|
98 |
|
|
prof_shift);
|
99 |
|
|
}
|
100 |
|
|
return 1;
|
101 |
|
|
}
|
102 |
|
|
__setup("profile=", profile_setup);
|
103 |
|
|
|
104 |
|
|
|
105 |
|
|
void __init profile_init(void)
|
106 |
|
|
{
|
107 |
|
|
if (!prof_on)
|
108 |
|
|
return;
|
109 |
|
|
|
110 |
|
|
/* only text is profiled */
|
111 |
|
|
prof_len = (_etext - _stext) >> prof_shift;
|
112 |
|
|
prof_buffer = alloc_bootmem(prof_len*sizeof(atomic_t));
|
113 |
|
|
}
|
114 |
|
|
|
115 |
|
|
/* Profile event notifications */
|
116 |
|
|
|
117 |
|
|
#ifdef CONFIG_PROFILING
|
118 |
|
|
|
119 |
|
|
static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
|
120 |
|
|
static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
|
121 |
|
|
static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
|
122 |
|
|
|
123 |
|
|
void profile_task_exit(struct task_struct * task)
|
124 |
|
|
{
|
125 |
|
|
blocking_notifier_call_chain(&task_exit_notifier, 0, task);
|
126 |
|
|
}
|
127 |
|
|
|
128 |
|
|
int profile_handoff_task(struct task_struct * task)
|
129 |
|
|
{
|
130 |
|
|
int ret;
|
131 |
|
|
ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
|
132 |
|
|
return (ret == NOTIFY_OK) ? 1 : 0;
|
133 |
|
|
}
|
134 |
|
|
|
135 |
|
|
void profile_munmap(unsigned long addr)
|
136 |
|
|
{
|
137 |
|
|
blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
|
138 |
|
|
}
|
139 |
|
|
|
140 |
|
|
int task_handoff_register(struct notifier_block * n)
|
141 |
|
|
{
|
142 |
|
|
return atomic_notifier_chain_register(&task_free_notifier, n);
|
143 |
|
|
}
|
144 |
|
|
|
145 |
|
|
int task_handoff_unregister(struct notifier_block * n)
|
146 |
|
|
{
|
147 |
|
|
return atomic_notifier_chain_unregister(&task_free_notifier, n);
|
148 |
|
|
}
|
149 |
|
|
|
150 |
|
|
int profile_event_register(enum profile_type type, struct notifier_block * n)
|
151 |
|
|
{
|
152 |
|
|
int err = -EINVAL;
|
153 |
|
|
|
154 |
|
|
switch (type) {
|
155 |
|
|
case PROFILE_TASK_EXIT:
|
156 |
|
|
err = blocking_notifier_chain_register(
|
157 |
|
|
&task_exit_notifier, n);
|
158 |
|
|
break;
|
159 |
|
|
case PROFILE_MUNMAP:
|
160 |
|
|
err = blocking_notifier_chain_register(
|
161 |
|
|
&munmap_notifier, n);
|
162 |
|
|
break;
|
163 |
|
|
}
|
164 |
|
|
|
165 |
|
|
return err;
|
166 |
|
|
}
|
167 |
|
|
|
168 |
|
|
|
169 |
|
|
int profile_event_unregister(enum profile_type type, struct notifier_block * n)
|
170 |
|
|
{
|
171 |
|
|
int err = -EINVAL;
|
172 |
|
|
|
173 |
|
|
switch (type) {
|
174 |
|
|
case PROFILE_TASK_EXIT:
|
175 |
|
|
err = blocking_notifier_chain_unregister(
|
176 |
|
|
&task_exit_notifier, n);
|
177 |
|
|
break;
|
178 |
|
|
case PROFILE_MUNMAP:
|
179 |
|
|
err = blocking_notifier_chain_unregister(
|
180 |
|
|
&munmap_notifier, n);
|
181 |
|
|
break;
|
182 |
|
|
}
|
183 |
|
|
|
184 |
|
|
return err;
|
185 |
|
|
}
|
186 |
|
|
|
187 |
|
|
int register_timer_hook(int (*hook)(struct pt_regs *))
|
188 |
|
|
{
|
189 |
|
|
if (timer_hook)
|
190 |
|
|
return -EBUSY;
|
191 |
|
|
timer_hook = hook;
|
192 |
|
|
return 0;
|
193 |
|
|
}
|
194 |
|
|
|
195 |
|
|
void unregister_timer_hook(int (*hook)(struct pt_regs *))
|
196 |
|
|
{
|
197 |
|
|
WARN_ON(hook != timer_hook);
|
198 |
|
|
timer_hook = NULL;
|
199 |
|
|
/* make sure all CPUs see the NULL hook */
|
200 |
|
|
synchronize_sched(); /* Allow ongoing interrupts to complete. */
|
201 |
|
|
}
|
202 |
|
|
|
203 |
|
|
EXPORT_SYMBOL_GPL(register_timer_hook);
|
204 |
|
|
EXPORT_SYMBOL_GPL(unregister_timer_hook);
|
205 |
|
|
EXPORT_SYMBOL_GPL(task_handoff_register);
|
206 |
|
|
EXPORT_SYMBOL_GPL(task_handoff_unregister);
|
207 |
|
|
EXPORT_SYMBOL_GPL(profile_event_register);
|
208 |
|
|
EXPORT_SYMBOL_GPL(profile_event_unregister);
|
209 |
|
|
|
210 |
|
|
#endif /* CONFIG_PROFILING */
|
211 |
|
|
|
212 |
|
|
|
213 |
|
|
#ifdef CONFIG_SMP
|
214 |
|
|
/*
|
215 |
|
|
* Each cpu has a pair of open-addressed hashtables for pending
|
216 |
|
|
* profile hits. read_profile() IPI's all cpus to request them
|
217 |
|
|
* to flip buffers and flushes their contents to prof_buffer itself.
|
218 |
|
|
* Flip requests are serialized by the profile_flip_mutex. The sole
|
219 |
|
|
* use of having a second hashtable is for avoiding cacheline
|
220 |
|
|
* contention that would otherwise happen during flushes of pending
|
221 |
|
|
* profile hits required for the accuracy of reported profile hits
|
222 |
|
|
* and so resurrect the interrupt livelock issue.
|
223 |
|
|
*
|
224 |
|
|
* The open-addressed hashtables are indexed by profile buffer slot
|
225 |
|
|
* and hold the number of pending hits to that profile buffer slot on
|
226 |
|
|
* a cpu in an entry. When the hashtable overflows, all pending hits
|
227 |
|
|
* are accounted to their corresponding profile buffer slots with
|
228 |
|
|
* atomic_add() and the hashtable emptied. As numerous pending hits
|
229 |
|
|
* may be accounted to a profile buffer slot in a hashtable entry,
|
230 |
|
|
* this amortizes a number of atomic profile buffer increments likely
|
231 |
|
|
* to be far larger than the number of entries in the hashtable,
|
232 |
|
|
* particularly given that the number of distinct profile buffer
|
233 |
|
|
* positions to which hits are accounted during short intervals (e.g.
|
234 |
|
|
* several seconds) is usually very small. Exclusion from buffer
|
235 |
|
|
* flipping is provided by interrupt disablement (note that for
|
236 |
|
|
* SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
|
237 |
|
|
* process context).
|
238 |
|
|
* The hash function is meant to be lightweight as opposed to strong,
|
239 |
|
|
* and was vaguely inspired by ppc64 firmware-supported inverted
|
240 |
|
|
* pagetable hash functions, but uses a full hashtable full of finite
|
241 |
|
|
* collision chains, not just pairs of them.
|
242 |
|
|
*
|
243 |
|
|
* -- wli
|
244 |
|
|
*/
|
245 |
|
|
static void __profile_flip_buffers(void *unused)
|
246 |
|
|
{
|
247 |
|
|
int cpu = smp_processor_id();
|
248 |
|
|
|
249 |
|
|
per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
|
250 |
|
|
}
|
251 |
|
|
|
252 |
|
|
static void profile_flip_buffers(void)
|
253 |
|
|
{
|
254 |
|
|
int i, j, cpu;
|
255 |
|
|
|
256 |
|
|
mutex_lock(&profile_flip_mutex);
|
257 |
|
|
j = per_cpu(cpu_profile_flip, get_cpu());
|
258 |
|
|
put_cpu();
|
259 |
|
|
on_each_cpu(__profile_flip_buffers, NULL, 0, 1);
|
260 |
|
|
for_each_online_cpu(cpu) {
|
261 |
|
|
struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
|
262 |
|
|
for (i = 0; i < NR_PROFILE_HIT; ++i) {
|
263 |
|
|
if (!hits[i].hits) {
|
264 |
|
|
if (hits[i].pc)
|
265 |
|
|
hits[i].pc = 0;
|
266 |
|
|
continue;
|
267 |
|
|
}
|
268 |
|
|
atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
|
269 |
|
|
hits[i].hits = hits[i].pc = 0;
|
270 |
|
|
}
|
271 |
|
|
}
|
272 |
|
|
mutex_unlock(&profile_flip_mutex);
|
273 |
|
|
}
|
274 |
|
|
|
275 |
|
|
static void profile_discard_flip_buffers(void)
|
276 |
|
|
{
|
277 |
|
|
int i, cpu;
|
278 |
|
|
|
279 |
|
|
mutex_lock(&profile_flip_mutex);
|
280 |
|
|
i = per_cpu(cpu_profile_flip, get_cpu());
|
281 |
|
|
put_cpu();
|
282 |
|
|
on_each_cpu(__profile_flip_buffers, NULL, 0, 1);
|
283 |
|
|
for_each_online_cpu(cpu) {
|
284 |
|
|
struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
|
285 |
|
|
memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
|
286 |
|
|
}
|
287 |
|
|
mutex_unlock(&profile_flip_mutex);
|
288 |
|
|
}
|
289 |
|
|
|
290 |
|
|
void profile_hits(int type, void *__pc, unsigned int nr_hits)
|
291 |
|
|
{
|
292 |
|
|
unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
|
293 |
|
|
int i, j, cpu;
|
294 |
|
|
struct profile_hit *hits;
|
295 |
|
|
|
296 |
|
|
if (prof_on != type || !prof_buffer)
|
297 |
|
|
return;
|
298 |
|
|
pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
|
299 |
|
|
i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
|
300 |
|
|
secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
|
301 |
|
|
cpu = get_cpu();
|
302 |
|
|
hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
|
303 |
|
|
if (!hits) {
|
304 |
|
|
put_cpu();
|
305 |
|
|
return;
|
306 |
|
|
}
|
307 |
|
|
/*
|
308 |
|
|
* We buffer the global profiler buffer into a per-CPU
|
309 |
|
|
* queue and thus reduce the number of global (and possibly
|
310 |
|
|
* NUMA-alien) accesses. The write-queue is self-coalescing:
|
311 |
|
|
*/
|
312 |
|
|
local_irq_save(flags);
|
313 |
|
|
do {
|
314 |
|
|
for (j = 0; j < PROFILE_GRPSZ; ++j) {
|
315 |
|
|
if (hits[i + j].pc == pc) {
|
316 |
|
|
hits[i + j].hits += nr_hits;
|
317 |
|
|
goto out;
|
318 |
|
|
} else if (!hits[i + j].hits) {
|
319 |
|
|
hits[i + j].pc = pc;
|
320 |
|
|
hits[i + j].hits = nr_hits;
|
321 |
|
|
goto out;
|
322 |
|
|
}
|
323 |
|
|
}
|
324 |
|
|
i = (i + secondary) & (NR_PROFILE_HIT - 1);
|
325 |
|
|
} while (i != primary);
|
326 |
|
|
|
327 |
|
|
/*
|
328 |
|
|
* Add the current hit(s) and flush the write-queue out
|
329 |
|
|
* to the global buffer:
|
330 |
|
|
*/
|
331 |
|
|
atomic_add(nr_hits, &prof_buffer[pc]);
|
332 |
|
|
for (i = 0; i < NR_PROFILE_HIT; ++i) {
|
333 |
|
|
atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
|
334 |
|
|
hits[i].pc = hits[i].hits = 0;
|
335 |
|
|
}
|
336 |
|
|
out:
|
337 |
|
|
local_irq_restore(flags);
|
338 |
|
|
put_cpu();
|
339 |
|
|
}
|
340 |
|
|
|
341 |
|
|
static int __devinit profile_cpu_callback(struct notifier_block *info,
|
342 |
|
|
unsigned long action, void *__cpu)
|
343 |
|
|
{
|
344 |
|
|
int node, cpu = (unsigned long)__cpu;
|
345 |
|
|
struct page *page;
|
346 |
|
|
|
347 |
|
|
switch (action) {
|
348 |
|
|
case CPU_UP_PREPARE:
|
349 |
|
|
case CPU_UP_PREPARE_FROZEN:
|
350 |
|
|
node = cpu_to_node(cpu);
|
351 |
|
|
per_cpu(cpu_profile_flip, cpu) = 0;
|
352 |
|
|
if (!per_cpu(cpu_profile_hits, cpu)[1]) {
|
353 |
|
|
page = alloc_pages_node(node,
|
354 |
|
|
GFP_KERNEL | __GFP_ZERO,
|
355 |
|
|
0);
|
356 |
|
|
if (!page)
|
357 |
|
|
return NOTIFY_BAD;
|
358 |
|
|
per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
|
359 |
|
|
}
|
360 |
|
|
if (!per_cpu(cpu_profile_hits, cpu)[0]) {
|
361 |
|
|
page = alloc_pages_node(node,
|
362 |
|
|
GFP_KERNEL | __GFP_ZERO,
|
363 |
|
|
0);
|
364 |
|
|
if (!page)
|
365 |
|
|
goto out_free;
|
366 |
|
|
per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
|
367 |
|
|
}
|
368 |
|
|
break;
|
369 |
|
|
out_free:
|
370 |
|
|
page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
|
371 |
|
|
per_cpu(cpu_profile_hits, cpu)[1] = NULL;
|
372 |
|
|
__free_page(page);
|
373 |
|
|
return NOTIFY_BAD;
|
374 |
|
|
case CPU_ONLINE:
|
375 |
|
|
case CPU_ONLINE_FROZEN:
|
376 |
|
|
cpu_set(cpu, prof_cpu_mask);
|
377 |
|
|
break;
|
378 |
|
|
case CPU_UP_CANCELED:
|
379 |
|
|
case CPU_UP_CANCELED_FROZEN:
|
380 |
|
|
case CPU_DEAD:
|
381 |
|
|
case CPU_DEAD_FROZEN:
|
382 |
|
|
cpu_clear(cpu, prof_cpu_mask);
|
383 |
|
|
if (per_cpu(cpu_profile_hits, cpu)[0]) {
|
384 |
|
|
page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
|
385 |
|
|
per_cpu(cpu_profile_hits, cpu)[0] = NULL;
|
386 |
|
|
__free_page(page);
|
387 |
|
|
}
|
388 |
|
|
if (per_cpu(cpu_profile_hits, cpu)[1]) {
|
389 |
|
|
page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
|
390 |
|
|
per_cpu(cpu_profile_hits, cpu)[1] = NULL;
|
391 |
|
|
__free_page(page);
|
392 |
|
|
}
|
393 |
|
|
break;
|
394 |
|
|
}
|
395 |
|
|
return NOTIFY_OK;
|
396 |
|
|
}
|
397 |
|
|
#else /* !CONFIG_SMP */
|
398 |
|
|
#define profile_flip_buffers() do { } while (0)
|
399 |
|
|
#define profile_discard_flip_buffers() do { } while (0)
|
400 |
|
|
#define profile_cpu_callback NULL
|
401 |
|
|
|
402 |
|
|
void profile_hits(int type, void *__pc, unsigned int nr_hits)
|
403 |
|
|
{
|
404 |
|
|
unsigned long pc;
|
405 |
|
|
|
406 |
|
|
if (prof_on != type || !prof_buffer)
|
407 |
|
|
return;
|
408 |
|
|
pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
|
409 |
|
|
atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
|
410 |
|
|
}
|
411 |
|
|
#endif /* !CONFIG_SMP */
|
412 |
|
|
|
413 |
|
|
EXPORT_SYMBOL_GPL(profile_hits);
|
414 |
|
|
|
415 |
|
|
void profile_tick(int type)
|
416 |
|
|
{
|
417 |
|
|
struct pt_regs *regs = get_irq_regs();
|
418 |
|
|
|
419 |
|
|
if (type == CPU_PROFILING && timer_hook)
|
420 |
|
|
timer_hook(regs);
|
421 |
|
|
if (!user_mode(regs) && cpu_isset(smp_processor_id(), prof_cpu_mask))
|
422 |
|
|
profile_hit(type, (void *)profile_pc(regs));
|
423 |
|
|
}
|
424 |
|
|
|
425 |
|
|
#ifdef CONFIG_PROC_FS
|
426 |
|
|
#include <linux/proc_fs.h>
|
427 |
|
|
#include <asm/uaccess.h>
|
428 |
|
|
#include <asm/ptrace.h>
|
429 |
|
|
|
430 |
|
|
static int prof_cpu_mask_read_proc (char *page, char **start, off_t off,
|
431 |
|
|
int count, int *eof, void *data)
|
432 |
|
|
{
|
433 |
|
|
int len = cpumask_scnprintf(page, count, *(cpumask_t *)data);
|
434 |
|
|
if (count - len < 2)
|
435 |
|
|
return -EINVAL;
|
436 |
|
|
len += sprintf(page + len, "\n");
|
437 |
|
|
return len;
|
438 |
|
|
}
|
439 |
|
|
|
440 |
|
|
static int prof_cpu_mask_write_proc (struct file *file, const char __user *buffer,
|
441 |
|
|
unsigned long count, void *data)
|
442 |
|
|
{
|
443 |
|
|
cpumask_t *mask = (cpumask_t *)data;
|
444 |
|
|
unsigned long full_count = count, err;
|
445 |
|
|
cpumask_t new_value;
|
446 |
|
|
|
447 |
|
|
err = cpumask_parse_user(buffer, count, new_value);
|
448 |
|
|
if (err)
|
449 |
|
|
return err;
|
450 |
|
|
|
451 |
|
|
*mask = new_value;
|
452 |
|
|
return full_count;
|
453 |
|
|
}
|
454 |
|
|
|
455 |
|
|
void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
|
456 |
|
|
{
|
457 |
|
|
struct proc_dir_entry *entry;
|
458 |
|
|
|
459 |
|
|
/* create /proc/irq/prof_cpu_mask */
|
460 |
|
|
if (!(entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir)))
|
461 |
|
|
return;
|
462 |
|
|
entry->data = (void *)&prof_cpu_mask;
|
463 |
|
|
entry->read_proc = prof_cpu_mask_read_proc;
|
464 |
|
|
entry->write_proc = prof_cpu_mask_write_proc;
|
465 |
|
|
}
|
466 |
|
|
|
467 |
|
|
/*
|
468 |
|
|
* This function accesses profiling information. The returned data is
|
469 |
|
|
* binary: the sampling step and the actual contents of the profile
|
470 |
|
|
* buffer. Use of the program readprofile is recommended in order to
|
471 |
|
|
* get meaningful info out of these data.
|
472 |
|
|
*/
|
473 |
|
|
static ssize_t
|
474 |
|
|
read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
|
475 |
|
|
{
|
476 |
|
|
unsigned long p = *ppos;
|
477 |
|
|
ssize_t read;
|
478 |
|
|
char * pnt;
|
479 |
|
|
unsigned int sample_step = 1 << prof_shift;
|
480 |
|
|
|
481 |
|
|
profile_flip_buffers();
|
482 |
|
|
if (p >= (prof_len+1)*sizeof(unsigned int))
|
483 |
|
|
return 0;
|
484 |
|
|
if (count > (prof_len+1)*sizeof(unsigned int) - p)
|
485 |
|
|
count = (prof_len+1)*sizeof(unsigned int) - p;
|
486 |
|
|
read = 0;
|
487 |
|
|
|
488 |
|
|
while (p < sizeof(unsigned int) && count > 0) {
|
489 |
|
|
if (put_user(*((char *)(&sample_step)+p),buf))
|
490 |
|
|
return -EFAULT;
|
491 |
|
|
buf++; p++; count--; read++;
|
492 |
|
|
}
|
493 |
|
|
pnt = (char *)prof_buffer + p - sizeof(atomic_t);
|
494 |
|
|
if (copy_to_user(buf,(void *)pnt,count))
|
495 |
|
|
return -EFAULT;
|
496 |
|
|
read += count;
|
497 |
|
|
*ppos += read;
|
498 |
|
|
return read;
|
499 |
|
|
}
|
500 |
|
|
|
501 |
|
|
/*
|
502 |
|
|
* Writing to /proc/profile resets the counters
|
503 |
|
|
*
|
504 |
|
|
* Writing a 'profiling multiplier' value into it also re-sets the profiling
|
505 |
|
|
* interrupt frequency, on architectures that support this.
|
506 |
|
|
*/
|
507 |
|
|
static ssize_t write_profile(struct file *file, const char __user *buf,
|
508 |
|
|
size_t count, loff_t *ppos)
|
509 |
|
|
{
|
510 |
|
|
#ifdef CONFIG_SMP
|
511 |
|
|
extern int setup_profiling_timer (unsigned int multiplier);
|
512 |
|
|
|
513 |
|
|
if (count == sizeof(int)) {
|
514 |
|
|
unsigned int multiplier;
|
515 |
|
|
|
516 |
|
|
if (copy_from_user(&multiplier, buf, sizeof(int)))
|
517 |
|
|
return -EFAULT;
|
518 |
|
|
|
519 |
|
|
if (setup_profiling_timer(multiplier))
|
520 |
|
|
return -EINVAL;
|
521 |
|
|
}
|
522 |
|
|
#endif
|
523 |
|
|
profile_discard_flip_buffers();
|
524 |
|
|
memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
|
525 |
|
|
return count;
|
526 |
|
|
}
|
527 |
|
|
|
528 |
|
|
static const struct file_operations proc_profile_operations = {
|
529 |
|
|
.read = read_profile,
|
530 |
|
|
.write = write_profile,
|
531 |
|
|
};
|
532 |
|
|
|
533 |
|
|
#ifdef CONFIG_SMP
|
534 |
|
|
static void __init profile_nop(void *unused)
|
535 |
|
|
{
|
536 |
|
|
}
|
537 |
|
|
|
538 |
|
|
static int __init create_hash_tables(void)
|
539 |
|
|
{
|
540 |
|
|
int cpu;
|
541 |
|
|
|
542 |
|
|
for_each_online_cpu(cpu) {
|
543 |
|
|
int node = cpu_to_node(cpu);
|
544 |
|
|
struct page *page;
|
545 |
|
|
|
546 |
|
|
page = alloc_pages_node(node,
|
547 |
|
|
GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
|
548 |
|
|
0);
|
549 |
|
|
if (!page)
|
550 |
|
|
goto out_cleanup;
|
551 |
|
|
per_cpu(cpu_profile_hits, cpu)[1]
|
552 |
|
|
= (struct profile_hit *)page_address(page);
|
553 |
|
|
page = alloc_pages_node(node,
|
554 |
|
|
GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
|
555 |
|
|
0);
|
556 |
|
|
if (!page)
|
557 |
|
|
goto out_cleanup;
|
558 |
|
|
per_cpu(cpu_profile_hits, cpu)[0]
|
559 |
|
|
= (struct profile_hit *)page_address(page);
|
560 |
|
|
}
|
561 |
|
|
return 0;
|
562 |
|
|
out_cleanup:
|
563 |
|
|
prof_on = 0;
|
564 |
|
|
smp_mb();
|
565 |
|
|
on_each_cpu(profile_nop, NULL, 0, 1);
|
566 |
|
|
for_each_online_cpu(cpu) {
|
567 |
|
|
struct page *page;
|
568 |
|
|
|
569 |
|
|
if (per_cpu(cpu_profile_hits, cpu)[0]) {
|
570 |
|
|
page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
|
571 |
|
|
per_cpu(cpu_profile_hits, cpu)[0] = NULL;
|
572 |
|
|
__free_page(page);
|
573 |
|
|
}
|
574 |
|
|
if (per_cpu(cpu_profile_hits, cpu)[1]) {
|
575 |
|
|
page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
|
576 |
|
|
per_cpu(cpu_profile_hits, cpu)[1] = NULL;
|
577 |
|
|
__free_page(page);
|
578 |
|
|
}
|
579 |
|
|
}
|
580 |
|
|
return -1;
|
581 |
|
|
}
|
582 |
|
|
#else
|
583 |
|
|
#define create_hash_tables() ({ 0; })
|
584 |
|
|
#endif
|
585 |
|
|
|
586 |
|
|
static int __init create_proc_profile(void)
|
587 |
|
|
{
|
588 |
|
|
struct proc_dir_entry *entry;
|
589 |
|
|
|
590 |
|
|
if (!prof_on)
|
591 |
|
|
return 0;
|
592 |
|
|
if (create_hash_tables())
|
593 |
|
|
return -1;
|
594 |
|
|
if (!(entry = create_proc_entry("profile", S_IWUSR | S_IRUGO, NULL)))
|
595 |
|
|
return 0;
|
596 |
|
|
entry->proc_fops = &proc_profile_operations;
|
597 |
|
|
entry->size = (1+prof_len) * sizeof(atomic_t);
|
598 |
|
|
hotcpu_notifier(profile_cpu_callback, 0);
|
599 |
|
|
return 0;
|
600 |
|
|
}
|
601 |
|
|
module_init(create_proc_profile);
|
602 |
|
|
#endif /* CONFIG_PROC_FS */
|