| 1 |
62 |
marcus.erl |
/*
|
| 2 |
|
|
* linux/kernel/profile.c
|
| 3 |
|
|
* Simple profiling. Manages a direct-mapped profile hit count buffer,
|
| 4 |
|
|
* with configurable resolution, support for restricting the cpus on
|
| 5 |
|
|
* which profiling is done, and switching between cpu time and
|
| 6 |
|
|
* schedule() calls via kernel command line parameters passed at boot.
|
| 7 |
|
|
*
|
| 8 |
|
|
* Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
|
| 9 |
|
|
* Red Hat, July 2004
|
| 10 |
|
|
* Consolidation of architecture support code for profiling,
|
| 11 |
|
|
* William Irwin, Oracle, July 2004
|
| 12 |
|
|
* Amortized hit count accounting via per-cpu open-addressed hashtables
|
| 13 |
|
|
* to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
|
| 14 |
|
|
*/
|
| 15 |
|
|
|
| 16 |
|
|
#include <linux/module.h>
|
| 17 |
|
|
#include <linux/profile.h>
|
| 18 |
|
|
#include <linux/bootmem.h>
|
| 19 |
|
|
#include <linux/notifier.h>
|
| 20 |
|
|
#include <linux/mm.h>
|
| 21 |
|
|
#include <linux/cpumask.h>
|
| 22 |
|
|
#include <linux/cpu.h>
|
| 23 |
|
|
#include <linux/profile.h>
|
| 24 |
|
|
#include <linux/highmem.h>
|
| 25 |
|
|
#include <linux/mutex.h>
|
| 26 |
|
|
#include <asm/sections.h>
|
| 27 |
|
|
#include <asm/semaphore.h>
|
| 28 |
|
|
#include <asm/irq_regs.h>
|
| 29 |
|
|
#include <asm/ptrace.h>
|
| 30 |
|
|
|
| 31 |
|
|
struct profile_hit {
|
| 32 |
|
|
u32 pc, hits;
|
| 33 |
|
|
};
|
| 34 |
|
|
#define PROFILE_GRPSHIFT 3
|
| 35 |
|
|
#define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT)
|
| 36 |
|
|
#define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit))
|
| 37 |
|
|
#define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ)
|
| 38 |
|
|
|
| 39 |
|
|
/* Oprofile timer tick hook */
|
| 40 |
|
|
static int (*timer_hook)(struct pt_regs *) __read_mostly;
|
| 41 |
|
|
|
| 42 |
|
|
static atomic_t *prof_buffer;
|
| 43 |
|
|
static unsigned long prof_len, prof_shift;
|
| 44 |
|
|
|
| 45 |
|
|
int prof_on __read_mostly;
|
| 46 |
|
|
EXPORT_SYMBOL_GPL(prof_on);
|
| 47 |
|
|
|
| 48 |
|
|
static cpumask_t prof_cpu_mask = CPU_MASK_ALL;
|
| 49 |
|
|
#ifdef CONFIG_SMP
|
| 50 |
|
|
static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
|
| 51 |
|
|
static DEFINE_PER_CPU(int, cpu_profile_flip);
|
| 52 |
|
|
static DEFINE_MUTEX(profile_flip_mutex);
|
| 53 |
|
|
#endif /* CONFIG_SMP */
|
| 54 |
|
|
|
| 55 |
|
|
static int __init profile_setup(char * str)
|
| 56 |
|
|
{
|
| 57 |
|
|
static char __initdata schedstr[] = "schedule";
|
| 58 |
|
|
static char __initdata sleepstr[] = "sleep";
|
| 59 |
|
|
static char __initdata kvmstr[] = "kvm";
|
| 60 |
|
|
int par;
|
| 61 |
|
|
|
| 62 |
|
|
if (!strncmp(str, sleepstr, strlen(sleepstr))) {
|
| 63 |
|
|
#ifdef CONFIG_SCHEDSTATS
|
| 64 |
|
|
prof_on = SLEEP_PROFILING;
|
| 65 |
|
|
if (str[strlen(sleepstr)] == ',')
|
| 66 |
|
|
str += strlen(sleepstr) + 1;
|
| 67 |
|
|
if (get_option(&str, &par))
|
| 68 |
|
|
prof_shift = par;
|
| 69 |
|
|
printk(KERN_INFO
|
| 70 |
|
|
"kernel sleep profiling enabled (shift: %ld)\n",
|
| 71 |
|
|
prof_shift);
|
| 72 |
|
|
#else
|
| 73 |
|
|
printk(KERN_WARNING
|
| 74 |
|
|
"kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
|
| 75 |
|
|
#endif /* CONFIG_SCHEDSTATS */
|
| 76 |
|
|
} else if (!strncmp(str, schedstr, strlen(schedstr))) {
|
| 77 |
|
|
prof_on = SCHED_PROFILING;
|
| 78 |
|
|
if (str[strlen(schedstr)] == ',')
|
| 79 |
|
|
str += strlen(schedstr) + 1;
|
| 80 |
|
|
if (get_option(&str, &par))
|
| 81 |
|
|
prof_shift = par;
|
| 82 |
|
|
printk(KERN_INFO
|
| 83 |
|
|
"kernel schedule profiling enabled (shift: %ld)\n",
|
| 84 |
|
|
prof_shift);
|
| 85 |
|
|
} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
|
| 86 |
|
|
prof_on = KVM_PROFILING;
|
| 87 |
|
|
if (str[strlen(kvmstr)] == ',')
|
| 88 |
|
|
str += strlen(kvmstr) + 1;
|
| 89 |
|
|
if (get_option(&str, &par))
|
| 90 |
|
|
prof_shift = par;
|
| 91 |
|
|
printk(KERN_INFO
|
| 92 |
|
|
"kernel KVM profiling enabled (shift: %ld)\n",
|
| 93 |
|
|
prof_shift);
|
| 94 |
|
|
} else if (get_option(&str, &par)) {
|
| 95 |
|
|
prof_shift = par;
|
| 96 |
|
|
prof_on = CPU_PROFILING;
|
| 97 |
|
|
printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
|
| 98 |
|
|
prof_shift);
|
| 99 |
|
|
}
|
| 100 |
|
|
return 1;
|
| 101 |
|
|
}
|
| 102 |
|
|
__setup("profile=", profile_setup);
|
| 103 |
|
|
|
| 104 |
|
|
|
| 105 |
|
|
void __init profile_init(void)
|
| 106 |
|
|
{
|
| 107 |
|
|
if (!prof_on)
|
| 108 |
|
|
return;
|
| 109 |
|
|
|
| 110 |
|
|
/* only text is profiled */
|
| 111 |
|
|
prof_len = (_etext - _stext) >> prof_shift;
|
| 112 |
|
|
prof_buffer = alloc_bootmem(prof_len*sizeof(atomic_t));
|
| 113 |
|
|
}
|
| 114 |
|
|
|
| 115 |
|
|
/* Profile event notifications */
|
| 116 |
|
|
|
| 117 |
|
|
#ifdef CONFIG_PROFILING
|
| 118 |
|
|
|
| 119 |
|
|
static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
|
| 120 |
|
|
static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
|
| 121 |
|
|
static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
|
| 122 |
|
|
|
| 123 |
|
|
void profile_task_exit(struct task_struct * task)
|
| 124 |
|
|
{
|
| 125 |
|
|
blocking_notifier_call_chain(&task_exit_notifier, 0, task);
|
| 126 |
|
|
}
|
| 127 |
|
|
|
| 128 |
|
|
int profile_handoff_task(struct task_struct * task)
|
| 129 |
|
|
{
|
| 130 |
|
|
int ret;
|
| 131 |
|
|
ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
|
| 132 |
|
|
return (ret == NOTIFY_OK) ? 1 : 0;
|
| 133 |
|
|
}
|
| 134 |
|
|
|
| 135 |
|
|
void profile_munmap(unsigned long addr)
|
| 136 |
|
|
{
|
| 137 |
|
|
blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
|
| 138 |
|
|
}
|
| 139 |
|
|
|
| 140 |
|
|
int task_handoff_register(struct notifier_block * n)
|
| 141 |
|
|
{
|
| 142 |
|
|
return atomic_notifier_chain_register(&task_free_notifier, n);
|
| 143 |
|
|
}
|
| 144 |
|
|
|
| 145 |
|
|
int task_handoff_unregister(struct notifier_block * n)
|
| 146 |
|
|
{
|
| 147 |
|
|
return atomic_notifier_chain_unregister(&task_free_notifier, n);
|
| 148 |
|
|
}
|
| 149 |
|
|
|
| 150 |
|
|
int profile_event_register(enum profile_type type, struct notifier_block * n)
|
| 151 |
|
|
{
|
| 152 |
|
|
int err = -EINVAL;
|
| 153 |
|
|
|
| 154 |
|
|
switch (type) {
|
| 155 |
|
|
case PROFILE_TASK_EXIT:
|
| 156 |
|
|
err = blocking_notifier_chain_register(
|
| 157 |
|
|
&task_exit_notifier, n);
|
| 158 |
|
|
break;
|
| 159 |
|
|
case PROFILE_MUNMAP:
|
| 160 |
|
|
err = blocking_notifier_chain_register(
|
| 161 |
|
|
&munmap_notifier, n);
|
| 162 |
|
|
break;
|
| 163 |
|
|
}
|
| 164 |
|
|
|
| 165 |
|
|
return err;
|
| 166 |
|
|
}
|
| 167 |
|
|
|
| 168 |
|
|
|
| 169 |
|
|
int profile_event_unregister(enum profile_type type, struct notifier_block * n)
|
| 170 |
|
|
{
|
| 171 |
|
|
int err = -EINVAL;
|
| 172 |
|
|
|
| 173 |
|
|
switch (type) {
|
| 174 |
|
|
case PROFILE_TASK_EXIT:
|
| 175 |
|
|
err = blocking_notifier_chain_unregister(
|
| 176 |
|
|
&task_exit_notifier, n);
|
| 177 |
|
|
break;
|
| 178 |
|
|
case PROFILE_MUNMAP:
|
| 179 |
|
|
err = blocking_notifier_chain_unregister(
|
| 180 |
|
|
&munmap_notifier, n);
|
| 181 |
|
|
break;
|
| 182 |
|
|
}
|
| 183 |
|
|
|
| 184 |
|
|
return err;
|
| 185 |
|
|
}
|
| 186 |
|
|
|
| 187 |
|
|
int register_timer_hook(int (*hook)(struct pt_regs *))
|
| 188 |
|
|
{
|
| 189 |
|
|
if (timer_hook)
|
| 190 |
|
|
return -EBUSY;
|
| 191 |
|
|
timer_hook = hook;
|
| 192 |
|
|
return 0;
|
| 193 |
|
|
}
|
| 194 |
|
|
|
| 195 |
|
|
void unregister_timer_hook(int (*hook)(struct pt_regs *))
|
| 196 |
|
|
{
|
| 197 |
|
|
WARN_ON(hook != timer_hook);
|
| 198 |
|
|
timer_hook = NULL;
|
| 199 |
|
|
/* make sure all CPUs see the NULL hook */
|
| 200 |
|
|
synchronize_sched(); /* Allow ongoing interrupts to complete. */
|
| 201 |
|
|
}
|
| 202 |
|
|
|
| 203 |
|
|
EXPORT_SYMBOL_GPL(register_timer_hook);
|
| 204 |
|
|
EXPORT_SYMBOL_GPL(unregister_timer_hook);
|
| 205 |
|
|
EXPORT_SYMBOL_GPL(task_handoff_register);
|
| 206 |
|
|
EXPORT_SYMBOL_GPL(task_handoff_unregister);
|
| 207 |
|
|
EXPORT_SYMBOL_GPL(profile_event_register);
|
| 208 |
|
|
EXPORT_SYMBOL_GPL(profile_event_unregister);
|
| 209 |
|
|
|
| 210 |
|
|
#endif /* CONFIG_PROFILING */
|
| 211 |
|
|
|
| 212 |
|
|
|
| 213 |
|
|
#ifdef CONFIG_SMP
|
| 214 |
|
|
/*
|
| 215 |
|
|
* Each cpu has a pair of open-addressed hashtables for pending
|
| 216 |
|
|
* profile hits. read_profile() IPI's all cpus to request them
|
| 217 |
|
|
* to flip buffers and flushes their contents to prof_buffer itself.
|
| 218 |
|
|
* Flip requests are serialized by the profile_flip_mutex. The sole
|
| 219 |
|
|
* use of having a second hashtable is for avoiding cacheline
|
| 220 |
|
|
* contention that would otherwise happen during flushes of pending
|
| 221 |
|
|
* profile hits required for the accuracy of reported profile hits
|
| 222 |
|
|
* and so resurrect the interrupt livelock issue.
|
| 223 |
|
|
*
|
| 224 |
|
|
* The open-addressed hashtables are indexed by profile buffer slot
|
| 225 |
|
|
* and hold the number of pending hits to that profile buffer slot on
|
| 226 |
|
|
* a cpu in an entry. When the hashtable overflows, all pending hits
|
| 227 |
|
|
* are accounted to their corresponding profile buffer slots with
|
| 228 |
|
|
* atomic_add() and the hashtable emptied. As numerous pending hits
|
| 229 |
|
|
* may be accounted to a profile buffer slot in a hashtable entry,
|
| 230 |
|
|
* this amortizes a number of atomic profile buffer increments likely
|
| 231 |
|
|
* to be far larger than the number of entries in the hashtable,
|
| 232 |
|
|
* particularly given that the number of distinct profile buffer
|
| 233 |
|
|
* positions to which hits are accounted during short intervals (e.g.
|
| 234 |
|
|
* several seconds) is usually very small. Exclusion from buffer
|
| 235 |
|
|
* flipping is provided by interrupt disablement (note that for
|
| 236 |
|
|
* SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
|
| 237 |
|
|
* process context).
|
| 238 |
|
|
* The hash function is meant to be lightweight as opposed to strong,
|
| 239 |
|
|
* and was vaguely inspired by ppc64 firmware-supported inverted
|
| 240 |
|
|
* pagetable hash functions, but uses a full hashtable full of finite
|
| 241 |
|
|
* collision chains, not just pairs of them.
|
| 242 |
|
|
*
|
| 243 |
|
|
* -- wli
|
| 244 |
|
|
*/
|
| 245 |
|
|
static void __profile_flip_buffers(void *unused)
|
| 246 |
|
|
{
|
| 247 |
|
|
int cpu = smp_processor_id();
|
| 248 |
|
|
|
| 249 |
|
|
per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
|
| 250 |
|
|
}
|
| 251 |
|
|
|
| 252 |
|
|
static void profile_flip_buffers(void)
|
| 253 |
|
|
{
|
| 254 |
|
|
int i, j, cpu;
|
| 255 |
|
|
|
| 256 |
|
|
mutex_lock(&profile_flip_mutex);
|
| 257 |
|
|
j = per_cpu(cpu_profile_flip, get_cpu());
|
| 258 |
|
|
put_cpu();
|
| 259 |
|
|
on_each_cpu(__profile_flip_buffers, NULL, 0, 1);
|
| 260 |
|
|
for_each_online_cpu(cpu) {
|
| 261 |
|
|
struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
|
| 262 |
|
|
for (i = 0; i < NR_PROFILE_HIT; ++i) {
|
| 263 |
|
|
if (!hits[i].hits) {
|
| 264 |
|
|
if (hits[i].pc)
|
| 265 |
|
|
hits[i].pc = 0;
|
| 266 |
|
|
continue;
|
| 267 |
|
|
}
|
| 268 |
|
|
atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
|
| 269 |
|
|
hits[i].hits = hits[i].pc = 0;
|
| 270 |
|
|
}
|
| 271 |
|
|
}
|
| 272 |
|
|
mutex_unlock(&profile_flip_mutex);
|
| 273 |
|
|
}
|
| 274 |
|
|
|
| 275 |
|
|
static void profile_discard_flip_buffers(void)
|
| 276 |
|
|
{
|
| 277 |
|
|
int i, cpu;
|
| 278 |
|
|
|
| 279 |
|
|
mutex_lock(&profile_flip_mutex);
|
| 280 |
|
|
i = per_cpu(cpu_profile_flip, get_cpu());
|
| 281 |
|
|
put_cpu();
|
| 282 |
|
|
on_each_cpu(__profile_flip_buffers, NULL, 0, 1);
|
| 283 |
|
|
for_each_online_cpu(cpu) {
|
| 284 |
|
|
struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
|
| 285 |
|
|
memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
|
| 286 |
|
|
}
|
| 287 |
|
|
mutex_unlock(&profile_flip_mutex);
|
| 288 |
|
|
}
|
| 289 |
|
|
|
| 290 |
|
|
void profile_hits(int type, void *__pc, unsigned int nr_hits)
|
| 291 |
|
|
{
|
| 292 |
|
|
unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
|
| 293 |
|
|
int i, j, cpu;
|
| 294 |
|
|
struct profile_hit *hits;
|
| 295 |
|
|
|
| 296 |
|
|
if (prof_on != type || !prof_buffer)
|
| 297 |
|
|
return;
|
| 298 |
|
|
pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
|
| 299 |
|
|
i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
|
| 300 |
|
|
secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
|
| 301 |
|
|
cpu = get_cpu();
|
| 302 |
|
|
hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
|
| 303 |
|
|
if (!hits) {
|
| 304 |
|
|
put_cpu();
|
| 305 |
|
|
return;
|
| 306 |
|
|
}
|
| 307 |
|
|
/*
|
| 308 |
|
|
* We buffer the global profiler buffer into a per-CPU
|
| 309 |
|
|
* queue and thus reduce the number of global (and possibly
|
| 310 |
|
|
* NUMA-alien) accesses. The write-queue is self-coalescing:
|
| 311 |
|
|
*/
|
| 312 |
|
|
local_irq_save(flags);
|
| 313 |
|
|
do {
|
| 314 |
|
|
for (j = 0; j < PROFILE_GRPSZ; ++j) {
|
| 315 |
|
|
if (hits[i + j].pc == pc) {
|
| 316 |
|
|
hits[i + j].hits += nr_hits;
|
| 317 |
|
|
goto out;
|
| 318 |
|
|
} else if (!hits[i + j].hits) {
|
| 319 |
|
|
hits[i + j].pc = pc;
|
| 320 |
|
|
hits[i + j].hits = nr_hits;
|
| 321 |
|
|
goto out;
|
| 322 |
|
|
}
|
| 323 |
|
|
}
|
| 324 |
|
|
i = (i + secondary) & (NR_PROFILE_HIT - 1);
|
| 325 |
|
|
} while (i != primary);
|
| 326 |
|
|
|
| 327 |
|
|
/*
|
| 328 |
|
|
* Add the current hit(s) and flush the write-queue out
|
| 329 |
|
|
* to the global buffer:
|
| 330 |
|
|
*/
|
| 331 |
|
|
atomic_add(nr_hits, &prof_buffer[pc]);
|
| 332 |
|
|
for (i = 0; i < NR_PROFILE_HIT; ++i) {
|
| 333 |
|
|
atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
|
| 334 |
|
|
hits[i].pc = hits[i].hits = 0;
|
| 335 |
|
|
}
|
| 336 |
|
|
out:
|
| 337 |
|
|
local_irq_restore(flags);
|
| 338 |
|
|
put_cpu();
|
| 339 |
|
|
}
|
| 340 |
|
|
|
| 341 |
|
|
static int __devinit profile_cpu_callback(struct notifier_block *info,
|
| 342 |
|
|
unsigned long action, void *__cpu)
|
| 343 |
|
|
{
|
| 344 |
|
|
int node, cpu = (unsigned long)__cpu;
|
| 345 |
|
|
struct page *page;
|
| 346 |
|
|
|
| 347 |
|
|
switch (action) {
|
| 348 |
|
|
case CPU_UP_PREPARE:
|
| 349 |
|
|
case CPU_UP_PREPARE_FROZEN:
|
| 350 |
|
|
node = cpu_to_node(cpu);
|
| 351 |
|
|
per_cpu(cpu_profile_flip, cpu) = 0;
|
| 352 |
|
|
if (!per_cpu(cpu_profile_hits, cpu)[1]) {
|
| 353 |
|
|
page = alloc_pages_node(node,
|
| 354 |
|
|
GFP_KERNEL | __GFP_ZERO,
|
| 355 |
|
|
0);
|
| 356 |
|
|
if (!page)
|
| 357 |
|
|
return NOTIFY_BAD;
|
| 358 |
|
|
per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
|
| 359 |
|
|
}
|
| 360 |
|
|
if (!per_cpu(cpu_profile_hits, cpu)[0]) {
|
| 361 |
|
|
page = alloc_pages_node(node,
|
| 362 |
|
|
GFP_KERNEL | __GFP_ZERO,
|
| 363 |
|
|
0);
|
| 364 |
|
|
if (!page)
|
| 365 |
|
|
goto out_free;
|
| 366 |
|
|
per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
|
| 367 |
|
|
}
|
| 368 |
|
|
break;
|
| 369 |
|
|
out_free:
|
| 370 |
|
|
page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
|
| 371 |
|
|
per_cpu(cpu_profile_hits, cpu)[1] = NULL;
|
| 372 |
|
|
__free_page(page);
|
| 373 |
|
|
return NOTIFY_BAD;
|
| 374 |
|
|
case CPU_ONLINE:
|
| 375 |
|
|
case CPU_ONLINE_FROZEN:
|
| 376 |
|
|
cpu_set(cpu, prof_cpu_mask);
|
| 377 |
|
|
break;
|
| 378 |
|
|
case CPU_UP_CANCELED:
|
| 379 |
|
|
case CPU_UP_CANCELED_FROZEN:
|
| 380 |
|
|
case CPU_DEAD:
|
| 381 |
|
|
case CPU_DEAD_FROZEN:
|
| 382 |
|
|
cpu_clear(cpu, prof_cpu_mask);
|
| 383 |
|
|
if (per_cpu(cpu_profile_hits, cpu)[0]) {
|
| 384 |
|
|
page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
|
| 385 |
|
|
per_cpu(cpu_profile_hits, cpu)[0] = NULL;
|
| 386 |
|
|
__free_page(page);
|
| 387 |
|
|
}
|
| 388 |
|
|
if (per_cpu(cpu_profile_hits, cpu)[1]) {
|
| 389 |
|
|
page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
|
| 390 |
|
|
per_cpu(cpu_profile_hits, cpu)[1] = NULL;
|
| 391 |
|
|
__free_page(page);
|
| 392 |
|
|
}
|
| 393 |
|
|
break;
|
| 394 |
|
|
}
|
| 395 |
|
|
return NOTIFY_OK;
|
| 396 |
|
|
}
|
| 397 |
|
|
#else /* !CONFIG_SMP */
|
| 398 |
|
|
#define profile_flip_buffers() do { } while (0)
|
| 399 |
|
|
#define profile_discard_flip_buffers() do { } while (0)
|
| 400 |
|
|
#define profile_cpu_callback NULL
|
| 401 |
|
|
|
| 402 |
|
|
void profile_hits(int type, void *__pc, unsigned int nr_hits)
|
| 403 |
|
|
{
|
| 404 |
|
|
unsigned long pc;
|
| 405 |
|
|
|
| 406 |
|
|
if (prof_on != type || !prof_buffer)
|
| 407 |
|
|
return;
|
| 408 |
|
|
pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
|
| 409 |
|
|
atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
|
| 410 |
|
|
}
|
| 411 |
|
|
#endif /* !CONFIG_SMP */
|
| 412 |
|
|
|
| 413 |
|
|
EXPORT_SYMBOL_GPL(profile_hits);
|
| 414 |
|
|
|
| 415 |
|
|
void profile_tick(int type)
|
| 416 |
|
|
{
|
| 417 |
|
|
struct pt_regs *regs = get_irq_regs();
|
| 418 |
|
|
|
| 419 |
|
|
if (type == CPU_PROFILING && timer_hook)
|
| 420 |
|
|
timer_hook(regs);
|
| 421 |
|
|
if (!user_mode(regs) && cpu_isset(smp_processor_id(), prof_cpu_mask))
|
| 422 |
|
|
profile_hit(type, (void *)profile_pc(regs));
|
| 423 |
|
|
}
|
| 424 |
|
|
|
| 425 |
|
|
#ifdef CONFIG_PROC_FS
|
| 426 |
|
|
#include <linux/proc_fs.h>
|
| 427 |
|
|
#include <asm/uaccess.h>
|
| 428 |
|
|
#include <asm/ptrace.h>
|
| 429 |
|
|
|
| 430 |
|
|
static int prof_cpu_mask_read_proc (char *page, char **start, off_t off,
|
| 431 |
|
|
int count, int *eof, void *data)
|
| 432 |
|
|
{
|
| 433 |
|
|
int len = cpumask_scnprintf(page, count, *(cpumask_t *)data);
|
| 434 |
|
|
if (count - len < 2)
|
| 435 |
|
|
return -EINVAL;
|
| 436 |
|
|
len += sprintf(page + len, "\n");
|
| 437 |
|
|
return len;
|
| 438 |
|
|
}
|
| 439 |
|
|
|
| 440 |
|
|
static int prof_cpu_mask_write_proc (struct file *file, const char __user *buffer,
|
| 441 |
|
|
unsigned long count, void *data)
|
| 442 |
|
|
{
|
| 443 |
|
|
cpumask_t *mask = (cpumask_t *)data;
|
| 444 |
|
|
unsigned long full_count = count, err;
|
| 445 |
|
|
cpumask_t new_value;
|
| 446 |
|
|
|
| 447 |
|
|
err = cpumask_parse_user(buffer, count, new_value);
|
| 448 |
|
|
if (err)
|
| 449 |
|
|
return err;
|
| 450 |
|
|
|
| 451 |
|
|
*mask = new_value;
|
| 452 |
|
|
return full_count;
|
| 453 |
|
|
}
|
| 454 |
|
|
|
| 455 |
|
|
void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
|
| 456 |
|
|
{
|
| 457 |
|
|
struct proc_dir_entry *entry;
|
| 458 |
|
|
|
| 459 |
|
|
/* create /proc/irq/prof_cpu_mask */
|
| 460 |
|
|
if (!(entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir)))
|
| 461 |
|
|
return;
|
| 462 |
|
|
entry->data = (void *)&prof_cpu_mask;
|
| 463 |
|
|
entry->read_proc = prof_cpu_mask_read_proc;
|
| 464 |
|
|
entry->write_proc = prof_cpu_mask_write_proc;
|
| 465 |
|
|
}
|
| 466 |
|
|
|
| 467 |
|
|
/*
|
| 468 |
|
|
* This function accesses profiling information. The returned data is
|
| 469 |
|
|
* binary: the sampling step and the actual contents of the profile
|
| 470 |
|
|
* buffer. Use of the program readprofile is recommended in order to
|
| 471 |
|
|
* get meaningful info out of these data.
|
| 472 |
|
|
*/
|
| 473 |
|
|
static ssize_t
|
| 474 |
|
|
read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
|
| 475 |
|
|
{
|
| 476 |
|
|
unsigned long p = *ppos;
|
| 477 |
|
|
ssize_t read;
|
| 478 |
|
|
char * pnt;
|
| 479 |
|
|
unsigned int sample_step = 1 << prof_shift;
|
| 480 |
|
|
|
| 481 |
|
|
profile_flip_buffers();
|
| 482 |
|
|
if (p >= (prof_len+1)*sizeof(unsigned int))
|
| 483 |
|
|
return 0;
|
| 484 |
|
|
if (count > (prof_len+1)*sizeof(unsigned int) - p)
|
| 485 |
|
|
count = (prof_len+1)*sizeof(unsigned int) - p;
|
| 486 |
|
|
read = 0;
|
| 487 |
|
|
|
| 488 |
|
|
while (p < sizeof(unsigned int) && count > 0) {
|
| 489 |
|
|
if (put_user(*((char *)(&sample_step)+p),buf))
|
| 490 |
|
|
return -EFAULT;
|
| 491 |
|
|
buf++; p++; count--; read++;
|
| 492 |
|
|
}
|
| 493 |
|
|
pnt = (char *)prof_buffer + p - sizeof(atomic_t);
|
| 494 |
|
|
if (copy_to_user(buf,(void *)pnt,count))
|
| 495 |
|
|
return -EFAULT;
|
| 496 |
|
|
read += count;
|
| 497 |
|
|
*ppos += read;
|
| 498 |
|
|
return read;
|
| 499 |
|
|
}
|
| 500 |
|
|
|
| 501 |
|
|
/*
|
| 502 |
|
|
* Writing to /proc/profile resets the counters
|
| 503 |
|
|
*
|
| 504 |
|
|
* Writing a 'profiling multiplier' value into it also re-sets the profiling
|
| 505 |
|
|
* interrupt frequency, on architectures that support this.
|
| 506 |
|
|
*/
|
| 507 |
|
|
static ssize_t write_profile(struct file *file, const char __user *buf,
|
| 508 |
|
|
size_t count, loff_t *ppos)
|
| 509 |
|
|
{
|
| 510 |
|
|
#ifdef CONFIG_SMP
|
| 511 |
|
|
extern int setup_profiling_timer (unsigned int multiplier);
|
| 512 |
|
|
|
| 513 |
|
|
if (count == sizeof(int)) {
|
| 514 |
|
|
unsigned int multiplier;
|
| 515 |
|
|
|
| 516 |
|
|
if (copy_from_user(&multiplier, buf, sizeof(int)))
|
| 517 |
|
|
return -EFAULT;
|
| 518 |
|
|
|
| 519 |
|
|
if (setup_profiling_timer(multiplier))
|
| 520 |
|
|
return -EINVAL;
|
| 521 |
|
|
}
|
| 522 |
|
|
#endif
|
| 523 |
|
|
profile_discard_flip_buffers();
|
| 524 |
|
|
memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
|
| 525 |
|
|
return count;
|
| 526 |
|
|
}
|
| 527 |
|
|
|
| 528 |
|
|
static const struct file_operations proc_profile_operations = {
|
| 529 |
|
|
.read = read_profile,
|
| 530 |
|
|
.write = write_profile,
|
| 531 |
|
|
};
|
| 532 |
|
|
|
| 533 |
|
|
#ifdef CONFIG_SMP
|
| 534 |
|
|
static void __init profile_nop(void *unused)
|
| 535 |
|
|
{
|
| 536 |
|
|
}
|
| 537 |
|
|
|
| 538 |
|
|
static int __init create_hash_tables(void)
|
| 539 |
|
|
{
|
| 540 |
|
|
int cpu;
|
| 541 |
|
|
|
| 542 |
|
|
for_each_online_cpu(cpu) {
|
| 543 |
|
|
int node = cpu_to_node(cpu);
|
| 544 |
|
|
struct page *page;
|
| 545 |
|
|
|
| 546 |
|
|
page = alloc_pages_node(node,
|
| 547 |
|
|
GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
|
| 548 |
|
|
0);
|
| 549 |
|
|
if (!page)
|
| 550 |
|
|
goto out_cleanup;
|
| 551 |
|
|
per_cpu(cpu_profile_hits, cpu)[1]
|
| 552 |
|
|
= (struct profile_hit *)page_address(page);
|
| 553 |
|
|
page = alloc_pages_node(node,
|
| 554 |
|
|
GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
|
| 555 |
|
|
0);
|
| 556 |
|
|
if (!page)
|
| 557 |
|
|
goto out_cleanup;
|
| 558 |
|
|
per_cpu(cpu_profile_hits, cpu)[0]
|
| 559 |
|
|
= (struct profile_hit *)page_address(page);
|
| 560 |
|
|
}
|
| 561 |
|
|
return 0;
|
| 562 |
|
|
out_cleanup:
|
| 563 |
|
|
prof_on = 0;
|
| 564 |
|
|
smp_mb();
|
| 565 |
|
|
on_each_cpu(profile_nop, NULL, 0, 1);
|
| 566 |
|
|
for_each_online_cpu(cpu) {
|
| 567 |
|
|
struct page *page;
|
| 568 |
|
|
|
| 569 |
|
|
if (per_cpu(cpu_profile_hits, cpu)[0]) {
|
| 570 |
|
|
page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
|
| 571 |
|
|
per_cpu(cpu_profile_hits, cpu)[0] = NULL;
|
| 572 |
|
|
__free_page(page);
|
| 573 |
|
|
}
|
| 574 |
|
|
if (per_cpu(cpu_profile_hits, cpu)[1]) {
|
| 575 |
|
|
page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
|
| 576 |
|
|
per_cpu(cpu_profile_hits, cpu)[1] = NULL;
|
| 577 |
|
|
__free_page(page);
|
| 578 |
|
|
}
|
| 579 |
|
|
}
|
| 580 |
|
|
return -1;
|
| 581 |
|
|
}
|
| 582 |
|
|
#else
|
| 583 |
|
|
#define create_hash_tables() ({ 0; })
|
| 584 |
|
|
#endif
|
| 585 |
|
|
|
| 586 |
|
|
static int __init create_proc_profile(void)
|
| 587 |
|
|
{
|
| 588 |
|
|
struct proc_dir_entry *entry;
|
| 589 |
|
|
|
| 590 |
|
|
if (!prof_on)
|
| 591 |
|
|
return 0;
|
| 592 |
|
|
if (create_hash_tables())
|
| 593 |
|
|
return -1;
|
| 594 |
|
|
if (!(entry = create_proc_entry("profile", S_IWUSR | S_IRUGO, NULL)))
|
| 595 |
|
|
return 0;
|
| 596 |
|
|
entry->proc_fops = &proc_profile_operations;
|
| 597 |
|
|
entry->size = (1+prof_len) * sizeof(atomic_t);
|
| 598 |
|
|
hotcpu_notifier(profile_cpu_callback, 0);
|
| 599 |
|
|
return 0;
|
| 600 |
|
|
}
|
| 601 |
|
|
module_init(create_proc_profile);
|
| 602 |
|
|
#endif /* CONFIG_PROC_FS */
|