OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [kernel/] [relay.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 * Public API and common code for kernel->userspace relay file support.
3
 *
4
 * See Documentation/filesystems/relay.txt for an overview.
5
 *
6
 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7
 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8
 *
9
 * Moved to kernel/relay.c by Paul Mundt, 2006.
10
 * November 2006 - CPU hotplug support by Mathieu Desnoyers
11
 *      (mathieu.desnoyers@polymtl.ca)
12
 *
13
 * This file is released under the GPL.
14
 */
15
#include <linux/errno.h>
16
#include <linux/stddef.h>
17
#include <linux/slab.h>
18
#include <linux/module.h>
19
#include <linux/string.h>
20
#include <linux/relay.h>
21
#include <linux/vmalloc.h>
22
#include <linux/mm.h>
23
#include <linux/cpu.h>
24
#include <linux/splice.h>
25
 
26
/* list of open channels, for cpu hotplug */
27
static DEFINE_MUTEX(relay_channels_mutex);
28
static LIST_HEAD(relay_channels);
29
 
30
/*
31
 * close() vm_op implementation for relay file mapping.
32
 */
33
static void relay_file_mmap_close(struct vm_area_struct *vma)
34
{
35
        struct rchan_buf *buf = vma->vm_private_data;
36
        buf->chan->cb->buf_unmapped(buf, vma->vm_file);
37
}
38
 
39
/*
40
 * nopage() vm_op implementation for relay file mapping.
41
 */
42
static struct page *relay_buf_nopage(struct vm_area_struct *vma,
43
                                     unsigned long address,
44
                                     int *type)
45
{
46
        struct page *page;
47
        struct rchan_buf *buf = vma->vm_private_data;
48
        unsigned long offset = address - vma->vm_start;
49
 
50
        if (address > vma->vm_end)
51
                return NOPAGE_SIGBUS; /* Disallow mremap */
52
        if (!buf)
53
                return NOPAGE_OOM;
54
 
55
        page = vmalloc_to_page(buf->start + offset);
56
        if (!page)
57
                return NOPAGE_OOM;
58
        get_page(page);
59
 
60
        if (type)
61
                *type = VM_FAULT_MINOR;
62
 
63
        return page;
64
}
65
 
66
/*
67
 * vm_ops for relay file mappings.
68
 */
69
static struct vm_operations_struct relay_file_mmap_ops = {
70
        .nopage = relay_buf_nopage,
71
        .close = relay_file_mmap_close,
72
};
73
 
74
/**
75
 *      relay_mmap_buf: - mmap channel buffer to process address space
76
 *      @buf: relay channel buffer
77
 *      @vma: vm_area_struct describing memory to be mapped
78
 *
79
 *      Returns 0 if ok, negative on error
80
 *
81
 *      Caller should already have grabbed mmap_sem.
82
 */
83
static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
84
{
85
        unsigned long length = vma->vm_end - vma->vm_start;
86
        struct file *filp = vma->vm_file;
87
 
88
        if (!buf)
89
                return -EBADF;
90
 
91
        if (length != (unsigned long)buf->chan->alloc_size)
92
                return -EINVAL;
93
 
94
        vma->vm_ops = &relay_file_mmap_ops;
95
        vma->vm_private_data = buf;
96
        buf->chan->cb->buf_mapped(buf, filp);
97
 
98
        return 0;
99
}
100
 
101
/**
102
 *      relay_alloc_buf - allocate a channel buffer
103
 *      @buf: the buffer struct
104
 *      @size: total size of the buffer
105
 *
106
 *      Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
107
 *      passed in size will get page aligned, if it isn't already.
108
 */
109
static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
110
{
111
        void *mem;
112
        unsigned int i, j, n_pages;
113
 
114
        *size = PAGE_ALIGN(*size);
115
        n_pages = *size >> PAGE_SHIFT;
116
 
117
        buf->page_array = kcalloc(n_pages, sizeof(struct page *), GFP_KERNEL);
118
        if (!buf->page_array)
119
                return NULL;
120
 
121
        for (i = 0; i < n_pages; i++) {
122
                buf->page_array[i] = alloc_page(GFP_KERNEL);
123
                if (unlikely(!buf->page_array[i]))
124
                        goto depopulate;
125
                set_page_private(buf->page_array[i], (unsigned long)buf);
126
        }
127
        mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
128
        if (!mem)
129
                goto depopulate;
130
 
131
        memset(mem, 0, *size);
132
        buf->page_count = n_pages;
133
        return mem;
134
 
135
depopulate:
136
        for (j = 0; j < i; j++)
137
                __free_page(buf->page_array[j]);
138
        kfree(buf->page_array);
139
        return NULL;
140
}
141
 
142
/**
143
 *      relay_create_buf - allocate and initialize a channel buffer
144
 *      @chan: the relay channel
145
 *
146
 *      Returns channel buffer if successful, %NULL otherwise.
147
 */
148
static struct rchan_buf *relay_create_buf(struct rchan *chan)
149
{
150
        struct rchan_buf *buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
151
        if (!buf)
152
                return NULL;
153
 
154
        buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
155
        if (!buf->padding)
156
                goto free_buf;
157
 
158
        buf->start = relay_alloc_buf(buf, &chan->alloc_size);
159
        if (!buf->start)
160
                goto free_buf;
161
 
162
        buf->chan = chan;
163
        kref_get(&buf->chan->kref);
164
        return buf;
165
 
166
free_buf:
167
        kfree(buf->padding);
168
        kfree(buf);
169
        return NULL;
170
}
171
 
172
/**
173
 *      relay_destroy_channel - free the channel struct
174
 *      @kref: target kernel reference that contains the relay channel
175
 *
176
 *      Should only be called from kref_put().
177
 */
178
static void relay_destroy_channel(struct kref *kref)
179
{
180
        struct rchan *chan = container_of(kref, struct rchan, kref);
181
        kfree(chan);
182
}
183
 
184
/**
185
 *      relay_destroy_buf - destroy an rchan_buf struct and associated buffer
186
 *      @buf: the buffer struct
187
 */
188
static void relay_destroy_buf(struct rchan_buf *buf)
189
{
190
        struct rchan *chan = buf->chan;
191
        unsigned int i;
192
 
193
        if (likely(buf->start)) {
194
                vunmap(buf->start);
195
                for (i = 0; i < buf->page_count; i++)
196
                        __free_page(buf->page_array[i]);
197
                kfree(buf->page_array);
198
        }
199
        chan->buf[buf->cpu] = NULL;
200
        kfree(buf->padding);
201
        kfree(buf);
202
        kref_put(&chan->kref, relay_destroy_channel);
203
}
204
 
205
/**
206
 *      relay_remove_buf - remove a channel buffer
207
 *      @kref: target kernel reference that contains the relay buffer
208
 *
209
 *      Removes the file from the fileystem, which also frees the
210
 *      rchan_buf_struct and the channel buffer.  Should only be called from
211
 *      kref_put().
212
 */
213
static void relay_remove_buf(struct kref *kref)
214
{
215
        struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
216
        buf->chan->cb->remove_buf_file(buf->dentry);
217
        relay_destroy_buf(buf);
218
}
219
 
220
/**
221
 *      relay_buf_empty - boolean, is the channel buffer empty?
222
 *      @buf: channel buffer
223
 *
224
 *      Returns 1 if the buffer is empty, 0 otherwise.
225
 */
226
static int relay_buf_empty(struct rchan_buf *buf)
227
{
228
        return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
229
}
230
 
231
/**
232
 *      relay_buf_full - boolean, is the channel buffer full?
233
 *      @buf: channel buffer
234
 *
235
 *      Returns 1 if the buffer is full, 0 otherwise.
236
 */
237
int relay_buf_full(struct rchan_buf *buf)
238
{
239
        size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
240
        return (ready >= buf->chan->n_subbufs) ? 1 : 0;
241
}
242
EXPORT_SYMBOL_GPL(relay_buf_full);
243
 
244
/*
245
 * High-level relay kernel API and associated functions.
246
 */
247
 
248
/*
249
 * rchan_callback implementations defining default channel behavior.  Used
250
 * in place of corresponding NULL values in client callback struct.
251
 */
252
 
253
/*
254
 * subbuf_start() default callback.  Does nothing.
255
 */
256
static int subbuf_start_default_callback (struct rchan_buf *buf,
257
                                          void *subbuf,
258
                                          void *prev_subbuf,
259
                                          size_t prev_padding)
260
{
261
        if (relay_buf_full(buf))
262
                return 0;
263
 
264
        return 1;
265
}
266
 
267
/*
268
 * buf_mapped() default callback.  Does nothing.
269
 */
270
static void buf_mapped_default_callback(struct rchan_buf *buf,
271
                                        struct file *filp)
272
{
273
}
274
 
275
/*
276
 * buf_unmapped() default callback.  Does nothing.
277
 */
278
static void buf_unmapped_default_callback(struct rchan_buf *buf,
279
                                          struct file *filp)
280
{
281
}
282
 
283
/*
284
 * create_buf_file_create() default callback.  Does nothing.
285
 */
286
static struct dentry *create_buf_file_default_callback(const char *filename,
287
                                                       struct dentry *parent,
288
                                                       int mode,
289
                                                       struct rchan_buf *buf,
290
                                                       int *is_global)
291
{
292
        return NULL;
293
}
294
 
295
/*
296
 * remove_buf_file() default callback.  Does nothing.
297
 */
298
static int remove_buf_file_default_callback(struct dentry *dentry)
299
{
300
        return -EINVAL;
301
}
302
 
303
/* relay channel default callbacks */
304
static struct rchan_callbacks default_channel_callbacks = {
305
        .subbuf_start = subbuf_start_default_callback,
306
        .buf_mapped = buf_mapped_default_callback,
307
        .buf_unmapped = buf_unmapped_default_callback,
308
        .create_buf_file = create_buf_file_default_callback,
309
        .remove_buf_file = remove_buf_file_default_callback,
310
};
311
 
312
/**
313
 *      wakeup_readers - wake up readers waiting on a channel
314
 *      @data: contains the channel buffer
315
 *
316
 *      This is the timer function used to defer reader waking.
317
 */
318
static void wakeup_readers(unsigned long data)
319
{
320
        struct rchan_buf *buf = (struct rchan_buf *)data;
321
        wake_up_interruptible(&buf->read_wait);
322
}
323
 
324
/**
325
 *      __relay_reset - reset a channel buffer
326
 *      @buf: the channel buffer
327
 *      @init: 1 if this is a first-time initialization
328
 *
329
 *      See relay_reset() for description of effect.
330
 */
331
static void __relay_reset(struct rchan_buf *buf, unsigned int init)
332
{
333
        size_t i;
334
 
335
        if (init) {
336
                init_waitqueue_head(&buf->read_wait);
337
                kref_init(&buf->kref);
338
                setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
339
        } else
340
                del_timer_sync(&buf->timer);
341
 
342
        buf->subbufs_produced = 0;
343
        buf->subbufs_consumed = 0;
344
        buf->bytes_consumed = 0;
345
        buf->finalized = 0;
346
        buf->data = buf->start;
347
        buf->offset = 0;
348
 
349
        for (i = 0; i < buf->chan->n_subbufs; i++)
350
                buf->padding[i] = 0;
351
 
352
        buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
353
}
354
 
355
/**
356
 *      relay_reset - reset the channel
357
 *      @chan: the channel
358
 *
359
 *      This has the effect of erasing all data from all channel buffers
360
 *      and restarting the channel in its initial state.  The buffers
361
 *      are not freed, so any mappings are still in effect.
362
 *
363
 *      NOTE. Care should be taken that the channel isn't actually
364
 *      being used by anything when this call is made.
365
 */
366
void relay_reset(struct rchan *chan)
367
{
368
        unsigned int i;
369
 
370
        if (!chan)
371
                return;
372
 
373
        if (chan->is_global && chan->buf[0]) {
374
                __relay_reset(chan->buf[0], 0);
375
                return;
376
        }
377
 
378
        mutex_lock(&relay_channels_mutex);
379
        for_each_online_cpu(i)
380
                if (chan->buf[i])
381
                        __relay_reset(chan->buf[i], 0);
382
        mutex_unlock(&relay_channels_mutex);
383
}
384
EXPORT_SYMBOL_GPL(relay_reset);
385
 
386
/*
387
 *      relay_open_buf - create a new relay channel buffer
388
 *
389
 *      used by relay_open() and CPU hotplug.
390
 */
391
static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
392
{
393
        struct rchan_buf *buf = NULL;
394
        struct dentry *dentry;
395
        char *tmpname;
396
 
397
        if (chan->is_global)
398
                return chan->buf[0];
399
 
400
        tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
401
        if (!tmpname)
402
                goto end;
403
        snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
404
 
405
        buf = relay_create_buf(chan);
406
        if (!buf)
407
                goto free_name;
408
 
409
        buf->cpu = cpu;
410
        __relay_reset(buf, 1);
411
 
412
        /* Create file in fs */
413
        dentry = chan->cb->create_buf_file(tmpname, chan->parent, S_IRUSR,
414
                                           buf, &chan->is_global);
415
        if (!dentry)
416
                goto free_buf;
417
 
418
        buf->dentry = dentry;
419
 
420
        if(chan->is_global) {
421
                chan->buf[0] = buf;
422
                buf->cpu = 0;
423
        }
424
 
425
        goto free_name;
426
 
427
free_buf:
428
        relay_destroy_buf(buf);
429
        buf = NULL;
430
free_name:
431
        kfree(tmpname);
432
end:
433
        return buf;
434
}
435
 
436
/**
437
 *      relay_close_buf - close a channel buffer
438
 *      @buf: channel buffer
439
 *
440
 *      Marks the buffer finalized and restores the default callbacks.
441
 *      The channel buffer and channel buffer data structure are then freed
442
 *      automatically when the last reference is given up.
443
 */
444
static void relay_close_buf(struct rchan_buf *buf)
445
{
446
        buf->finalized = 1;
447
        del_timer_sync(&buf->timer);
448
        kref_put(&buf->kref, relay_remove_buf);
449
}
450
 
451
static void setup_callbacks(struct rchan *chan,
452
                                   struct rchan_callbacks *cb)
453
{
454
        if (!cb) {
455
                chan->cb = &default_channel_callbacks;
456
                return;
457
        }
458
 
459
        if (!cb->subbuf_start)
460
                cb->subbuf_start = subbuf_start_default_callback;
461
        if (!cb->buf_mapped)
462
                cb->buf_mapped = buf_mapped_default_callback;
463
        if (!cb->buf_unmapped)
464
                cb->buf_unmapped = buf_unmapped_default_callback;
465
        if (!cb->create_buf_file)
466
                cb->create_buf_file = create_buf_file_default_callback;
467
        if (!cb->remove_buf_file)
468
                cb->remove_buf_file = remove_buf_file_default_callback;
469
        chan->cb = cb;
470
}
471
 
472
/**
473
 *      relay_hotcpu_callback - CPU hotplug callback
474
 *      @nb: notifier block
475
 *      @action: hotplug action to take
476
 *      @hcpu: CPU number
477
 *
478
 *      Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
479
 */
480
static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb,
481
                                unsigned long action,
482
                                void *hcpu)
483
{
484
        unsigned int hotcpu = (unsigned long)hcpu;
485
        struct rchan *chan;
486
 
487
        switch(action) {
488
        case CPU_UP_PREPARE:
489
        case CPU_UP_PREPARE_FROZEN:
490
                mutex_lock(&relay_channels_mutex);
491
                list_for_each_entry(chan, &relay_channels, list) {
492
                        if (chan->buf[hotcpu])
493
                                continue;
494
                        chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
495
                        if(!chan->buf[hotcpu]) {
496
                                printk(KERN_ERR
497
                                        "relay_hotcpu_callback: cpu %d buffer "
498
                                        "creation failed\n", hotcpu);
499
                                mutex_unlock(&relay_channels_mutex);
500
                                return NOTIFY_BAD;
501
                        }
502
                }
503
                mutex_unlock(&relay_channels_mutex);
504
                break;
505
        case CPU_DEAD:
506
        case CPU_DEAD_FROZEN:
507
                /* No need to flush the cpu : will be flushed upon
508
                 * final relay_flush() call. */
509
                break;
510
        }
511
        return NOTIFY_OK;
512
}
513
 
514
/**
515
 *      relay_open - create a new relay channel
516
 *      @base_filename: base name of files to create
517
 *      @parent: dentry of parent directory, %NULL for root directory
518
 *      @subbuf_size: size of sub-buffers
519
 *      @n_subbufs: number of sub-buffers
520
 *      @cb: client callback functions
521
 *      @private_data: user-defined data
522
 *
523
 *      Returns channel pointer if successful, %NULL otherwise.
524
 *
525
 *      Creates a channel buffer for each cpu using the sizes and
526
 *      attributes specified.  The created channel buffer files
527
 *      will be named base_filename0...base_filenameN-1.  File
528
 *      permissions will be %S_IRUSR.
529
 */
530
struct rchan *relay_open(const char *base_filename,
531
                         struct dentry *parent,
532
                         size_t subbuf_size,
533
                         size_t n_subbufs,
534
                         struct rchan_callbacks *cb,
535
                         void *private_data)
536
{
537
        unsigned int i;
538
        struct rchan *chan;
539
        if (!base_filename)
540
                return NULL;
541
 
542
        if (!(subbuf_size && n_subbufs))
543
                return NULL;
544
 
545
        chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
546
        if (!chan)
547
                return NULL;
548
 
549
        chan->version = RELAYFS_CHANNEL_VERSION;
550
        chan->n_subbufs = n_subbufs;
551
        chan->subbuf_size = subbuf_size;
552
        chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs);
553
        chan->parent = parent;
554
        chan->private_data = private_data;
555
        strlcpy(chan->base_filename, base_filename, NAME_MAX);
556
        setup_callbacks(chan, cb);
557
        kref_init(&chan->kref);
558
 
559
        mutex_lock(&relay_channels_mutex);
560
        for_each_online_cpu(i) {
561
                chan->buf[i] = relay_open_buf(chan, i);
562
                if (!chan->buf[i])
563
                        goto free_bufs;
564
        }
565
        list_add(&chan->list, &relay_channels);
566
        mutex_unlock(&relay_channels_mutex);
567
 
568
        return chan;
569
 
570
free_bufs:
571
        for_each_online_cpu(i) {
572
                if (!chan->buf[i])
573
                        break;
574
                relay_close_buf(chan->buf[i]);
575
        }
576
 
577
        kref_put(&chan->kref, relay_destroy_channel);
578
        mutex_unlock(&relay_channels_mutex);
579
        return NULL;
580
}
581
EXPORT_SYMBOL_GPL(relay_open);
582
 
583
/**
584
 *      relay_switch_subbuf - switch to a new sub-buffer
585
 *      @buf: channel buffer
586
 *      @length: size of current event
587
 *
588
 *      Returns either the length passed in or 0 if full.
589
 *
590
 *      Performs sub-buffer-switch tasks such as invoking callbacks,
591
 *      updating padding counts, waking up readers, etc.
592
 */
593
size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
594
{
595
        void *old, *new;
596
        size_t old_subbuf, new_subbuf;
597
 
598
        if (unlikely(length > buf->chan->subbuf_size))
599
                goto toobig;
600
 
601
        if (buf->offset != buf->chan->subbuf_size + 1) {
602
                buf->prev_padding = buf->chan->subbuf_size - buf->offset;
603
                old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
604
                buf->padding[old_subbuf] = buf->prev_padding;
605
                buf->subbufs_produced++;
606
                buf->dentry->d_inode->i_size += buf->chan->subbuf_size -
607
                        buf->padding[old_subbuf];
608
                smp_mb();
609
                if (waitqueue_active(&buf->read_wait))
610
                        /*
611
                         * Calling wake_up_interruptible() from here
612
                         * will deadlock if we happen to be logging
613
                         * from the scheduler (trying to re-grab
614
                         * rq->lock), so defer it.
615
                         */
616
                        __mod_timer(&buf->timer, jiffies + 1);
617
        }
618
 
619
        old = buf->data;
620
        new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
621
        new = buf->start + new_subbuf * buf->chan->subbuf_size;
622
        buf->offset = 0;
623
        if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
624
                buf->offset = buf->chan->subbuf_size + 1;
625
                return 0;
626
        }
627
        buf->data = new;
628
        buf->padding[new_subbuf] = 0;
629
 
630
        if (unlikely(length + buf->offset > buf->chan->subbuf_size))
631
                goto toobig;
632
 
633
        return length;
634
 
635
toobig:
636
        buf->chan->last_toobig = length;
637
        return 0;
638
}
639
EXPORT_SYMBOL_GPL(relay_switch_subbuf);
640
 
641
/**
642
 *      relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
643
 *      @chan: the channel
644
 *      @cpu: the cpu associated with the channel buffer to update
645
 *      @subbufs_consumed: number of sub-buffers to add to current buf's count
646
 *
647
 *      Adds to the channel buffer's consumed sub-buffer count.
648
 *      subbufs_consumed should be the number of sub-buffers newly consumed,
649
 *      not the total consumed.
650
 *
651
 *      NOTE. Kernel clients don't need to call this function if the channel
652
 *      mode is 'overwrite'.
653
 */
654
void relay_subbufs_consumed(struct rchan *chan,
655
                            unsigned int cpu,
656
                            size_t subbufs_consumed)
657
{
658
        struct rchan_buf *buf;
659
 
660
        if (!chan)
661
                return;
662
 
663
        if (cpu >= NR_CPUS || !chan->buf[cpu])
664
                return;
665
 
666
        buf = chan->buf[cpu];
667
        buf->subbufs_consumed += subbufs_consumed;
668
        if (buf->subbufs_consumed > buf->subbufs_produced)
669
                buf->subbufs_consumed = buf->subbufs_produced;
670
}
671
EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
672
 
673
/**
674
 *      relay_close - close the channel
675
 *      @chan: the channel
676
 *
677
 *      Closes all channel buffers and frees the channel.
678
 */
679
void relay_close(struct rchan *chan)
680
{
681
        unsigned int i;
682
 
683
        if (!chan)
684
                return;
685
 
686
        mutex_lock(&relay_channels_mutex);
687
        if (chan->is_global && chan->buf[0])
688
                relay_close_buf(chan->buf[0]);
689
        else
690
                for_each_possible_cpu(i)
691
                        if (chan->buf[i])
692
                                relay_close_buf(chan->buf[i]);
693
 
694
        if (chan->last_toobig)
695
                printk(KERN_WARNING "relay: one or more items not logged "
696
                       "[item size (%Zd) > sub-buffer size (%Zd)]\n",
697
                       chan->last_toobig, chan->subbuf_size);
698
 
699
        list_del(&chan->list);
700
        kref_put(&chan->kref, relay_destroy_channel);
701
        mutex_unlock(&relay_channels_mutex);
702
}
703
EXPORT_SYMBOL_GPL(relay_close);
704
 
705
/**
706
 *      relay_flush - close the channel
707
 *      @chan: the channel
708
 *
709
 *      Flushes all channel buffers, i.e. forces buffer switch.
710
 */
711
void relay_flush(struct rchan *chan)
712
{
713
        unsigned int i;
714
 
715
        if (!chan)
716
                return;
717
 
718
        if (chan->is_global && chan->buf[0]) {
719
                relay_switch_subbuf(chan->buf[0], 0);
720
                return;
721
        }
722
 
723
        mutex_lock(&relay_channels_mutex);
724
        for_each_possible_cpu(i)
725
                if (chan->buf[i])
726
                        relay_switch_subbuf(chan->buf[i], 0);
727
        mutex_unlock(&relay_channels_mutex);
728
}
729
EXPORT_SYMBOL_GPL(relay_flush);
730
 
731
/**
732
 *      relay_file_open - open file op for relay files
733
 *      @inode: the inode
734
 *      @filp: the file
735
 *
736
 *      Increments the channel buffer refcount.
737
 */
738
static int relay_file_open(struct inode *inode, struct file *filp)
739
{
740
        struct rchan_buf *buf = inode->i_private;
741
        kref_get(&buf->kref);
742
        filp->private_data = buf;
743
 
744
        return 0;
745
}
746
 
747
/**
748
 *      relay_file_mmap - mmap file op for relay files
749
 *      @filp: the file
750
 *      @vma: the vma describing what to map
751
 *
752
 *      Calls upon relay_mmap_buf() to map the file into user space.
753
 */
754
static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
755
{
756
        struct rchan_buf *buf = filp->private_data;
757
        return relay_mmap_buf(buf, vma);
758
}
759
 
760
/**
761
 *      relay_file_poll - poll file op for relay files
762
 *      @filp: the file
763
 *      @wait: poll table
764
 *
765
 *      Poll implemention.
766
 */
767
static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
768
{
769
        unsigned int mask = 0;
770
        struct rchan_buf *buf = filp->private_data;
771
 
772
        if (buf->finalized)
773
                return POLLERR;
774
 
775
        if (filp->f_mode & FMODE_READ) {
776
                poll_wait(filp, &buf->read_wait, wait);
777
                if (!relay_buf_empty(buf))
778
                        mask |= POLLIN | POLLRDNORM;
779
        }
780
 
781
        return mask;
782
}
783
 
784
/**
785
 *      relay_file_release - release file op for relay files
786
 *      @inode: the inode
787
 *      @filp: the file
788
 *
789
 *      Decrements the channel refcount, as the filesystem is
790
 *      no longer using it.
791
 */
792
static int relay_file_release(struct inode *inode, struct file *filp)
793
{
794
        struct rchan_buf *buf = filp->private_data;
795
        kref_put(&buf->kref, relay_remove_buf);
796
 
797
        return 0;
798
}
799
 
800
/*
801
 *      relay_file_read_consume - update the consumed count for the buffer
802
 */
803
static void relay_file_read_consume(struct rchan_buf *buf,
804
                                    size_t read_pos,
805
                                    size_t bytes_consumed)
806
{
807
        size_t subbuf_size = buf->chan->subbuf_size;
808
        size_t n_subbufs = buf->chan->n_subbufs;
809
        size_t read_subbuf;
810
 
811
        if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
812
                relay_subbufs_consumed(buf->chan, buf->cpu, 1);
813
                buf->bytes_consumed = 0;
814
        }
815
 
816
        buf->bytes_consumed += bytes_consumed;
817
        if (!read_pos)
818
                read_subbuf = buf->subbufs_consumed % n_subbufs;
819
        else
820
                read_subbuf = read_pos / buf->chan->subbuf_size;
821
        if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
822
                if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
823
                    (buf->offset == subbuf_size))
824
                        return;
825
                relay_subbufs_consumed(buf->chan, buf->cpu, 1);
826
                buf->bytes_consumed = 0;
827
        }
828
}
829
 
830
/*
831
 *      relay_file_read_avail - boolean, are there unconsumed bytes available?
832
 */
833
static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
834
{
835
        size_t subbuf_size = buf->chan->subbuf_size;
836
        size_t n_subbufs = buf->chan->n_subbufs;
837
        size_t produced = buf->subbufs_produced;
838
        size_t consumed = buf->subbufs_consumed;
839
 
840
        relay_file_read_consume(buf, read_pos, 0);
841
 
842
        if (unlikely(buf->offset > subbuf_size)) {
843
                if (produced == consumed)
844
                        return 0;
845
                return 1;
846
        }
847
 
848
        if (unlikely(produced - consumed >= n_subbufs)) {
849
                consumed = produced - n_subbufs + 1;
850
                buf->subbufs_consumed = consumed;
851
                buf->bytes_consumed = 0;
852
        }
853
 
854
        produced = (produced % n_subbufs) * subbuf_size + buf->offset;
855
        consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
856
 
857
        if (consumed > produced)
858
                produced += n_subbufs * subbuf_size;
859
 
860
        if (consumed == produced)
861
                return 0;
862
 
863
        return 1;
864
}
865
 
866
/**
867
 *      relay_file_read_subbuf_avail - return bytes available in sub-buffer
868
 *      @read_pos: file read position
869
 *      @buf: relay channel buffer
870
 */
871
static size_t relay_file_read_subbuf_avail(size_t read_pos,
872
                                           struct rchan_buf *buf)
873
{
874
        size_t padding, avail = 0;
875
        size_t read_subbuf, read_offset, write_subbuf, write_offset;
876
        size_t subbuf_size = buf->chan->subbuf_size;
877
 
878
        write_subbuf = (buf->data - buf->start) / subbuf_size;
879
        write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
880
        read_subbuf = read_pos / subbuf_size;
881
        read_offset = read_pos % subbuf_size;
882
        padding = buf->padding[read_subbuf];
883
 
884
        if (read_subbuf == write_subbuf) {
885
                if (read_offset + padding < write_offset)
886
                        avail = write_offset - (read_offset + padding);
887
        } else
888
                avail = (subbuf_size - padding) - read_offset;
889
 
890
        return avail;
891
}
892
 
893
/**
894
 *      relay_file_read_start_pos - find the first available byte to read
895
 *      @read_pos: file read position
896
 *      @buf: relay channel buffer
897
 *
898
 *      If the @read_pos is in the middle of padding, return the
899
 *      position of the first actually available byte, otherwise
900
 *      return the original value.
901
 */
902
static size_t relay_file_read_start_pos(size_t read_pos,
903
                                        struct rchan_buf *buf)
904
{
905
        size_t read_subbuf, padding, padding_start, padding_end;
906
        size_t subbuf_size = buf->chan->subbuf_size;
907
        size_t n_subbufs = buf->chan->n_subbufs;
908
        size_t consumed = buf->subbufs_consumed % n_subbufs;
909
 
910
        if (!read_pos)
911
                read_pos = consumed * subbuf_size + buf->bytes_consumed;
912
        read_subbuf = read_pos / subbuf_size;
913
        padding = buf->padding[read_subbuf];
914
        padding_start = (read_subbuf + 1) * subbuf_size - padding;
915
        padding_end = (read_subbuf + 1) * subbuf_size;
916
        if (read_pos >= padding_start && read_pos < padding_end) {
917
                read_subbuf = (read_subbuf + 1) % n_subbufs;
918
                read_pos = read_subbuf * subbuf_size;
919
        }
920
 
921
        return read_pos;
922
}
923
 
924
/**
925
 *      relay_file_read_end_pos - return the new read position
926
 *      @read_pos: file read position
927
 *      @buf: relay channel buffer
928
 *      @count: number of bytes to be read
929
 */
930
static size_t relay_file_read_end_pos(struct rchan_buf *buf,
931
                                      size_t read_pos,
932
                                      size_t count)
933
{
934
        size_t read_subbuf, padding, end_pos;
935
        size_t subbuf_size = buf->chan->subbuf_size;
936
        size_t n_subbufs = buf->chan->n_subbufs;
937
 
938
        read_subbuf = read_pos / subbuf_size;
939
        padding = buf->padding[read_subbuf];
940
        if (read_pos % subbuf_size + count + padding == subbuf_size)
941
                end_pos = (read_subbuf + 1) * subbuf_size;
942
        else
943
                end_pos = read_pos + count;
944
        if (end_pos >= subbuf_size * n_subbufs)
945
                end_pos = 0;
946
 
947
        return end_pos;
948
}
949
 
950
/*
951
 *      subbuf_read_actor - read up to one subbuf's worth of data
952
 */
953
static int subbuf_read_actor(size_t read_start,
954
                             struct rchan_buf *buf,
955
                             size_t avail,
956
                             read_descriptor_t *desc,
957
                             read_actor_t actor)
958
{
959
        void *from;
960
        int ret = 0;
961
 
962
        from = buf->start + read_start;
963
        ret = avail;
964
        if (copy_to_user(desc->arg.buf, from, avail)) {
965
                desc->error = -EFAULT;
966
                ret = 0;
967
        }
968
        desc->arg.data += ret;
969
        desc->written += ret;
970
        desc->count -= ret;
971
 
972
        return ret;
973
}
974
 
975
typedef int (*subbuf_actor_t) (size_t read_start,
976
                               struct rchan_buf *buf,
977
                               size_t avail,
978
                               read_descriptor_t *desc,
979
                               read_actor_t actor);
980
 
981
/*
982
 *      relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
983
 */
984
static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
985
                                        subbuf_actor_t subbuf_actor,
986
                                        read_actor_t actor,
987
                                        read_descriptor_t *desc)
988
{
989
        struct rchan_buf *buf = filp->private_data;
990
        size_t read_start, avail;
991
        int ret;
992
 
993
        if (!desc->count)
994
                return 0;
995
 
996
        mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
997
        do {
998
                if (!relay_file_read_avail(buf, *ppos))
999
                        break;
1000
 
1001
                read_start = relay_file_read_start_pos(*ppos, buf);
1002
                avail = relay_file_read_subbuf_avail(read_start, buf);
1003
                if (!avail)
1004
                        break;
1005
 
1006
                avail = min(desc->count, avail);
1007
                ret = subbuf_actor(read_start, buf, avail, desc, actor);
1008
                if (desc->error < 0)
1009
                        break;
1010
 
1011
                if (ret) {
1012
                        relay_file_read_consume(buf, read_start, ret);
1013
                        *ppos = relay_file_read_end_pos(buf, read_start, ret);
1014
                }
1015
        } while (desc->count && ret);
1016
        mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
1017
 
1018
        return desc->written;
1019
}
1020
 
1021
static ssize_t relay_file_read(struct file *filp,
1022
                               char __user *buffer,
1023
                               size_t count,
1024
                               loff_t *ppos)
1025
{
1026
        read_descriptor_t desc;
1027
        desc.written = 0;
1028
        desc.count = count;
1029
        desc.arg.buf = buffer;
1030
        desc.error = 0;
1031
        return relay_file_read_subbufs(filp, ppos, subbuf_read_actor,
1032
                                       NULL, &desc);
1033
}
1034
 
1035
static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1036
{
1037
        rbuf->bytes_consumed += bytes_consumed;
1038
 
1039
        if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1040
                relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1041
                rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1042
        }
1043
}
1044
 
1045
static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1046
                                   struct pipe_buffer *buf)
1047
{
1048
        struct rchan_buf *rbuf;
1049
 
1050
        rbuf = (struct rchan_buf *)page_private(buf->page);
1051
        relay_consume_bytes(rbuf, buf->private);
1052
}
1053
 
1054
static struct pipe_buf_operations relay_pipe_buf_ops = {
1055
        .can_merge = 0,
1056
        .map = generic_pipe_buf_map,
1057
        .unmap = generic_pipe_buf_unmap,
1058
        .confirm = generic_pipe_buf_confirm,
1059
        .release = relay_pipe_buf_release,
1060
        .steal = generic_pipe_buf_steal,
1061
        .get = generic_pipe_buf_get,
1062
};
1063
 
1064
/*
1065
 *      subbuf_splice_actor - splice up to one subbuf's worth of data
1066
 */
1067
static int subbuf_splice_actor(struct file *in,
1068
                               loff_t *ppos,
1069
                               struct pipe_inode_info *pipe,
1070
                               size_t len,
1071
                               unsigned int flags,
1072
                               int *nonpad_ret)
1073
{
1074
        unsigned int pidx, poff, total_len, subbuf_pages, ret;
1075
        struct rchan_buf *rbuf = in->private_data;
1076
        unsigned int subbuf_size = rbuf->chan->subbuf_size;
1077
        uint64_t pos = (uint64_t) *ppos;
1078
        uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1079
        size_t read_start = (size_t) do_div(pos, alloc_size);
1080
        size_t read_subbuf = read_start / subbuf_size;
1081
        size_t padding = rbuf->padding[read_subbuf];
1082
        size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1083
        struct page *pages[PIPE_BUFFERS];
1084
        struct partial_page partial[PIPE_BUFFERS];
1085
        struct splice_pipe_desc spd = {
1086
                .pages = pages,
1087
                .nr_pages = 0,
1088
                .partial = partial,
1089
                .flags = flags,
1090
                .ops = &relay_pipe_buf_ops,
1091
        };
1092
 
1093
        if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1094
                return 0;
1095
 
1096
        /*
1097
         * Adjust read len, if longer than what is available
1098
         */
1099
        if (len > (subbuf_size - read_start % subbuf_size))
1100
                len = subbuf_size - read_start % subbuf_size;
1101
 
1102
        subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1103
        pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1104
        poff = read_start & ~PAGE_MASK;
1105
 
1106
        for (total_len = 0; spd.nr_pages < subbuf_pages; spd.nr_pages++) {
1107
                unsigned int this_len, this_end, private;
1108
                unsigned int cur_pos = read_start + total_len;
1109
 
1110
                if (!len)
1111
                        break;
1112
 
1113
                this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1114
                private = this_len;
1115
 
1116
                spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1117
                spd.partial[spd.nr_pages].offset = poff;
1118
 
1119
                this_end = cur_pos + this_len;
1120
                if (this_end >= nonpad_end) {
1121
                        this_len = nonpad_end - cur_pos;
1122
                        private = this_len + padding;
1123
                }
1124
                spd.partial[spd.nr_pages].len = this_len;
1125
                spd.partial[spd.nr_pages].private = private;
1126
 
1127
                len -= this_len;
1128
                total_len += this_len;
1129
                poff = 0;
1130
                pidx = (pidx + 1) % subbuf_pages;
1131
 
1132
                if (this_end >= nonpad_end) {
1133
                        spd.nr_pages++;
1134
                        break;
1135
                }
1136
        }
1137
 
1138
        if (!spd.nr_pages)
1139
                return 0;
1140
 
1141
        ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1142
        if (ret < 0 || ret < total_len)
1143
                return ret;
1144
 
1145
        if (read_start + ret == nonpad_end)
1146
                ret += padding;
1147
 
1148
        return ret;
1149
}
1150
 
1151
static ssize_t relay_file_splice_read(struct file *in,
1152
                                      loff_t *ppos,
1153
                                      struct pipe_inode_info *pipe,
1154
                                      size_t len,
1155
                                      unsigned int flags)
1156
{
1157
        ssize_t spliced;
1158
        int ret;
1159
        int nonpad_ret = 0;
1160
 
1161
        ret = 0;
1162
        spliced = 0;
1163
 
1164
        while (len) {
1165
                ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1166
                if (ret < 0)
1167
                        break;
1168
                else if (!ret) {
1169
                        if (spliced)
1170
                                break;
1171
                        if (flags & SPLICE_F_NONBLOCK) {
1172
                                ret = -EAGAIN;
1173
                                break;
1174
                        }
1175
                }
1176
 
1177
                *ppos += ret;
1178
                if (ret > len)
1179
                        len = 0;
1180
                else
1181
                        len -= ret;
1182
                spliced += nonpad_ret;
1183
                nonpad_ret = 0;
1184
        }
1185
 
1186
        if (spliced)
1187
                return spliced;
1188
 
1189
        return ret;
1190
}
1191
 
1192
const struct file_operations relay_file_operations = {
1193
        .open           = relay_file_open,
1194
        .poll           = relay_file_poll,
1195
        .mmap           = relay_file_mmap,
1196
        .read           = relay_file_read,
1197
        .llseek         = no_llseek,
1198
        .release        = relay_file_release,
1199
        .splice_read    = relay_file_splice_read,
1200
};
1201
EXPORT_SYMBOL_GPL(relay_file_operations);
1202
 
1203
static __init int relay_init(void)
1204
{
1205
 
1206
        hotcpu_notifier(relay_hotcpu_callback, 0);
1207
        return 0;
1208
}
1209
 
1210
module_init(relay_init);

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.