OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [kernel/] [rtmutex.c] - Blame information for rev 78

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3
 *
4
 * started by Ingo Molnar and Thomas Gleixner.
5
 *
6
 *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7
 *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8
 *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9
 *  Copyright (C) 2006 Esben Nielsen
10
 *
11
 *  See Documentation/rt-mutex-design.txt for details.
12
 */
13
#include <linux/spinlock.h>
14
#include <linux/module.h>
15
#include <linux/sched.h>
16
#include <linux/timer.h>
17
 
18
#include "rtmutex_common.h"
19
 
20
/*
21
 * lock->owner state tracking:
22
 *
23
 * lock->owner holds the task_struct pointer of the owner. Bit 0 and 1
24
 * are used to keep track of the "owner is pending" and "lock has
25
 * waiters" state.
26
 *
27
 * owner        bit1    bit0
28
 * NULL         0        0        lock is free (fast acquire possible)
29
 * NULL         0        1       invalid state
30
 * NULL         1       0        Transitional State*
31
 * NULL         1       1       invalid state
32
 * taskpointer  0        0        lock is held (fast release possible)
33
 * taskpointer  0        1       task is pending owner
34
 * taskpointer  1       0        lock is held and has waiters
35
 * taskpointer  1       1       task is pending owner and lock has more waiters
36
 *
37
 * Pending ownership is assigned to the top (highest priority)
38
 * waiter of the lock, when the lock is released. The thread is woken
39
 * up and can now take the lock. Until the lock is taken (bit 0
40
 * cleared) a competing higher priority thread can steal the lock
41
 * which puts the woken up thread back on the waiters list.
42
 *
43
 * The fast atomic compare exchange based acquire and release is only
44
 * possible when bit 0 and 1 of lock->owner are 0.
45
 *
46
 * (*) There's a small time where the owner can be NULL and the
47
 * "lock has waiters" bit is set.  This can happen when grabbing the lock.
48
 * To prevent a cmpxchg of the owner releasing the lock, we need to set this
49
 * bit before looking at the lock, hence the reason this is a transitional
50
 * state.
51
 */
52
 
53
static void
54
rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner,
55
                   unsigned long mask)
56
{
57
        unsigned long val = (unsigned long)owner | mask;
58
 
59
        if (rt_mutex_has_waiters(lock))
60
                val |= RT_MUTEX_HAS_WAITERS;
61
 
62
        lock->owner = (struct task_struct *)val;
63
}
64
 
65
static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
66
{
67
        lock->owner = (struct task_struct *)
68
                        ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
69
}
70
 
71
static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
72
{
73
        if (!rt_mutex_has_waiters(lock))
74
                clear_rt_mutex_waiters(lock);
75
}
76
 
77
/*
78
 * We can speed up the acquire/release, if the architecture
79
 * supports cmpxchg and if there's no debugging state to be set up
80
 */
81
#if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
82
# define rt_mutex_cmpxchg(l,c,n)        (cmpxchg(&l->owner, c, n) == c)
83
static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
84
{
85
        unsigned long owner, *p = (unsigned long *) &lock->owner;
86
 
87
        do {
88
                owner = *p;
89
        } while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
90
}
91
#else
92
# define rt_mutex_cmpxchg(l,c,n)        (0)
93
static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
94
{
95
        lock->owner = (struct task_struct *)
96
                        ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
97
}
98
#endif
99
 
100
/*
101
 * Calculate task priority from the waiter list priority
102
 *
103
 * Return task->normal_prio when the waiter list is empty or when
104
 * the waiter is not allowed to do priority boosting
105
 */
106
int rt_mutex_getprio(struct task_struct *task)
107
{
108
        if (likely(!task_has_pi_waiters(task)))
109
                return task->normal_prio;
110
 
111
        return min(task_top_pi_waiter(task)->pi_list_entry.prio,
112
                   task->normal_prio);
113
}
114
 
115
/*
116
 * Adjust the priority of a task, after its pi_waiters got modified.
117
 *
118
 * This can be both boosting and unboosting. task->pi_lock must be held.
119
 */
120
static void __rt_mutex_adjust_prio(struct task_struct *task)
121
{
122
        int prio = rt_mutex_getprio(task);
123
 
124
        if (task->prio != prio)
125
                rt_mutex_setprio(task, prio);
126
}
127
 
128
/*
129
 * Adjust task priority (undo boosting). Called from the exit path of
130
 * rt_mutex_slowunlock() and rt_mutex_slowlock().
131
 *
132
 * (Note: We do this outside of the protection of lock->wait_lock to
133
 * allow the lock to be taken while or before we readjust the priority
134
 * of task. We do not use the spin_xx_mutex() variants here as we are
135
 * outside of the debug path.)
136
 */
137
static void rt_mutex_adjust_prio(struct task_struct *task)
138
{
139
        unsigned long flags;
140
 
141
        spin_lock_irqsave(&task->pi_lock, flags);
142
        __rt_mutex_adjust_prio(task);
143
        spin_unlock_irqrestore(&task->pi_lock, flags);
144
}
145
 
146
/*
147
 * Max number of times we'll walk the boosting chain:
148
 */
149
int max_lock_depth = 1024;
150
 
151
/*
152
 * Adjust the priority chain. Also used for deadlock detection.
153
 * Decreases task's usage by one - may thus free the task.
154
 * Returns 0 or -EDEADLK.
155
 */
156
static int rt_mutex_adjust_prio_chain(struct task_struct *task,
157
                                      int deadlock_detect,
158
                                      struct rt_mutex *orig_lock,
159
                                      struct rt_mutex_waiter *orig_waiter,
160
                                      struct task_struct *top_task)
161
{
162
        struct rt_mutex *lock;
163
        struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
164
        int detect_deadlock, ret = 0, depth = 0;
165
        unsigned long flags;
166
 
167
        detect_deadlock = debug_rt_mutex_detect_deadlock(orig_waiter,
168
                                                         deadlock_detect);
169
 
170
        /*
171
         * The (de)boosting is a step by step approach with a lot of
172
         * pitfalls. We want this to be preemptible and we want hold a
173
         * maximum of two locks per step. So we have to check
174
         * carefully whether things change under us.
175
         */
176
 again:
177
        if (++depth > max_lock_depth) {
178
                static int prev_max;
179
 
180
                /*
181
                 * Print this only once. If the admin changes the limit,
182
                 * print a new message when reaching the limit again.
183
                 */
184
                if (prev_max != max_lock_depth) {
185
                        prev_max = max_lock_depth;
186
                        printk(KERN_WARNING "Maximum lock depth %d reached "
187
                               "task: %s (%d)\n", max_lock_depth,
188
                               top_task->comm, task_pid_nr(top_task));
189
                }
190
                put_task_struct(task);
191
 
192
                return deadlock_detect ? -EDEADLK : 0;
193
        }
194
 retry:
195
        /*
196
         * Task can not go away as we did a get_task() before !
197
         */
198
        spin_lock_irqsave(&task->pi_lock, flags);
199
 
200
        waiter = task->pi_blocked_on;
201
        /*
202
         * Check whether the end of the boosting chain has been
203
         * reached or the state of the chain has changed while we
204
         * dropped the locks.
205
         */
206
        if (!waiter || !waiter->task)
207
                goto out_unlock_pi;
208
 
209
        /*
210
         * Check the orig_waiter state. After we dropped the locks,
211
         * the previous owner of the lock might have released the lock
212
         * and made us the pending owner:
213
         */
214
        if (orig_waiter && !orig_waiter->task)
215
                goto out_unlock_pi;
216
 
217
        /*
218
         * Drop out, when the task has no waiters. Note,
219
         * top_waiter can be NULL, when we are in the deboosting
220
         * mode!
221
         */
222
        if (top_waiter && (!task_has_pi_waiters(task) ||
223
                           top_waiter != task_top_pi_waiter(task)))
224
                goto out_unlock_pi;
225
 
226
        /*
227
         * When deadlock detection is off then we check, if further
228
         * priority adjustment is necessary.
229
         */
230
        if (!detect_deadlock && waiter->list_entry.prio == task->prio)
231
                goto out_unlock_pi;
232
 
233
        lock = waiter->lock;
234
        if (!spin_trylock(&lock->wait_lock)) {
235
                spin_unlock_irqrestore(&task->pi_lock, flags);
236
                cpu_relax();
237
                goto retry;
238
        }
239
 
240
        /* Deadlock detection */
241
        if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
242
                debug_rt_mutex_deadlock(deadlock_detect, orig_waiter, lock);
243
                spin_unlock(&lock->wait_lock);
244
                ret = deadlock_detect ? -EDEADLK : 0;
245
                goto out_unlock_pi;
246
        }
247
 
248
        top_waiter = rt_mutex_top_waiter(lock);
249
 
250
        /* Requeue the waiter */
251
        plist_del(&waiter->list_entry, &lock->wait_list);
252
        waiter->list_entry.prio = task->prio;
253
        plist_add(&waiter->list_entry, &lock->wait_list);
254
 
255
        /* Release the task */
256
        spin_unlock_irqrestore(&task->pi_lock, flags);
257
        put_task_struct(task);
258
 
259
        /* Grab the next task */
260
        task = rt_mutex_owner(lock);
261
        get_task_struct(task);
262
        spin_lock_irqsave(&task->pi_lock, flags);
263
 
264
        if (waiter == rt_mutex_top_waiter(lock)) {
265
                /* Boost the owner */
266
                plist_del(&top_waiter->pi_list_entry, &task->pi_waiters);
267
                waiter->pi_list_entry.prio = waiter->list_entry.prio;
268
                plist_add(&waiter->pi_list_entry, &task->pi_waiters);
269
                __rt_mutex_adjust_prio(task);
270
 
271
        } else if (top_waiter == waiter) {
272
                /* Deboost the owner */
273
                plist_del(&waiter->pi_list_entry, &task->pi_waiters);
274
                waiter = rt_mutex_top_waiter(lock);
275
                waiter->pi_list_entry.prio = waiter->list_entry.prio;
276
                plist_add(&waiter->pi_list_entry, &task->pi_waiters);
277
                __rt_mutex_adjust_prio(task);
278
        }
279
 
280
        spin_unlock_irqrestore(&task->pi_lock, flags);
281
 
282
        top_waiter = rt_mutex_top_waiter(lock);
283
        spin_unlock(&lock->wait_lock);
284
 
285
        if (!detect_deadlock && waiter != top_waiter)
286
                goto out_put_task;
287
 
288
        goto again;
289
 
290
 out_unlock_pi:
291
        spin_unlock_irqrestore(&task->pi_lock, flags);
292
 out_put_task:
293
        put_task_struct(task);
294
 
295
        return ret;
296
}
297
 
298
/*
299
 * Optimization: check if we can steal the lock from the
300
 * assigned pending owner [which might not have taken the
301
 * lock yet]:
302
 */
303
static inline int try_to_steal_lock(struct rt_mutex *lock)
304
{
305
        struct task_struct *pendowner = rt_mutex_owner(lock);
306
        struct rt_mutex_waiter *next;
307
        unsigned long flags;
308
 
309
        if (!rt_mutex_owner_pending(lock))
310
                return 0;
311
 
312
        if (pendowner == current)
313
                return 1;
314
 
315
        spin_lock_irqsave(&pendowner->pi_lock, flags);
316
        if (current->prio >= pendowner->prio) {
317
                spin_unlock_irqrestore(&pendowner->pi_lock, flags);
318
                return 0;
319
        }
320
 
321
        /*
322
         * Check if a waiter is enqueued on the pending owners
323
         * pi_waiters list. Remove it and readjust pending owners
324
         * priority.
325
         */
326
        if (likely(!rt_mutex_has_waiters(lock))) {
327
                spin_unlock_irqrestore(&pendowner->pi_lock, flags);
328
                return 1;
329
        }
330
 
331
        /* No chain handling, pending owner is not blocked on anything: */
332
        next = rt_mutex_top_waiter(lock);
333
        plist_del(&next->pi_list_entry, &pendowner->pi_waiters);
334
        __rt_mutex_adjust_prio(pendowner);
335
        spin_unlock_irqrestore(&pendowner->pi_lock, flags);
336
 
337
        /*
338
         * We are going to steal the lock and a waiter was
339
         * enqueued on the pending owners pi_waiters queue. So
340
         * we have to enqueue this waiter into
341
         * current->pi_waiters list. This covers the case,
342
         * where current is boosted because it holds another
343
         * lock and gets unboosted because the booster is
344
         * interrupted, so we would delay a waiter with higher
345
         * priority as current->normal_prio.
346
         *
347
         * Note: in the rare case of a SCHED_OTHER task changing
348
         * its priority and thus stealing the lock, next->task
349
         * might be current:
350
         */
351
        if (likely(next->task != current)) {
352
                spin_lock_irqsave(&current->pi_lock, flags);
353
                plist_add(&next->pi_list_entry, &current->pi_waiters);
354
                __rt_mutex_adjust_prio(current);
355
                spin_unlock_irqrestore(&current->pi_lock, flags);
356
        }
357
        return 1;
358
}
359
 
360
/*
361
 * Try to take an rt-mutex
362
 *
363
 * This fails
364
 * - when the lock has a real owner
365
 * - when a different pending owner exists and has higher priority than current
366
 *
367
 * Must be called with lock->wait_lock held.
368
 */
369
static int try_to_take_rt_mutex(struct rt_mutex *lock)
370
{
371
        /*
372
         * We have to be careful here if the atomic speedups are
373
         * enabled, such that, when
374
         *  - no other waiter is on the lock
375
         *  - the lock has been released since we did the cmpxchg
376
         * the lock can be released or taken while we are doing the
377
         * checks and marking the lock with RT_MUTEX_HAS_WAITERS.
378
         *
379
         * The atomic acquire/release aware variant of
380
         * mark_rt_mutex_waiters uses a cmpxchg loop. After setting
381
         * the WAITERS bit, the atomic release / acquire can not
382
         * happen anymore and lock->wait_lock protects us from the
383
         * non-atomic case.
384
         *
385
         * Note, that this might set lock->owner =
386
         * RT_MUTEX_HAS_WAITERS in the case the lock is not contended
387
         * any more. This is fixed up when we take the ownership.
388
         * This is the transitional state explained at the top of this file.
389
         */
390
        mark_rt_mutex_waiters(lock);
391
 
392
        if (rt_mutex_owner(lock) && !try_to_steal_lock(lock))
393
                return 0;
394
 
395
        /* We got the lock. */
396
        debug_rt_mutex_lock(lock);
397
 
398
        rt_mutex_set_owner(lock, current, 0);
399
 
400
        rt_mutex_deadlock_account_lock(lock, current);
401
 
402
        return 1;
403
}
404
 
405
/*
406
 * Task blocks on lock.
407
 *
408
 * Prepare waiter and propagate pi chain
409
 *
410
 * This must be called with lock->wait_lock held.
411
 */
412
static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
413
                                   struct rt_mutex_waiter *waiter,
414
                                   int detect_deadlock)
415
{
416
        struct task_struct *owner = rt_mutex_owner(lock);
417
        struct rt_mutex_waiter *top_waiter = waiter;
418
        unsigned long flags;
419
        int chain_walk = 0, res;
420
 
421
        spin_lock_irqsave(&current->pi_lock, flags);
422
        __rt_mutex_adjust_prio(current);
423
        waiter->task = current;
424
        waiter->lock = lock;
425
        plist_node_init(&waiter->list_entry, current->prio);
426
        plist_node_init(&waiter->pi_list_entry, current->prio);
427
 
428
        /* Get the top priority waiter on the lock */
429
        if (rt_mutex_has_waiters(lock))
430
                top_waiter = rt_mutex_top_waiter(lock);
431
        plist_add(&waiter->list_entry, &lock->wait_list);
432
 
433
        current->pi_blocked_on = waiter;
434
 
435
        spin_unlock_irqrestore(&current->pi_lock, flags);
436
 
437
        if (waiter == rt_mutex_top_waiter(lock)) {
438
                spin_lock_irqsave(&owner->pi_lock, flags);
439
                plist_del(&top_waiter->pi_list_entry, &owner->pi_waiters);
440
                plist_add(&waiter->pi_list_entry, &owner->pi_waiters);
441
 
442
                __rt_mutex_adjust_prio(owner);
443
                if (owner->pi_blocked_on)
444
                        chain_walk = 1;
445
                spin_unlock_irqrestore(&owner->pi_lock, flags);
446
        }
447
        else if (debug_rt_mutex_detect_deadlock(waiter, detect_deadlock))
448
                chain_walk = 1;
449
 
450
        if (!chain_walk)
451
                return 0;
452
 
453
        /*
454
         * The owner can't disappear while holding a lock,
455
         * so the owner struct is protected by wait_lock.
456
         * Gets dropped in rt_mutex_adjust_prio_chain()!
457
         */
458
        get_task_struct(owner);
459
 
460
        spin_unlock(&lock->wait_lock);
461
 
462
        res = rt_mutex_adjust_prio_chain(owner, detect_deadlock, lock, waiter,
463
                                         current);
464
 
465
        spin_lock(&lock->wait_lock);
466
 
467
        return res;
468
}
469
 
470
/*
471
 * Wake up the next waiter on the lock.
472
 *
473
 * Remove the top waiter from the current tasks waiter list and from
474
 * the lock waiter list. Set it as pending owner. Then wake it up.
475
 *
476
 * Called with lock->wait_lock held.
477
 */
478
static void wakeup_next_waiter(struct rt_mutex *lock)
479
{
480
        struct rt_mutex_waiter *waiter;
481
        struct task_struct *pendowner;
482
        unsigned long flags;
483
 
484
        spin_lock_irqsave(&current->pi_lock, flags);
485
 
486
        waiter = rt_mutex_top_waiter(lock);
487
        plist_del(&waiter->list_entry, &lock->wait_list);
488
 
489
        /*
490
         * Remove it from current->pi_waiters. We do not adjust a
491
         * possible priority boost right now. We execute wakeup in the
492
         * boosted mode and go back to normal after releasing
493
         * lock->wait_lock.
494
         */
495
        plist_del(&waiter->pi_list_entry, &current->pi_waiters);
496
        pendowner = waiter->task;
497
        waiter->task = NULL;
498
 
499
        rt_mutex_set_owner(lock, pendowner, RT_MUTEX_OWNER_PENDING);
500
 
501
        spin_unlock_irqrestore(&current->pi_lock, flags);
502
 
503
        /*
504
         * Clear the pi_blocked_on variable and enqueue a possible
505
         * waiter into the pi_waiters list of the pending owner. This
506
         * prevents that in case the pending owner gets unboosted a
507
         * waiter with higher priority than pending-owner->normal_prio
508
         * is blocked on the unboosted (pending) owner.
509
         */
510
        spin_lock_irqsave(&pendowner->pi_lock, flags);
511
 
512
        WARN_ON(!pendowner->pi_blocked_on);
513
        WARN_ON(pendowner->pi_blocked_on != waiter);
514
        WARN_ON(pendowner->pi_blocked_on->lock != lock);
515
 
516
        pendowner->pi_blocked_on = NULL;
517
 
518
        if (rt_mutex_has_waiters(lock)) {
519
                struct rt_mutex_waiter *next;
520
 
521
                next = rt_mutex_top_waiter(lock);
522
                plist_add(&next->pi_list_entry, &pendowner->pi_waiters);
523
        }
524
        spin_unlock_irqrestore(&pendowner->pi_lock, flags);
525
 
526
        wake_up_process(pendowner);
527
}
528
 
529
/*
530
 * Remove a waiter from a lock
531
 *
532
 * Must be called with lock->wait_lock held
533
 */
534
static void remove_waiter(struct rt_mutex *lock,
535
                          struct rt_mutex_waiter *waiter)
536
{
537
        int first = (waiter == rt_mutex_top_waiter(lock));
538
        struct task_struct *owner = rt_mutex_owner(lock);
539
        unsigned long flags;
540
        int chain_walk = 0;
541
 
542
        spin_lock_irqsave(&current->pi_lock, flags);
543
        plist_del(&waiter->list_entry, &lock->wait_list);
544
        waiter->task = NULL;
545
        current->pi_blocked_on = NULL;
546
        spin_unlock_irqrestore(&current->pi_lock, flags);
547
 
548
        if (first && owner != current) {
549
 
550
                spin_lock_irqsave(&owner->pi_lock, flags);
551
 
552
                plist_del(&waiter->pi_list_entry, &owner->pi_waiters);
553
 
554
                if (rt_mutex_has_waiters(lock)) {
555
                        struct rt_mutex_waiter *next;
556
 
557
                        next = rt_mutex_top_waiter(lock);
558
                        plist_add(&next->pi_list_entry, &owner->pi_waiters);
559
                }
560
                __rt_mutex_adjust_prio(owner);
561
 
562
                if (owner->pi_blocked_on)
563
                        chain_walk = 1;
564
 
565
                spin_unlock_irqrestore(&owner->pi_lock, flags);
566
        }
567
 
568
        WARN_ON(!plist_node_empty(&waiter->pi_list_entry));
569
 
570
        if (!chain_walk)
571
                return;
572
 
573
        /* gets dropped in rt_mutex_adjust_prio_chain()! */
574
        get_task_struct(owner);
575
 
576
        spin_unlock(&lock->wait_lock);
577
 
578
        rt_mutex_adjust_prio_chain(owner, 0, lock, NULL, current);
579
 
580
        spin_lock(&lock->wait_lock);
581
}
582
 
583
/*
584
 * Recheck the pi chain, in case we got a priority setting
585
 *
586
 * Called from sched_setscheduler
587
 */
588
void rt_mutex_adjust_pi(struct task_struct *task)
589
{
590
        struct rt_mutex_waiter *waiter;
591
        unsigned long flags;
592
 
593
        spin_lock_irqsave(&task->pi_lock, flags);
594
 
595
        waiter = task->pi_blocked_on;
596
        if (!waiter || waiter->list_entry.prio == task->prio) {
597
                spin_unlock_irqrestore(&task->pi_lock, flags);
598
                return;
599
        }
600
 
601
        spin_unlock_irqrestore(&task->pi_lock, flags);
602
 
603
        /* gets dropped in rt_mutex_adjust_prio_chain()! */
604
        get_task_struct(task);
605
        rt_mutex_adjust_prio_chain(task, 0, NULL, NULL, task);
606
}
607
 
608
/*
609
 * Slow path lock function:
610
 */
611
static int __sched
612
rt_mutex_slowlock(struct rt_mutex *lock, int state,
613
                  struct hrtimer_sleeper *timeout,
614
                  int detect_deadlock)
615
{
616
        struct rt_mutex_waiter waiter;
617
        int ret = 0;
618
 
619
        debug_rt_mutex_init_waiter(&waiter);
620
        waiter.task = NULL;
621
 
622
        spin_lock(&lock->wait_lock);
623
 
624
        /* Try to acquire the lock again: */
625
        if (try_to_take_rt_mutex(lock)) {
626
                spin_unlock(&lock->wait_lock);
627
                return 0;
628
        }
629
 
630
        set_current_state(state);
631
 
632
        /* Setup the timer, when timeout != NULL */
633
        if (unlikely(timeout))
634
                hrtimer_start(&timeout->timer, timeout->timer.expires,
635
                              HRTIMER_MODE_ABS);
636
 
637
        for (;;) {
638
                /* Try to acquire the lock: */
639
                if (try_to_take_rt_mutex(lock))
640
                        break;
641
 
642
                /*
643
                 * TASK_INTERRUPTIBLE checks for signals and
644
                 * timeout. Ignored otherwise.
645
                 */
646
                if (unlikely(state == TASK_INTERRUPTIBLE)) {
647
                        /* Signal pending? */
648
                        if (signal_pending(current))
649
                                ret = -EINTR;
650
                        if (timeout && !timeout->task)
651
                                ret = -ETIMEDOUT;
652
                        if (ret)
653
                                break;
654
                }
655
 
656
                /*
657
                 * waiter.task is NULL the first time we come here and
658
                 * when we have been woken up by the previous owner
659
                 * but the lock got stolen by a higher prio task.
660
                 */
661
                if (!waiter.task) {
662
                        ret = task_blocks_on_rt_mutex(lock, &waiter,
663
                                                      detect_deadlock);
664
                        /*
665
                         * If we got woken up by the owner then start loop
666
                         * all over without going into schedule to try
667
                         * to get the lock now:
668
                         */
669
                        if (unlikely(!waiter.task)) {
670
                                /*
671
                                 * Reset the return value. We might
672
                                 * have returned with -EDEADLK and the
673
                                 * owner released the lock while we
674
                                 * were walking the pi chain.
675
                                 */
676
                                ret = 0;
677
                                continue;
678
                        }
679
                        if (unlikely(ret))
680
                                break;
681
                }
682
 
683
                spin_unlock(&lock->wait_lock);
684
 
685
                debug_rt_mutex_print_deadlock(&waiter);
686
 
687
                if (waiter.task)
688
                        schedule_rt_mutex(lock);
689
 
690
                spin_lock(&lock->wait_lock);
691
                set_current_state(state);
692
        }
693
 
694
        set_current_state(TASK_RUNNING);
695
 
696
        if (unlikely(waiter.task))
697
                remove_waiter(lock, &waiter);
698
 
699
        /*
700
         * try_to_take_rt_mutex() sets the waiter bit
701
         * unconditionally. We might have to fix that up.
702
         */
703
        fixup_rt_mutex_waiters(lock);
704
 
705
        spin_unlock(&lock->wait_lock);
706
 
707
        /* Remove pending timer: */
708
        if (unlikely(timeout))
709
                hrtimer_cancel(&timeout->timer);
710
 
711
        /*
712
         * Readjust priority, when we did not get the lock. We might
713
         * have been the pending owner and boosted. Since we did not
714
         * take the lock, the PI boost has to go.
715
         */
716
        if (unlikely(ret))
717
                rt_mutex_adjust_prio(current);
718
 
719
        debug_rt_mutex_free_waiter(&waiter);
720
 
721
        return ret;
722
}
723
 
724
/*
725
 * Slow path try-lock function:
726
 */
727
static inline int
728
rt_mutex_slowtrylock(struct rt_mutex *lock)
729
{
730
        int ret = 0;
731
 
732
        spin_lock(&lock->wait_lock);
733
 
734
        if (likely(rt_mutex_owner(lock) != current)) {
735
 
736
                ret = try_to_take_rt_mutex(lock);
737
                /*
738
                 * try_to_take_rt_mutex() sets the lock waiters
739
                 * bit unconditionally. Clean this up.
740
                 */
741
                fixup_rt_mutex_waiters(lock);
742
        }
743
 
744
        spin_unlock(&lock->wait_lock);
745
 
746
        return ret;
747
}
748
 
749
/*
750
 * Slow path to release a rt-mutex:
751
 */
752
static void __sched
753
rt_mutex_slowunlock(struct rt_mutex *lock)
754
{
755
        spin_lock(&lock->wait_lock);
756
 
757
        debug_rt_mutex_unlock(lock);
758
 
759
        rt_mutex_deadlock_account_unlock(current);
760
 
761
        if (!rt_mutex_has_waiters(lock)) {
762
                lock->owner = NULL;
763
                spin_unlock(&lock->wait_lock);
764
                return;
765
        }
766
 
767
        wakeup_next_waiter(lock);
768
 
769
        spin_unlock(&lock->wait_lock);
770
 
771
        /* Undo pi boosting if necessary: */
772
        rt_mutex_adjust_prio(current);
773
}
774
 
775
/*
776
 * debug aware fast / slowpath lock,trylock,unlock
777
 *
778
 * The atomic acquire/release ops are compiled away, when either the
779
 * architecture does not support cmpxchg or when debugging is enabled.
780
 */
781
static inline int
782
rt_mutex_fastlock(struct rt_mutex *lock, int state,
783
                  int detect_deadlock,
784
                  int (*slowfn)(struct rt_mutex *lock, int state,
785
                                struct hrtimer_sleeper *timeout,
786
                                int detect_deadlock))
787
{
788
        if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
789
                rt_mutex_deadlock_account_lock(lock, current);
790
                return 0;
791
        } else
792
                return slowfn(lock, state, NULL, detect_deadlock);
793
}
794
 
795
static inline int
796
rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
797
                        struct hrtimer_sleeper *timeout, int detect_deadlock,
798
                        int (*slowfn)(struct rt_mutex *lock, int state,
799
                                      struct hrtimer_sleeper *timeout,
800
                                      int detect_deadlock))
801
{
802
        if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
803
                rt_mutex_deadlock_account_lock(lock, current);
804
                return 0;
805
        } else
806
                return slowfn(lock, state, timeout, detect_deadlock);
807
}
808
 
809
static inline int
810
rt_mutex_fasttrylock(struct rt_mutex *lock,
811
                     int (*slowfn)(struct rt_mutex *lock))
812
{
813
        if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
814
                rt_mutex_deadlock_account_lock(lock, current);
815
                return 1;
816
        }
817
        return slowfn(lock);
818
}
819
 
820
static inline void
821
rt_mutex_fastunlock(struct rt_mutex *lock,
822
                    void (*slowfn)(struct rt_mutex *lock))
823
{
824
        if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
825
                rt_mutex_deadlock_account_unlock(current);
826
        else
827
                slowfn(lock);
828
}
829
 
830
/**
831
 * rt_mutex_lock - lock a rt_mutex
832
 *
833
 * @lock: the rt_mutex to be locked
834
 */
835
void __sched rt_mutex_lock(struct rt_mutex *lock)
836
{
837
        might_sleep();
838
 
839
        rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, 0, rt_mutex_slowlock);
840
}
841
EXPORT_SYMBOL_GPL(rt_mutex_lock);
842
 
843
/**
844
 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
845
 *
846
 * @lock:               the rt_mutex to be locked
847
 * @detect_deadlock:    deadlock detection on/off
848
 *
849
 * Returns:
850
 *  0           on success
851
 * -EINTR       when interrupted by a signal
852
 * -EDEADLK     when the lock would deadlock (when deadlock detection is on)
853
 */
854
int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock,
855
                                                 int detect_deadlock)
856
{
857
        might_sleep();
858
 
859
        return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE,
860
                                 detect_deadlock, rt_mutex_slowlock);
861
}
862
EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
863
 
864
/**
865
 * rt_mutex_lock_interruptible_ktime - lock a rt_mutex interruptible
866
 *                                     the timeout structure is provided
867
 *                                     by the caller
868
 *
869
 * @lock:               the rt_mutex to be locked
870
 * @timeout:            timeout structure or NULL (no timeout)
871
 * @detect_deadlock:    deadlock detection on/off
872
 *
873
 * Returns:
874
 *  0           on success
875
 * -EINTR       when interrupted by a signal
876
 * -ETIMEOUT    when the timeout expired
877
 * -EDEADLK     when the lock would deadlock (when deadlock detection is on)
878
 */
879
int
880
rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout,
881
                    int detect_deadlock)
882
{
883
        might_sleep();
884
 
885
        return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
886
                                       detect_deadlock, rt_mutex_slowlock);
887
}
888
EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
889
 
890
/**
891
 * rt_mutex_trylock - try to lock a rt_mutex
892
 *
893
 * @lock:       the rt_mutex to be locked
894
 *
895
 * Returns 1 on success and 0 on contention
896
 */
897
int __sched rt_mutex_trylock(struct rt_mutex *lock)
898
{
899
        return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
900
}
901
EXPORT_SYMBOL_GPL(rt_mutex_trylock);
902
 
903
/**
904
 * rt_mutex_unlock - unlock a rt_mutex
905
 *
906
 * @lock: the rt_mutex to be unlocked
907
 */
908
void __sched rt_mutex_unlock(struct rt_mutex *lock)
909
{
910
        rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
911
}
912
EXPORT_SYMBOL_GPL(rt_mutex_unlock);
913
 
914
/***
915
 * rt_mutex_destroy - mark a mutex unusable
916
 * @lock: the mutex to be destroyed
917
 *
918
 * This function marks the mutex uninitialized, and any subsequent
919
 * use of the mutex is forbidden. The mutex must not be locked when
920
 * this function is called.
921
 */
922
void rt_mutex_destroy(struct rt_mutex *lock)
923
{
924
        WARN_ON(rt_mutex_is_locked(lock));
925
#ifdef CONFIG_DEBUG_RT_MUTEXES
926
        lock->magic = NULL;
927
#endif
928
}
929
 
930
EXPORT_SYMBOL_GPL(rt_mutex_destroy);
931
 
932
/**
933
 * __rt_mutex_init - initialize the rt lock
934
 *
935
 * @lock: the rt lock to be initialized
936
 *
937
 * Initialize the rt lock to unlocked state.
938
 *
939
 * Initializing of a locked rt lock is not allowed
940
 */
941
void __rt_mutex_init(struct rt_mutex *lock, const char *name)
942
{
943
        lock->owner = NULL;
944
        spin_lock_init(&lock->wait_lock);
945
        plist_head_init(&lock->wait_list, &lock->wait_lock);
946
 
947
        debug_rt_mutex_init(lock, name);
948
}
949
EXPORT_SYMBOL_GPL(__rt_mutex_init);
950
 
951
/**
952
 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
953
 *                              proxy owner
954
 *
955
 * @lock:       the rt_mutex to be locked
956
 * @proxy_owner:the task to set as owner
957
 *
958
 * No locking. Caller has to do serializing itself
959
 * Special API call for PI-futex support
960
 */
961
void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
962
                                struct task_struct *proxy_owner)
963
{
964
        __rt_mutex_init(lock, NULL);
965
        debug_rt_mutex_proxy_lock(lock, proxy_owner);
966
        rt_mutex_set_owner(lock, proxy_owner, 0);
967
        rt_mutex_deadlock_account_lock(lock, proxy_owner);
968
}
969
 
970
/**
971
 * rt_mutex_proxy_unlock - release a lock on behalf of owner
972
 *
973
 * @lock:       the rt_mutex to be locked
974
 *
975
 * No locking. Caller has to do serializing itself
976
 * Special API call for PI-futex support
977
 */
978
void rt_mutex_proxy_unlock(struct rt_mutex *lock,
979
                           struct task_struct *proxy_owner)
980
{
981
        debug_rt_mutex_proxy_unlock(lock);
982
        rt_mutex_set_owner(lock, NULL, 0);
983
        rt_mutex_deadlock_account_unlock(proxy_owner);
984
}
985
 
986
/**
987
 * rt_mutex_next_owner - return the next owner of the lock
988
 *
989
 * @lock: the rt lock query
990
 *
991
 * Returns the next owner of the lock or NULL
992
 *
993
 * Caller has to serialize against other accessors to the lock
994
 * itself.
995
 *
996
 * Special API call for PI-futex support
997
 */
998
struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
999
{
1000
        if (!rt_mutex_has_waiters(lock))
1001
                return NULL;
1002
 
1003
        return rt_mutex_top_waiter(lock)->task;
1004
}

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.