OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [kernel/] [sched.c] - Blame information for rev 65

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 *  kernel/sched.c
3
 *
4
 *  Kernel scheduler and related syscalls
5
 *
6
 *  Copyright (C) 1991-2002  Linus Torvalds
7
 *
8
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9
 *              make semaphores SMP safe
10
 *  1998-11-19  Implemented schedule_timeout() and related stuff
11
 *              by Andrea Arcangeli
12
 *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
13
 *              hybrid priority-list and round-robin design with
14
 *              an array-switch method of distributing timeslices
15
 *              and per-CPU runqueues.  Cleanups and useful suggestions
16
 *              by Davide Libenzi, preemptible kernel bits by Robert Love.
17
 *  2003-09-03  Interactivity tuning by Con Kolivas.
18
 *  2004-04-02  Scheduler domains code by Nick Piggin
19
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20
 *              fair scheduling design by Con Kolivas.
21
 *  2007-05-05  Load balancing (smp-nice) and other improvements
22
 *              by Peter Williams
23
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25
 */
26
 
27
#include <linux/mm.h>
28
#include <linux/module.h>
29
#include <linux/nmi.h>
30
#include <linux/init.h>
31
#include <linux/uaccess.h>
32
#include <linux/highmem.h>
33
#include <linux/smp_lock.h>
34
#include <asm/mmu_context.h>
35
#include <linux/interrupt.h>
36
#include <linux/capability.h>
37
#include <linux/completion.h>
38
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
40
#include <linux/security.h>
41
#include <linux/notifier.h>
42
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
45
#include <linux/blkdev.h>
46
#include <linux/delay.h>
47
#include <linux/pid_namespace.h>
48
#include <linux/smp.h>
49
#include <linux/threads.h>
50
#include <linux/timer.h>
51
#include <linux/rcupdate.h>
52
#include <linux/cpu.h>
53
#include <linux/cpuset.h>
54
#include <linux/percpu.h>
55
#include <linux/kthread.h>
56
#include <linux/seq_file.h>
57
#include <linux/sysctl.h>
58
#include <linux/syscalls.h>
59
#include <linux/times.h>
60
#include <linux/tsacct_kern.h>
61
#include <linux/kprobes.h>
62
#include <linux/delayacct.h>
63
#include <linux/reciprocal_div.h>
64
#include <linux/unistd.h>
65
#include <linux/pagemap.h>
66
 
67
#include <asm/tlb.h>
68
#include <asm/irq_regs.h>
69
 
70
/*
71
 * Scheduler clock - returns current time in nanosec units.
72
 * This is default implementation.
73
 * Architectures and sub-architectures can override this.
74
 */
75
unsigned long long __attribute__((weak)) sched_clock(void)
76
{
77
        return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
78
}
79
 
80
/*
81
 * Convert user-nice values [ -20 ... 0 ... 19 ]
82
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83
 * and back.
84
 */
85
#define NICE_TO_PRIO(nice)      (MAX_RT_PRIO + (nice) + 20)
86
#define PRIO_TO_NICE(prio)      ((prio) - MAX_RT_PRIO - 20)
87
#define TASK_NICE(p)            PRIO_TO_NICE((p)->static_prio)
88
 
89
/*
90
 * 'User priority' is the nice value converted to something we
91
 * can work with better when scaling various scheduler parameters,
92
 * it's a [ 0 ... 39 ] range.
93
 */
94
#define USER_PRIO(p)            ((p)-MAX_RT_PRIO)
95
#define TASK_USER_PRIO(p)       USER_PRIO((p)->static_prio)
96
#define MAX_USER_PRIO           (USER_PRIO(MAX_PRIO))
97
 
98
/*
99
 * Some helpers for converting nanosecond timing to jiffy resolution
100
 */
101
#define NS_TO_JIFFIES(TIME)     ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102
#define JIFFIES_TO_NS(TIME)     ((TIME) * (NSEC_PER_SEC / HZ))
103
 
104
#define NICE_0_LOAD             SCHED_LOAD_SCALE
105
#define NICE_0_SHIFT            SCHED_LOAD_SHIFT
106
 
107
/*
108
 * These are the 'tuning knobs' of the scheduler:
109
 *
110
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
111
 * Timeslices get refilled after they expire.
112
 */
113
#define DEF_TIMESLICE           (100 * HZ / 1000)
114
 
115
#ifdef CONFIG_SMP
116
/*
117
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119
 */
120
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121
{
122
        return reciprocal_divide(load, sg->reciprocal_cpu_power);
123
}
124
 
125
/*
126
 * Each time a sched group cpu_power is changed,
127
 * we must compute its reciprocal value
128
 */
129
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130
{
131
        sg->__cpu_power += val;
132
        sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133
}
134
#endif
135
 
136
static inline int rt_policy(int policy)
137
{
138
        if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
139
                return 1;
140
        return 0;
141
}
142
 
143
static inline int task_has_rt_policy(struct task_struct *p)
144
{
145
        return rt_policy(p->policy);
146
}
147
 
148
/*
149
 * This is the priority-queue data structure of the RT scheduling class:
150
 */
151
struct rt_prio_array {
152
        DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
153
        struct list_head queue[MAX_RT_PRIO];
154
};
155
 
156
#ifdef CONFIG_FAIR_GROUP_SCHED
157
 
158
#include <linux/cgroup.h>
159
 
160
struct cfs_rq;
161
 
162
/* task group related information */
163
struct task_group {
164
#ifdef CONFIG_FAIR_CGROUP_SCHED
165
        struct cgroup_subsys_state css;
166
#endif
167
        /* schedulable entities of this group on each cpu */
168
        struct sched_entity **se;
169
        /* runqueue "owned" by this group on each cpu */
170
        struct cfs_rq **cfs_rq;
171
        unsigned long shares;
172
        /* spinlock to serialize modification to shares */
173
        spinlock_t lock;
174
        struct rcu_head rcu;
175
};
176
 
177
/* Default task group's sched entity on each cpu */
178
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
179
/* Default task group's cfs_rq on each cpu */
180
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
181
 
182
static struct sched_entity *init_sched_entity_p[NR_CPUS];
183
static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
184
 
185
/* Default task group.
186
 *      Every task in system belong to this group at bootup.
187
 */
188
struct task_group init_task_group = {
189
        .se     = init_sched_entity_p,
190
        .cfs_rq = init_cfs_rq_p,
191
};
192
 
193
#ifdef CONFIG_FAIR_USER_SCHED
194
# define INIT_TASK_GRP_LOAD     2*NICE_0_LOAD
195
#else
196
# define INIT_TASK_GRP_LOAD     NICE_0_LOAD
197
#endif
198
 
199
static int init_task_group_load = INIT_TASK_GRP_LOAD;
200
 
201
/* return group to which a task belongs */
202
static inline struct task_group *task_group(struct task_struct *p)
203
{
204
        struct task_group *tg;
205
 
206
#ifdef CONFIG_FAIR_USER_SCHED
207
        tg = p->user->tg;
208
#elif defined(CONFIG_FAIR_CGROUP_SCHED)
209
        tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
210
                                struct task_group, css);
211
#else
212
        tg = &init_task_group;
213
#endif
214
        return tg;
215
}
216
 
217
/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
218
static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
219
{
220
        p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
221
        p->se.parent = task_group(p)->se[cpu];
222
}
223
 
224
#else
225
 
226
static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
227
 
228
#endif  /* CONFIG_FAIR_GROUP_SCHED */
229
 
230
/* CFS-related fields in a runqueue */
231
struct cfs_rq {
232
        struct load_weight load;
233
        unsigned long nr_running;
234
 
235
        u64 exec_clock;
236
        u64 min_vruntime;
237
 
238
        struct rb_root tasks_timeline;
239
        struct rb_node *rb_leftmost;
240
        struct rb_node *rb_load_balance_curr;
241
        /* 'curr' points to currently running entity on this cfs_rq.
242
         * It is set to NULL otherwise (i.e when none are currently running).
243
         */
244
        struct sched_entity *curr;
245
 
246
        unsigned long nr_spread_over;
247
 
248
#ifdef CONFIG_FAIR_GROUP_SCHED
249
        struct rq *rq;  /* cpu runqueue to which this cfs_rq is attached */
250
 
251
        /*
252
         * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
253
         * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
254
         * (like users, containers etc.)
255
         *
256
         * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
257
         * list is used during load balance.
258
         */
259
        struct list_head leaf_cfs_rq_list;
260
        struct task_group *tg;  /* group that "owns" this runqueue */
261
#endif
262
};
263
 
264
/* Real-Time classes' related field in a runqueue: */
265
struct rt_rq {
266
        struct rt_prio_array active;
267
        int rt_load_balance_idx;
268
        struct list_head *rt_load_balance_head, *rt_load_balance_curr;
269
};
270
 
271
/*
272
 * This is the main, per-CPU runqueue data structure.
273
 *
274
 * Locking rule: those places that want to lock multiple runqueues
275
 * (such as the load balancing or the thread migration code), lock
276
 * acquire operations must be ordered by ascending &runqueue.
277
 */
278
struct rq {
279
        /* runqueue lock: */
280
        spinlock_t lock;
281
 
282
        /*
283
         * nr_running and cpu_load should be in the same cacheline because
284
         * remote CPUs use both these fields when doing load calculation.
285
         */
286
        unsigned long nr_running;
287
        #define CPU_LOAD_IDX_MAX 5
288
        unsigned long cpu_load[CPU_LOAD_IDX_MAX];
289
        unsigned char idle_at_tick;
290
#ifdef CONFIG_NO_HZ
291
        unsigned char in_nohz_recently;
292
#endif
293
        /* capture load from *all* tasks on this cpu: */
294
        struct load_weight load;
295
        unsigned long nr_load_updates;
296
        u64 nr_switches;
297
 
298
        struct cfs_rq cfs;
299
#ifdef CONFIG_FAIR_GROUP_SCHED
300
        /* list of leaf cfs_rq on this cpu: */
301
        struct list_head leaf_cfs_rq_list;
302
#endif
303
        struct rt_rq rt;
304
 
305
        /*
306
         * This is part of a global counter where only the total sum
307
         * over all CPUs matters. A task can increase this counter on
308
         * one CPU and if it got migrated afterwards it may decrease
309
         * it on another CPU. Always updated under the runqueue lock:
310
         */
311
        unsigned long nr_uninterruptible;
312
 
313
        struct task_struct *curr, *idle;
314
        unsigned long next_balance;
315
        struct mm_struct *prev_mm;
316
 
317
        u64 clock, prev_clock_raw;
318
        s64 clock_max_delta;
319
 
320
        unsigned int clock_warps, clock_overflows;
321
        u64 idle_clock;
322
        unsigned int clock_deep_idle_events;
323
        u64 tick_timestamp;
324
 
325
        atomic_t nr_iowait;
326
 
327
#ifdef CONFIG_SMP
328
        struct sched_domain *sd;
329
 
330
        /* For active balancing */
331
        int active_balance;
332
        int push_cpu;
333
        /* cpu of this runqueue: */
334
        int cpu;
335
 
336
        struct task_struct *migration_thread;
337
        struct list_head migration_queue;
338
#endif
339
 
340
#ifdef CONFIG_SCHEDSTATS
341
        /* latency stats */
342
        struct sched_info rq_sched_info;
343
 
344
        /* sys_sched_yield() stats */
345
        unsigned int yld_exp_empty;
346
        unsigned int yld_act_empty;
347
        unsigned int yld_both_empty;
348
        unsigned int yld_count;
349
 
350
        /* schedule() stats */
351
        unsigned int sched_switch;
352
        unsigned int sched_count;
353
        unsigned int sched_goidle;
354
 
355
        /* try_to_wake_up() stats */
356
        unsigned int ttwu_count;
357
        unsigned int ttwu_local;
358
 
359
        /* BKL stats */
360
        unsigned int bkl_count;
361
#endif
362
        struct lock_class_key rq_lock_key;
363
};
364
 
365
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
366
static DEFINE_MUTEX(sched_hotcpu_mutex);
367
 
368
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
369
{
370
        rq->curr->sched_class->check_preempt_curr(rq, p);
371
}
372
 
373
static inline int cpu_of(struct rq *rq)
374
{
375
#ifdef CONFIG_SMP
376
        return rq->cpu;
377
#else
378
        return 0;
379
#endif
380
}
381
 
382
/*
383
 * Update the per-runqueue clock, as finegrained as the platform can give
384
 * us, but without assuming monotonicity, etc.:
385
 */
386
static void __update_rq_clock(struct rq *rq)
387
{
388
        u64 prev_raw = rq->prev_clock_raw;
389
        u64 now = sched_clock();
390
        s64 delta = now - prev_raw;
391
        u64 clock = rq->clock;
392
 
393
#ifdef CONFIG_SCHED_DEBUG
394
        WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
395
#endif
396
        /*
397
         * Protect against sched_clock() occasionally going backwards:
398
         */
399
        if (unlikely(delta < 0)) {
400
                clock++;
401
                rq->clock_warps++;
402
        } else {
403
                /*
404
                 * Catch too large forward jumps too:
405
                 */
406
                if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
407
                        if (clock < rq->tick_timestamp + TICK_NSEC)
408
                                clock = rq->tick_timestamp + TICK_NSEC;
409
                        else
410
                                clock++;
411
                        rq->clock_overflows++;
412
                } else {
413
                        if (unlikely(delta > rq->clock_max_delta))
414
                                rq->clock_max_delta = delta;
415
                        clock += delta;
416
                }
417
        }
418
 
419
        rq->prev_clock_raw = now;
420
        rq->clock = clock;
421
}
422
 
423
static void update_rq_clock(struct rq *rq)
424
{
425
        if (likely(smp_processor_id() == cpu_of(rq)))
426
                __update_rq_clock(rq);
427
}
428
 
429
/*
430
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
431
 * See detach_destroy_domains: synchronize_sched for details.
432
 *
433
 * The domain tree of any CPU may only be accessed from within
434
 * preempt-disabled sections.
435
 */
436
#define for_each_domain(cpu, __sd) \
437
        for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
438
 
439
#define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
440
#define this_rq()               (&__get_cpu_var(runqueues))
441
#define task_rq(p)              cpu_rq(task_cpu(p))
442
#define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
443
 
444
/*
445
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
446
 */
447
#ifdef CONFIG_SCHED_DEBUG
448
# define const_debug __read_mostly
449
#else
450
# define const_debug static const
451
#endif
452
 
453
/*
454
 * Debugging: various feature bits
455
 */
456
enum {
457
        SCHED_FEAT_NEW_FAIR_SLEEPERS    = 1,
458
        SCHED_FEAT_WAKEUP_PREEMPT       = 2,
459
        SCHED_FEAT_START_DEBIT          = 4,
460
        SCHED_FEAT_TREE_AVG             = 8,
461
        SCHED_FEAT_APPROX_AVG           = 16,
462
};
463
 
464
const_debug unsigned int sysctl_sched_features =
465
                SCHED_FEAT_NEW_FAIR_SLEEPERS    * 1 |
466
                SCHED_FEAT_WAKEUP_PREEMPT       * 1 |
467
                SCHED_FEAT_START_DEBIT          * 1 |
468
                SCHED_FEAT_TREE_AVG             * 0 |
469
                SCHED_FEAT_APPROX_AVG           * 0;
470
 
471
#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
472
 
473
/*
474
 * Number of tasks to iterate in a single balance run.
475
 * Limited because this is done with IRQs disabled.
476
 */
477
const_debug unsigned int sysctl_sched_nr_migrate = 32;
478
 
479
/*
480
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
481
 * clock constructed from sched_clock():
482
 */
483
unsigned long long cpu_clock(int cpu)
484
{
485
        unsigned long long now;
486
        unsigned long flags;
487
        struct rq *rq;
488
 
489
        local_irq_save(flags);
490
        rq = cpu_rq(cpu);
491
        /*
492
         * Only call sched_clock() if the scheduler has already been
493
         * initialized (some code might call cpu_clock() very early):
494
         */
495
        if (rq->idle)
496
                update_rq_clock(rq);
497
        now = rq->clock;
498
        local_irq_restore(flags);
499
 
500
        return now;
501
}
502
EXPORT_SYMBOL_GPL(cpu_clock);
503
 
504
#ifndef prepare_arch_switch
505
# define prepare_arch_switch(next)      do { } while (0)
506
#endif
507
#ifndef finish_arch_switch
508
# define finish_arch_switch(prev)       do { } while (0)
509
#endif
510
 
511
static inline int task_current(struct rq *rq, struct task_struct *p)
512
{
513
        return rq->curr == p;
514
}
515
 
516
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
517
static inline int task_running(struct rq *rq, struct task_struct *p)
518
{
519
        return task_current(rq, p);
520
}
521
 
522
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
523
{
524
}
525
 
526
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
527
{
528
#ifdef CONFIG_DEBUG_SPINLOCK
529
        /* this is a valid case when another task releases the spinlock */
530
        rq->lock.owner = current;
531
#endif
532
        /*
533
         * If we are tracking spinlock dependencies then we have to
534
         * fix up the runqueue lock - which gets 'carried over' from
535
         * prev into current:
536
         */
537
        spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
538
 
539
        spin_unlock_irq(&rq->lock);
540
}
541
 
542
#else /* __ARCH_WANT_UNLOCKED_CTXSW */
543
static inline int task_running(struct rq *rq, struct task_struct *p)
544
{
545
#ifdef CONFIG_SMP
546
        return p->oncpu;
547
#else
548
        return task_current(rq, p);
549
#endif
550
}
551
 
552
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
553
{
554
#ifdef CONFIG_SMP
555
        /*
556
         * We can optimise this out completely for !SMP, because the
557
         * SMP rebalancing from interrupt is the only thing that cares
558
         * here.
559
         */
560
        next->oncpu = 1;
561
#endif
562
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
563
        spin_unlock_irq(&rq->lock);
564
#else
565
        spin_unlock(&rq->lock);
566
#endif
567
}
568
 
569
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
570
{
571
#ifdef CONFIG_SMP
572
        /*
573
         * After ->oncpu is cleared, the task can be moved to a different CPU.
574
         * We must ensure this doesn't happen until the switch is completely
575
         * finished.
576
         */
577
        smp_wmb();
578
        prev->oncpu = 0;
579
#endif
580
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
581
        local_irq_enable();
582
#endif
583
}
584
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
585
 
586
/*
587
 * __task_rq_lock - lock the runqueue a given task resides on.
588
 * Must be called interrupts disabled.
589
 */
590
static inline struct rq *__task_rq_lock(struct task_struct *p)
591
        __acquires(rq->lock)
592
{
593
        for (;;) {
594
                struct rq *rq = task_rq(p);
595
                spin_lock(&rq->lock);
596
                if (likely(rq == task_rq(p)))
597
                        return rq;
598
                spin_unlock(&rq->lock);
599
        }
600
}
601
 
602
/*
603
 * task_rq_lock - lock the runqueue a given task resides on and disable
604
 * interrupts. Note the ordering: we can safely lookup the task_rq without
605
 * explicitly disabling preemption.
606
 */
607
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
608
        __acquires(rq->lock)
609
{
610
        struct rq *rq;
611
 
612
        for (;;) {
613
                local_irq_save(*flags);
614
                rq = task_rq(p);
615
                spin_lock(&rq->lock);
616
                if (likely(rq == task_rq(p)))
617
                        return rq;
618
                spin_unlock_irqrestore(&rq->lock, *flags);
619
        }
620
}
621
 
622
static void __task_rq_unlock(struct rq *rq)
623
        __releases(rq->lock)
624
{
625
        spin_unlock(&rq->lock);
626
}
627
 
628
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
629
        __releases(rq->lock)
630
{
631
        spin_unlock_irqrestore(&rq->lock, *flags);
632
}
633
 
634
/*
635
 * this_rq_lock - lock this runqueue and disable interrupts.
636
 */
637
static struct rq *this_rq_lock(void)
638
        __acquires(rq->lock)
639
{
640
        struct rq *rq;
641
 
642
        local_irq_disable();
643
        rq = this_rq();
644
        spin_lock(&rq->lock);
645
 
646
        return rq;
647
}
648
 
649
/*
650
 * We are going deep-idle (irqs are disabled):
651
 */
652
void sched_clock_idle_sleep_event(void)
653
{
654
        struct rq *rq = cpu_rq(smp_processor_id());
655
 
656
        spin_lock(&rq->lock);
657
        __update_rq_clock(rq);
658
        spin_unlock(&rq->lock);
659
        rq->clock_deep_idle_events++;
660
}
661
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
662
 
663
/*
664
 * We just idled delta nanoseconds (called with irqs disabled):
665
 */
666
void sched_clock_idle_wakeup_event(u64 delta_ns)
667
{
668
        struct rq *rq = cpu_rq(smp_processor_id());
669
        u64 now = sched_clock();
670
 
671
        touch_softlockup_watchdog();
672
        rq->idle_clock += delta_ns;
673
        /*
674
         * Override the previous timestamp and ignore all
675
         * sched_clock() deltas that occured while we idled,
676
         * and use the PM-provided delta_ns to advance the
677
         * rq clock:
678
         */
679
        spin_lock(&rq->lock);
680
        rq->prev_clock_raw = now;
681
        rq->clock += delta_ns;
682
        spin_unlock(&rq->lock);
683
}
684
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
685
 
686
/*
687
 * resched_task - mark a task 'to be rescheduled now'.
688
 *
689
 * On UP this means the setting of the need_resched flag, on SMP it
690
 * might also involve a cross-CPU call to trigger the scheduler on
691
 * the target CPU.
692
 */
693
#ifdef CONFIG_SMP
694
 
695
#ifndef tsk_is_polling
696
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
697
#endif
698
 
699
static void resched_task(struct task_struct *p)
700
{
701
        int cpu;
702
 
703
        assert_spin_locked(&task_rq(p)->lock);
704
 
705
        if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
706
                return;
707
 
708
        set_tsk_thread_flag(p, TIF_NEED_RESCHED);
709
 
710
        cpu = task_cpu(p);
711
        if (cpu == smp_processor_id())
712
                return;
713
 
714
        /* NEED_RESCHED must be visible before we test polling */
715
        smp_mb();
716
        if (!tsk_is_polling(p))
717
                smp_send_reschedule(cpu);
718
}
719
 
720
static void resched_cpu(int cpu)
721
{
722
        struct rq *rq = cpu_rq(cpu);
723
        unsigned long flags;
724
 
725
        if (!spin_trylock_irqsave(&rq->lock, flags))
726
                return;
727
        resched_task(cpu_curr(cpu));
728
        spin_unlock_irqrestore(&rq->lock, flags);
729
}
730
#else
731
static inline void resched_task(struct task_struct *p)
732
{
733
        assert_spin_locked(&task_rq(p)->lock);
734
        set_tsk_need_resched(p);
735
}
736
#endif
737
 
738
#if BITS_PER_LONG == 32
739
# define WMULT_CONST    (~0UL)
740
#else
741
# define WMULT_CONST    (1UL << 32)
742
#endif
743
 
744
#define WMULT_SHIFT     32
745
 
746
/*
747
 * Shift right and round:
748
 */
749
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
750
 
751
static unsigned long
752
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
753
                struct load_weight *lw)
754
{
755
        u64 tmp;
756
 
757
        if (unlikely(!lw->inv_weight))
758
                lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
759
 
760
        tmp = (u64)delta_exec * weight;
761
        /*
762
         * Check whether we'd overflow the 64-bit multiplication:
763
         */
764
        if (unlikely(tmp > WMULT_CONST))
765
                tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
766
                        WMULT_SHIFT/2);
767
        else
768
                tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
769
 
770
        return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
771
}
772
 
773
static inline unsigned long
774
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
775
{
776
        return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
777
}
778
 
779
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
780
{
781
        lw->weight += inc;
782
}
783
 
784
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
785
{
786
        lw->weight -= dec;
787
}
788
 
789
/*
790
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
791
 * of tasks with abnormal "nice" values across CPUs the contribution that
792
 * each task makes to its run queue's load is weighted according to its
793
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
794
 * scaled version of the new time slice allocation that they receive on time
795
 * slice expiry etc.
796
 */
797
 
798
#define WEIGHT_IDLEPRIO         2
799
#define WMULT_IDLEPRIO          (1 << 31)
800
 
801
/*
802
 * Nice levels are multiplicative, with a gentle 10% change for every
803
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
804
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
805
 * that remained on nice 0.
806
 *
807
 * The "10% effect" is relative and cumulative: from _any_ nice level,
808
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
809
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
810
 * If a task goes up by ~10% and another task goes down by ~10% then
811
 * the relative distance between them is ~25%.)
812
 */
813
static const int prio_to_weight[40] = {
814
 /* -20 */     88761,     71755,     56483,     46273,     36291,
815
 /* -15 */     29154,     23254,     18705,     14949,     11916,
816
 /* -10 */      9548,      7620,      6100,      4904,      3906,
817
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
818
 /*   0 */      1024,       820,       655,       526,       423,
819
 /*   5 */       335,       272,       215,       172,       137,
820
 /*  10 */       110,        87,        70,        56,        45,
821
 /*  15 */        36,        29,        23,        18,        15,
822
};
823
 
824
/*
825
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
826
 *
827
 * In cases where the weight does not change often, we can use the
828
 * precalculated inverse to speed up arithmetics by turning divisions
829
 * into multiplications:
830
 */
831
static const u32 prio_to_wmult[40] = {
832
 /* -20 */     48388,     59856,     76040,     92818,    118348,
833
 /* -15 */    147320,    184698,    229616,    287308,    360437,
834
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
835
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
836
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
837
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
838
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
839
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
840
};
841
 
842
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
843
 
844
/*
845
 * runqueue iterator, to support SMP load-balancing between different
846
 * scheduling classes, without having to expose their internal data
847
 * structures to the load-balancing proper:
848
 */
849
struct rq_iterator {
850
        void *arg;
851
        struct task_struct *(*start)(void *);
852
        struct task_struct *(*next)(void *);
853
};
854
 
855
#ifdef CONFIG_SMP
856
static unsigned long
857
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
858
              unsigned long max_load_move, struct sched_domain *sd,
859
              enum cpu_idle_type idle, int *all_pinned,
860
              int *this_best_prio, struct rq_iterator *iterator);
861
 
862
static int
863
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
864
                   struct sched_domain *sd, enum cpu_idle_type idle,
865
                   struct rq_iterator *iterator);
866
#endif
867
 
868
#ifdef CONFIG_CGROUP_CPUACCT
869
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
870
#else
871
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
872
#endif
873
 
874
#include "sched_stats.h"
875
#include "sched_idletask.c"
876
#include "sched_fair.c"
877
#include "sched_rt.c"
878
#ifdef CONFIG_SCHED_DEBUG
879
# include "sched_debug.c"
880
#endif
881
 
882
#define sched_class_highest (&rt_sched_class)
883
 
884
/*
885
 * Update delta_exec, delta_fair fields for rq.
886
 *
887
 * delta_fair clock advances at a rate inversely proportional to
888
 * total load (rq->load.weight) on the runqueue, while
889
 * delta_exec advances at the same rate as wall-clock (provided
890
 * cpu is not idle).
891
 *
892
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
893
 * runqueue over any given interval. This (smoothened) load is used
894
 * during load balance.
895
 *
896
 * This function is called /before/ updating rq->load
897
 * and when switching tasks.
898
 */
899
static inline void inc_load(struct rq *rq, const struct task_struct *p)
900
{
901
        update_load_add(&rq->load, p->se.load.weight);
902
}
903
 
904
static inline void dec_load(struct rq *rq, const struct task_struct *p)
905
{
906
        update_load_sub(&rq->load, p->se.load.weight);
907
}
908
 
909
static void inc_nr_running(struct task_struct *p, struct rq *rq)
910
{
911
        rq->nr_running++;
912
        inc_load(rq, p);
913
}
914
 
915
static void dec_nr_running(struct task_struct *p, struct rq *rq)
916
{
917
        rq->nr_running--;
918
        dec_load(rq, p);
919
}
920
 
921
static void set_load_weight(struct task_struct *p)
922
{
923
        if (task_has_rt_policy(p)) {
924
                p->se.load.weight = prio_to_weight[0] * 2;
925
                p->se.load.inv_weight = prio_to_wmult[0] >> 1;
926
                return;
927
        }
928
 
929
        /*
930
         * SCHED_IDLE tasks get minimal weight:
931
         */
932
        if (p->policy == SCHED_IDLE) {
933
                p->se.load.weight = WEIGHT_IDLEPRIO;
934
                p->se.load.inv_weight = WMULT_IDLEPRIO;
935
                return;
936
        }
937
 
938
        p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
939
        p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
940
}
941
 
942
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
943
{
944
        sched_info_queued(p);
945
        p->sched_class->enqueue_task(rq, p, wakeup);
946
        p->se.on_rq = 1;
947
}
948
 
949
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
950
{
951
        p->sched_class->dequeue_task(rq, p, sleep);
952
        p->se.on_rq = 0;
953
}
954
 
955
/*
956
 * __normal_prio - return the priority that is based on the static prio
957
 */
958
static inline int __normal_prio(struct task_struct *p)
959
{
960
        return p->static_prio;
961
}
962
 
963
/*
964
 * Calculate the expected normal priority: i.e. priority
965
 * without taking RT-inheritance into account. Might be
966
 * boosted by interactivity modifiers. Changes upon fork,
967
 * setprio syscalls, and whenever the interactivity
968
 * estimator recalculates.
969
 */
970
static inline int normal_prio(struct task_struct *p)
971
{
972
        int prio;
973
 
974
        if (task_has_rt_policy(p))
975
                prio = MAX_RT_PRIO-1 - p->rt_priority;
976
        else
977
                prio = __normal_prio(p);
978
        return prio;
979
}
980
 
981
/*
982
 * Calculate the current priority, i.e. the priority
983
 * taken into account by the scheduler. This value might
984
 * be boosted by RT tasks, or might be boosted by
985
 * interactivity modifiers. Will be RT if the task got
986
 * RT-boosted. If not then it returns p->normal_prio.
987
 */
988
static int effective_prio(struct task_struct *p)
989
{
990
        p->normal_prio = normal_prio(p);
991
        /*
992
         * If we are RT tasks or we were boosted to RT priority,
993
         * keep the priority unchanged. Otherwise, update priority
994
         * to the normal priority:
995
         */
996
        if (!rt_prio(p->prio))
997
                return p->normal_prio;
998
        return p->prio;
999
}
1000
 
1001
/*
1002
 * activate_task - move a task to the runqueue.
1003
 */
1004
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1005
{
1006
        if (p->state == TASK_UNINTERRUPTIBLE)
1007
                rq->nr_uninterruptible--;
1008
 
1009
        enqueue_task(rq, p, wakeup);
1010
        inc_nr_running(p, rq);
1011
}
1012
 
1013
/*
1014
 * deactivate_task - remove a task from the runqueue.
1015
 */
1016
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1017
{
1018
        if (p->state == TASK_UNINTERRUPTIBLE)
1019
                rq->nr_uninterruptible++;
1020
 
1021
        dequeue_task(rq, p, sleep);
1022
        dec_nr_running(p, rq);
1023
}
1024
 
1025
/**
1026
 * task_curr - is this task currently executing on a CPU?
1027
 * @p: the task in question.
1028
 */
1029
inline int task_curr(const struct task_struct *p)
1030
{
1031
        return cpu_curr(task_cpu(p)) == p;
1032
}
1033
 
1034
/* Used instead of source_load when we know the type == 0 */
1035
unsigned long weighted_cpuload(const int cpu)
1036
{
1037
        return cpu_rq(cpu)->load.weight;
1038
}
1039
 
1040
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1041
{
1042
        set_task_cfs_rq(p, cpu);
1043
#ifdef CONFIG_SMP
1044
        /*
1045
         * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1046
         * successfuly executed on another CPU. We must ensure that updates of
1047
         * per-task data have been completed by this moment.
1048
         */
1049
        smp_wmb();
1050
        task_thread_info(p)->cpu = cpu;
1051
#endif
1052
}
1053
 
1054
#ifdef CONFIG_SMP
1055
 
1056
/*
1057
 * Is this task likely cache-hot:
1058
 */
1059
static inline int
1060
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1061
{
1062
        s64 delta;
1063
 
1064
        if (p->sched_class != &fair_sched_class)
1065
                return 0;
1066
 
1067
        if (sysctl_sched_migration_cost == -1)
1068
                return 1;
1069
        if (sysctl_sched_migration_cost == 0)
1070
                return 0;
1071
 
1072
        delta = now - p->se.exec_start;
1073
 
1074
        return delta < (s64)sysctl_sched_migration_cost;
1075
}
1076
 
1077
 
1078
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1079
{
1080
        int old_cpu = task_cpu(p);
1081
        struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1082
        struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1083
                      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1084
        u64 clock_offset;
1085
 
1086
        clock_offset = old_rq->clock - new_rq->clock;
1087
 
1088
#ifdef CONFIG_SCHEDSTATS
1089
        if (p->se.wait_start)
1090
                p->se.wait_start -= clock_offset;
1091
        if (p->se.sleep_start)
1092
                p->se.sleep_start -= clock_offset;
1093
        if (p->se.block_start)
1094
                p->se.block_start -= clock_offset;
1095
        if (old_cpu != new_cpu) {
1096
                schedstat_inc(p, se.nr_migrations);
1097
                if (task_hot(p, old_rq->clock, NULL))
1098
                        schedstat_inc(p, se.nr_forced2_migrations);
1099
        }
1100
#endif
1101
        p->se.vruntime -= old_cfsrq->min_vruntime -
1102
                                         new_cfsrq->min_vruntime;
1103
 
1104
        __set_task_cpu(p, new_cpu);
1105
}
1106
 
1107
struct migration_req {
1108
        struct list_head list;
1109
 
1110
        struct task_struct *task;
1111
        int dest_cpu;
1112
 
1113
        struct completion done;
1114
};
1115
 
1116
/*
1117
 * The task's runqueue lock must be held.
1118
 * Returns true if you have to wait for migration thread.
1119
 */
1120
static int
1121
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1122
{
1123
        struct rq *rq = task_rq(p);
1124
 
1125
        /*
1126
         * If the task is not on a runqueue (and not running), then
1127
         * it is sufficient to simply update the task's cpu field.
1128
         */
1129
        if (!p->se.on_rq && !task_running(rq, p)) {
1130
                set_task_cpu(p, dest_cpu);
1131
                return 0;
1132
        }
1133
 
1134
        init_completion(&req->done);
1135
        req->task = p;
1136
        req->dest_cpu = dest_cpu;
1137
        list_add(&req->list, &rq->migration_queue);
1138
 
1139
        return 1;
1140
}
1141
 
1142
/*
1143
 * wait_task_inactive - wait for a thread to unschedule.
1144
 *
1145
 * The caller must ensure that the task *will* unschedule sometime soon,
1146
 * else this function might spin for a *long* time. This function can't
1147
 * be called with interrupts off, or it may introduce deadlock with
1148
 * smp_call_function() if an IPI is sent by the same process we are
1149
 * waiting to become inactive.
1150
 */
1151
void wait_task_inactive(struct task_struct *p)
1152
{
1153
        unsigned long flags;
1154
        int running, on_rq;
1155
        struct rq *rq;
1156
 
1157
        for (;;) {
1158
                /*
1159
                 * We do the initial early heuristics without holding
1160
                 * any task-queue locks at all. We'll only try to get
1161
                 * the runqueue lock when things look like they will
1162
                 * work out!
1163
                 */
1164
                rq = task_rq(p);
1165
 
1166
                /*
1167
                 * If the task is actively running on another CPU
1168
                 * still, just relax and busy-wait without holding
1169
                 * any locks.
1170
                 *
1171
                 * NOTE! Since we don't hold any locks, it's not
1172
                 * even sure that "rq" stays as the right runqueue!
1173
                 * But we don't care, since "task_running()" will
1174
                 * return false if the runqueue has changed and p
1175
                 * is actually now running somewhere else!
1176
                 */
1177
                while (task_running(rq, p))
1178
                        cpu_relax();
1179
 
1180
                /*
1181
                 * Ok, time to look more closely! We need the rq
1182
                 * lock now, to be *sure*. If we're wrong, we'll
1183
                 * just go back and repeat.
1184
                 */
1185
                rq = task_rq_lock(p, &flags);
1186
                running = task_running(rq, p);
1187
                on_rq = p->se.on_rq;
1188
                task_rq_unlock(rq, &flags);
1189
 
1190
                /*
1191
                 * Was it really running after all now that we
1192
                 * checked with the proper locks actually held?
1193
                 *
1194
                 * Oops. Go back and try again..
1195
                 */
1196
                if (unlikely(running)) {
1197
                        cpu_relax();
1198
                        continue;
1199
                }
1200
 
1201
                /*
1202
                 * It's not enough that it's not actively running,
1203
                 * it must be off the runqueue _entirely_, and not
1204
                 * preempted!
1205
                 *
1206
                 * So if it wa still runnable (but just not actively
1207
                 * running right now), it's preempted, and we should
1208
                 * yield - it could be a while.
1209
                 */
1210
                if (unlikely(on_rq)) {
1211
                        schedule_timeout_uninterruptible(1);
1212
                        continue;
1213
                }
1214
 
1215
                /*
1216
                 * Ahh, all good. It wasn't running, and it wasn't
1217
                 * runnable, which means that it will never become
1218
                 * running in the future either. We're all done!
1219
                 */
1220
                break;
1221
        }
1222
}
1223
 
1224
/***
1225
 * kick_process - kick a running thread to enter/exit the kernel
1226
 * @p: the to-be-kicked thread
1227
 *
1228
 * Cause a process which is running on another CPU to enter
1229
 * kernel-mode, without any delay. (to get signals handled.)
1230
 *
1231
 * NOTE: this function doesnt have to take the runqueue lock,
1232
 * because all it wants to ensure is that the remote task enters
1233
 * the kernel. If the IPI races and the task has been migrated
1234
 * to another CPU then no harm is done and the purpose has been
1235
 * achieved as well.
1236
 */
1237
void kick_process(struct task_struct *p)
1238
{
1239
        int cpu;
1240
 
1241
        preempt_disable();
1242
        cpu = task_cpu(p);
1243
        if ((cpu != smp_processor_id()) && task_curr(p))
1244
                smp_send_reschedule(cpu);
1245
        preempt_enable();
1246
}
1247
 
1248
/*
1249
 * Return a low guess at the load of a migration-source cpu weighted
1250
 * according to the scheduling class and "nice" value.
1251
 *
1252
 * We want to under-estimate the load of migration sources, to
1253
 * balance conservatively.
1254
 */
1255
static unsigned long source_load(int cpu, int type)
1256
{
1257
        struct rq *rq = cpu_rq(cpu);
1258
        unsigned long total = weighted_cpuload(cpu);
1259
 
1260
        if (type == 0)
1261
                return total;
1262
 
1263
        return min(rq->cpu_load[type-1], total);
1264
}
1265
 
1266
/*
1267
 * Return a high guess at the load of a migration-target cpu weighted
1268
 * according to the scheduling class and "nice" value.
1269
 */
1270
static unsigned long target_load(int cpu, int type)
1271
{
1272
        struct rq *rq = cpu_rq(cpu);
1273
        unsigned long total = weighted_cpuload(cpu);
1274
 
1275
        if (type == 0)
1276
                return total;
1277
 
1278
        return max(rq->cpu_load[type-1], total);
1279
}
1280
 
1281
/*
1282
 * Return the average load per task on the cpu's run queue
1283
 */
1284
static inline unsigned long cpu_avg_load_per_task(int cpu)
1285
{
1286
        struct rq *rq = cpu_rq(cpu);
1287
        unsigned long total = weighted_cpuload(cpu);
1288
        unsigned long n = rq->nr_running;
1289
 
1290
        return n ? total / n : SCHED_LOAD_SCALE;
1291
}
1292
 
1293
/*
1294
 * find_idlest_group finds and returns the least busy CPU group within the
1295
 * domain.
1296
 */
1297
static struct sched_group *
1298
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1299
{
1300
        struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1301
        unsigned long min_load = ULONG_MAX, this_load = 0;
1302
        int load_idx = sd->forkexec_idx;
1303
        int imbalance = 100 + (sd->imbalance_pct-100)/2;
1304
 
1305
        do {
1306
                unsigned long load, avg_load;
1307
                int local_group;
1308
                int i;
1309
 
1310
                /* Skip over this group if it has no CPUs allowed */
1311
                if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1312
                        continue;
1313
 
1314
                local_group = cpu_isset(this_cpu, group->cpumask);
1315
 
1316
                /* Tally up the load of all CPUs in the group */
1317
                avg_load = 0;
1318
 
1319
                for_each_cpu_mask(i, group->cpumask) {
1320
                        /* Bias balancing toward cpus of our domain */
1321
                        if (local_group)
1322
                                load = source_load(i, load_idx);
1323
                        else
1324
                                load = target_load(i, load_idx);
1325
 
1326
                        avg_load += load;
1327
                }
1328
 
1329
                /* Adjust by relative CPU power of the group */
1330
                avg_load = sg_div_cpu_power(group,
1331
                                avg_load * SCHED_LOAD_SCALE);
1332
 
1333
                if (local_group) {
1334
                        this_load = avg_load;
1335
                        this = group;
1336
                } else if (avg_load < min_load) {
1337
                        min_load = avg_load;
1338
                        idlest = group;
1339
                }
1340
        } while (group = group->next, group != sd->groups);
1341
 
1342
        if (!idlest || 100*this_load < imbalance*min_load)
1343
                return NULL;
1344
        return idlest;
1345
}
1346
 
1347
/*
1348
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1349
 */
1350
static int
1351
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1352
{
1353
        cpumask_t tmp;
1354
        unsigned long load, min_load = ULONG_MAX;
1355
        int idlest = -1;
1356
        int i;
1357
 
1358
        /* Traverse only the allowed CPUs */
1359
        cpus_and(tmp, group->cpumask, p->cpus_allowed);
1360
 
1361
        for_each_cpu_mask(i, tmp) {
1362
                load = weighted_cpuload(i);
1363
 
1364
                if (load < min_load || (load == min_load && i == this_cpu)) {
1365
                        min_load = load;
1366
                        idlest = i;
1367
                }
1368
        }
1369
 
1370
        return idlest;
1371
}
1372
 
1373
/*
1374
 * sched_balance_self: balance the current task (running on cpu) in domains
1375
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1376
 * SD_BALANCE_EXEC.
1377
 *
1378
 * Balance, ie. select the least loaded group.
1379
 *
1380
 * Returns the target CPU number, or the same CPU if no balancing is needed.
1381
 *
1382
 * preempt must be disabled.
1383
 */
1384
static int sched_balance_self(int cpu, int flag)
1385
{
1386
        struct task_struct *t = current;
1387
        struct sched_domain *tmp, *sd = NULL;
1388
 
1389
        for_each_domain(cpu, tmp) {
1390
                /*
1391
                 * If power savings logic is enabled for a domain, stop there.
1392
                 */
1393
                if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1394
                        break;
1395
                if (tmp->flags & flag)
1396
                        sd = tmp;
1397
        }
1398
 
1399
        while (sd) {
1400
                cpumask_t span;
1401
                struct sched_group *group;
1402
                int new_cpu, weight;
1403
 
1404
                if (!(sd->flags & flag)) {
1405
                        sd = sd->child;
1406
                        continue;
1407
                }
1408
 
1409
                span = sd->span;
1410
                group = find_idlest_group(sd, t, cpu);
1411
                if (!group) {
1412
                        sd = sd->child;
1413
                        continue;
1414
                }
1415
 
1416
                new_cpu = find_idlest_cpu(group, t, cpu);
1417
                if (new_cpu == -1 || new_cpu == cpu) {
1418
                        /* Now try balancing at a lower domain level of cpu */
1419
                        sd = sd->child;
1420
                        continue;
1421
                }
1422
 
1423
                /* Now try balancing at a lower domain level of new_cpu */
1424
                cpu = new_cpu;
1425
                sd = NULL;
1426
                weight = cpus_weight(span);
1427
                for_each_domain(cpu, tmp) {
1428
                        if (weight <= cpus_weight(tmp->span))
1429
                                break;
1430
                        if (tmp->flags & flag)
1431
                                sd = tmp;
1432
                }
1433
                /* while loop will break here if sd == NULL */
1434
        }
1435
 
1436
        return cpu;
1437
}
1438
 
1439
#endif /* CONFIG_SMP */
1440
 
1441
/*
1442
 * wake_idle() will wake a task on an idle cpu if task->cpu is
1443
 * not idle and an idle cpu is available.  The span of cpus to
1444
 * search starts with cpus closest then further out as needed,
1445
 * so we always favor a closer, idle cpu.
1446
 *
1447
 * Returns the CPU we should wake onto.
1448
 */
1449
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1450
static int wake_idle(int cpu, struct task_struct *p)
1451
{
1452
        cpumask_t tmp;
1453
        struct sched_domain *sd;
1454
        int i;
1455
 
1456
        /*
1457
         * If it is idle, then it is the best cpu to run this task.
1458
         *
1459
         * This cpu is also the best, if it has more than one task already.
1460
         * Siblings must be also busy(in most cases) as they didn't already
1461
         * pickup the extra load from this cpu and hence we need not check
1462
         * sibling runqueue info. This will avoid the checks and cache miss
1463
         * penalities associated with that.
1464
         */
1465
        if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1466
                return cpu;
1467
 
1468
        for_each_domain(cpu, sd) {
1469
                if (sd->flags & SD_WAKE_IDLE) {
1470
                        cpus_and(tmp, sd->span, p->cpus_allowed);
1471
                        for_each_cpu_mask(i, tmp) {
1472
                                if (idle_cpu(i)) {
1473
                                        if (i != task_cpu(p)) {
1474
                                                schedstat_inc(p,
1475
                                                        se.nr_wakeups_idle);
1476
                                        }
1477
                                        return i;
1478
                                }
1479
                        }
1480
                } else {
1481
                        break;
1482
                }
1483
        }
1484
        return cpu;
1485
}
1486
#else
1487
static inline int wake_idle(int cpu, struct task_struct *p)
1488
{
1489
        return cpu;
1490
}
1491
#endif
1492
 
1493
/***
1494
 * try_to_wake_up - wake up a thread
1495
 * @p: the to-be-woken-up thread
1496
 * @state: the mask of task states that can be woken
1497
 * @sync: do a synchronous wakeup?
1498
 *
1499
 * Put it on the run-queue if it's not already there. The "current"
1500
 * thread is always on the run-queue (except when the actual
1501
 * re-schedule is in progress), and as such you're allowed to do
1502
 * the simpler "current->state = TASK_RUNNING" to mark yourself
1503
 * runnable without the overhead of this.
1504
 *
1505
 * returns failure only if the task is already active.
1506
 */
1507
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1508
{
1509
        int cpu, orig_cpu, this_cpu, success = 0;
1510
        unsigned long flags;
1511
        long old_state;
1512
        struct rq *rq;
1513
#ifdef CONFIG_SMP
1514
        struct sched_domain *sd, *this_sd = NULL;
1515
        unsigned long load, this_load;
1516
        int new_cpu;
1517
#endif
1518
 
1519
        rq = task_rq_lock(p, &flags);
1520
        old_state = p->state;
1521
        if (!(old_state & state))
1522
                goto out;
1523
 
1524
        if (p->se.on_rq)
1525
                goto out_running;
1526
 
1527
        cpu = task_cpu(p);
1528
        orig_cpu = cpu;
1529
        this_cpu = smp_processor_id();
1530
 
1531
#ifdef CONFIG_SMP
1532
        if (unlikely(task_running(rq, p)))
1533
                goto out_activate;
1534
 
1535
        new_cpu = cpu;
1536
 
1537
        schedstat_inc(rq, ttwu_count);
1538
        if (cpu == this_cpu) {
1539
                schedstat_inc(rq, ttwu_local);
1540
                goto out_set_cpu;
1541
        }
1542
 
1543
        for_each_domain(this_cpu, sd) {
1544
                if (cpu_isset(cpu, sd->span)) {
1545
                        schedstat_inc(sd, ttwu_wake_remote);
1546
                        this_sd = sd;
1547
                        break;
1548
                }
1549
        }
1550
 
1551
        if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1552
                goto out_set_cpu;
1553
 
1554
        /*
1555
         * Check for affine wakeup and passive balancing possibilities.
1556
         */
1557
        if (this_sd) {
1558
                int idx = this_sd->wake_idx;
1559
                unsigned int imbalance;
1560
 
1561
                imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1562
 
1563
                load = source_load(cpu, idx);
1564
                this_load = target_load(this_cpu, idx);
1565
 
1566
                new_cpu = this_cpu; /* Wake to this CPU if we can */
1567
 
1568
                if (this_sd->flags & SD_WAKE_AFFINE) {
1569
                        unsigned long tl = this_load;
1570
                        unsigned long tl_per_task;
1571
 
1572
                        /*
1573
                         * Attract cache-cold tasks on sync wakeups:
1574
                         */
1575
                        if (sync && !task_hot(p, rq->clock, this_sd))
1576
                                goto out_set_cpu;
1577
 
1578
                        schedstat_inc(p, se.nr_wakeups_affine_attempts);
1579
                        tl_per_task = cpu_avg_load_per_task(this_cpu);
1580
 
1581
                        /*
1582
                         * If sync wakeup then subtract the (maximum possible)
1583
                         * effect of the currently running task from the load
1584
                         * of the current CPU:
1585
                         */
1586
                        if (sync)
1587
                                tl -= current->se.load.weight;
1588
 
1589
                        if ((tl <= load &&
1590
                                tl + target_load(cpu, idx) <= tl_per_task) ||
1591
                               100*(tl + p->se.load.weight) <= imbalance*load) {
1592
                                /*
1593
                                 * This domain has SD_WAKE_AFFINE and
1594
                                 * p is cache cold in this domain, and
1595
                                 * there is no bad imbalance.
1596
                                 */
1597
                                schedstat_inc(this_sd, ttwu_move_affine);
1598
                                schedstat_inc(p, se.nr_wakeups_affine);
1599
                                goto out_set_cpu;
1600
                        }
1601
                }
1602
 
1603
                /*
1604
                 * Start passive balancing when half the imbalance_pct
1605
                 * limit is reached.
1606
                 */
1607
                if (this_sd->flags & SD_WAKE_BALANCE) {
1608
                        if (imbalance*this_load <= 100*load) {
1609
                                schedstat_inc(this_sd, ttwu_move_balance);
1610
                                schedstat_inc(p, se.nr_wakeups_passive);
1611
                                goto out_set_cpu;
1612
                        }
1613
                }
1614
        }
1615
 
1616
        new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1617
out_set_cpu:
1618
        new_cpu = wake_idle(new_cpu, p);
1619
        if (new_cpu != cpu) {
1620
                set_task_cpu(p, new_cpu);
1621
                task_rq_unlock(rq, &flags);
1622
                /* might preempt at this point */
1623
                rq = task_rq_lock(p, &flags);
1624
                old_state = p->state;
1625
                if (!(old_state & state))
1626
                        goto out;
1627
                if (p->se.on_rq)
1628
                        goto out_running;
1629
 
1630
                this_cpu = smp_processor_id();
1631
                cpu = task_cpu(p);
1632
        }
1633
 
1634
out_activate:
1635
#endif /* CONFIG_SMP */
1636
        schedstat_inc(p, se.nr_wakeups);
1637
        if (sync)
1638
                schedstat_inc(p, se.nr_wakeups_sync);
1639
        if (orig_cpu != cpu)
1640
                schedstat_inc(p, se.nr_wakeups_migrate);
1641
        if (cpu == this_cpu)
1642
                schedstat_inc(p, se.nr_wakeups_local);
1643
        else
1644
                schedstat_inc(p, se.nr_wakeups_remote);
1645
        update_rq_clock(rq);
1646
        activate_task(rq, p, 1);
1647
        check_preempt_curr(rq, p);
1648
        success = 1;
1649
 
1650
out_running:
1651
        p->state = TASK_RUNNING;
1652
out:
1653
        task_rq_unlock(rq, &flags);
1654
 
1655
        return success;
1656
}
1657
 
1658
int fastcall wake_up_process(struct task_struct *p)
1659
{
1660
        return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1661
                                 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1662
}
1663
EXPORT_SYMBOL(wake_up_process);
1664
 
1665
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1666
{
1667
        return try_to_wake_up(p, state, 0);
1668
}
1669
 
1670
/*
1671
 * Perform scheduler related setup for a newly forked process p.
1672
 * p is forked by current.
1673
 *
1674
 * __sched_fork() is basic setup used by init_idle() too:
1675
 */
1676
static void __sched_fork(struct task_struct *p)
1677
{
1678
        p->se.exec_start                = 0;
1679
        p->se.sum_exec_runtime          = 0;
1680
        p->se.prev_sum_exec_runtime     = 0;
1681
 
1682
#ifdef CONFIG_SCHEDSTATS
1683
        p->se.wait_start                = 0;
1684
        p->se.sum_sleep_runtime         = 0;
1685
        p->se.sleep_start               = 0;
1686
        p->se.block_start               = 0;
1687
        p->se.sleep_max                 = 0;
1688
        p->se.block_max                 = 0;
1689
        p->se.exec_max                  = 0;
1690
        p->se.slice_max                 = 0;
1691
        p->se.wait_max                  = 0;
1692
#endif
1693
 
1694
        INIT_LIST_HEAD(&p->run_list);
1695
        p->se.on_rq = 0;
1696
 
1697
#ifdef CONFIG_PREEMPT_NOTIFIERS
1698
        INIT_HLIST_HEAD(&p->preempt_notifiers);
1699
#endif
1700
 
1701
        /*
1702
         * We mark the process as running here, but have not actually
1703
         * inserted it onto the runqueue yet. This guarantees that
1704
         * nobody will actually run it, and a signal or other external
1705
         * event cannot wake it up and insert it on the runqueue either.
1706
         */
1707
        p->state = TASK_RUNNING;
1708
}
1709
 
1710
/*
1711
 * fork()/clone()-time setup:
1712
 */
1713
void sched_fork(struct task_struct *p, int clone_flags)
1714
{
1715
        int cpu = get_cpu();
1716
 
1717
        __sched_fork(p);
1718
 
1719
#ifdef CONFIG_SMP
1720
        cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1721
#endif
1722
        set_task_cpu(p, cpu);
1723
 
1724
        /*
1725
         * Make sure we do not leak PI boosting priority to the child:
1726
         */
1727
        p->prio = current->normal_prio;
1728
        if (!rt_prio(p->prio))
1729
                p->sched_class = &fair_sched_class;
1730
 
1731
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1732
        if (likely(sched_info_on()))
1733
                memset(&p->sched_info, 0, sizeof(p->sched_info));
1734
#endif
1735
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1736
        p->oncpu = 0;
1737
#endif
1738
#ifdef CONFIG_PREEMPT
1739
        /* Want to start with kernel preemption disabled. */
1740
        task_thread_info(p)->preempt_count = 1;
1741
#endif
1742
        put_cpu();
1743
}
1744
 
1745
/*
1746
 * wake_up_new_task - wake up a newly created task for the first time.
1747
 *
1748
 * This function will do some initial scheduler statistics housekeeping
1749
 * that must be done for every newly created context, then puts the task
1750
 * on the runqueue and wakes it.
1751
 */
1752
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1753
{
1754
        unsigned long flags;
1755
        struct rq *rq;
1756
 
1757
        rq = task_rq_lock(p, &flags);
1758
        BUG_ON(p->state != TASK_RUNNING);
1759
        update_rq_clock(rq);
1760
 
1761
        p->prio = effective_prio(p);
1762
 
1763
        if (!p->sched_class->task_new || !current->se.on_rq) {
1764
                activate_task(rq, p, 0);
1765
        } else {
1766
                /*
1767
                 * Let the scheduling class do new task startup
1768
                 * management (if any):
1769
                 */
1770
                p->sched_class->task_new(rq, p);
1771
                inc_nr_running(p, rq);
1772
        }
1773
        check_preempt_curr(rq, p);
1774
        task_rq_unlock(rq, &flags);
1775
}
1776
 
1777
#ifdef CONFIG_PREEMPT_NOTIFIERS
1778
 
1779
/**
1780
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1781
 * @notifier: notifier struct to register
1782
 */
1783
void preempt_notifier_register(struct preempt_notifier *notifier)
1784
{
1785
        hlist_add_head(&notifier->link, &current->preempt_notifiers);
1786
}
1787
EXPORT_SYMBOL_GPL(preempt_notifier_register);
1788
 
1789
/**
1790
 * preempt_notifier_unregister - no longer interested in preemption notifications
1791
 * @notifier: notifier struct to unregister
1792
 *
1793
 * This is safe to call from within a preemption notifier.
1794
 */
1795
void preempt_notifier_unregister(struct preempt_notifier *notifier)
1796
{
1797
        hlist_del(&notifier->link);
1798
}
1799
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1800
 
1801
static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1802
{
1803
        struct preempt_notifier *notifier;
1804
        struct hlist_node *node;
1805
 
1806
        hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1807
                notifier->ops->sched_in(notifier, raw_smp_processor_id());
1808
}
1809
 
1810
static void
1811
fire_sched_out_preempt_notifiers(struct task_struct *curr,
1812
                                 struct task_struct *next)
1813
{
1814
        struct preempt_notifier *notifier;
1815
        struct hlist_node *node;
1816
 
1817
        hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1818
                notifier->ops->sched_out(notifier, next);
1819
}
1820
 
1821
#else
1822
 
1823
static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1824
{
1825
}
1826
 
1827
static void
1828
fire_sched_out_preempt_notifiers(struct task_struct *curr,
1829
                                 struct task_struct *next)
1830
{
1831
}
1832
 
1833
#endif
1834
 
1835
/**
1836
 * prepare_task_switch - prepare to switch tasks
1837
 * @rq: the runqueue preparing to switch
1838
 * @prev: the current task that is being switched out
1839
 * @next: the task we are going to switch to.
1840
 *
1841
 * This is called with the rq lock held and interrupts off. It must
1842
 * be paired with a subsequent finish_task_switch after the context
1843
 * switch.
1844
 *
1845
 * prepare_task_switch sets up locking and calls architecture specific
1846
 * hooks.
1847
 */
1848
static inline void
1849
prepare_task_switch(struct rq *rq, struct task_struct *prev,
1850
                    struct task_struct *next)
1851
{
1852
        fire_sched_out_preempt_notifiers(prev, next);
1853
        prepare_lock_switch(rq, next);
1854
        prepare_arch_switch(next);
1855
}
1856
 
1857
/**
1858
 * finish_task_switch - clean up after a task-switch
1859
 * @rq: runqueue associated with task-switch
1860
 * @prev: the thread we just switched away from.
1861
 *
1862
 * finish_task_switch must be called after the context switch, paired
1863
 * with a prepare_task_switch call before the context switch.
1864
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1865
 * and do any other architecture-specific cleanup actions.
1866
 *
1867
 * Note that we may have delayed dropping an mm in context_switch(). If
1868
 * so, we finish that here outside of the runqueue lock. (Doing it
1869
 * with the lock held can cause deadlocks; see schedule() for
1870
 * details.)
1871
 */
1872
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1873
        __releases(rq->lock)
1874
{
1875
        struct mm_struct *mm = rq->prev_mm;
1876
        long prev_state;
1877
 
1878
        rq->prev_mm = NULL;
1879
 
1880
        /*
1881
         * A task struct has one reference for the use as "current".
1882
         * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1883
         * schedule one last time. The schedule call will never return, and
1884
         * the scheduled task must drop that reference.
1885
         * The test for TASK_DEAD must occur while the runqueue locks are
1886
         * still held, otherwise prev could be scheduled on another cpu, die
1887
         * there before we look at prev->state, and then the reference would
1888
         * be dropped twice.
1889
         *              Manfred Spraul <manfred@colorfullife.com>
1890
         */
1891
        prev_state = prev->state;
1892
        finish_arch_switch(prev);
1893
        finish_lock_switch(rq, prev);
1894
        fire_sched_in_preempt_notifiers(current);
1895
        if (mm)
1896
                mmdrop(mm);
1897
        if (unlikely(prev_state == TASK_DEAD)) {
1898
                /*
1899
                 * Remove function-return probe instances associated with this
1900
                 * task and put them back on the free list.
1901
                 */
1902
                kprobe_flush_task(prev);
1903
                put_task_struct(prev);
1904
        }
1905
}
1906
 
1907
/**
1908
 * schedule_tail - first thing a freshly forked thread must call.
1909
 * @prev: the thread we just switched away from.
1910
 */
1911
asmlinkage void schedule_tail(struct task_struct *prev)
1912
        __releases(rq->lock)
1913
{
1914
        struct rq *rq = this_rq();
1915
 
1916
        finish_task_switch(rq, prev);
1917
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1918
        /* In this case, finish_task_switch does not reenable preemption */
1919
        preempt_enable();
1920
#endif
1921
        if (current->set_child_tid)
1922
                put_user(task_pid_vnr(current), current->set_child_tid);
1923
}
1924
 
1925
/*
1926
 * context_switch - switch to the new MM and the new
1927
 * thread's register state.
1928
 */
1929
static inline void
1930
context_switch(struct rq *rq, struct task_struct *prev,
1931
               struct task_struct *next)
1932
{
1933
        struct mm_struct *mm, *oldmm;
1934
 
1935
        prepare_task_switch(rq, prev, next);
1936
        mm = next->mm;
1937
        oldmm = prev->active_mm;
1938
        /*
1939
         * For paravirt, this is coupled with an exit in switch_to to
1940
         * combine the page table reload and the switch backend into
1941
         * one hypercall.
1942
         */
1943
        arch_enter_lazy_cpu_mode();
1944
 
1945
        if (unlikely(!mm)) {
1946
                next->active_mm = oldmm;
1947
                atomic_inc(&oldmm->mm_count);
1948
                enter_lazy_tlb(oldmm, next);
1949
        } else
1950
                switch_mm(oldmm, mm, next);
1951
 
1952
        if (unlikely(!prev->mm)) {
1953
                prev->active_mm = NULL;
1954
                rq->prev_mm = oldmm;
1955
        }
1956
        /*
1957
         * Since the runqueue lock will be released by the next
1958
         * task (which is an invalid locking op but in the case
1959
         * of the scheduler it's an obvious special-case), so we
1960
         * do an early lockdep release here:
1961
         */
1962
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1963
        spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1964
#endif
1965
 
1966
        /* Here we just switch the register state and the stack. */
1967
        switch_to(prev, next, prev);
1968
 
1969
        barrier();
1970
        /*
1971
         * this_rq must be evaluated again because prev may have moved
1972
         * CPUs since it called schedule(), thus the 'rq' on its stack
1973
         * frame will be invalid.
1974
         */
1975
        finish_task_switch(this_rq(), prev);
1976
}
1977
 
1978
/*
1979
 * nr_running, nr_uninterruptible and nr_context_switches:
1980
 *
1981
 * externally visible scheduler statistics: current number of runnable
1982
 * threads, current number of uninterruptible-sleeping threads, total
1983
 * number of context switches performed since bootup.
1984
 */
1985
unsigned long nr_running(void)
1986
{
1987
        unsigned long i, sum = 0;
1988
 
1989
        for_each_online_cpu(i)
1990
                sum += cpu_rq(i)->nr_running;
1991
 
1992
        return sum;
1993
}
1994
 
1995
unsigned long nr_uninterruptible(void)
1996
{
1997
        unsigned long i, sum = 0;
1998
 
1999
        for_each_possible_cpu(i)
2000
                sum += cpu_rq(i)->nr_uninterruptible;
2001
 
2002
        /*
2003
         * Since we read the counters lockless, it might be slightly
2004
         * inaccurate. Do not allow it to go below zero though:
2005
         */
2006
        if (unlikely((long)sum < 0))
2007
                sum = 0;
2008
 
2009
        return sum;
2010
}
2011
 
2012
unsigned long long nr_context_switches(void)
2013
{
2014
        int i;
2015
        unsigned long long sum = 0;
2016
 
2017
        for_each_possible_cpu(i)
2018
                sum += cpu_rq(i)->nr_switches;
2019
 
2020
        return sum;
2021
}
2022
 
2023
unsigned long nr_iowait(void)
2024
{
2025
        unsigned long i, sum = 0;
2026
 
2027
        for_each_possible_cpu(i)
2028
                sum += atomic_read(&cpu_rq(i)->nr_iowait);
2029
 
2030
        return sum;
2031
}
2032
 
2033
unsigned long nr_active(void)
2034
{
2035
        unsigned long i, running = 0, uninterruptible = 0;
2036
 
2037
        for_each_online_cpu(i) {
2038
                running += cpu_rq(i)->nr_running;
2039
                uninterruptible += cpu_rq(i)->nr_uninterruptible;
2040
        }
2041
 
2042
        if (unlikely((long)uninterruptible < 0))
2043
                uninterruptible = 0;
2044
 
2045
        return running + uninterruptible;
2046
}
2047
 
2048
/*
2049
 * Update rq->cpu_load[] statistics. This function is usually called every
2050
 * scheduler tick (TICK_NSEC).
2051
 */
2052
static void update_cpu_load(struct rq *this_rq)
2053
{
2054
        unsigned long this_load = this_rq->load.weight;
2055
        int i, scale;
2056
 
2057
        this_rq->nr_load_updates++;
2058
 
2059
        /* Update our load: */
2060
        for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2061
                unsigned long old_load, new_load;
2062
 
2063
                /* scale is effectively 1 << i now, and >> i divides by scale */
2064
 
2065
                old_load = this_rq->cpu_load[i];
2066
                new_load = this_load;
2067
                /*
2068
                 * Round up the averaging division if load is increasing. This
2069
                 * prevents us from getting stuck on 9 if the load is 10, for
2070
                 * example.
2071
                 */
2072
                if (new_load > old_load)
2073
                        new_load += scale-1;
2074
                this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2075
        }
2076
}
2077
 
2078
#ifdef CONFIG_SMP
2079
 
2080
/*
2081
 * double_rq_lock - safely lock two runqueues
2082
 *
2083
 * Note this does not disable interrupts like task_rq_lock,
2084
 * you need to do so manually before calling.
2085
 */
2086
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2087
        __acquires(rq1->lock)
2088
        __acquires(rq2->lock)
2089
{
2090
        BUG_ON(!irqs_disabled());
2091
        if (rq1 == rq2) {
2092
                spin_lock(&rq1->lock);
2093
                __acquire(rq2->lock);   /* Fake it out ;) */
2094
        } else {
2095
                if (rq1 < rq2) {
2096
                        spin_lock(&rq1->lock);
2097
                        spin_lock(&rq2->lock);
2098
                } else {
2099
                        spin_lock(&rq2->lock);
2100
                        spin_lock(&rq1->lock);
2101
                }
2102
        }
2103
        update_rq_clock(rq1);
2104
        update_rq_clock(rq2);
2105
}
2106
 
2107
/*
2108
 * double_rq_unlock - safely unlock two runqueues
2109
 *
2110
 * Note this does not restore interrupts like task_rq_unlock,
2111
 * you need to do so manually after calling.
2112
 */
2113
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2114
        __releases(rq1->lock)
2115
        __releases(rq2->lock)
2116
{
2117
        spin_unlock(&rq1->lock);
2118
        if (rq1 != rq2)
2119
                spin_unlock(&rq2->lock);
2120
        else
2121
                __release(rq2->lock);
2122
}
2123
 
2124
/*
2125
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2126
 */
2127
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2128
        __releases(this_rq->lock)
2129
        __acquires(busiest->lock)
2130
        __acquires(this_rq->lock)
2131
{
2132
        if (unlikely(!irqs_disabled())) {
2133
                /* printk() doesn't work good under rq->lock */
2134
                spin_unlock(&this_rq->lock);
2135
                BUG_ON(1);
2136
        }
2137
        if (unlikely(!spin_trylock(&busiest->lock))) {
2138
                if (busiest < this_rq) {
2139
                        spin_unlock(&this_rq->lock);
2140
                        spin_lock(&busiest->lock);
2141
                        spin_lock(&this_rq->lock);
2142
                } else
2143
                        spin_lock(&busiest->lock);
2144
        }
2145
}
2146
 
2147
/*
2148
 * If dest_cpu is allowed for this process, migrate the task to it.
2149
 * This is accomplished by forcing the cpu_allowed mask to only
2150
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2151
 * the cpu_allowed mask is restored.
2152
 */
2153
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2154
{
2155
        struct migration_req req;
2156
        unsigned long flags;
2157
        struct rq *rq;
2158
 
2159
        rq = task_rq_lock(p, &flags);
2160
        if (!cpu_isset(dest_cpu, p->cpus_allowed)
2161
            || unlikely(cpu_is_offline(dest_cpu)))
2162
                goto out;
2163
 
2164
        /* force the process onto the specified CPU */
2165
        if (migrate_task(p, dest_cpu, &req)) {
2166
                /* Need to wait for migration thread (might exit: take ref). */
2167
                struct task_struct *mt = rq->migration_thread;
2168
 
2169
                get_task_struct(mt);
2170
                task_rq_unlock(rq, &flags);
2171
                wake_up_process(mt);
2172
                put_task_struct(mt);
2173
                wait_for_completion(&req.done);
2174
 
2175
                return;
2176
        }
2177
out:
2178
        task_rq_unlock(rq, &flags);
2179
}
2180
 
2181
/*
2182
 * sched_exec - execve() is a valuable balancing opportunity, because at
2183
 * this point the task has the smallest effective memory and cache footprint.
2184
 */
2185
void sched_exec(void)
2186
{
2187
        int new_cpu, this_cpu = get_cpu();
2188
        new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2189
        put_cpu();
2190
        if (new_cpu != this_cpu)
2191
                sched_migrate_task(current, new_cpu);
2192
}
2193
 
2194
/*
2195
 * pull_task - move a task from a remote runqueue to the local runqueue.
2196
 * Both runqueues must be locked.
2197
 */
2198
static void pull_task(struct rq *src_rq, struct task_struct *p,
2199
                      struct rq *this_rq, int this_cpu)
2200
{
2201
        deactivate_task(src_rq, p, 0);
2202
        set_task_cpu(p, this_cpu);
2203
        activate_task(this_rq, p, 0);
2204
        /*
2205
         * Note that idle threads have a prio of MAX_PRIO, for this test
2206
         * to be always true for them.
2207
         */
2208
        check_preempt_curr(this_rq, p);
2209
}
2210
 
2211
/*
2212
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2213
 */
2214
static
2215
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2216
                     struct sched_domain *sd, enum cpu_idle_type idle,
2217
                     int *all_pinned)
2218
{
2219
        /*
2220
         * We do not migrate tasks that are:
2221
         * 1) running (obviously), or
2222
         * 2) cannot be migrated to this CPU due to cpus_allowed, or
2223
         * 3) are cache-hot on their current CPU.
2224
         */
2225
        if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2226
                schedstat_inc(p, se.nr_failed_migrations_affine);
2227
                return 0;
2228
        }
2229
        *all_pinned = 0;
2230
 
2231
        if (task_running(rq, p)) {
2232
                schedstat_inc(p, se.nr_failed_migrations_running);
2233
                return 0;
2234
        }
2235
 
2236
        /*
2237
         * Aggressive migration if:
2238
         * 1) task is cache cold, or
2239
         * 2) too many balance attempts have failed.
2240
         */
2241
 
2242
        if (!task_hot(p, rq->clock, sd) ||
2243
                        sd->nr_balance_failed > sd->cache_nice_tries) {
2244
#ifdef CONFIG_SCHEDSTATS
2245
                if (task_hot(p, rq->clock, sd)) {
2246
                        schedstat_inc(sd, lb_hot_gained[idle]);
2247
                        schedstat_inc(p, se.nr_forced_migrations);
2248
                }
2249
#endif
2250
                return 1;
2251
        }
2252
 
2253
        if (task_hot(p, rq->clock, sd)) {
2254
                schedstat_inc(p, se.nr_failed_migrations_hot);
2255
                return 0;
2256
        }
2257
        return 1;
2258
}
2259
 
2260
static unsigned long
2261
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2262
              unsigned long max_load_move, struct sched_domain *sd,
2263
              enum cpu_idle_type idle, int *all_pinned,
2264
              int *this_best_prio, struct rq_iterator *iterator)
2265
{
2266
        int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2267
        struct task_struct *p;
2268
        long rem_load_move = max_load_move;
2269
 
2270
        if (max_load_move == 0)
2271
                goto out;
2272
 
2273
        pinned = 1;
2274
 
2275
        /*
2276
         * Start the load-balancing iterator:
2277
         */
2278
        p = iterator->start(iterator->arg);
2279
next:
2280
        if (!p || loops++ > sysctl_sched_nr_migrate)
2281
                goto out;
2282
        /*
2283
         * To help distribute high priority tasks across CPUs we don't
2284
         * skip a task if it will be the highest priority task (i.e. smallest
2285
         * prio value) on its new queue regardless of its load weight
2286
         */
2287
        skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2288
                                                         SCHED_LOAD_SCALE_FUZZ;
2289
        if ((skip_for_load && p->prio >= *this_best_prio) ||
2290
            !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2291
                p = iterator->next(iterator->arg);
2292
                goto next;
2293
        }
2294
 
2295
        pull_task(busiest, p, this_rq, this_cpu);
2296
        pulled++;
2297
        rem_load_move -= p->se.load.weight;
2298
 
2299
        /*
2300
         * We only want to steal up to the prescribed amount of weighted load.
2301
         */
2302
        if (rem_load_move > 0) {
2303
                if (p->prio < *this_best_prio)
2304
                        *this_best_prio = p->prio;
2305
                p = iterator->next(iterator->arg);
2306
                goto next;
2307
        }
2308
out:
2309
        /*
2310
         * Right now, this is one of only two places pull_task() is called,
2311
         * so we can safely collect pull_task() stats here rather than
2312
         * inside pull_task().
2313
         */
2314
        schedstat_add(sd, lb_gained[idle], pulled);
2315
 
2316
        if (all_pinned)
2317
                *all_pinned = pinned;
2318
 
2319
        return max_load_move - rem_load_move;
2320
}
2321
 
2322
/*
2323
 * move_tasks tries to move up to max_load_move weighted load from busiest to
2324
 * this_rq, as part of a balancing operation within domain "sd".
2325
 * Returns 1 if successful and 0 otherwise.
2326
 *
2327
 * Called with both runqueues locked.
2328
 */
2329
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2330
                      unsigned long max_load_move,
2331
                      struct sched_domain *sd, enum cpu_idle_type idle,
2332
                      int *all_pinned)
2333
{
2334
        const struct sched_class *class = sched_class_highest;
2335
        unsigned long total_load_moved = 0;
2336
        int this_best_prio = this_rq->curr->prio;
2337
 
2338
        do {
2339
                total_load_moved +=
2340
                        class->load_balance(this_rq, this_cpu, busiest,
2341
                                max_load_move - total_load_moved,
2342
                                sd, idle, all_pinned, &this_best_prio);
2343
                class = class->next;
2344
        } while (class && max_load_move > total_load_moved);
2345
 
2346
        return total_load_moved > 0;
2347
}
2348
 
2349
static int
2350
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2351
                   struct sched_domain *sd, enum cpu_idle_type idle,
2352
                   struct rq_iterator *iterator)
2353
{
2354
        struct task_struct *p = iterator->start(iterator->arg);
2355
        int pinned = 0;
2356
 
2357
        while (p) {
2358
                if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2359
                        pull_task(busiest, p, this_rq, this_cpu);
2360
                        /*
2361
                         * Right now, this is only the second place pull_task()
2362
                         * is called, so we can safely collect pull_task()
2363
                         * stats here rather than inside pull_task().
2364
                         */
2365
                        schedstat_inc(sd, lb_gained[idle]);
2366
 
2367
                        return 1;
2368
                }
2369
                p = iterator->next(iterator->arg);
2370
        }
2371
 
2372
        return 0;
2373
}
2374
 
2375
/*
2376
 * move_one_task tries to move exactly one task from busiest to this_rq, as
2377
 * part of active balancing operations within "domain".
2378
 * Returns 1 if successful and 0 otherwise.
2379
 *
2380
 * Called with both runqueues locked.
2381
 */
2382
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2383
                         struct sched_domain *sd, enum cpu_idle_type idle)
2384
{
2385
        const struct sched_class *class;
2386
 
2387
        for (class = sched_class_highest; class; class = class->next)
2388
                if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2389
                        return 1;
2390
 
2391
        return 0;
2392
}
2393
 
2394
/*
2395
 * find_busiest_group finds and returns the busiest CPU group within the
2396
 * domain. It calculates and returns the amount of weighted load which
2397
 * should be moved to restore balance via the imbalance parameter.
2398
 */
2399
static struct sched_group *
2400
find_busiest_group(struct sched_domain *sd, int this_cpu,
2401
                   unsigned long *imbalance, enum cpu_idle_type idle,
2402
                   int *sd_idle, cpumask_t *cpus, int *balance)
2403
{
2404
        struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2405
        unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2406
        unsigned long max_pull;
2407
        unsigned long busiest_load_per_task, busiest_nr_running;
2408
        unsigned long this_load_per_task, this_nr_running;
2409
        int load_idx, group_imb = 0;
2410
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2411
        int power_savings_balance = 1;
2412
        unsigned long leader_nr_running = 0, min_load_per_task = 0;
2413
        unsigned long min_nr_running = ULONG_MAX;
2414
        struct sched_group *group_min = NULL, *group_leader = NULL;
2415
#endif
2416
 
2417
        max_load = this_load = total_load = total_pwr = 0;
2418
        busiest_load_per_task = busiest_nr_running = 0;
2419
        this_load_per_task = this_nr_running = 0;
2420
        if (idle == CPU_NOT_IDLE)
2421
                load_idx = sd->busy_idx;
2422
        else if (idle == CPU_NEWLY_IDLE)
2423
                load_idx = sd->newidle_idx;
2424
        else
2425
                load_idx = sd->idle_idx;
2426
 
2427
        do {
2428
                unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2429
                int local_group;
2430
                int i;
2431
                int __group_imb = 0;
2432
                unsigned int balance_cpu = -1, first_idle_cpu = 0;
2433
                unsigned long sum_nr_running, sum_weighted_load;
2434
 
2435
                local_group = cpu_isset(this_cpu, group->cpumask);
2436
 
2437
                if (local_group)
2438
                        balance_cpu = first_cpu(group->cpumask);
2439
 
2440
                /* Tally up the load of all CPUs in the group */
2441
                sum_weighted_load = sum_nr_running = avg_load = 0;
2442
                max_cpu_load = 0;
2443
                min_cpu_load = ~0UL;
2444
 
2445
                for_each_cpu_mask(i, group->cpumask) {
2446
                        struct rq *rq;
2447
 
2448
                        if (!cpu_isset(i, *cpus))
2449
                                continue;
2450
 
2451
                        rq = cpu_rq(i);
2452
 
2453
                        if (*sd_idle && rq->nr_running)
2454
                                *sd_idle = 0;
2455
 
2456
                        /* Bias balancing toward cpus of our domain */
2457
                        if (local_group) {
2458
                                if (idle_cpu(i) && !first_idle_cpu) {
2459
                                        first_idle_cpu = 1;
2460
                                        balance_cpu = i;
2461
                                }
2462
 
2463
                                load = target_load(i, load_idx);
2464
                        } else {
2465
                                load = source_load(i, load_idx);
2466
                                if (load > max_cpu_load)
2467
                                        max_cpu_load = load;
2468
                                if (min_cpu_load > load)
2469
                                        min_cpu_load = load;
2470
                        }
2471
 
2472
                        avg_load += load;
2473
                        sum_nr_running += rq->nr_running;
2474
                        sum_weighted_load += weighted_cpuload(i);
2475
                }
2476
 
2477
                /*
2478
                 * First idle cpu or the first cpu(busiest) in this sched group
2479
                 * is eligible for doing load balancing at this and above
2480
                 * domains. In the newly idle case, we will allow all the cpu's
2481
                 * to do the newly idle load balance.
2482
                 */
2483
                if (idle != CPU_NEWLY_IDLE && local_group &&
2484
                    balance_cpu != this_cpu && balance) {
2485
                        *balance = 0;
2486
                        goto ret;
2487
                }
2488
 
2489
                total_load += avg_load;
2490
                total_pwr += group->__cpu_power;
2491
 
2492
                /* Adjust by relative CPU power of the group */
2493
                avg_load = sg_div_cpu_power(group,
2494
                                avg_load * SCHED_LOAD_SCALE);
2495
 
2496
                if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2497
                        __group_imb = 1;
2498
 
2499
                group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2500
 
2501
                if (local_group) {
2502
                        this_load = avg_load;
2503
                        this = group;
2504
                        this_nr_running = sum_nr_running;
2505
                        this_load_per_task = sum_weighted_load;
2506
                } else if (avg_load > max_load &&
2507
                           (sum_nr_running > group_capacity || __group_imb)) {
2508
                        max_load = avg_load;
2509
                        busiest = group;
2510
                        busiest_nr_running = sum_nr_running;
2511
                        busiest_load_per_task = sum_weighted_load;
2512
                        group_imb = __group_imb;
2513
                }
2514
 
2515
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2516
                /*
2517
                 * Busy processors will not participate in power savings
2518
                 * balance.
2519
                 */
2520
                if (idle == CPU_NOT_IDLE ||
2521
                                !(sd->flags & SD_POWERSAVINGS_BALANCE))
2522
                        goto group_next;
2523
 
2524
                /*
2525
                 * If the local group is idle or completely loaded
2526
                 * no need to do power savings balance at this domain
2527
                 */
2528
                if (local_group && (this_nr_running >= group_capacity ||
2529
                                    !this_nr_running))
2530
                        power_savings_balance = 0;
2531
 
2532
                /*
2533
                 * If a group is already running at full capacity or idle,
2534
                 * don't include that group in power savings calculations
2535
                 */
2536
                if (!power_savings_balance || sum_nr_running >= group_capacity
2537
                    || !sum_nr_running)
2538
                        goto group_next;
2539
 
2540
                /*
2541
                 * Calculate the group which has the least non-idle load.
2542
                 * This is the group from where we need to pick up the load
2543
                 * for saving power
2544
                 */
2545
                if ((sum_nr_running < min_nr_running) ||
2546
                    (sum_nr_running == min_nr_running &&
2547
                     first_cpu(group->cpumask) <
2548
                     first_cpu(group_min->cpumask))) {
2549
                        group_min = group;
2550
                        min_nr_running = sum_nr_running;
2551
                        min_load_per_task = sum_weighted_load /
2552
                                                sum_nr_running;
2553
                }
2554
 
2555
                /*
2556
                 * Calculate the group which is almost near its
2557
                 * capacity but still has some space to pick up some load
2558
                 * from other group and save more power
2559
                 */
2560
                if (sum_nr_running <= group_capacity - 1) {
2561
                        if (sum_nr_running > leader_nr_running ||
2562
                            (sum_nr_running == leader_nr_running &&
2563
                             first_cpu(group->cpumask) >
2564
                              first_cpu(group_leader->cpumask))) {
2565
                                group_leader = group;
2566
                                leader_nr_running = sum_nr_running;
2567
                        }
2568
                }
2569
group_next:
2570
#endif
2571
                group = group->next;
2572
        } while (group != sd->groups);
2573
 
2574
        if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2575
                goto out_balanced;
2576
 
2577
        avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2578
 
2579
        if (this_load >= avg_load ||
2580
                        100*max_load <= sd->imbalance_pct*this_load)
2581
                goto out_balanced;
2582
 
2583
        busiest_load_per_task /= busiest_nr_running;
2584
        if (group_imb)
2585
                busiest_load_per_task = min(busiest_load_per_task, avg_load);
2586
 
2587
        /*
2588
         * We're trying to get all the cpus to the average_load, so we don't
2589
         * want to push ourselves above the average load, nor do we wish to
2590
         * reduce the max loaded cpu below the average load, as either of these
2591
         * actions would just result in more rebalancing later, and ping-pong
2592
         * tasks around. Thus we look for the minimum possible imbalance.
2593
         * Negative imbalances (*we* are more loaded than anyone else) will
2594
         * be counted as no imbalance for these purposes -- we can't fix that
2595
         * by pulling tasks to us. Be careful of negative numbers as they'll
2596
         * appear as very large values with unsigned longs.
2597
         */
2598
        if (max_load <= busiest_load_per_task)
2599
                goto out_balanced;
2600
 
2601
        /*
2602
         * In the presence of smp nice balancing, certain scenarios can have
2603
         * max load less than avg load(as we skip the groups at or below
2604
         * its cpu_power, while calculating max_load..)
2605
         */
2606
        if (max_load < avg_load) {
2607
                *imbalance = 0;
2608
                goto small_imbalance;
2609
        }
2610
 
2611
        /* Don't want to pull so many tasks that a group would go idle */
2612
        max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2613
 
2614
        /* How much load to actually move to equalise the imbalance */
2615
        *imbalance = min(max_pull * busiest->__cpu_power,
2616
                                (avg_load - this_load) * this->__cpu_power)
2617
                        / SCHED_LOAD_SCALE;
2618
 
2619
        /*
2620
         * if *imbalance is less than the average load per runnable task
2621
         * there is no gaurantee that any tasks will be moved so we'll have
2622
         * a think about bumping its value to force at least one task to be
2623
         * moved
2624
         */
2625
        if (*imbalance < busiest_load_per_task) {
2626
                unsigned long tmp, pwr_now, pwr_move;
2627
                unsigned int imbn;
2628
 
2629
small_imbalance:
2630
                pwr_move = pwr_now = 0;
2631
                imbn = 2;
2632
                if (this_nr_running) {
2633
                        this_load_per_task /= this_nr_running;
2634
                        if (busiest_load_per_task > this_load_per_task)
2635
                                imbn = 1;
2636
                } else
2637
                        this_load_per_task = SCHED_LOAD_SCALE;
2638
 
2639
                if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2640
                                        busiest_load_per_task * imbn) {
2641
                        *imbalance = busiest_load_per_task;
2642
                        return busiest;
2643
                }
2644
 
2645
                /*
2646
                 * OK, we don't have enough imbalance to justify moving tasks,
2647
                 * however we may be able to increase total CPU power used by
2648
                 * moving them.
2649
                 */
2650
 
2651
                pwr_now += busiest->__cpu_power *
2652
                                min(busiest_load_per_task, max_load);
2653
                pwr_now += this->__cpu_power *
2654
                                min(this_load_per_task, this_load);
2655
                pwr_now /= SCHED_LOAD_SCALE;
2656
 
2657
                /* Amount of load we'd subtract */
2658
                tmp = sg_div_cpu_power(busiest,
2659
                                busiest_load_per_task * SCHED_LOAD_SCALE);
2660
                if (max_load > tmp)
2661
                        pwr_move += busiest->__cpu_power *
2662
                                min(busiest_load_per_task, max_load - tmp);
2663
 
2664
                /* Amount of load we'd add */
2665
                if (max_load * busiest->__cpu_power <
2666
                                busiest_load_per_task * SCHED_LOAD_SCALE)
2667
                        tmp = sg_div_cpu_power(this,
2668
                                        max_load * busiest->__cpu_power);
2669
                else
2670
                        tmp = sg_div_cpu_power(this,
2671
                                busiest_load_per_task * SCHED_LOAD_SCALE);
2672
                pwr_move += this->__cpu_power *
2673
                                min(this_load_per_task, this_load + tmp);
2674
                pwr_move /= SCHED_LOAD_SCALE;
2675
 
2676
                /* Move if we gain throughput */
2677
                if (pwr_move > pwr_now)
2678
                        *imbalance = busiest_load_per_task;
2679
        }
2680
 
2681
        return busiest;
2682
 
2683
out_balanced:
2684
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2685
        if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2686
                goto ret;
2687
 
2688
        if (this == group_leader && group_leader != group_min) {
2689
                *imbalance = min_load_per_task;
2690
                return group_min;
2691
        }
2692
#endif
2693
ret:
2694
        *imbalance = 0;
2695
        return NULL;
2696
}
2697
 
2698
/*
2699
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2700
 */
2701
static struct rq *
2702
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2703
                   unsigned long imbalance, cpumask_t *cpus)
2704
{
2705
        struct rq *busiest = NULL, *rq;
2706
        unsigned long max_load = 0;
2707
        int i;
2708
 
2709
        for_each_cpu_mask(i, group->cpumask) {
2710
                unsigned long wl;
2711
 
2712
                if (!cpu_isset(i, *cpus))
2713
                        continue;
2714
 
2715
                rq = cpu_rq(i);
2716
                wl = weighted_cpuload(i);
2717
 
2718
                if (rq->nr_running == 1 && wl > imbalance)
2719
                        continue;
2720
 
2721
                if (wl > max_load) {
2722
                        max_load = wl;
2723
                        busiest = rq;
2724
                }
2725
        }
2726
 
2727
        return busiest;
2728
}
2729
 
2730
/*
2731
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2732
 * so long as it is large enough.
2733
 */
2734
#define MAX_PINNED_INTERVAL     512
2735
 
2736
/*
2737
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2738
 * tasks if there is an imbalance.
2739
 */
2740
static int load_balance(int this_cpu, struct rq *this_rq,
2741
                        struct sched_domain *sd, enum cpu_idle_type idle,
2742
                        int *balance)
2743
{
2744
        int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2745
        struct sched_group *group;
2746
        unsigned long imbalance;
2747
        struct rq *busiest;
2748
        cpumask_t cpus = CPU_MASK_ALL;
2749
        unsigned long flags;
2750
 
2751
        /*
2752
         * When power savings policy is enabled for the parent domain, idle
2753
         * sibling can pick up load irrespective of busy siblings. In this case,
2754
         * let the state of idle sibling percolate up as CPU_IDLE, instead of
2755
         * portraying it as CPU_NOT_IDLE.
2756
         */
2757
        if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2758
            !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2759
                sd_idle = 1;
2760
 
2761
        schedstat_inc(sd, lb_count[idle]);
2762
 
2763
redo:
2764
        group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2765
                                   &cpus, balance);
2766
 
2767
        if (*balance == 0)
2768
                goto out_balanced;
2769
 
2770
        if (!group) {
2771
                schedstat_inc(sd, lb_nobusyg[idle]);
2772
                goto out_balanced;
2773
        }
2774
 
2775
        busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2776
        if (!busiest) {
2777
                schedstat_inc(sd, lb_nobusyq[idle]);
2778
                goto out_balanced;
2779
        }
2780
 
2781
        BUG_ON(busiest == this_rq);
2782
 
2783
        schedstat_add(sd, lb_imbalance[idle], imbalance);
2784
 
2785
        ld_moved = 0;
2786
        if (busiest->nr_running > 1) {
2787
                /*
2788
                 * Attempt to move tasks. If find_busiest_group has found
2789
                 * an imbalance but busiest->nr_running <= 1, the group is
2790
                 * still unbalanced. ld_moved simply stays zero, so it is
2791
                 * correctly treated as an imbalance.
2792
                 */
2793
                local_irq_save(flags);
2794
                double_rq_lock(this_rq, busiest);
2795
                ld_moved = move_tasks(this_rq, this_cpu, busiest,
2796
                                      imbalance, sd, idle, &all_pinned);
2797
                double_rq_unlock(this_rq, busiest);
2798
                local_irq_restore(flags);
2799
 
2800
                /*
2801
                 * some other cpu did the load balance for us.
2802
                 */
2803
                if (ld_moved && this_cpu != smp_processor_id())
2804
                        resched_cpu(this_cpu);
2805
 
2806
                /* All tasks on this runqueue were pinned by CPU affinity */
2807
                if (unlikely(all_pinned)) {
2808
                        cpu_clear(cpu_of(busiest), cpus);
2809
                        if (!cpus_empty(cpus))
2810
                                goto redo;
2811
                        goto out_balanced;
2812
                }
2813
        }
2814
 
2815
        if (!ld_moved) {
2816
                schedstat_inc(sd, lb_failed[idle]);
2817
                sd->nr_balance_failed++;
2818
 
2819
                if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2820
 
2821
                        spin_lock_irqsave(&busiest->lock, flags);
2822
 
2823
                        /* don't kick the migration_thread, if the curr
2824
                         * task on busiest cpu can't be moved to this_cpu
2825
                         */
2826
                        if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2827
                                spin_unlock_irqrestore(&busiest->lock, flags);
2828
                                all_pinned = 1;
2829
                                goto out_one_pinned;
2830
                        }
2831
 
2832
                        if (!busiest->active_balance) {
2833
                                busiest->active_balance = 1;
2834
                                busiest->push_cpu = this_cpu;
2835
                                active_balance = 1;
2836
                        }
2837
                        spin_unlock_irqrestore(&busiest->lock, flags);
2838
                        if (active_balance)
2839
                                wake_up_process(busiest->migration_thread);
2840
 
2841
                        /*
2842
                         * We've kicked active balancing, reset the failure
2843
                         * counter.
2844
                         */
2845
                        sd->nr_balance_failed = sd->cache_nice_tries+1;
2846
                }
2847
        } else
2848
                sd->nr_balance_failed = 0;
2849
 
2850
        if (likely(!active_balance)) {
2851
                /* We were unbalanced, so reset the balancing interval */
2852
                sd->balance_interval = sd->min_interval;
2853
        } else {
2854
                /*
2855
                 * If we've begun active balancing, start to back off. This
2856
                 * case may not be covered by the all_pinned logic if there
2857
                 * is only 1 task on the busy runqueue (because we don't call
2858
                 * move_tasks).
2859
                 */
2860
                if (sd->balance_interval < sd->max_interval)
2861
                        sd->balance_interval *= 2;
2862
        }
2863
 
2864
        if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2865
            !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2866
                return -1;
2867
        return ld_moved;
2868
 
2869
out_balanced:
2870
        schedstat_inc(sd, lb_balanced[idle]);
2871
 
2872
        sd->nr_balance_failed = 0;
2873
 
2874
out_one_pinned:
2875
        /* tune up the balancing interval */
2876
        if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2877
                        (sd->balance_interval < sd->max_interval))
2878
                sd->balance_interval *= 2;
2879
 
2880
        if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2881
            !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2882
                return -1;
2883
        return 0;
2884
}
2885
 
2886
/*
2887
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2888
 * tasks if there is an imbalance.
2889
 *
2890
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2891
 * this_rq is locked.
2892
 */
2893
static int
2894
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2895
{
2896
        struct sched_group *group;
2897
        struct rq *busiest = NULL;
2898
        unsigned long imbalance;
2899
        int ld_moved = 0;
2900
        int sd_idle = 0;
2901
        int all_pinned = 0;
2902
        cpumask_t cpus = CPU_MASK_ALL;
2903
 
2904
        /*
2905
         * When power savings policy is enabled for the parent domain, idle
2906
         * sibling can pick up load irrespective of busy siblings. In this case,
2907
         * let the state of idle sibling percolate up as IDLE, instead of
2908
         * portraying it as CPU_NOT_IDLE.
2909
         */
2910
        if (sd->flags & SD_SHARE_CPUPOWER &&
2911
            !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2912
                sd_idle = 1;
2913
 
2914
        schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2915
redo:
2916
        group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2917
                                   &sd_idle, &cpus, NULL);
2918
        if (!group) {
2919
                schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2920
                goto out_balanced;
2921
        }
2922
 
2923
        busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2924
                                &cpus);
2925
        if (!busiest) {
2926
                schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2927
                goto out_balanced;
2928
        }
2929
 
2930
        BUG_ON(busiest == this_rq);
2931
 
2932
        schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2933
 
2934
        ld_moved = 0;
2935
        if (busiest->nr_running > 1) {
2936
                /* Attempt to move tasks */
2937
                double_lock_balance(this_rq, busiest);
2938
                /* this_rq->clock is already updated */
2939
                update_rq_clock(busiest);
2940
                ld_moved = move_tasks(this_rq, this_cpu, busiest,
2941
                                        imbalance, sd, CPU_NEWLY_IDLE,
2942
                                        &all_pinned);
2943
                spin_unlock(&busiest->lock);
2944
 
2945
                if (unlikely(all_pinned)) {
2946
                        cpu_clear(cpu_of(busiest), cpus);
2947
                        if (!cpus_empty(cpus))
2948
                                goto redo;
2949
                }
2950
        }
2951
 
2952
        if (!ld_moved) {
2953
                schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2954
                if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2955
                    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2956
                        return -1;
2957
        } else
2958
                sd->nr_balance_failed = 0;
2959
 
2960
        return ld_moved;
2961
 
2962
out_balanced:
2963
        schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2964
        if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2965
            !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2966
                return -1;
2967
        sd->nr_balance_failed = 0;
2968
 
2969
        return 0;
2970
}
2971
 
2972
/*
2973
 * idle_balance is called by schedule() if this_cpu is about to become
2974
 * idle. Attempts to pull tasks from other CPUs.
2975
 */
2976
static void idle_balance(int this_cpu, struct rq *this_rq)
2977
{
2978
        struct sched_domain *sd;
2979
        int pulled_task = -1;
2980
        unsigned long next_balance = jiffies + HZ;
2981
 
2982
        for_each_domain(this_cpu, sd) {
2983
                unsigned long interval;
2984
 
2985
                if (!(sd->flags & SD_LOAD_BALANCE))
2986
                        continue;
2987
 
2988
                if (sd->flags & SD_BALANCE_NEWIDLE)
2989
                        /* If we've pulled tasks over stop searching: */
2990
                        pulled_task = load_balance_newidle(this_cpu,
2991
                                                                this_rq, sd);
2992
 
2993
                interval = msecs_to_jiffies(sd->balance_interval);
2994
                if (time_after(next_balance, sd->last_balance + interval))
2995
                        next_balance = sd->last_balance + interval;
2996
                if (pulled_task)
2997
                        break;
2998
        }
2999
        if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3000
                /*
3001
                 * We are going idle. next_balance may be set based on
3002
                 * a busy processor. So reset next_balance.
3003
                 */
3004
                this_rq->next_balance = next_balance;
3005
        }
3006
}
3007
 
3008
/*
3009
 * active_load_balance is run by migration threads. It pushes running tasks
3010
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3011
 * running on each physical CPU where possible, and avoids physical /
3012
 * logical imbalances.
3013
 *
3014
 * Called with busiest_rq locked.
3015
 */
3016
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3017
{
3018
        int target_cpu = busiest_rq->push_cpu;
3019
        struct sched_domain *sd;
3020
        struct rq *target_rq;
3021
 
3022
        /* Is there any task to move? */
3023
        if (busiest_rq->nr_running <= 1)
3024
                return;
3025
 
3026
        target_rq = cpu_rq(target_cpu);
3027
 
3028
        /*
3029
         * This condition is "impossible", if it occurs
3030
         * we need to fix it. Originally reported by
3031
         * Bjorn Helgaas on a 128-cpu setup.
3032
         */
3033
        BUG_ON(busiest_rq == target_rq);
3034
 
3035
        /* move a task from busiest_rq to target_rq */
3036
        double_lock_balance(busiest_rq, target_rq);
3037
        update_rq_clock(busiest_rq);
3038
        update_rq_clock(target_rq);
3039
 
3040
        /* Search for an sd spanning us and the target CPU. */
3041
        for_each_domain(target_cpu, sd) {
3042
                if ((sd->flags & SD_LOAD_BALANCE) &&
3043
                    cpu_isset(busiest_cpu, sd->span))
3044
                                break;
3045
        }
3046
 
3047
        if (likely(sd)) {
3048
                schedstat_inc(sd, alb_count);
3049
 
3050
                if (move_one_task(target_rq, target_cpu, busiest_rq,
3051
                                  sd, CPU_IDLE))
3052
                        schedstat_inc(sd, alb_pushed);
3053
                else
3054
                        schedstat_inc(sd, alb_failed);
3055
        }
3056
        spin_unlock(&target_rq->lock);
3057
}
3058
 
3059
#ifdef CONFIG_NO_HZ
3060
static struct {
3061
        atomic_t load_balancer;
3062
        cpumask_t cpu_mask;
3063
} nohz ____cacheline_aligned = {
3064
        .load_balancer = ATOMIC_INIT(-1),
3065
        .cpu_mask = CPU_MASK_NONE,
3066
};
3067
 
3068
/*
3069
 * This routine will try to nominate the ilb (idle load balancing)
3070
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3071
 * load balancing on behalf of all those cpus. If all the cpus in the system
3072
 * go into this tickless mode, then there will be no ilb owner (as there is
3073
 * no need for one) and all the cpus will sleep till the next wakeup event
3074
 * arrives...
3075
 *
3076
 * For the ilb owner, tick is not stopped. And this tick will be used
3077
 * for idle load balancing. ilb owner will still be part of
3078
 * nohz.cpu_mask..
3079
 *
3080
 * While stopping the tick, this cpu will become the ilb owner if there
3081
 * is no other owner. And will be the owner till that cpu becomes busy
3082
 * or if all cpus in the system stop their ticks at which point
3083
 * there is no need for ilb owner.
3084
 *
3085
 * When the ilb owner becomes busy, it nominates another owner, during the
3086
 * next busy scheduler_tick()
3087
 */
3088
int select_nohz_load_balancer(int stop_tick)
3089
{
3090
        int cpu = smp_processor_id();
3091
 
3092
        if (stop_tick) {
3093
                cpu_set(cpu, nohz.cpu_mask);
3094
                cpu_rq(cpu)->in_nohz_recently = 1;
3095
 
3096
                /*
3097
                 * If we are going offline and still the leader, give up!
3098
                 */
3099
                if (cpu_is_offline(cpu) &&
3100
                    atomic_read(&nohz.load_balancer) == cpu) {
3101
                        if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3102
                                BUG();
3103
                        return 0;
3104
                }
3105
 
3106
                /* time for ilb owner also to sleep */
3107
                if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3108
                        if (atomic_read(&nohz.load_balancer) == cpu)
3109
                                atomic_set(&nohz.load_balancer, -1);
3110
                        return 0;
3111
                }
3112
 
3113
                if (atomic_read(&nohz.load_balancer) == -1) {
3114
                        /* make me the ilb owner */
3115
                        if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3116
                                return 1;
3117
                } else if (atomic_read(&nohz.load_balancer) == cpu)
3118
                        return 1;
3119
        } else {
3120
                if (!cpu_isset(cpu, nohz.cpu_mask))
3121
                        return 0;
3122
 
3123
                cpu_clear(cpu, nohz.cpu_mask);
3124
 
3125
                if (atomic_read(&nohz.load_balancer) == cpu)
3126
                        if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3127
                                BUG();
3128
        }
3129
        return 0;
3130
}
3131
#endif
3132
 
3133
static DEFINE_SPINLOCK(balancing);
3134
 
3135
/*
3136
 * It checks each scheduling domain to see if it is due to be balanced,
3137
 * and initiates a balancing operation if so.
3138
 *
3139
 * Balancing parameters are set up in arch_init_sched_domains.
3140
 */
3141
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3142
{
3143
        int balance = 1;
3144
        struct rq *rq = cpu_rq(cpu);
3145
        unsigned long interval;
3146
        struct sched_domain *sd;
3147
        /* Earliest time when we have to do rebalance again */
3148
        unsigned long next_balance = jiffies + 60*HZ;
3149
        int update_next_balance = 0;
3150
 
3151
        for_each_domain(cpu, sd) {
3152
                if (!(sd->flags & SD_LOAD_BALANCE))
3153
                        continue;
3154
 
3155
                interval = sd->balance_interval;
3156
                if (idle != CPU_IDLE)
3157
                        interval *= sd->busy_factor;
3158
 
3159
                /* scale ms to jiffies */
3160
                interval = msecs_to_jiffies(interval);
3161
                if (unlikely(!interval))
3162
                        interval = 1;
3163
                if (interval > HZ*NR_CPUS/10)
3164
                        interval = HZ*NR_CPUS/10;
3165
 
3166
 
3167
                if (sd->flags & SD_SERIALIZE) {
3168
                        if (!spin_trylock(&balancing))
3169
                                goto out;
3170
                }
3171
 
3172
                if (time_after_eq(jiffies, sd->last_balance + interval)) {
3173
                        if (load_balance(cpu, rq, sd, idle, &balance)) {
3174
                                /*
3175
                                 * We've pulled tasks over so either we're no
3176
                                 * longer idle, or one of our SMT siblings is
3177
                                 * not idle.
3178
                                 */
3179
                                idle = CPU_NOT_IDLE;
3180
                        }
3181
                        sd->last_balance = jiffies;
3182
                }
3183
                if (sd->flags & SD_SERIALIZE)
3184
                        spin_unlock(&balancing);
3185
out:
3186
                if (time_after(next_balance, sd->last_balance + interval)) {
3187
                        next_balance = sd->last_balance + interval;
3188
                        update_next_balance = 1;
3189
                }
3190
 
3191
                /*
3192
                 * Stop the load balance at this level. There is another
3193
                 * CPU in our sched group which is doing load balancing more
3194
                 * actively.
3195
                 */
3196
                if (!balance)
3197
                        break;
3198
        }
3199
 
3200
        /*
3201
         * next_balance will be updated only when there is a need.
3202
         * When the cpu is attached to null domain for ex, it will not be
3203
         * updated.
3204
         */
3205
        if (likely(update_next_balance))
3206
                rq->next_balance = next_balance;
3207
}
3208
 
3209
/*
3210
 * run_rebalance_domains is triggered when needed from the scheduler tick.
3211
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3212
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3213
 */
3214
static void run_rebalance_domains(struct softirq_action *h)
3215
{
3216
        int this_cpu = smp_processor_id();
3217
        struct rq *this_rq = cpu_rq(this_cpu);
3218
        enum cpu_idle_type idle = this_rq->idle_at_tick ?
3219
                                                CPU_IDLE : CPU_NOT_IDLE;
3220
 
3221
        rebalance_domains(this_cpu, idle);
3222
 
3223
#ifdef CONFIG_NO_HZ
3224
        /*
3225
         * If this cpu is the owner for idle load balancing, then do the
3226
         * balancing on behalf of the other idle cpus whose ticks are
3227
         * stopped.
3228
         */
3229
        if (this_rq->idle_at_tick &&
3230
            atomic_read(&nohz.load_balancer) == this_cpu) {
3231
                cpumask_t cpus = nohz.cpu_mask;
3232
                struct rq *rq;
3233
                int balance_cpu;
3234
 
3235
                cpu_clear(this_cpu, cpus);
3236
                for_each_cpu_mask(balance_cpu, cpus) {
3237
                        /*
3238
                         * If this cpu gets work to do, stop the load balancing
3239
                         * work being done for other cpus. Next load
3240
                         * balancing owner will pick it up.
3241
                         */
3242
                        if (need_resched())
3243
                                break;
3244
 
3245
                        rebalance_domains(balance_cpu, CPU_IDLE);
3246
 
3247
                        rq = cpu_rq(balance_cpu);
3248
                        if (time_after(this_rq->next_balance, rq->next_balance))
3249
                                this_rq->next_balance = rq->next_balance;
3250
                }
3251
        }
3252
#endif
3253
}
3254
 
3255
/*
3256
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3257
 *
3258
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3259
 * idle load balancing owner or decide to stop the periodic load balancing,
3260
 * if the whole system is idle.
3261
 */
3262
static inline void trigger_load_balance(struct rq *rq, int cpu)
3263
{
3264
#ifdef CONFIG_NO_HZ
3265
        /*
3266
         * If we were in the nohz mode recently and busy at the current
3267
         * scheduler tick, then check if we need to nominate new idle
3268
         * load balancer.
3269
         */
3270
        if (rq->in_nohz_recently && !rq->idle_at_tick) {
3271
                rq->in_nohz_recently = 0;
3272
 
3273
                if (atomic_read(&nohz.load_balancer) == cpu) {
3274
                        cpu_clear(cpu, nohz.cpu_mask);
3275
                        atomic_set(&nohz.load_balancer, -1);
3276
                }
3277
 
3278
                if (atomic_read(&nohz.load_balancer) == -1) {
3279
                        /*
3280
                         * simple selection for now: Nominate the
3281
                         * first cpu in the nohz list to be the next
3282
                         * ilb owner.
3283
                         *
3284
                         * TBD: Traverse the sched domains and nominate
3285
                         * the nearest cpu in the nohz.cpu_mask.
3286
                         */
3287
                        int ilb = first_cpu(nohz.cpu_mask);
3288
 
3289
                        if (ilb != NR_CPUS)
3290
                                resched_cpu(ilb);
3291
                }
3292
        }
3293
 
3294
        /*
3295
         * If this cpu is idle and doing idle load balancing for all the
3296
         * cpus with ticks stopped, is it time for that to stop?
3297
         */
3298
        if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3299
            cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3300
                resched_cpu(cpu);
3301
                return;
3302
        }
3303
 
3304
        /*
3305
         * If this cpu is idle and the idle load balancing is done by
3306
         * someone else, then no need raise the SCHED_SOFTIRQ
3307
         */
3308
        if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3309
            cpu_isset(cpu, nohz.cpu_mask))
3310
                return;
3311
#endif
3312
        if (time_after_eq(jiffies, rq->next_balance))
3313
                raise_softirq(SCHED_SOFTIRQ);
3314
}
3315
 
3316
#else   /* CONFIG_SMP */
3317
 
3318
/*
3319
 * on UP we do not need to balance between CPUs:
3320
 */
3321
static inline void idle_balance(int cpu, struct rq *rq)
3322
{
3323
}
3324
 
3325
#endif
3326
 
3327
DEFINE_PER_CPU(struct kernel_stat, kstat);
3328
 
3329
EXPORT_PER_CPU_SYMBOL(kstat);
3330
 
3331
/*
3332
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3333
 * that have not yet been banked in case the task is currently running.
3334
 */
3335
unsigned long long task_sched_runtime(struct task_struct *p)
3336
{
3337
        unsigned long flags;
3338
        u64 ns, delta_exec;
3339
        struct rq *rq;
3340
 
3341
        rq = task_rq_lock(p, &flags);
3342
        ns = p->se.sum_exec_runtime;
3343
        if (task_current(rq, p)) {
3344
                update_rq_clock(rq);
3345
                delta_exec = rq->clock - p->se.exec_start;
3346
                if ((s64)delta_exec > 0)
3347
                        ns += delta_exec;
3348
        }
3349
        task_rq_unlock(rq, &flags);
3350
 
3351
        return ns;
3352
}
3353
 
3354
/*
3355
 * Account user cpu time to a process.
3356
 * @p: the process that the cpu time gets accounted to
3357
 * @cputime: the cpu time spent in user space since the last update
3358
 */
3359
void account_user_time(struct task_struct *p, cputime_t cputime)
3360
{
3361
        struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3362
        cputime64_t tmp;
3363
 
3364
        p->utime = cputime_add(p->utime, cputime);
3365
 
3366
        /* Add user time to cpustat. */
3367
        tmp = cputime_to_cputime64(cputime);
3368
        if (TASK_NICE(p) > 0)
3369
                cpustat->nice = cputime64_add(cpustat->nice, tmp);
3370
        else
3371
                cpustat->user = cputime64_add(cpustat->user, tmp);
3372
}
3373
 
3374
/*
3375
 * Account guest cpu time to a process.
3376
 * @p: the process that the cpu time gets accounted to
3377
 * @cputime: the cpu time spent in virtual machine since the last update
3378
 */
3379
static void account_guest_time(struct task_struct *p, cputime_t cputime)
3380
{
3381
        cputime64_t tmp;
3382
        struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3383
 
3384
        tmp = cputime_to_cputime64(cputime);
3385
 
3386
        p->utime = cputime_add(p->utime, cputime);
3387
        p->gtime = cputime_add(p->gtime, cputime);
3388
 
3389
        cpustat->user = cputime64_add(cpustat->user, tmp);
3390
        cpustat->guest = cputime64_add(cpustat->guest, tmp);
3391
}
3392
 
3393
/*
3394
 * Account scaled user cpu time to a process.
3395
 * @p: the process that the cpu time gets accounted to
3396
 * @cputime: the cpu time spent in user space since the last update
3397
 */
3398
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3399
{
3400
        p->utimescaled = cputime_add(p->utimescaled, cputime);
3401
}
3402
 
3403
/*
3404
 * Account system cpu time to a process.
3405
 * @p: the process that the cpu time gets accounted to
3406
 * @hardirq_offset: the offset to subtract from hardirq_count()
3407
 * @cputime: the cpu time spent in kernel space since the last update
3408
 */
3409
void account_system_time(struct task_struct *p, int hardirq_offset,
3410
                         cputime_t cputime)
3411
{
3412
        struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3413
        struct rq *rq = this_rq();
3414
        cputime64_t tmp;
3415
 
3416
        if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3417
                return account_guest_time(p, cputime);
3418
 
3419
        p->stime = cputime_add(p->stime, cputime);
3420
 
3421
        /* Add system time to cpustat. */
3422
        tmp = cputime_to_cputime64(cputime);
3423
        if (hardirq_count() - hardirq_offset)
3424
                cpustat->irq = cputime64_add(cpustat->irq, tmp);
3425
        else if (softirq_count())
3426
                cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3427
        else if (p != rq->idle)
3428
                cpustat->system = cputime64_add(cpustat->system, tmp);
3429
        else if (atomic_read(&rq->nr_iowait) > 0)
3430
                cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3431
        else
3432
                cpustat->idle = cputime64_add(cpustat->idle, tmp);
3433
        /* Account for system time used */
3434
        acct_update_integrals(p);
3435
}
3436
 
3437
/*
3438
 * Account scaled system cpu time to a process.
3439
 * @p: the process that the cpu time gets accounted to
3440
 * @hardirq_offset: the offset to subtract from hardirq_count()
3441
 * @cputime: the cpu time spent in kernel space since the last update
3442
 */
3443
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3444
{
3445
        p->stimescaled = cputime_add(p->stimescaled, cputime);
3446
}
3447
 
3448
/*
3449
 * Account for involuntary wait time.
3450
 * @p: the process from which the cpu time has been stolen
3451
 * @steal: the cpu time spent in involuntary wait
3452
 */
3453
void account_steal_time(struct task_struct *p, cputime_t steal)
3454
{
3455
        struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3456
        cputime64_t tmp = cputime_to_cputime64(steal);
3457
        struct rq *rq = this_rq();
3458
 
3459
        if (p == rq->idle) {
3460
                p->stime = cputime_add(p->stime, steal);
3461
                if (atomic_read(&rq->nr_iowait) > 0)
3462
                        cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3463
                else
3464
                        cpustat->idle = cputime64_add(cpustat->idle, tmp);
3465
        } else
3466
                cpustat->steal = cputime64_add(cpustat->steal, tmp);
3467
}
3468
 
3469
/*
3470
 * This function gets called by the timer code, with HZ frequency.
3471
 * We call it with interrupts disabled.
3472
 *
3473
 * It also gets called by the fork code, when changing the parent's
3474
 * timeslices.
3475
 */
3476
void scheduler_tick(void)
3477
{
3478
        int cpu = smp_processor_id();
3479
        struct rq *rq = cpu_rq(cpu);
3480
        struct task_struct *curr = rq->curr;
3481
        u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3482
 
3483
        spin_lock(&rq->lock);
3484
        __update_rq_clock(rq);
3485
        /*
3486
         * Let rq->clock advance by at least TICK_NSEC:
3487
         */
3488
        if (unlikely(rq->clock < next_tick))
3489
                rq->clock = next_tick;
3490
        rq->tick_timestamp = rq->clock;
3491
        update_cpu_load(rq);
3492
        if (curr != rq->idle) /* FIXME: needed? */
3493
                curr->sched_class->task_tick(rq, curr);
3494
        spin_unlock(&rq->lock);
3495
 
3496
#ifdef CONFIG_SMP
3497
        rq->idle_at_tick = idle_cpu(cpu);
3498
        trigger_load_balance(rq, cpu);
3499
#endif
3500
}
3501
 
3502
#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3503
 
3504
void fastcall add_preempt_count(int val)
3505
{
3506
        /*
3507
         * Underflow?
3508
         */
3509
        if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3510
                return;
3511
        preempt_count() += val;
3512
        /*
3513
         * Spinlock count overflowing soon?
3514
         */
3515
        DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3516
                                PREEMPT_MASK - 10);
3517
}
3518
EXPORT_SYMBOL(add_preempt_count);
3519
 
3520
void fastcall sub_preempt_count(int val)
3521
{
3522
        /*
3523
         * Underflow?
3524
         */
3525
        if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3526
                return;
3527
        /*
3528
         * Is the spinlock portion underflowing?
3529
         */
3530
        if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3531
                        !(preempt_count() & PREEMPT_MASK)))
3532
                return;
3533
 
3534
        preempt_count() -= val;
3535
}
3536
EXPORT_SYMBOL(sub_preempt_count);
3537
 
3538
#endif
3539
 
3540
/*
3541
 * Print scheduling while atomic bug:
3542
 */
3543
static noinline void __schedule_bug(struct task_struct *prev)
3544
{
3545
        struct pt_regs *regs = get_irq_regs();
3546
 
3547
        printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3548
                prev->comm, prev->pid, preempt_count());
3549
 
3550
        debug_show_held_locks(prev);
3551
        if (irqs_disabled())
3552
                print_irqtrace_events(prev);
3553
 
3554
        if (regs)
3555
                show_regs(regs);
3556
        else
3557
                dump_stack();
3558
}
3559
 
3560
/*
3561
 * Various schedule()-time debugging checks and statistics:
3562
 */
3563
static inline void schedule_debug(struct task_struct *prev)
3564
{
3565
        /*
3566
         * Test if we are atomic. Since do_exit() needs to call into
3567
         * schedule() atomically, we ignore that path for now.
3568
         * Otherwise, whine if we are scheduling when we should not be.
3569
         */
3570
        if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3571
                __schedule_bug(prev);
3572
 
3573
        profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3574
 
3575
        schedstat_inc(this_rq(), sched_count);
3576
#ifdef CONFIG_SCHEDSTATS
3577
        if (unlikely(prev->lock_depth >= 0)) {
3578
                schedstat_inc(this_rq(), bkl_count);
3579
                schedstat_inc(prev, sched_info.bkl_count);
3580
        }
3581
#endif
3582
}
3583
 
3584
/*
3585
 * Pick up the highest-prio task:
3586
 */
3587
static inline struct task_struct *
3588
pick_next_task(struct rq *rq, struct task_struct *prev)
3589
{
3590
        const struct sched_class *class;
3591
        struct task_struct *p;
3592
 
3593
        /*
3594
         * Optimization: we know that if all tasks are in
3595
         * the fair class we can call that function directly:
3596
         */
3597
        if (likely(rq->nr_running == rq->cfs.nr_running)) {
3598
                p = fair_sched_class.pick_next_task(rq);
3599
                if (likely(p))
3600
                        return p;
3601
        }
3602
 
3603
        class = sched_class_highest;
3604
        for ( ; ; ) {
3605
                p = class->pick_next_task(rq);
3606
                if (p)
3607
                        return p;
3608
                /*
3609
                 * Will never be NULL as the idle class always
3610
                 * returns a non-NULL p:
3611
                 */
3612
                class = class->next;
3613
        }
3614
}
3615
 
3616
/*
3617
 * schedule() is the main scheduler function.
3618
 */
3619
asmlinkage void __sched schedule(void)
3620
{
3621
        struct task_struct *prev, *next;
3622
        long *switch_count;
3623
        struct rq *rq;
3624
        int cpu;
3625
 
3626
need_resched:
3627
        preempt_disable();
3628
        cpu = smp_processor_id();
3629
        rq = cpu_rq(cpu);
3630
        rcu_qsctr_inc(cpu);
3631
        prev = rq->curr;
3632
        switch_count = &prev->nivcsw;
3633
 
3634
        release_kernel_lock(prev);
3635
need_resched_nonpreemptible:
3636
 
3637
        schedule_debug(prev);
3638
 
3639
        /*
3640
         * Do the rq-clock update outside the rq lock:
3641
         */
3642
        local_irq_disable();
3643
        __update_rq_clock(rq);
3644
        spin_lock(&rq->lock);
3645
        clear_tsk_need_resched(prev);
3646
 
3647
        if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3648
                if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3649
                                unlikely(signal_pending(prev)))) {
3650
                        prev->state = TASK_RUNNING;
3651
                } else {
3652
                        deactivate_task(rq, prev, 1);
3653
                }
3654
                switch_count = &prev->nvcsw;
3655
        }
3656
 
3657
        if (unlikely(!rq->nr_running))
3658
                idle_balance(cpu, rq);
3659
 
3660
        prev->sched_class->put_prev_task(rq, prev);
3661
        next = pick_next_task(rq, prev);
3662
 
3663
        sched_info_switch(prev, next);
3664
 
3665
        if (likely(prev != next)) {
3666
                rq->nr_switches++;
3667
                rq->curr = next;
3668
                ++*switch_count;
3669
 
3670
                context_switch(rq, prev, next); /* unlocks the rq */
3671
        } else
3672
                spin_unlock_irq(&rq->lock);
3673
 
3674
        if (unlikely(reacquire_kernel_lock(current) < 0)) {
3675
                cpu = smp_processor_id();
3676
                rq = cpu_rq(cpu);
3677
                goto need_resched_nonpreemptible;
3678
        }
3679
        preempt_enable_no_resched();
3680
        if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3681
                goto need_resched;
3682
}
3683
EXPORT_SYMBOL(schedule);
3684
 
3685
#ifdef CONFIG_PREEMPT
3686
/*
3687
 * this is the entry point to schedule() from in-kernel preemption
3688
 * off of preempt_enable. Kernel preemptions off return from interrupt
3689
 * occur there and call schedule directly.
3690
 */
3691
asmlinkage void __sched preempt_schedule(void)
3692
{
3693
        struct thread_info *ti = current_thread_info();
3694
#ifdef CONFIG_PREEMPT_BKL
3695
        struct task_struct *task = current;
3696
        int saved_lock_depth;
3697
#endif
3698
        /*
3699
         * If there is a non-zero preempt_count or interrupts are disabled,
3700
         * we do not want to preempt the current task. Just return..
3701
         */
3702
        if (likely(ti->preempt_count || irqs_disabled()))
3703
                return;
3704
 
3705
        do {
3706
                add_preempt_count(PREEMPT_ACTIVE);
3707
 
3708
                /*
3709
                 * We keep the big kernel semaphore locked, but we
3710
                 * clear ->lock_depth so that schedule() doesnt
3711
                 * auto-release the semaphore:
3712
                 */
3713
#ifdef CONFIG_PREEMPT_BKL
3714
                saved_lock_depth = task->lock_depth;
3715
                task->lock_depth = -1;
3716
#endif
3717
                schedule();
3718
#ifdef CONFIG_PREEMPT_BKL
3719
                task->lock_depth = saved_lock_depth;
3720
#endif
3721
                sub_preempt_count(PREEMPT_ACTIVE);
3722
 
3723
                /*
3724
                 * Check again in case we missed a preemption opportunity
3725
                 * between schedule and now.
3726
                 */
3727
                barrier();
3728
        } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3729
}
3730
EXPORT_SYMBOL(preempt_schedule);
3731
 
3732
/*
3733
 * this is the entry point to schedule() from kernel preemption
3734
 * off of irq context.
3735
 * Note, that this is called and return with irqs disabled. This will
3736
 * protect us against recursive calling from irq.
3737
 */
3738
asmlinkage void __sched preempt_schedule_irq(void)
3739
{
3740
        struct thread_info *ti = current_thread_info();
3741
#ifdef CONFIG_PREEMPT_BKL
3742
        struct task_struct *task = current;
3743
        int saved_lock_depth;
3744
#endif
3745
        /* Catch callers which need to be fixed */
3746
        BUG_ON(ti->preempt_count || !irqs_disabled());
3747
 
3748
        do {
3749
                add_preempt_count(PREEMPT_ACTIVE);
3750
 
3751
                /*
3752
                 * We keep the big kernel semaphore locked, but we
3753
                 * clear ->lock_depth so that schedule() doesnt
3754
                 * auto-release the semaphore:
3755
                 */
3756
#ifdef CONFIG_PREEMPT_BKL
3757
                saved_lock_depth = task->lock_depth;
3758
                task->lock_depth = -1;
3759
#endif
3760
                local_irq_enable();
3761
                schedule();
3762
                local_irq_disable();
3763
#ifdef CONFIG_PREEMPT_BKL
3764
                task->lock_depth = saved_lock_depth;
3765
#endif
3766
                sub_preempt_count(PREEMPT_ACTIVE);
3767
 
3768
                /*
3769
                 * Check again in case we missed a preemption opportunity
3770
                 * between schedule and now.
3771
                 */
3772
                barrier();
3773
        } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3774
}
3775
 
3776
#endif /* CONFIG_PREEMPT */
3777
 
3778
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3779
                          void *key)
3780
{
3781
        return try_to_wake_up(curr->private, mode, sync);
3782
}
3783
EXPORT_SYMBOL(default_wake_function);
3784
 
3785
/*
3786
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3787
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3788
 * number) then we wake all the non-exclusive tasks and one exclusive task.
3789
 *
3790
 * There are circumstances in which we can try to wake a task which has already
3791
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3792
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3793
 */
3794
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3795
                             int nr_exclusive, int sync, void *key)
3796
{
3797
        wait_queue_t *curr, *next;
3798
 
3799
        list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3800
                unsigned flags = curr->flags;
3801
 
3802
                if (curr->func(curr, mode, sync, key) &&
3803
                                (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3804
                        break;
3805
        }
3806
}
3807
 
3808
/**
3809
 * __wake_up - wake up threads blocked on a waitqueue.
3810
 * @q: the waitqueue
3811
 * @mode: which threads
3812
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3813
 * @key: is directly passed to the wakeup function
3814
 */
3815
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3816
                        int nr_exclusive, void *key)
3817
{
3818
        unsigned long flags;
3819
 
3820
        spin_lock_irqsave(&q->lock, flags);
3821
        __wake_up_common(q, mode, nr_exclusive, 0, key);
3822
        spin_unlock_irqrestore(&q->lock, flags);
3823
}
3824
EXPORT_SYMBOL(__wake_up);
3825
 
3826
/*
3827
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3828
 */
3829
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3830
{
3831
        __wake_up_common(q, mode, 1, 0, NULL);
3832
}
3833
 
3834
/**
3835
 * __wake_up_sync - wake up threads blocked on a waitqueue.
3836
 * @q: the waitqueue
3837
 * @mode: which threads
3838
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3839
 *
3840
 * The sync wakeup differs that the waker knows that it will schedule
3841
 * away soon, so while the target thread will be woken up, it will not
3842
 * be migrated to another CPU - ie. the two threads are 'synchronized'
3843
 * with each other. This can prevent needless bouncing between CPUs.
3844
 *
3845
 * On UP it can prevent extra preemption.
3846
 */
3847
void fastcall
3848
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3849
{
3850
        unsigned long flags;
3851
        int sync = 1;
3852
 
3853
        if (unlikely(!q))
3854
                return;
3855
 
3856
        if (unlikely(!nr_exclusive))
3857
                sync = 0;
3858
 
3859
        spin_lock_irqsave(&q->lock, flags);
3860
        __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3861
        spin_unlock_irqrestore(&q->lock, flags);
3862
}
3863
EXPORT_SYMBOL_GPL(__wake_up_sync);      /* For internal use only */
3864
 
3865
void complete(struct completion *x)
3866
{
3867
        unsigned long flags;
3868
 
3869
        spin_lock_irqsave(&x->wait.lock, flags);
3870
        x->done++;
3871
        __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3872
                         1, 0, NULL);
3873
        spin_unlock_irqrestore(&x->wait.lock, flags);
3874
}
3875
EXPORT_SYMBOL(complete);
3876
 
3877
void complete_all(struct completion *x)
3878
{
3879
        unsigned long flags;
3880
 
3881
        spin_lock_irqsave(&x->wait.lock, flags);
3882
        x->done += UINT_MAX/2;
3883
        __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3884
                         0, 0, NULL);
3885
        spin_unlock_irqrestore(&x->wait.lock, flags);
3886
}
3887
EXPORT_SYMBOL(complete_all);
3888
 
3889
static inline long __sched
3890
do_wait_for_common(struct completion *x, long timeout, int state)
3891
{
3892
        if (!x->done) {
3893
                DECLARE_WAITQUEUE(wait, current);
3894
 
3895
                wait.flags |= WQ_FLAG_EXCLUSIVE;
3896
                __add_wait_queue_tail(&x->wait, &wait);
3897
                do {
3898
                        if (state == TASK_INTERRUPTIBLE &&
3899
                            signal_pending(current)) {
3900
                                __remove_wait_queue(&x->wait, &wait);
3901
                                return -ERESTARTSYS;
3902
                        }
3903
                        __set_current_state(state);
3904
                        spin_unlock_irq(&x->wait.lock);
3905
                        timeout = schedule_timeout(timeout);
3906
                        spin_lock_irq(&x->wait.lock);
3907
                        if (!timeout) {
3908
                                __remove_wait_queue(&x->wait, &wait);
3909
                                return timeout;
3910
                        }
3911
                } while (!x->done);
3912
                __remove_wait_queue(&x->wait, &wait);
3913
        }
3914
        x->done--;
3915
        return timeout;
3916
}
3917
 
3918
static long __sched
3919
wait_for_common(struct completion *x, long timeout, int state)
3920
{
3921
        might_sleep();
3922
 
3923
        spin_lock_irq(&x->wait.lock);
3924
        timeout = do_wait_for_common(x, timeout, state);
3925
        spin_unlock_irq(&x->wait.lock);
3926
        return timeout;
3927
}
3928
 
3929
void __sched wait_for_completion(struct completion *x)
3930
{
3931
        wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3932
}
3933
EXPORT_SYMBOL(wait_for_completion);
3934
 
3935
unsigned long __sched
3936
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3937
{
3938
        return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3939
}
3940
EXPORT_SYMBOL(wait_for_completion_timeout);
3941
 
3942
int __sched wait_for_completion_interruptible(struct completion *x)
3943
{
3944
        long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3945
        if (t == -ERESTARTSYS)
3946
                return t;
3947
        return 0;
3948
}
3949
EXPORT_SYMBOL(wait_for_completion_interruptible);
3950
 
3951
unsigned long __sched
3952
wait_for_completion_interruptible_timeout(struct completion *x,
3953
                                          unsigned long timeout)
3954
{
3955
        return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3956
}
3957
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3958
 
3959
static long __sched
3960
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3961
{
3962
        unsigned long flags;
3963
        wait_queue_t wait;
3964
 
3965
        init_waitqueue_entry(&wait, current);
3966
 
3967
        __set_current_state(state);
3968
 
3969
        spin_lock_irqsave(&q->lock, flags);
3970
        __add_wait_queue(q, &wait);
3971
        spin_unlock(&q->lock);
3972
        timeout = schedule_timeout(timeout);
3973
        spin_lock_irq(&q->lock);
3974
        __remove_wait_queue(q, &wait);
3975
        spin_unlock_irqrestore(&q->lock, flags);
3976
 
3977
        return timeout;
3978
}
3979
 
3980
void __sched interruptible_sleep_on(wait_queue_head_t *q)
3981
{
3982
        sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3983
}
3984
EXPORT_SYMBOL(interruptible_sleep_on);
3985
 
3986
long __sched
3987
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3988
{
3989
        return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3990
}
3991
EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3992
 
3993
void __sched sleep_on(wait_queue_head_t *q)
3994
{
3995
        sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3996
}
3997
EXPORT_SYMBOL(sleep_on);
3998
 
3999
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4000
{
4001
        return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4002
}
4003
EXPORT_SYMBOL(sleep_on_timeout);
4004
 
4005
#ifdef CONFIG_RT_MUTEXES
4006
 
4007
/*
4008
 * rt_mutex_setprio - set the current priority of a task
4009
 * @p: task
4010
 * @prio: prio value (kernel-internal form)
4011
 *
4012
 * This function changes the 'effective' priority of a task. It does
4013
 * not touch ->normal_prio like __setscheduler().
4014
 *
4015
 * Used by the rt_mutex code to implement priority inheritance logic.
4016
 */
4017
void rt_mutex_setprio(struct task_struct *p, int prio)
4018
{
4019
        unsigned long flags;
4020
        int oldprio, on_rq, running;
4021
        struct rq *rq;
4022
 
4023
        BUG_ON(prio < 0 || prio > MAX_PRIO);
4024
 
4025
        rq = task_rq_lock(p, &flags);
4026
        update_rq_clock(rq);
4027
 
4028
        oldprio = p->prio;
4029
        on_rq = p->se.on_rq;
4030
        running = task_current(rq, p);
4031
        if (on_rq) {
4032
                dequeue_task(rq, p, 0);
4033
                if (running)
4034
                        p->sched_class->put_prev_task(rq, p);
4035
        }
4036
 
4037
        if (rt_prio(prio))
4038
                p->sched_class = &rt_sched_class;
4039
        else
4040
                p->sched_class = &fair_sched_class;
4041
 
4042
        p->prio = prio;
4043
 
4044
        if (on_rq) {
4045
                if (running)
4046
                        p->sched_class->set_curr_task(rq);
4047
                enqueue_task(rq, p, 0);
4048
                /*
4049
                 * Reschedule if we are currently running on this runqueue and
4050
                 * our priority decreased, or if we are not currently running on
4051
                 * this runqueue and our priority is higher than the current's
4052
                 */
4053
                if (running) {
4054
                        if (p->prio > oldprio)
4055
                                resched_task(rq->curr);
4056
                } else {
4057
                        check_preempt_curr(rq, p);
4058
                }
4059
        }
4060
        task_rq_unlock(rq, &flags);
4061
}
4062
 
4063
#endif
4064
 
4065
void set_user_nice(struct task_struct *p, long nice)
4066
{
4067
        int old_prio, delta, on_rq;
4068
        unsigned long flags;
4069
        struct rq *rq;
4070
 
4071
        if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4072
                return;
4073
        /*
4074
         * We have to be careful, if called from sys_setpriority(),
4075
         * the task might be in the middle of scheduling on another CPU.
4076
         */
4077
        rq = task_rq_lock(p, &flags);
4078
        update_rq_clock(rq);
4079
        /*
4080
         * The RT priorities are set via sched_setscheduler(), but we still
4081
         * allow the 'normal' nice value to be set - but as expected
4082
         * it wont have any effect on scheduling until the task is
4083
         * SCHED_FIFO/SCHED_RR:
4084
         */
4085
        if (task_has_rt_policy(p)) {
4086
                p->static_prio = NICE_TO_PRIO(nice);
4087
                goto out_unlock;
4088
        }
4089
        on_rq = p->se.on_rq;
4090
        if (on_rq) {
4091
                dequeue_task(rq, p, 0);
4092
                dec_load(rq, p);
4093
        }
4094
 
4095
        p->static_prio = NICE_TO_PRIO(nice);
4096
        set_load_weight(p);
4097
        old_prio = p->prio;
4098
        p->prio = effective_prio(p);
4099
        delta = p->prio - old_prio;
4100
 
4101
        if (on_rq) {
4102
                enqueue_task(rq, p, 0);
4103
                inc_load(rq, p);
4104
                /*
4105
                 * If the task increased its priority or is running and
4106
                 * lowered its priority, then reschedule its CPU:
4107
                 */
4108
                if (delta < 0 || (delta > 0 && task_running(rq, p)))
4109
                        resched_task(rq->curr);
4110
        }
4111
out_unlock:
4112
        task_rq_unlock(rq, &flags);
4113
}
4114
EXPORT_SYMBOL(set_user_nice);
4115
 
4116
/*
4117
 * can_nice - check if a task can reduce its nice value
4118
 * @p: task
4119
 * @nice: nice value
4120
 */
4121
int can_nice(const struct task_struct *p, const int nice)
4122
{
4123
        /* convert nice value [19,-20] to rlimit style value [1,40] */
4124
        int nice_rlim = 20 - nice;
4125
 
4126
        return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4127
                capable(CAP_SYS_NICE));
4128
}
4129
 
4130
#ifdef __ARCH_WANT_SYS_NICE
4131
 
4132
/*
4133
 * sys_nice - change the priority of the current process.
4134
 * @increment: priority increment
4135
 *
4136
 * sys_setpriority is a more generic, but much slower function that
4137
 * does similar things.
4138
 */
4139
asmlinkage long sys_nice(int increment)
4140
{
4141
        long nice, retval;
4142
 
4143
        /*
4144
         * Setpriority might change our priority at the same moment.
4145
         * We don't have to worry. Conceptually one call occurs first
4146
         * and we have a single winner.
4147
         */
4148
        if (increment < -40)
4149
                increment = -40;
4150
        if (increment > 40)
4151
                increment = 40;
4152
 
4153
        nice = PRIO_TO_NICE(current->static_prio) + increment;
4154
        if (nice < -20)
4155
                nice = -20;
4156
        if (nice > 19)
4157
                nice = 19;
4158
 
4159
        if (increment < 0 && !can_nice(current, nice))
4160
                return -EPERM;
4161
 
4162
        retval = security_task_setnice(current, nice);
4163
        if (retval)
4164
                return retval;
4165
 
4166
        set_user_nice(current, nice);
4167
        return 0;
4168
}
4169
 
4170
#endif
4171
 
4172
/**
4173
 * task_prio - return the priority value of a given task.
4174
 * @p: the task in question.
4175
 *
4176
 * This is the priority value as seen by users in /proc.
4177
 * RT tasks are offset by -200. Normal tasks are centered
4178
 * around 0, value goes from -16 to +15.
4179
 */
4180
int task_prio(const struct task_struct *p)
4181
{
4182
        return p->prio - MAX_RT_PRIO;
4183
}
4184
 
4185
/**
4186
 * task_nice - return the nice value of a given task.
4187
 * @p: the task in question.
4188
 */
4189
int task_nice(const struct task_struct *p)
4190
{
4191
        return TASK_NICE(p);
4192
}
4193
EXPORT_SYMBOL_GPL(task_nice);
4194
 
4195
/**
4196
 * idle_cpu - is a given cpu idle currently?
4197
 * @cpu: the processor in question.
4198
 */
4199
int idle_cpu(int cpu)
4200
{
4201
        return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4202
}
4203
 
4204
/**
4205
 * idle_task - return the idle task for a given cpu.
4206
 * @cpu: the processor in question.
4207
 */
4208
struct task_struct *idle_task(int cpu)
4209
{
4210
        return cpu_rq(cpu)->idle;
4211
}
4212
 
4213
/**
4214
 * find_process_by_pid - find a process with a matching PID value.
4215
 * @pid: the pid in question.
4216
 */
4217
static struct task_struct *find_process_by_pid(pid_t pid)
4218
{
4219
        return pid ? find_task_by_vpid(pid) : current;
4220
}
4221
 
4222
/* Actually do priority change: must hold rq lock. */
4223
static void
4224
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4225
{
4226
        BUG_ON(p->se.on_rq);
4227
 
4228
        p->policy = policy;
4229
        switch (p->policy) {
4230
        case SCHED_NORMAL:
4231
        case SCHED_BATCH:
4232
        case SCHED_IDLE:
4233
                p->sched_class = &fair_sched_class;
4234
                break;
4235
        case SCHED_FIFO:
4236
        case SCHED_RR:
4237
                p->sched_class = &rt_sched_class;
4238
                break;
4239
        }
4240
 
4241
        p->rt_priority = prio;
4242
        p->normal_prio = normal_prio(p);
4243
        /* we are holding p->pi_lock already */
4244
        p->prio = rt_mutex_getprio(p);
4245
        set_load_weight(p);
4246
}
4247
 
4248
/**
4249
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4250
 * @p: the task in question.
4251
 * @policy: new policy.
4252
 * @param: structure containing the new RT priority.
4253
 *
4254
 * NOTE that the task may be already dead.
4255
 */
4256
int sched_setscheduler(struct task_struct *p, int policy,
4257
                       struct sched_param *param)
4258
{
4259
        int retval, oldprio, oldpolicy = -1, on_rq, running;
4260
        unsigned long flags;
4261
        struct rq *rq;
4262
 
4263
        /* may grab non-irq protected spin_locks */
4264
        BUG_ON(in_interrupt());
4265
recheck:
4266
        /* double check policy once rq lock held */
4267
        if (policy < 0)
4268
                policy = oldpolicy = p->policy;
4269
        else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4270
                        policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4271
                        policy != SCHED_IDLE)
4272
                return -EINVAL;
4273
        /*
4274
         * Valid priorities for SCHED_FIFO and SCHED_RR are
4275
         * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4276
         * SCHED_BATCH and SCHED_IDLE is 0.
4277
         */
4278
        if (param->sched_priority < 0 ||
4279
            (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4280
            (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4281
                return -EINVAL;
4282
        if (rt_policy(policy) != (param->sched_priority != 0))
4283
                return -EINVAL;
4284
 
4285
        /*
4286
         * Allow unprivileged RT tasks to decrease priority:
4287
         */
4288
        if (!capable(CAP_SYS_NICE)) {
4289
                if (rt_policy(policy)) {
4290
                        unsigned long rlim_rtprio;
4291
 
4292
                        if (!lock_task_sighand(p, &flags))
4293
                                return -ESRCH;
4294
                        rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4295
                        unlock_task_sighand(p, &flags);
4296
 
4297
                        /* can't set/change the rt policy */
4298
                        if (policy != p->policy && !rlim_rtprio)
4299
                                return -EPERM;
4300
 
4301
                        /* can't increase priority */
4302
                        if (param->sched_priority > p->rt_priority &&
4303
                            param->sched_priority > rlim_rtprio)
4304
                                return -EPERM;
4305
                }
4306
                /*
4307
                 * Like positive nice levels, dont allow tasks to
4308
                 * move out of SCHED_IDLE either:
4309
                 */
4310
                if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4311
                        return -EPERM;
4312
 
4313
                /* can't change other user's priorities */
4314
                if ((current->euid != p->euid) &&
4315
                    (current->euid != p->uid))
4316
                        return -EPERM;
4317
        }
4318
 
4319
        retval = security_task_setscheduler(p, policy, param);
4320
        if (retval)
4321
                return retval;
4322
        /*
4323
         * make sure no PI-waiters arrive (or leave) while we are
4324
         * changing the priority of the task:
4325
         */
4326
        spin_lock_irqsave(&p->pi_lock, flags);
4327
        /*
4328
         * To be able to change p->policy safely, the apropriate
4329
         * runqueue lock must be held.
4330
         */
4331
        rq = __task_rq_lock(p);
4332
        /* recheck policy now with rq lock held */
4333
        if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4334
                policy = oldpolicy = -1;
4335
                __task_rq_unlock(rq);
4336
                spin_unlock_irqrestore(&p->pi_lock, flags);
4337
                goto recheck;
4338
        }
4339
        update_rq_clock(rq);
4340
        on_rq = p->se.on_rq;
4341
        running = task_current(rq, p);
4342
        if (on_rq) {
4343
                deactivate_task(rq, p, 0);
4344
                if (running)
4345
                        p->sched_class->put_prev_task(rq, p);
4346
        }
4347
 
4348
        oldprio = p->prio;
4349
        __setscheduler(rq, p, policy, param->sched_priority);
4350
 
4351
        if (on_rq) {
4352
                if (running)
4353
                        p->sched_class->set_curr_task(rq);
4354
                activate_task(rq, p, 0);
4355
                /*
4356
                 * Reschedule if we are currently running on this runqueue and
4357
                 * our priority decreased, or if we are not currently running on
4358
                 * this runqueue and our priority is higher than the current's
4359
                 */
4360
                if (running) {
4361
                        if (p->prio > oldprio)
4362
                                resched_task(rq->curr);
4363
                } else {
4364
                        check_preempt_curr(rq, p);
4365
                }
4366
        }
4367
        __task_rq_unlock(rq);
4368
        spin_unlock_irqrestore(&p->pi_lock, flags);
4369
 
4370
        rt_mutex_adjust_pi(p);
4371
 
4372
        return 0;
4373
}
4374
EXPORT_SYMBOL_GPL(sched_setscheduler);
4375
 
4376
static int
4377
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4378
{
4379
        struct sched_param lparam;
4380
        struct task_struct *p;
4381
        int retval;
4382
 
4383
        if (!param || pid < 0)
4384
                return -EINVAL;
4385
        if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4386
                return -EFAULT;
4387
 
4388
        rcu_read_lock();
4389
        retval = -ESRCH;
4390
        p = find_process_by_pid(pid);
4391
        if (p != NULL)
4392
                retval = sched_setscheduler(p, policy, &lparam);
4393
        rcu_read_unlock();
4394
 
4395
        return retval;
4396
}
4397
 
4398
/**
4399
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4400
 * @pid: the pid in question.
4401
 * @policy: new policy.
4402
 * @param: structure containing the new RT priority.
4403
 */
4404
asmlinkage long
4405
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4406
{
4407
        /* negative values for policy are not valid */
4408
        if (policy < 0)
4409
                return -EINVAL;
4410
 
4411
        return do_sched_setscheduler(pid, policy, param);
4412
}
4413
 
4414
/**
4415
 * sys_sched_setparam - set/change the RT priority of a thread
4416
 * @pid: the pid in question.
4417
 * @param: structure containing the new RT priority.
4418
 */
4419
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4420
{
4421
        return do_sched_setscheduler(pid, -1, param);
4422
}
4423
 
4424
/**
4425
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4426
 * @pid: the pid in question.
4427
 */
4428
asmlinkage long sys_sched_getscheduler(pid_t pid)
4429
{
4430
        struct task_struct *p;
4431
        int retval;
4432
 
4433
        if (pid < 0)
4434
                return -EINVAL;
4435
 
4436
        retval = -ESRCH;
4437
        read_lock(&tasklist_lock);
4438
        p = find_process_by_pid(pid);
4439
        if (p) {
4440
                retval = security_task_getscheduler(p);
4441
                if (!retval)
4442
                        retval = p->policy;
4443
        }
4444
        read_unlock(&tasklist_lock);
4445
        return retval;
4446
}
4447
 
4448
/**
4449
 * sys_sched_getscheduler - get the RT priority of a thread
4450
 * @pid: the pid in question.
4451
 * @param: structure containing the RT priority.
4452
 */
4453
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4454
{
4455
        struct sched_param lp;
4456
        struct task_struct *p;
4457
        int retval;
4458
 
4459
        if (!param || pid < 0)
4460
                return -EINVAL;
4461
 
4462
        read_lock(&tasklist_lock);
4463
        p = find_process_by_pid(pid);
4464
        retval = -ESRCH;
4465
        if (!p)
4466
                goto out_unlock;
4467
 
4468
        retval = security_task_getscheduler(p);
4469
        if (retval)
4470
                goto out_unlock;
4471
 
4472
        lp.sched_priority = p->rt_priority;
4473
        read_unlock(&tasklist_lock);
4474
 
4475
        /*
4476
         * This one might sleep, we cannot do it with a spinlock held ...
4477
         */
4478
        retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4479
 
4480
        return retval;
4481
 
4482
out_unlock:
4483
        read_unlock(&tasklist_lock);
4484
        return retval;
4485
}
4486
 
4487
long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4488
{
4489
        cpumask_t cpus_allowed;
4490
        struct task_struct *p;
4491
        int retval;
4492
 
4493
        mutex_lock(&sched_hotcpu_mutex);
4494
        read_lock(&tasklist_lock);
4495
 
4496
        p = find_process_by_pid(pid);
4497
        if (!p) {
4498
                read_unlock(&tasklist_lock);
4499
                mutex_unlock(&sched_hotcpu_mutex);
4500
                return -ESRCH;
4501
        }
4502
 
4503
        /*
4504
         * It is not safe to call set_cpus_allowed with the
4505
         * tasklist_lock held. We will bump the task_struct's
4506
         * usage count and then drop tasklist_lock.
4507
         */
4508
        get_task_struct(p);
4509
        read_unlock(&tasklist_lock);
4510
 
4511
        retval = -EPERM;
4512
        if ((current->euid != p->euid) && (current->euid != p->uid) &&
4513
                        !capable(CAP_SYS_NICE))
4514
                goto out_unlock;
4515
 
4516
        retval = security_task_setscheduler(p, 0, NULL);
4517
        if (retval)
4518
                goto out_unlock;
4519
 
4520
        cpus_allowed = cpuset_cpus_allowed(p);
4521
        cpus_and(new_mask, new_mask, cpus_allowed);
4522
 again:
4523
        retval = set_cpus_allowed(p, new_mask);
4524
 
4525
        if (!retval) {
4526
                cpus_allowed = cpuset_cpus_allowed(p);
4527
                if (!cpus_subset(new_mask, cpus_allowed)) {
4528
                        /*
4529
                         * We must have raced with a concurrent cpuset
4530
                         * update. Just reset the cpus_allowed to the
4531
                         * cpuset's cpus_allowed
4532
                         */
4533
                        new_mask = cpus_allowed;
4534
                        goto again;
4535
                }
4536
        }
4537
out_unlock:
4538
        put_task_struct(p);
4539
        mutex_unlock(&sched_hotcpu_mutex);
4540
        return retval;
4541
}
4542
 
4543
static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4544
                             cpumask_t *new_mask)
4545
{
4546
        if (len < sizeof(cpumask_t)) {
4547
                memset(new_mask, 0, sizeof(cpumask_t));
4548
        } else if (len > sizeof(cpumask_t)) {
4549
                len = sizeof(cpumask_t);
4550
        }
4551
        return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4552
}
4553
 
4554
/**
4555
 * sys_sched_setaffinity - set the cpu affinity of a process
4556
 * @pid: pid of the process
4557
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4558
 * @user_mask_ptr: user-space pointer to the new cpu mask
4559
 */
4560
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4561
                                      unsigned long __user *user_mask_ptr)
4562
{
4563
        cpumask_t new_mask;
4564
        int retval;
4565
 
4566
        retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4567
        if (retval)
4568
                return retval;
4569
 
4570
        return sched_setaffinity(pid, new_mask);
4571
}
4572
 
4573
/*
4574
 * Represents all cpu's present in the system
4575
 * In systems capable of hotplug, this map could dynamically grow
4576
 * as new cpu's are detected in the system via any platform specific
4577
 * method, such as ACPI for e.g.
4578
 */
4579
 
4580
cpumask_t cpu_present_map __read_mostly;
4581
EXPORT_SYMBOL(cpu_present_map);
4582
 
4583
#ifndef CONFIG_SMP
4584
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4585
EXPORT_SYMBOL(cpu_online_map);
4586
 
4587
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4588
EXPORT_SYMBOL(cpu_possible_map);
4589
#endif
4590
 
4591
long sched_getaffinity(pid_t pid, cpumask_t *mask)
4592
{
4593
        struct task_struct *p;
4594
        int retval;
4595
 
4596
        mutex_lock(&sched_hotcpu_mutex);
4597
        read_lock(&tasklist_lock);
4598
 
4599
        retval = -ESRCH;
4600
        p = find_process_by_pid(pid);
4601
        if (!p)
4602
                goto out_unlock;
4603
 
4604
        retval = security_task_getscheduler(p);
4605
        if (retval)
4606
                goto out_unlock;
4607
 
4608
        cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4609
 
4610
out_unlock:
4611
        read_unlock(&tasklist_lock);
4612
        mutex_unlock(&sched_hotcpu_mutex);
4613
 
4614
        return retval;
4615
}
4616
 
4617
/**
4618
 * sys_sched_getaffinity - get the cpu affinity of a process
4619
 * @pid: pid of the process
4620
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4621
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4622
 */
4623
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4624
                                      unsigned long __user *user_mask_ptr)
4625
{
4626
        int ret;
4627
        cpumask_t mask;
4628
 
4629
        if (len < sizeof(cpumask_t))
4630
                return -EINVAL;
4631
 
4632
        ret = sched_getaffinity(pid, &mask);
4633
        if (ret < 0)
4634
                return ret;
4635
 
4636
        if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4637
                return -EFAULT;
4638
 
4639
        return sizeof(cpumask_t);
4640
}
4641
 
4642
/**
4643
 * sys_sched_yield - yield the current processor to other threads.
4644
 *
4645
 * This function yields the current CPU to other tasks. If there are no
4646
 * other threads running on this CPU then this function will return.
4647
 */
4648
asmlinkage long sys_sched_yield(void)
4649
{
4650
        struct rq *rq = this_rq_lock();
4651
 
4652
        schedstat_inc(rq, yld_count);
4653
        current->sched_class->yield_task(rq);
4654
 
4655
        /*
4656
         * Since we are going to call schedule() anyway, there's
4657
         * no need to preempt or enable interrupts:
4658
         */
4659
        __release(rq->lock);
4660
        spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4661
        _raw_spin_unlock(&rq->lock);
4662
        preempt_enable_no_resched();
4663
 
4664
        schedule();
4665
 
4666
        return 0;
4667
}
4668
 
4669
static void __cond_resched(void)
4670
{
4671
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4672
        __might_sleep(__FILE__, __LINE__);
4673
#endif
4674
        /*
4675
         * The BKS might be reacquired before we have dropped
4676
         * PREEMPT_ACTIVE, which could trigger a second
4677
         * cond_resched() call.
4678
         */
4679
        do {
4680
                add_preempt_count(PREEMPT_ACTIVE);
4681
                schedule();
4682
                sub_preempt_count(PREEMPT_ACTIVE);
4683
        } while (need_resched());
4684
}
4685
 
4686
int __sched cond_resched(void)
4687
{
4688
        if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4689
                                        system_state == SYSTEM_RUNNING) {
4690
                __cond_resched();
4691
                return 1;
4692
        }
4693
        return 0;
4694
}
4695
EXPORT_SYMBOL(cond_resched);
4696
 
4697
/*
4698
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4699
 * call schedule, and on return reacquire the lock.
4700
 *
4701
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4702
 * operations here to prevent schedule() from being called twice (once via
4703
 * spin_unlock(), once by hand).
4704
 */
4705
int cond_resched_lock(spinlock_t *lock)
4706
{
4707
        int ret = 0;
4708
 
4709
        if (need_lockbreak(lock)) {
4710
                spin_unlock(lock);
4711
                cpu_relax();
4712
                ret = 1;
4713
                spin_lock(lock);
4714
        }
4715
        if (need_resched() && system_state == SYSTEM_RUNNING) {
4716
                spin_release(&lock->dep_map, 1, _THIS_IP_);
4717
                _raw_spin_unlock(lock);
4718
                preempt_enable_no_resched();
4719
                __cond_resched();
4720
                ret = 1;
4721
                spin_lock(lock);
4722
        }
4723
        return ret;
4724
}
4725
EXPORT_SYMBOL(cond_resched_lock);
4726
 
4727
int __sched cond_resched_softirq(void)
4728
{
4729
        BUG_ON(!in_softirq());
4730
 
4731
        if (need_resched() && system_state == SYSTEM_RUNNING) {
4732
                local_bh_enable();
4733
                __cond_resched();
4734
                local_bh_disable();
4735
                return 1;
4736
        }
4737
        return 0;
4738
}
4739
EXPORT_SYMBOL(cond_resched_softirq);
4740
 
4741
/**
4742
 * yield - yield the current processor to other threads.
4743
 *
4744
 * This is a shortcut for kernel-space yielding - it marks the
4745
 * thread runnable and calls sys_sched_yield().
4746
 */
4747
void __sched yield(void)
4748
{
4749
        set_current_state(TASK_RUNNING);
4750
        sys_sched_yield();
4751
}
4752
EXPORT_SYMBOL(yield);
4753
 
4754
/*
4755
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4756
 * that process accounting knows that this is a task in IO wait state.
4757
 *
4758
 * But don't do that if it is a deliberate, throttling IO wait (this task
4759
 * has set its backing_dev_info: the queue against which it should throttle)
4760
 */
4761
void __sched io_schedule(void)
4762
{
4763
        struct rq *rq = &__raw_get_cpu_var(runqueues);
4764
 
4765
        delayacct_blkio_start();
4766
        atomic_inc(&rq->nr_iowait);
4767
        schedule();
4768
        atomic_dec(&rq->nr_iowait);
4769
        delayacct_blkio_end();
4770
}
4771
EXPORT_SYMBOL(io_schedule);
4772
 
4773
long __sched io_schedule_timeout(long timeout)
4774
{
4775
        struct rq *rq = &__raw_get_cpu_var(runqueues);
4776
        long ret;
4777
 
4778
        delayacct_blkio_start();
4779
        atomic_inc(&rq->nr_iowait);
4780
        ret = schedule_timeout(timeout);
4781
        atomic_dec(&rq->nr_iowait);
4782
        delayacct_blkio_end();
4783
        return ret;
4784
}
4785
 
4786
/**
4787
 * sys_sched_get_priority_max - return maximum RT priority.
4788
 * @policy: scheduling class.
4789
 *
4790
 * this syscall returns the maximum rt_priority that can be used
4791
 * by a given scheduling class.
4792
 */
4793
asmlinkage long sys_sched_get_priority_max(int policy)
4794
{
4795
        int ret = -EINVAL;
4796
 
4797
        switch (policy) {
4798
        case SCHED_FIFO:
4799
        case SCHED_RR:
4800
                ret = MAX_USER_RT_PRIO-1;
4801
                break;
4802
        case SCHED_NORMAL:
4803
        case SCHED_BATCH:
4804
        case SCHED_IDLE:
4805
                ret = 0;
4806
                break;
4807
        }
4808
        return ret;
4809
}
4810
 
4811
/**
4812
 * sys_sched_get_priority_min - return minimum RT priority.
4813
 * @policy: scheduling class.
4814
 *
4815
 * this syscall returns the minimum rt_priority that can be used
4816
 * by a given scheduling class.
4817
 */
4818
asmlinkage long sys_sched_get_priority_min(int policy)
4819
{
4820
        int ret = -EINVAL;
4821
 
4822
        switch (policy) {
4823
        case SCHED_FIFO:
4824
        case SCHED_RR:
4825
                ret = 1;
4826
                break;
4827
        case SCHED_NORMAL:
4828
        case SCHED_BATCH:
4829
        case SCHED_IDLE:
4830
                ret = 0;
4831
        }
4832
        return ret;
4833
}
4834
 
4835
/**
4836
 * sys_sched_rr_get_interval - return the default timeslice of a process.
4837
 * @pid: pid of the process.
4838
 * @interval: userspace pointer to the timeslice value.
4839
 *
4840
 * this syscall writes the default timeslice value of a given process
4841
 * into the user-space timespec buffer. A value of '0' means infinity.
4842
 */
4843
asmlinkage
4844
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4845
{
4846
        struct task_struct *p;
4847
        unsigned int time_slice;
4848
        int retval;
4849
        struct timespec t;
4850
 
4851
        if (pid < 0)
4852
                return -EINVAL;
4853
 
4854
        retval = -ESRCH;
4855
        read_lock(&tasklist_lock);
4856
        p = find_process_by_pid(pid);
4857
        if (!p)
4858
                goto out_unlock;
4859
 
4860
        retval = security_task_getscheduler(p);
4861
        if (retval)
4862
                goto out_unlock;
4863
 
4864
        /*
4865
         * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
4866
         * tasks that are on an otherwise idle runqueue:
4867
         */
4868
        time_slice = 0;
4869
        if (p->policy == SCHED_RR) {
4870
                time_slice = DEF_TIMESLICE;
4871
        } else {
4872
                struct sched_entity *se = &p->se;
4873
                unsigned long flags;
4874
                struct rq *rq;
4875
 
4876
                rq = task_rq_lock(p, &flags);
4877
                if (rq->cfs.load.weight)
4878
                        time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
4879
                task_rq_unlock(rq, &flags);
4880
        }
4881
        read_unlock(&tasklist_lock);
4882
        jiffies_to_timespec(time_slice, &t);
4883
        retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4884
        return retval;
4885
 
4886
out_unlock:
4887
        read_unlock(&tasklist_lock);
4888
        return retval;
4889
}
4890
 
4891
static const char stat_nam[] = "RSDTtZX";
4892
 
4893
static void show_task(struct task_struct *p)
4894
{
4895
        unsigned long free = 0;
4896
        unsigned state;
4897
 
4898
        state = p->state ? __ffs(p->state) + 1 : 0;
4899
        printk(KERN_INFO "%-13.13s %c", p->comm,
4900
                state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4901
#if BITS_PER_LONG == 32
4902
        if (state == TASK_RUNNING)
4903
                printk(KERN_CONT " running  ");
4904
        else
4905
                printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4906
#else
4907
        if (state == TASK_RUNNING)
4908
                printk(KERN_CONT "  running task    ");
4909
        else
4910
                printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4911
#endif
4912
#ifdef CONFIG_DEBUG_STACK_USAGE
4913
        {
4914
                unsigned long *n = end_of_stack(p);
4915
                while (!*n)
4916
                        n++;
4917
                free = (unsigned long)n - (unsigned long)end_of_stack(p);
4918
        }
4919
#endif
4920
        printk(KERN_CONT "%5lu %5d %6d\n", free,
4921
                task_pid_nr(p), task_pid_nr(p->real_parent));
4922
 
4923
        if (state != TASK_RUNNING)
4924
                show_stack(p, NULL);
4925
}
4926
 
4927
void show_state_filter(unsigned long state_filter)
4928
{
4929
        struct task_struct *g, *p;
4930
 
4931
#if BITS_PER_LONG == 32
4932
        printk(KERN_INFO
4933
                "  task                PC stack   pid father\n");
4934
#else
4935
        printk(KERN_INFO
4936
                "  task                        PC stack   pid father\n");
4937
#endif
4938
        read_lock(&tasklist_lock);
4939
        do_each_thread(g, p) {
4940
                /*
4941
                 * reset the NMI-timeout, listing all files on a slow
4942
                 * console might take alot of time:
4943
                 */
4944
                touch_nmi_watchdog();
4945
                if (!state_filter || (p->state & state_filter))
4946
                        show_task(p);
4947
        } while_each_thread(g, p);
4948
 
4949
        touch_all_softlockup_watchdogs();
4950
 
4951
#ifdef CONFIG_SCHED_DEBUG
4952
        sysrq_sched_debug_show();
4953
#endif
4954
        read_unlock(&tasklist_lock);
4955
        /*
4956
         * Only show locks if all tasks are dumped:
4957
         */
4958
        if (state_filter == -1)
4959
                debug_show_all_locks();
4960
}
4961
 
4962
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4963
{
4964
        idle->sched_class = &idle_sched_class;
4965
}
4966
 
4967
/**
4968
 * init_idle - set up an idle thread for a given CPU
4969
 * @idle: task in question
4970
 * @cpu: cpu the idle task belongs to
4971
 *
4972
 * NOTE: this function does not set the idle thread's NEED_RESCHED
4973
 * flag, to make booting more robust.
4974
 */
4975
void __cpuinit init_idle(struct task_struct *idle, int cpu)
4976
{
4977
        struct rq *rq = cpu_rq(cpu);
4978
        unsigned long flags;
4979
 
4980
        __sched_fork(idle);
4981
        idle->se.exec_start = sched_clock();
4982
 
4983
        idle->prio = idle->normal_prio = MAX_PRIO;
4984
        idle->cpus_allowed = cpumask_of_cpu(cpu);
4985
        __set_task_cpu(idle, cpu);
4986
 
4987
        spin_lock_irqsave(&rq->lock, flags);
4988
        rq->curr = rq->idle = idle;
4989
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4990
        idle->oncpu = 1;
4991
#endif
4992
        spin_unlock_irqrestore(&rq->lock, flags);
4993
 
4994
        /* Set the preempt count _outside_ the spinlocks! */
4995
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4996
        task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4997
#else
4998
        task_thread_info(idle)->preempt_count = 0;
4999
#endif
5000
        /*
5001
         * The idle tasks have their own, simple scheduling class:
5002
         */
5003
        idle->sched_class = &idle_sched_class;
5004
}
5005
 
5006
/*
5007
 * In a system that switches off the HZ timer nohz_cpu_mask
5008
 * indicates which cpus entered this state. This is used
5009
 * in the rcu update to wait only for active cpus. For system
5010
 * which do not switch off the HZ timer nohz_cpu_mask should
5011
 * always be CPU_MASK_NONE.
5012
 */
5013
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5014
 
5015
/*
5016
 * Increase the granularity value when there are more CPUs,
5017
 * because with more CPUs the 'effective latency' as visible
5018
 * to users decreases. But the relationship is not linear,
5019
 * so pick a second-best guess by going with the log2 of the
5020
 * number of CPUs.
5021
 *
5022
 * This idea comes from the SD scheduler of Con Kolivas:
5023
 */
5024
static inline void sched_init_granularity(void)
5025
{
5026
        unsigned int factor = 1 + ilog2(num_online_cpus());
5027
        const unsigned long limit = 200000000;
5028
 
5029
        sysctl_sched_min_granularity *= factor;
5030
        if (sysctl_sched_min_granularity > limit)
5031
                sysctl_sched_min_granularity = limit;
5032
 
5033
        sysctl_sched_latency *= factor;
5034
        if (sysctl_sched_latency > limit)
5035
                sysctl_sched_latency = limit;
5036
 
5037
        sysctl_sched_wakeup_granularity *= factor;
5038
        sysctl_sched_batch_wakeup_granularity *= factor;
5039
}
5040
 
5041
#ifdef CONFIG_SMP
5042
/*
5043
 * This is how migration works:
5044
 *
5045
 * 1) we queue a struct migration_req structure in the source CPU's
5046
 *    runqueue and wake up that CPU's migration thread.
5047
 * 2) we down() the locked semaphore => thread blocks.
5048
 * 3) migration thread wakes up (implicitly it forces the migrated
5049
 *    thread off the CPU)
5050
 * 4) it gets the migration request and checks whether the migrated
5051
 *    task is still in the wrong runqueue.
5052
 * 5) if it's in the wrong runqueue then the migration thread removes
5053
 *    it and puts it into the right queue.
5054
 * 6) migration thread up()s the semaphore.
5055
 * 7) we wake up and the migration is done.
5056
 */
5057
 
5058
/*
5059
 * Change a given task's CPU affinity. Migrate the thread to a
5060
 * proper CPU and schedule it away if the CPU it's executing on
5061
 * is removed from the allowed bitmask.
5062
 *
5063
 * NOTE: the caller must have a valid reference to the task, the
5064
 * task must not exit() & deallocate itself prematurely. The
5065
 * call is not atomic; no spinlocks may be held.
5066
 */
5067
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5068
{
5069
        struct migration_req req;
5070
        unsigned long flags;
5071
        struct rq *rq;
5072
        int ret = 0;
5073
 
5074
        rq = task_rq_lock(p, &flags);
5075
        if (!cpus_intersects(new_mask, cpu_online_map)) {
5076
                ret = -EINVAL;
5077
                goto out;
5078
        }
5079
 
5080
        p->cpus_allowed = new_mask;
5081
        /* Can the task run on the task's current CPU? If so, we're done */
5082
        if (cpu_isset(task_cpu(p), new_mask))
5083
                goto out;
5084
 
5085
        if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5086
                /* Need help from migration thread: drop lock and wait. */
5087
                task_rq_unlock(rq, &flags);
5088
                wake_up_process(rq->migration_thread);
5089
                wait_for_completion(&req.done);
5090
                tlb_migrate_finish(p->mm);
5091
                return 0;
5092
        }
5093
out:
5094
        task_rq_unlock(rq, &flags);
5095
 
5096
        return ret;
5097
}
5098
EXPORT_SYMBOL_GPL(set_cpus_allowed);
5099
 
5100
/*
5101
 * Move (not current) task off this cpu, onto dest cpu. We're doing
5102
 * this because either it can't run here any more (set_cpus_allowed()
5103
 * away from this CPU, or CPU going down), or because we're
5104
 * attempting to rebalance this task on exec (sched_exec).
5105
 *
5106
 * So we race with normal scheduler movements, but that's OK, as long
5107
 * as the task is no longer on this CPU.
5108
 *
5109
 * Returns non-zero if task was successfully migrated.
5110
 */
5111
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5112
{
5113
        struct rq *rq_dest, *rq_src;
5114
        int ret = 0, on_rq;
5115
 
5116
        if (unlikely(cpu_is_offline(dest_cpu)))
5117
                return ret;
5118
 
5119
        rq_src = cpu_rq(src_cpu);
5120
        rq_dest = cpu_rq(dest_cpu);
5121
 
5122
        double_rq_lock(rq_src, rq_dest);
5123
        /* Already moved. */
5124
        if (task_cpu(p) != src_cpu)
5125
                goto out;
5126
        /* Affinity changed (again). */
5127
        if (!cpu_isset(dest_cpu, p->cpus_allowed))
5128
                goto out;
5129
 
5130
        on_rq = p->se.on_rq;
5131
        if (on_rq)
5132
                deactivate_task(rq_src, p, 0);
5133
 
5134
        set_task_cpu(p, dest_cpu);
5135
        if (on_rq) {
5136
                activate_task(rq_dest, p, 0);
5137
                check_preempt_curr(rq_dest, p);
5138
        }
5139
        ret = 1;
5140
out:
5141
        double_rq_unlock(rq_src, rq_dest);
5142
        return ret;
5143
}
5144
 
5145
/*
5146
 * migration_thread - this is a highprio system thread that performs
5147
 * thread migration by bumping thread off CPU then 'pushing' onto
5148
 * another runqueue.
5149
 */
5150
static int migration_thread(void *data)
5151
{
5152
        int cpu = (long)data;
5153
        struct rq *rq;
5154
 
5155
        rq = cpu_rq(cpu);
5156
        BUG_ON(rq->migration_thread != current);
5157
 
5158
        set_current_state(TASK_INTERRUPTIBLE);
5159
        while (!kthread_should_stop()) {
5160
                struct migration_req *req;
5161
                struct list_head *head;
5162
 
5163
                spin_lock_irq(&rq->lock);
5164
 
5165
                if (cpu_is_offline(cpu)) {
5166
                        spin_unlock_irq(&rq->lock);
5167
                        goto wait_to_die;
5168
                }
5169
 
5170
                if (rq->active_balance) {
5171
                        active_load_balance(rq, cpu);
5172
                        rq->active_balance = 0;
5173
                }
5174
 
5175
                head = &rq->migration_queue;
5176
 
5177
                if (list_empty(head)) {
5178
                        spin_unlock_irq(&rq->lock);
5179
                        schedule();
5180
                        set_current_state(TASK_INTERRUPTIBLE);
5181
                        continue;
5182
                }
5183
                req = list_entry(head->next, struct migration_req, list);
5184
                list_del_init(head->next);
5185
 
5186
                spin_unlock(&rq->lock);
5187
                __migrate_task(req->task, cpu, req->dest_cpu);
5188
                local_irq_enable();
5189
 
5190
                complete(&req->done);
5191
        }
5192
        __set_current_state(TASK_RUNNING);
5193
        return 0;
5194
 
5195
wait_to_die:
5196
        /* Wait for kthread_stop */
5197
        set_current_state(TASK_INTERRUPTIBLE);
5198
        while (!kthread_should_stop()) {
5199
                schedule();
5200
                set_current_state(TASK_INTERRUPTIBLE);
5201
        }
5202
        __set_current_state(TASK_RUNNING);
5203
        return 0;
5204
}
5205
 
5206
#ifdef CONFIG_HOTPLUG_CPU
5207
 
5208
static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5209
{
5210
        int ret;
5211
 
5212
        local_irq_disable();
5213
        ret = __migrate_task(p, src_cpu, dest_cpu);
5214
        local_irq_enable();
5215
        return ret;
5216
}
5217
 
5218
/*
5219
 * Figure out where task on dead CPU should go, use force if necessary.
5220
 * NOTE: interrupts should be disabled by the caller
5221
 */
5222
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5223
{
5224
        unsigned long flags;
5225
        cpumask_t mask;
5226
        struct rq *rq;
5227
        int dest_cpu;
5228
 
5229
        do {
5230
                /* On same node? */
5231
                mask = node_to_cpumask(cpu_to_node(dead_cpu));
5232
                cpus_and(mask, mask, p->cpus_allowed);
5233
                dest_cpu = any_online_cpu(mask);
5234
 
5235
                /* On any allowed CPU? */
5236
                if (dest_cpu == NR_CPUS)
5237
                        dest_cpu = any_online_cpu(p->cpus_allowed);
5238
 
5239
                /* No more Mr. Nice Guy. */
5240
                if (dest_cpu == NR_CPUS) {
5241
                        cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5242
                        /*
5243
                         * Try to stay on the same cpuset, where the
5244
                         * current cpuset may be a subset of all cpus.
5245
                         * The cpuset_cpus_allowed_locked() variant of
5246
                         * cpuset_cpus_allowed() will not block. It must be
5247
                         * called within calls to cpuset_lock/cpuset_unlock.
5248
                         */
5249
                        rq = task_rq_lock(p, &flags);
5250
                        p->cpus_allowed = cpus_allowed;
5251
                        dest_cpu = any_online_cpu(p->cpus_allowed);
5252
                        task_rq_unlock(rq, &flags);
5253
 
5254
                        /*
5255
                         * Don't tell them about moving exiting tasks or
5256
                         * kernel threads (both mm NULL), since they never
5257
                         * leave kernel.
5258
                         */
5259
                        if (p->mm && printk_ratelimit()) {
5260
                                printk(KERN_INFO "process %d (%s) no "
5261
                                       "longer affine to cpu%d\n",
5262
                                        task_pid_nr(p), p->comm, dead_cpu);
5263
                        }
5264
                }
5265
        } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5266
}
5267
 
5268
/*
5269
 * While a dead CPU has no uninterruptible tasks queued at this point,
5270
 * it might still have a nonzero ->nr_uninterruptible counter, because
5271
 * for performance reasons the counter is not stricly tracking tasks to
5272
 * their home CPUs. So we just add the counter to another CPU's counter,
5273
 * to keep the global sum constant after CPU-down:
5274
 */
5275
static void migrate_nr_uninterruptible(struct rq *rq_src)
5276
{
5277
        struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5278
        unsigned long flags;
5279
 
5280
        local_irq_save(flags);
5281
        double_rq_lock(rq_src, rq_dest);
5282
        rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5283
        rq_src->nr_uninterruptible = 0;
5284
        double_rq_unlock(rq_src, rq_dest);
5285
        local_irq_restore(flags);
5286
}
5287
 
5288
/* Run through task list and migrate tasks from the dead cpu. */
5289
static void migrate_live_tasks(int src_cpu)
5290
{
5291
        struct task_struct *p, *t;
5292
 
5293
        read_lock(&tasklist_lock);
5294
 
5295
        do_each_thread(t, p) {
5296
                if (p == current)
5297
                        continue;
5298
 
5299
                if (task_cpu(p) == src_cpu)
5300
                        move_task_off_dead_cpu(src_cpu, p);
5301
        } while_each_thread(t, p);
5302
 
5303
        read_unlock(&tasklist_lock);
5304
}
5305
 
5306
/*
5307
 * Schedules idle task to be the next runnable task on current CPU.
5308
 * It does so by boosting its priority to highest possible.
5309
 * Used by CPU offline code.
5310
 */
5311
void sched_idle_next(void)
5312
{
5313
        int this_cpu = smp_processor_id();
5314
        struct rq *rq = cpu_rq(this_cpu);
5315
        struct task_struct *p = rq->idle;
5316
        unsigned long flags;
5317
 
5318
        /* cpu has to be offline */
5319
        BUG_ON(cpu_online(this_cpu));
5320
 
5321
        /*
5322
         * Strictly not necessary since rest of the CPUs are stopped by now
5323
         * and interrupts disabled on the current cpu.
5324
         */
5325
        spin_lock_irqsave(&rq->lock, flags);
5326
 
5327
        __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5328
 
5329
        update_rq_clock(rq);
5330
        activate_task(rq, p, 0);
5331
 
5332
        spin_unlock_irqrestore(&rq->lock, flags);
5333
}
5334
 
5335
/*
5336
 * Ensures that the idle task is using init_mm right before its cpu goes
5337
 * offline.
5338
 */
5339
void idle_task_exit(void)
5340
{
5341
        struct mm_struct *mm = current->active_mm;
5342
 
5343
        BUG_ON(cpu_online(smp_processor_id()));
5344
 
5345
        if (mm != &init_mm)
5346
                switch_mm(mm, &init_mm, current);
5347
        mmdrop(mm);
5348
}
5349
 
5350
/* called under rq->lock with disabled interrupts */
5351
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5352
{
5353
        struct rq *rq = cpu_rq(dead_cpu);
5354
 
5355
        /* Must be exiting, otherwise would be on tasklist. */
5356
        BUG_ON(!p->exit_state);
5357
 
5358
        /* Cannot have done final schedule yet: would have vanished. */
5359
        BUG_ON(p->state == TASK_DEAD);
5360
 
5361
        get_task_struct(p);
5362
 
5363
        /*
5364
         * Drop lock around migration; if someone else moves it,
5365
         * that's OK. No task can be added to this CPU, so iteration is
5366
         * fine.
5367
         */
5368
        spin_unlock_irq(&rq->lock);
5369
        move_task_off_dead_cpu(dead_cpu, p);
5370
        spin_lock_irq(&rq->lock);
5371
 
5372
        put_task_struct(p);
5373
}
5374
 
5375
/* release_task() removes task from tasklist, so we won't find dead tasks. */
5376
static void migrate_dead_tasks(unsigned int dead_cpu)
5377
{
5378
        struct rq *rq = cpu_rq(dead_cpu);
5379
        struct task_struct *next;
5380
 
5381
        for ( ; ; ) {
5382
                if (!rq->nr_running)
5383
                        break;
5384
                update_rq_clock(rq);
5385
                next = pick_next_task(rq, rq->curr);
5386
                if (!next)
5387
                        break;
5388
                migrate_dead(dead_cpu, next);
5389
 
5390
        }
5391
}
5392
#endif /* CONFIG_HOTPLUG_CPU */
5393
 
5394
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5395
 
5396
static struct ctl_table sd_ctl_dir[] = {
5397
        {
5398
                .procname       = "sched_domain",
5399
                .mode           = 0555,
5400
        },
5401
        {0, },
5402
};
5403
 
5404
static struct ctl_table sd_ctl_root[] = {
5405
        {
5406
                .ctl_name       = CTL_KERN,
5407
                .procname       = "kernel",
5408
                .mode           = 0555,
5409
                .child          = sd_ctl_dir,
5410
        },
5411
        {0, },
5412
};
5413
 
5414
static struct ctl_table *sd_alloc_ctl_entry(int n)
5415
{
5416
        struct ctl_table *entry =
5417
                kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5418
 
5419
        return entry;
5420
}
5421
 
5422
static void sd_free_ctl_entry(struct ctl_table **tablep)
5423
{
5424
        struct ctl_table *entry;
5425
 
5426
        /*
5427
         * In the intermediate directories, both the child directory and
5428
         * procname are dynamically allocated and could fail but the mode
5429
         * will always be set. In the lowest directory the names are
5430
         * static strings and all have proc handlers.
5431
         */
5432
        for (entry = *tablep; entry->mode; entry++) {
5433
                if (entry->child)
5434
                        sd_free_ctl_entry(&entry->child);
5435
                if (entry->proc_handler == NULL)
5436
                        kfree(entry->procname);
5437
        }
5438
 
5439
        kfree(*tablep);
5440
        *tablep = NULL;
5441
}
5442
 
5443
static void
5444
set_table_entry(struct ctl_table *entry,
5445
                const char *procname, void *data, int maxlen,
5446
                mode_t mode, proc_handler *proc_handler)
5447
{
5448
        entry->procname = procname;
5449
        entry->data = data;
5450
        entry->maxlen = maxlen;
5451
        entry->mode = mode;
5452
        entry->proc_handler = proc_handler;
5453
}
5454
 
5455
static struct ctl_table *
5456
sd_alloc_ctl_domain_table(struct sched_domain *sd)
5457
{
5458
        struct ctl_table *table = sd_alloc_ctl_entry(12);
5459
 
5460
        if (table == NULL)
5461
                return NULL;
5462
 
5463
        set_table_entry(&table[0], "min_interval", &sd->min_interval,
5464
                sizeof(long), 0644, proc_doulongvec_minmax);
5465
        set_table_entry(&table[1], "max_interval", &sd->max_interval,
5466
                sizeof(long), 0644, proc_doulongvec_minmax);
5467
        set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5468
                sizeof(int), 0644, proc_dointvec_minmax);
5469
        set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5470
                sizeof(int), 0644, proc_dointvec_minmax);
5471
        set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5472
                sizeof(int), 0644, proc_dointvec_minmax);
5473
        set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5474
                sizeof(int), 0644, proc_dointvec_minmax);
5475
        set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5476
                sizeof(int), 0644, proc_dointvec_minmax);
5477
        set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5478
                sizeof(int), 0644, proc_dointvec_minmax);
5479
        set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5480
                sizeof(int), 0644, proc_dointvec_minmax);
5481
        set_table_entry(&table[9], "cache_nice_tries",
5482
                &sd->cache_nice_tries,
5483
                sizeof(int), 0644, proc_dointvec_minmax);
5484
        set_table_entry(&table[10], "flags", &sd->flags,
5485
                sizeof(int), 0644, proc_dointvec_minmax);
5486
        /* &table[11] is terminator */
5487
 
5488
        return table;
5489
}
5490
 
5491
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5492
{
5493
        struct ctl_table *entry, *table;
5494
        struct sched_domain *sd;
5495
        int domain_num = 0, i;
5496
        char buf[32];
5497
 
5498
        for_each_domain(cpu, sd)
5499
                domain_num++;
5500
        entry = table = sd_alloc_ctl_entry(domain_num + 1);
5501
        if (table == NULL)
5502
                return NULL;
5503
 
5504
        i = 0;
5505
        for_each_domain(cpu, sd) {
5506
                snprintf(buf, 32, "domain%d", i);
5507
                entry->procname = kstrdup(buf, GFP_KERNEL);
5508
                entry->mode = 0555;
5509
                entry->child = sd_alloc_ctl_domain_table(sd);
5510
                entry++;
5511
                i++;
5512
        }
5513
        return table;
5514
}
5515
 
5516
static struct ctl_table_header *sd_sysctl_header;
5517
static void register_sched_domain_sysctl(void)
5518
{
5519
        int i, cpu_num = num_online_cpus();
5520
        struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5521
        char buf[32];
5522
 
5523
        WARN_ON(sd_ctl_dir[0].child);
5524
        sd_ctl_dir[0].child = entry;
5525
 
5526
        if (entry == NULL)
5527
                return;
5528
 
5529
        for_each_online_cpu(i) {
5530
                snprintf(buf, 32, "cpu%d", i);
5531
                entry->procname = kstrdup(buf, GFP_KERNEL);
5532
                entry->mode = 0555;
5533
                entry->child = sd_alloc_ctl_cpu_table(i);
5534
                entry++;
5535
        }
5536
 
5537
        WARN_ON(sd_sysctl_header);
5538
        sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5539
}
5540
 
5541
/* may be called multiple times per register */
5542
static void unregister_sched_domain_sysctl(void)
5543
{
5544
        if (sd_sysctl_header)
5545
                unregister_sysctl_table(sd_sysctl_header);
5546
        sd_sysctl_header = NULL;
5547
        if (sd_ctl_dir[0].child)
5548
                sd_free_ctl_entry(&sd_ctl_dir[0].child);
5549
}
5550
#else
5551
static void register_sched_domain_sysctl(void)
5552
{
5553
}
5554
static void unregister_sched_domain_sysctl(void)
5555
{
5556
}
5557
#endif
5558
 
5559
/*
5560
 * migration_call - callback that gets triggered when a CPU is added.
5561
 * Here we can start up the necessary migration thread for the new CPU.
5562
 */
5563
static int __cpuinit
5564
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5565
{
5566
        struct task_struct *p;
5567
        int cpu = (long)hcpu;
5568
        unsigned long flags;
5569
        struct rq *rq;
5570
 
5571
        switch (action) {
5572
        case CPU_LOCK_ACQUIRE:
5573
                mutex_lock(&sched_hotcpu_mutex);
5574
                break;
5575
 
5576
        case CPU_UP_PREPARE:
5577
        case CPU_UP_PREPARE_FROZEN:
5578
                p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5579
                if (IS_ERR(p))
5580
                        return NOTIFY_BAD;
5581
                kthread_bind(p, cpu);
5582
                /* Must be high prio: stop_machine expects to yield to it. */
5583
                rq = task_rq_lock(p, &flags);
5584
                __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5585
                task_rq_unlock(rq, &flags);
5586
                cpu_rq(cpu)->migration_thread = p;
5587
                break;
5588
 
5589
        case CPU_ONLINE:
5590
        case CPU_ONLINE_FROZEN:
5591
                /* Strictly unnecessary, as first user will wake it. */
5592
                wake_up_process(cpu_rq(cpu)->migration_thread);
5593
                break;
5594
 
5595
#ifdef CONFIG_HOTPLUG_CPU
5596
        case CPU_UP_CANCELED:
5597
        case CPU_UP_CANCELED_FROZEN:
5598
                if (!cpu_rq(cpu)->migration_thread)
5599
                        break;
5600
                /* Unbind it from offline cpu so it can run. Fall thru. */
5601
                kthread_bind(cpu_rq(cpu)->migration_thread,
5602
                             any_online_cpu(cpu_online_map));
5603
                kthread_stop(cpu_rq(cpu)->migration_thread);
5604
                cpu_rq(cpu)->migration_thread = NULL;
5605
                break;
5606
 
5607
        case CPU_DEAD:
5608
        case CPU_DEAD_FROZEN:
5609
                cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5610
                migrate_live_tasks(cpu);
5611
                rq = cpu_rq(cpu);
5612
                kthread_stop(rq->migration_thread);
5613
                rq->migration_thread = NULL;
5614
                /* Idle task back to normal (off runqueue, low prio) */
5615
                spin_lock_irq(&rq->lock);
5616
                update_rq_clock(rq);
5617
                deactivate_task(rq, rq->idle, 0);
5618
                rq->idle->static_prio = MAX_PRIO;
5619
                __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5620
                rq->idle->sched_class = &idle_sched_class;
5621
                migrate_dead_tasks(cpu);
5622
                spin_unlock_irq(&rq->lock);
5623
                cpuset_unlock();
5624
                migrate_nr_uninterruptible(rq);
5625
                BUG_ON(rq->nr_running != 0);
5626
 
5627
                /*
5628
                 * No need to migrate the tasks: it was best-effort if
5629
                 * they didn't take sched_hotcpu_mutex. Just wake up
5630
                 * the requestors.
5631
                 */
5632
                spin_lock_irq(&rq->lock);
5633
                while (!list_empty(&rq->migration_queue)) {
5634
                        struct migration_req *req;
5635
 
5636
                        req = list_entry(rq->migration_queue.next,
5637
                                         struct migration_req, list);
5638
                        list_del_init(&req->list);
5639
                        complete(&req->done);
5640
                }
5641
                spin_unlock_irq(&rq->lock);
5642
                break;
5643
#endif
5644
        case CPU_LOCK_RELEASE:
5645
                mutex_unlock(&sched_hotcpu_mutex);
5646
                break;
5647
        }
5648
        return NOTIFY_OK;
5649
}
5650
 
5651
/* Register at highest priority so that task migration (migrate_all_tasks)
5652
 * happens before everything else.
5653
 */
5654
static struct notifier_block __cpuinitdata migration_notifier = {
5655
        .notifier_call = migration_call,
5656
        .priority = 10
5657
};
5658
 
5659
void __init migration_init(void)
5660
{
5661
        void *cpu = (void *)(long)smp_processor_id();
5662
        int err;
5663
 
5664
        /* Start one for the boot CPU: */
5665
        err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5666
        BUG_ON(err == NOTIFY_BAD);
5667
        migration_call(&migration_notifier, CPU_ONLINE, cpu);
5668
        register_cpu_notifier(&migration_notifier);
5669
}
5670
#endif
5671
 
5672
#ifdef CONFIG_SMP
5673
 
5674
/* Number of possible processor ids */
5675
int nr_cpu_ids __read_mostly = NR_CPUS;
5676
EXPORT_SYMBOL(nr_cpu_ids);
5677
 
5678
#ifdef CONFIG_SCHED_DEBUG
5679
 
5680
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
5681
{
5682
        struct sched_group *group = sd->groups;
5683
        cpumask_t groupmask;
5684
        char str[NR_CPUS];
5685
 
5686
        cpumask_scnprintf(str, NR_CPUS, sd->span);
5687
        cpus_clear(groupmask);
5688
 
5689
        printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5690
 
5691
        if (!(sd->flags & SD_LOAD_BALANCE)) {
5692
                printk("does not load-balance\n");
5693
                if (sd->parent)
5694
                        printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5695
                                        " has parent");
5696
                return -1;
5697
        }
5698
 
5699
        printk(KERN_CONT "span %s\n", str);
5700
 
5701
        if (!cpu_isset(cpu, sd->span)) {
5702
                printk(KERN_ERR "ERROR: domain->span does not contain "
5703
                                "CPU%d\n", cpu);
5704
        }
5705
        if (!cpu_isset(cpu, group->cpumask)) {
5706
                printk(KERN_ERR "ERROR: domain->groups does not contain"
5707
                                " CPU%d\n", cpu);
5708
        }
5709
 
5710
        printk(KERN_DEBUG "%*s groups:", level + 1, "");
5711
        do {
5712
                if (!group) {
5713
                        printk("\n");
5714
                        printk(KERN_ERR "ERROR: group is NULL\n");
5715
                        break;
5716
                }
5717
 
5718
                if (!group->__cpu_power) {
5719
                        printk(KERN_CONT "\n");
5720
                        printk(KERN_ERR "ERROR: domain->cpu_power not "
5721
                                        "set\n");
5722
                        break;
5723
                }
5724
 
5725
                if (!cpus_weight(group->cpumask)) {
5726
                        printk(KERN_CONT "\n");
5727
                        printk(KERN_ERR "ERROR: empty group\n");
5728
                        break;
5729
                }
5730
 
5731
                if (cpus_intersects(groupmask, group->cpumask)) {
5732
                        printk(KERN_CONT "\n");
5733
                        printk(KERN_ERR "ERROR: repeated CPUs\n");
5734
                        break;
5735
                }
5736
 
5737
                cpus_or(groupmask, groupmask, group->cpumask);
5738
 
5739
                cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5740
                printk(KERN_CONT " %s", str);
5741
 
5742
                group = group->next;
5743
        } while (group != sd->groups);
5744
        printk(KERN_CONT "\n");
5745
 
5746
        if (!cpus_equal(sd->span, groupmask))
5747
                printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5748
 
5749
        if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5750
                printk(KERN_ERR "ERROR: parent span is not a superset "
5751
                        "of domain->span\n");
5752
        return 0;
5753
}
5754
 
5755
static void sched_domain_debug(struct sched_domain *sd, int cpu)
5756
{
5757
        int level = 0;
5758
 
5759
        if (!sd) {
5760
                printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5761
                return;
5762
        }
5763
 
5764
        printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5765
 
5766
        for (;;) {
5767
                if (sched_domain_debug_one(sd, cpu, level))
5768
                        break;
5769
                level++;
5770
                sd = sd->parent;
5771
                if (!sd)
5772
                        break;
5773
        }
5774
}
5775
#else
5776
# define sched_domain_debug(sd, cpu) do { } while (0)
5777
#endif
5778
 
5779
static int sd_degenerate(struct sched_domain *sd)
5780
{
5781
        if (cpus_weight(sd->span) == 1)
5782
                return 1;
5783
 
5784
        /* Following flags need at least 2 groups */
5785
        if (sd->flags & (SD_LOAD_BALANCE |
5786
                         SD_BALANCE_NEWIDLE |
5787
                         SD_BALANCE_FORK |
5788
                         SD_BALANCE_EXEC |
5789
                         SD_SHARE_CPUPOWER |
5790
                         SD_SHARE_PKG_RESOURCES)) {
5791
                if (sd->groups != sd->groups->next)
5792
                        return 0;
5793
        }
5794
 
5795
        /* Following flags don't use groups */
5796
        if (sd->flags & (SD_WAKE_IDLE |
5797
                         SD_WAKE_AFFINE |
5798
                         SD_WAKE_BALANCE))
5799
                return 0;
5800
 
5801
        return 1;
5802
}
5803
 
5804
static int
5805
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5806
{
5807
        unsigned long cflags = sd->flags, pflags = parent->flags;
5808
 
5809
        if (sd_degenerate(parent))
5810
                return 1;
5811
 
5812
        if (!cpus_equal(sd->span, parent->span))
5813
                return 0;
5814
 
5815
        /* Does parent contain flags not in child? */
5816
        /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5817
        if (cflags & SD_WAKE_AFFINE)
5818
                pflags &= ~SD_WAKE_BALANCE;
5819
        /* Flags needing groups don't count if only 1 group in parent */
5820
        if (parent->groups == parent->groups->next) {
5821
                pflags &= ~(SD_LOAD_BALANCE |
5822
                                SD_BALANCE_NEWIDLE |
5823
                                SD_BALANCE_FORK |
5824
                                SD_BALANCE_EXEC |
5825
                                SD_SHARE_CPUPOWER |
5826
                                SD_SHARE_PKG_RESOURCES);
5827
        }
5828
        if (~cflags & pflags)
5829
                return 0;
5830
 
5831
        return 1;
5832
}
5833
 
5834
/*
5835
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
5836
 * hold the hotplug lock.
5837
 */
5838
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5839
{
5840
        struct rq *rq = cpu_rq(cpu);
5841
        struct sched_domain *tmp;
5842
 
5843
        /* Remove the sched domains which do not contribute to scheduling. */
5844
        for (tmp = sd; tmp; tmp = tmp->parent) {
5845
                struct sched_domain *parent = tmp->parent;
5846
                if (!parent)
5847
                        break;
5848
                if (sd_parent_degenerate(tmp, parent)) {
5849
                        tmp->parent = parent->parent;
5850
                        if (parent->parent)
5851
                                parent->parent->child = tmp;
5852
                }
5853
        }
5854
 
5855
        if (sd && sd_degenerate(sd)) {
5856
                sd = sd->parent;
5857
                if (sd)
5858
                        sd->child = NULL;
5859
        }
5860
 
5861
        sched_domain_debug(sd, cpu);
5862
 
5863
        rcu_assign_pointer(rq->sd, sd);
5864
}
5865
 
5866
/* cpus with isolated domains */
5867
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5868
 
5869
/* Setup the mask of cpus configured for isolated domains */
5870
static int __init isolated_cpu_setup(char *str)
5871
{
5872
        int ints[NR_CPUS], i;
5873
 
5874
        str = get_options(str, ARRAY_SIZE(ints), ints);
5875
        cpus_clear(cpu_isolated_map);
5876
        for (i = 1; i <= ints[0]; i++)
5877
                if (ints[i] < NR_CPUS)
5878
                        cpu_set(ints[i], cpu_isolated_map);
5879
        return 1;
5880
}
5881
 
5882
__setup("isolcpus=", isolated_cpu_setup);
5883
 
5884
/*
5885
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5886
 * to a function which identifies what group(along with sched group) a CPU
5887
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5888
 * (due to the fact that we keep track of groups covered with a cpumask_t).
5889
 *
5890
 * init_sched_build_groups will build a circular linked list of the groups
5891
 * covered by the given span, and will set each group's ->cpumask correctly,
5892
 * and ->cpu_power to 0.
5893
 */
5894
static void
5895
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5896
                        int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5897
                                        struct sched_group **sg))
5898
{
5899
        struct sched_group *first = NULL, *last = NULL;
5900
        cpumask_t covered = CPU_MASK_NONE;
5901
        int i;
5902
 
5903
        for_each_cpu_mask(i, span) {
5904
                struct sched_group *sg;
5905
                int group = group_fn(i, cpu_map, &sg);
5906
                int j;
5907
 
5908
                if (cpu_isset(i, covered))
5909
                        continue;
5910
 
5911
                sg->cpumask = CPU_MASK_NONE;
5912
                sg->__cpu_power = 0;
5913
 
5914
                for_each_cpu_mask(j, span) {
5915
                        if (group_fn(j, cpu_map, NULL) != group)
5916
                                continue;
5917
 
5918
                        cpu_set(j, covered);
5919
                        cpu_set(j, sg->cpumask);
5920
                }
5921
                if (!first)
5922
                        first = sg;
5923
                if (last)
5924
                        last->next = sg;
5925
                last = sg;
5926
        }
5927
        last->next = first;
5928
}
5929
 
5930
#define SD_NODES_PER_DOMAIN 16
5931
 
5932
#ifdef CONFIG_NUMA
5933
 
5934
/**
5935
 * find_next_best_node - find the next node to include in a sched_domain
5936
 * @node: node whose sched_domain we're building
5937
 * @used_nodes: nodes already in the sched_domain
5938
 *
5939
 * Find the next node to include in a given scheduling domain. Simply
5940
 * finds the closest node not already in the @used_nodes map.
5941
 *
5942
 * Should use nodemask_t.
5943
 */
5944
static int find_next_best_node(int node, unsigned long *used_nodes)
5945
{
5946
        int i, n, val, min_val, best_node = 0;
5947
 
5948
        min_val = INT_MAX;
5949
 
5950
        for (i = 0; i < MAX_NUMNODES; i++) {
5951
                /* Start at @node */
5952
                n = (node + i) % MAX_NUMNODES;
5953
 
5954
                if (!nr_cpus_node(n))
5955
                        continue;
5956
 
5957
                /* Skip already used nodes */
5958
                if (test_bit(n, used_nodes))
5959
                        continue;
5960
 
5961
                /* Simple min distance search */
5962
                val = node_distance(node, n);
5963
 
5964
                if (val < min_val) {
5965
                        min_val = val;
5966
                        best_node = n;
5967
                }
5968
        }
5969
 
5970
        set_bit(best_node, used_nodes);
5971
        return best_node;
5972
}
5973
 
5974
/**
5975
 * sched_domain_node_span - get a cpumask for a node's sched_domain
5976
 * @node: node whose cpumask we're constructing
5977
 * @size: number of nodes to include in this span
5978
 *
5979
 * Given a node, construct a good cpumask for its sched_domain to span. It
5980
 * should be one that prevents unnecessary balancing, but also spreads tasks
5981
 * out optimally.
5982
 */
5983
static cpumask_t sched_domain_node_span(int node)
5984
{
5985
        DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5986
        cpumask_t span, nodemask;
5987
        int i;
5988
 
5989
        cpus_clear(span);
5990
        bitmap_zero(used_nodes, MAX_NUMNODES);
5991
 
5992
        nodemask = node_to_cpumask(node);
5993
        cpus_or(span, span, nodemask);
5994
        set_bit(node, used_nodes);
5995
 
5996
        for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5997
                int next_node = find_next_best_node(node, used_nodes);
5998
 
5999
                nodemask = node_to_cpumask(next_node);
6000
                cpus_or(span, span, nodemask);
6001
        }
6002
 
6003
        return span;
6004
}
6005
#endif
6006
 
6007
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6008
 
6009
/*
6010
 * SMT sched-domains:
6011
 */
6012
#ifdef CONFIG_SCHED_SMT
6013
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6014
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6015
 
6016
static int
6017
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6018
{
6019
        if (sg)
6020
                *sg = &per_cpu(sched_group_cpus, cpu);
6021
        return cpu;
6022
}
6023
#endif
6024
 
6025
/*
6026
 * multi-core sched-domains:
6027
 */
6028
#ifdef CONFIG_SCHED_MC
6029
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6030
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6031
#endif
6032
 
6033
#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6034
static int
6035
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6036
{
6037
        int group;
6038
        cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6039
        cpus_and(mask, mask, *cpu_map);
6040
        group = first_cpu(mask);
6041
        if (sg)
6042
                *sg = &per_cpu(sched_group_core, group);
6043
        return group;
6044
}
6045
#elif defined(CONFIG_SCHED_MC)
6046
static int
6047
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6048
{
6049
        if (sg)
6050
                *sg = &per_cpu(sched_group_core, cpu);
6051
        return cpu;
6052
}
6053
#endif
6054
 
6055
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6056
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6057
 
6058
static int
6059
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6060
{
6061
        int group;
6062
#ifdef CONFIG_SCHED_MC
6063
        cpumask_t mask = cpu_coregroup_map(cpu);
6064
        cpus_and(mask, mask, *cpu_map);
6065
        group = first_cpu(mask);
6066
#elif defined(CONFIG_SCHED_SMT)
6067
        cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6068
        cpus_and(mask, mask, *cpu_map);
6069
        group = first_cpu(mask);
6070
#else
6071
        group = cpu;
6072
#endif
6073
        if (sg)
6074
                *sg = &per_cpu(sched_group_phys, group);
6075
        return group;
6076
}
6077
 
6078
#ifdef CONFIG_NUMA
6079
/*
6080
 * The init_sched_build_groups can't handle what we want to do with node
6081
 * groups, so roll our own. Now each node has its own list of groups which
6082
 * gets dynamically allocated.
6083
 */
6084
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6085
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6086
 
6087
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6088
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6089
 
6090
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6091
                                 struct sched_group **sg)
6092
{
6093
        cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6094
        int group;
6095
 
6096
        cpus_and(nodemask, nodemask, *cpu_map);
6097
        group = first_cpu(nodemask);
6098
 
6099
        if (sg)
6100
                *sg = &per_cpu(sched_group_allnodes, group);
6101
        return group;
6102
}
6103
 
6104
static void init_numa_sched_groups_power(struct sched_group *group_head)
6105
{
6106
        struct sched_group *sg = group_head;
6107
        int j;
6108
 
6109
        if (!sg)
6110
                return;
6111
        do {
6112
                for_each_cpu_mask(j, sg->cpumask) {
6113
                        struct sched_domain *sd;
6114
 
6115
                        sd = &per_cpu(phys_domains, j);
6116
                        if (j != first_cpu(sd->groups->cpumask)) {
6117
                                /*
6118
                                 * Only add "power" once for each
6119
                                 * physical package.
6120
                                 */
6121
                                continue;
6122
                        }
6123
 
6124
                        sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6125
                }
6126
                sg = sg->next;
6127
        } while (sg != group_head);
6128
}
6129
#endif
6130
 
6131
#ifdef CONFIG_NUMA
6132
/* Free memory allocated for various sched_group structures */
6133
static void free_sched_groups(const cpumask_t *cpu_map)
6134
{
6135
        int cpu, i;
6136
 
6137
        for_each_cpu_mask(cpu, *cpu_map) {
6138
                struct sched_group **sched_group_nodes
6139
                        = sched_group_nodes_bycpu[cpu];
6140
 
6141
                if (!sched_group_nodes)
6142
                        continue;
6143
 
6144
                for (i = 0; i < MAX_NUMNODES; i++) {
6145
                        cpumask_t nodemask = node_to_cpumask(i);
6146
                        struct sched_group *oldsg, *sg = sched_group_nodes[i];
6147
 
6148
                        cpus_and(nodemask, nodemask, *cpu_map);
6149
                        if (cpus_empty(nodemask))
6150
                                continue;
6151
 
6152
                        if (sg == NULL)
6153
                                continue;
6154
                        sg = sg->next;
6155
next_sg:
6156
                        oldsg = sg;
6157
                        sg = sg->next;
6158
                        kfree(oldsg);
6159
                        if (oldsg != sched_group_nodes[i])
6160
                                goto next_sg;
6161
                }
6162
                kfree(sched_group_nodes);
6163
                sched_group_nodes_bycpu[cpu] = NULL;
6164
        }
6165
}
6166
#else
6167
static void free_sched_groups(const cpumask_t *cpu_map)
6168
{
6169
}
6170
#endif
6171
 
6172
/*
6173
 * Initialize sched groups cpu_power.
6174
 *
6175
 * cpu_power indicates the capacity of sched group, which is used while
6176
 * distributing the load between different sched groups in a sched domain.
6177
 * Typically cpu_power for all the groups in a sched domain will be same unless
6178
 * there are asymmetries in the topology. If there are asymmetries, group
6179
 * having more cpu_power will pickup more load compared to the group having
6180
 * less cpu_power.
6181
 *
6182
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6183
 * the maximum number of tasks a group can handle in the presence of other idle
6184
 * or lightly loaded groups in the same sched domain.
6185
 */
6186
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6187
{
6188
        struct sched_domain *child;
6189
        struct sched_group *group;
6190
 
6191
        WARN_ON(!sd || !sd->groups);
6192
 
6193
        if (cpu != first_cpu(sd->groups->cpumask))
6194
                return;
6195
 
6196
        child = sd->child;
6197
 
6198
        sd->groups->__cpu_power = 0;
6199
 
6200
        /*
6201
         * For perf policy, if the groups in child domain share resources
6202
         * (for example cores sharing some portions of the cache hierarchy
6203
         * or SMT), then set this domain groups cpu_power such that each group
6204
         * can handle only one task, when there are other idle groups in the
6205
         * same sched domain.
6206
         */
6207
        if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6208
                       (child->flags &
6209
                        (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6210
                sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6211
                return;
6212
        }
6213
 
6214
        /*
6215
         * add cpu_power of each child group to this groups cpu_power
6216
         */
6217
        group = child->groups;
6218
        do {
6219
                sg_inc_cpu_power(sd->groups, group->__cpu_power);
6220
                group = group->next;
6221
        } while (group != child->groups);
6222
}
6223
 
6224
/*
6225
 * Build sched domains for a given set of cpus and attach the sched domains
6226
 * to the individual cpus
6227
 */
6228
static int build_sched_domains(const cpumask_t *cpu_map)
6229
{
6230
        int i;
6231
#ifdef CONFIG_NUMA
6232
        struct sched_group **sched_group_nodes = NULL;
6233
        int sd_allnodes = 0;
6234
 
6235
        /*
6236
         * Allocate the per-node list of sched groups
6237
         */
6238
        sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6239
                                    GFP_KERNEL);
6240
        if (!sched_group_nodes) {
6241
                printk(KERN_WARNING "Can not alloc sched group node list\n");
6242
                return -ENOMEM;
6243
        }
6244
        sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6245
#endif
6246
 
6247
        /*
6248
         * Set up domains for cpus specified by the cpu_map.
6249
         */
6250
        for_each_cpu_mask(i, *cpu_map) {
6251
                struct sched_domain *sd = NULL, *p;
6252
                cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6253
 
6254
                cpus_and(nodemask, nodemask, *cpu_map);
6255
 
6256
#ifdef CONFIG_NUMA
6257
                if (cpus_weight(*cpu_map) >
6258
                                SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6259
                        sd = &per_cpu(allnodes_domains, i);
6260
                        *sd = SD_ALLNODES_INIT;
6261
                        sd->span = *cpu_map;
6262
                        cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6263
                        p = sd;
6264
                        sd_allnodes = 1;
6265
                } else
6266
                        p = NULL;
6267
 
6268
                sd = &per_cpu(node_domains, i);
6269
                *sd = SD_NODE_INIT;
6270
                sd->span = sched_domain_node_span(cpu_to_node(i));
6271
                sd->parent = p;
6272
                if (p)
6273
                        p->child = sd;
6274
                cpus_and(sd->span, sd->span, *cpu_map);
6275
#endif
6276
 
6277
                p = sd;
6278
                sd = &per_cpu(phys_domains, i);
6279
                *sd = SD_CPU_INIT;
6280
                sd->span = nodemask;
6281
                sd->parent = p;
6282
                if (p)
6283
                        p->child = sd;
6284
                cpu_to_phys_group(i, cpu_map, &sd->groups);
6285
 
6286
#ifdef CONFIG_SCHED_MC
6287
                p = sd;
6288
                sd = &per_cpu(core_domains, i);
6289
                *sd = SD_MC_INIT;
6290
                sd->span = cpu_coregroup_map(i);
6291
                cpus_and(sd->span, sd->span, *cpu_map);
6292
                sd->parent = p;
6293
                p->child = sd;
6294
                cpu_to_core_group(i, cpu_map, &sd->groups);
6295
#endif
6296
 
6297
#ifdef CONFIG_SCHED_SMT
6298
                p = sd;
6299
                sd = &per_cpu(cpu_domains, i);
6300
                *sd = SD_SIBLING_INIT;
6301
                sd->span = per_cpu(cpu_sibling_map, i);
6302
                cpus_and(sd->span, sd->span, *cpu_map);
6303
                sd->parent = p;
6304
                p->child = sd;
6305
                cpu_to_cpu_group(i, cpu_map, &sd->groups);
6306
#endif
6307
        }
6308
 
6309
#ifdef CONFIG_SCHED_SMT
6310
        /* Set up CPU (sibling) groups */
6311
        for_each_cpu_mask(i, *cpu_map) {
6312
                cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6313
                cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6314
                if (i != first_cpu(this_sibling_map))
6315
                        continue;
6316
 
6317
                init_sched_build_groups(this_sibling_map, cpu_map,
6318
                                        &cpu_to_cpu_group);
6319
        }
6320
#endif
6321
 
6322
#ifdef CONFIG_SCHED_MC
6323
        /* Set up multi-core groups */
6324
        for_each_cpu_mask(i, *cpu_map) {
6325
                cpumask_t this_core_map = cpu_coregroup_map(i);
6326
                cpus_and(this_core_map, this_core_map, *cpu_map);
6327
                if (i != first_cpu(this_core_map))
6328
                        continue;
6329
                init_sched_build_groups(this_core_map, cpu_map,
6330
                                        &cpu_to_core_group);
6331
        }
6332
#endif
6333
 
6334
        /* Set up physical groups */
6335
        for (i = 0; i < MAX_NUMNODES; i++) {
6336
                cpumask_t nodemask = node_to_cpumask(i);
6337
 
6338
                cpus_and(nodemask, nodemask, *cpu_map);
6339
                if (cpus_empty(nodemask))
6340
                        continue;
6341
 
6342
                init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6343
        }
6344
 
6345
#ifdef CONFIG_NUMA
6346
        /* Set up node groups */
6347
        if (sd_allnodes)
6348
                init_sched_build_groups(*cpu_map, cpu_map,
6349
                                        &cpu_to_allnodes_group);
6350
 
6351
        for (i = 0; i < MAX_NUMNODES; i++) {
6352
                /* Set up node groups */
6353
                struct sched_group *sg, *prev;
6354
                cpumask_t nodemask = node_to_cpumask(i);
6355
                cpumask_t domainspan;
6356
                cpumask_t covered = CPU_MASK_NONE;
6357
                int j;
6358
 
6359
                cpus_and(nodemask, nodemask, *cpu_map);
6360
                if (cpus_empty(nodemask)) {
6361
                        sched_group_nodes[i] = NULL;
6362
                        continue;
6363
                }
6364
 
6365
                domainspan = sched_domain_node_span(i);
6366
                cpus_and(domainspan, domainspan, *cpu_map);
6367
 
6368
                sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6369
                if (!sg) {
6370
                        printk(KERN_WARNING "Can not alloc domain group for "
6371
                                "node %d\n", i);
6372
                        goto error;
6373
                }
6374
                sched_group_nodes[i] = sg;
6375
                for_each_cpu_mask(j, nodemask) {
6376
                        struct sched_domain *sd;
6377
 
6378
                        sd = &per_cpu(node_domains, j);
6379
                        sd->groups = sg;
6380
                }
6381
                sg->__cpu_power = 0;
6382
                sg->cpumask = nodemask;
6383
                sg->next = sg;
6384
                cpus_or(covered, covered, nodemask);
6385
                prev = sg;
6386
 
6387
                for (j = 0; j < MAX_NUMNODES; j++) {
6388
                        cpumask_t tmp, notcovered;
6389
                        int n = (i + j) % MAX_NUMNODES;
6390
 
6391
                        cpus_complement(notcovered, covered);
6392
                        cpus_and(tmp, notcovered, *cpu_map);
6393
                        cpus_and(tmp, tmp, domainspan);
6394
                        if (cpus_empty(tmp))
6395
                                break;
6396
 
6397
                        nodemask = node_to_cpumask(n);
6398
                        cpus_and(tmp, tmp, nodemask);
6399
                        if (cpus_empty(tmp))
6400
                                continue;
6401
 
6402
                        sg = kmalloc_node(sizeof(struct sched_group),
6403
                                          GFP_KERNEL, i);
6404
                        if (!sg) {
6405
                                printk(KERN_WARNING
6406
                                "Can not alloc domain group for node %d\n", j);
6407
                                goto error;
6408
                        }
6409
                        sg->__cpu_power = 0;
6410
                        sg->cpumask = tmp;
6411
                        sg->next = prev->next;
6412
                        cpus_or(covered, covered, tmp);
6413
                        prev->next = sg;
6414
                        prev = sg;
6415
                }
6416
        }
6417
#endif
6418
 
6419
        /* Calculate CPU power for physical packages and nodes */
6420
#ifdef CONFIG_SCHED_SMT
6421
        for_each_cpu_mask(i, *cpu_map) {
6422
                struct sched_domain *sd = &per_cpu(cpu_domains, i);
6423
 
6424
                init_sched_groups_power(i, sd);
6425
        }
6426
#endif
6427
#ifdef CONFIG_SCHED_MC
6428
        for_each_cpu_mask(i, *cpu_map) {
6429
                struct sched_domain *sd = &per_cpu(core_domains, i);
6430
 
6431
                init_sched_groups_power(i, sd);
6432
        }
6433
#endif
6434
 
6435
        for_each_cpu_mask(i, *cpu_map) {
6436
                struct sched_domain *sd = &per_cpu(phys_domains, i);
6437
 
6438
                init_sched_groups_power(i, sd);
6439
        }
6440
 
6441
#ifdef CONFIG_NUMA
6442
        for (i = 0; i < MAX_NUMNODES; i++)
6443
                init_numa_sched_groups_power(sched_group_nodes[i]);
6444
 
6445
        if (sd_allnodes) {
6446
                struct sched_group *sg;
6447
 
6448
                cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6449
                init_numa_sched_groups_power(sg);
6450
        }
6451
#endif
6452
 
6453
        /* Attach the domains */
6454
        for_each_cpu_mask(i, *cpu_map) {
6455
                struct sched_domain *sd;
6456
#ifdef CONFIG_SCHED_SMT
6457
                sd = &per_cpu(cpu_domains, i);
6458
#elif defined(CONFIG_SCHED_MC)
6459
                sd = &per_cpu(core_domains, i);
6460
#else
6461
                sd = &per_cpu(phys_domains, i);
6462
#endif
6463
                cpu_attach_domain(sd, i);
6464
        }
6465
 
6466
        return 0;
6467
 
6468
#ifdef CONFIG_NUMA
6469
error:
6470
        free_sched_groups(cpu_map);
6471
        return -ENOMEM;
6472
#endif
6473
}
6474
 
6475
static cpumask_t *doms_cur;     /* current sched domains */
6476
static int ndoms_cur;           /* number of sched domains in 'doms_cur' */
6477
 
6478
/*
6479
 * Special case: If a kmalloc of a doms_cur partition (array of
6480
 * cpumask_t) fails, then fallback to a single sched domain,
6481
 * as determined by the single cpumask_t fallback_doms.
6482
 */
6483
static cpumask_t fallback_doms;
6484
 
6485
/*
6486
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6487
 * For now this just excludes isolated cpus, but could be used to
6488
 * exclude other special cases in the future.
6489
 */
6490
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6491
{
6492
        int err;
6493
 
6494
        ndoms_cur = 1;
6495
        doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6496
        if (!doms_cur)
6497
                doms_cur = &fallback_doms;
6498
        cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6499
        err = build_sched_domains(doms_cur);
6500
        register_sched_domain_sysctl();
6501
 
6502
        return err;
6503
}
6504
 
6505
static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6506
{
6507
        free_sched_groups(cpu_map);
6508
}
6509
 
6510
/*
6511
 * Detach sched domains from a group of cpus specified in cpu_map
6512
 * These cpus will now be attached to the NULL domain
6513
 */
6514
static void detach_destroy_domains(const cpumask_t *cpu_map)
6515
{
6516
        int i;
6517
 
6518
        unregister_sched_domain_sysctl();
6519
 
6520
        for_each_cpu_mask(i, *cpu_map)
6521
                cpu_attach_domain(NULL, i);
6522
        synchronize_sched();
6523
        arch_destroy_sched_domains(cpu_map);
6524
}
6525
 
6526
/*
6527
 * Partition sched domains as specified by the 'ndoms_new'
6528
 * cpumasks in the array doms_new[] of cpumasks. This compares
6529
 * doms_new[] to the current sched domain partitioning, doms_cur[].
6530
 * It destroys each deleted domain and builds each new domain.
6531
 *
6532
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6533
 * The masks don't intersect (don't overlap.) We should setup one
6534
 * sched domain for each mask. CPUs not in any of the cpumasks will
6535
 * not be load balanced. If the same cpumask appears both in the
6536
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6537
 * it as it is.
6538
 *
6539
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6540
 * ownership of it and will kfree it when done with it. If the caller
6541
 * failed the kmalloc call, then it can pass in doms_new == NULL,
6542
 * and partition_sched_domains() will fallback to the single partition
6543
 * 'fallback_doms'.
6544
 *
6545
 * Call with hotplug lock held
6546
 */
6547
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6548
{
6549
        int i, j;
6550
 
6551
        /* always unregister in case we don't destroy any domains */
6552
        unregister_sched_domain_sysctl();
6553
 
6554
        if (doms_new == NULL) {
6555
                ndoms_new = 1;
6556
                doms_new = &fallback_doms;
6557
                cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6558
        }
6559
 
6560
        /* Destroy deleted domains */
6561
        for (i = 0; i < ndoms_cur; i++) {
6562
                for (j = 0; j < ndoms_new; j++) {
6563
                        if (cpus_equal(doms_cur[i], doms_new[j]))
6564
                                goto match1;
6565
                }
6566
                /* no match - a current sched domain not in new doms_new[] */
6567
                detach_destroy_domains(doms_cur + i);
6568
match1:
6569
                ;
6570
        }
6571
 
6572
        /* Build new domains */
6573
        for (i = 0; i < ndoms_new; i++) {
6574
                for (j = 0; j < ndoms_cur; j++) {
6575
                        if (cpus_equal(doms_new[i], doms_cur[j]))
6576
                                goto match2;
6577
                }
6578
                /* no match - add a new doms_new */
6579
                build_sched_domains(doms_new + i);
6580
match2:
6581
                ;
6582
        }
6583
 
6584
        /* Remember the new sched domains */
6585
        if (doms_cur != &fallback_doms)
6586
                kfree(doms_cur);
6587
        doms_cur = doms_new;
6588
        ndoms_cur = ndoms_new;
6589
 
6590
        register_sched_domain_sysctl();
6591
}
6592
 
6593
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6594
static int arch_reinit_sched_domains(void)
6595
{
6596
        int err;
6597
 
6598
        mutex_lock(&sched_hotcpu_mutex);
6599
        detach_destroy_domains(&cpu_online_map);
6600
        err = arch_init_sched_domains(&cpu_online_map);
6601
        mutex_unlock(&sched_hotcpu_mutex);
6602
 
6603
        return err;
6604
}
6605
 
6606
static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6607
{
6608
        int ret;
6609
 
6610
        if (buf[0] != '0' && buf[0] != '1')
6611
                return -EINVAL;
6612
 
6613
        if (smt)
6614
                sched_smt_power_savings = (buf[0] == '1');
6615
        else
6616
                sched_mc_power_savings = (buf[0] == '1');
6617
 
6618
        ret = arch_reinit_sched_domains();
6619
 
6620
        return ret ? ret : count;
6621
}
6622
 
6623
#ifdef CONFIG_SCHED_MC
6624
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6625
{
6626
        return sprintf(page, "%u\n", sched_mc_power_savings);
6627
}
6628
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6629
                                            const char *buf, size_t count)
6630
{
6631
        return sched_power_savings_store(buf, count, 0);
6632
}
6633
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6634
                   sched_mc_power_savings_store);
6635
#endif
6636
 
6637
#ifdef CONFIG_SCHED_SMT
6638
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6639
{
6640
        return sprintf(page, "%u\n", sched_smt_power_savings);
6641
}
6642
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6643
                                             const char *buf, size_t count)
6644
{
6645
        return sched_power_savings_store(buf, count, 1);
6646
}
6647
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6648
                   sched_smt_power_savings_store);
6649
#endif
6650
 
6651
int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6652
{
6653
        int err = 0;
6654
 
6655
#ifdef CONFIG_SCHED_SMT
6656
        if (smt_capable())
6657
                err = sysfs_create_file(&cls->kset.kobj,
6658
                                        &attr_sched_smt_power_savings.attr);
6659
#endif
6660
#ifdef CONFIG_SCHED_MC
6661
        if (!err && mc_capable())
6662
                err = sysfs_create_file(&cls->kset.kobj,
6663
                                        &attr_sched_mc_power_savings.attr);
6664
#endif
6665
        return err;
6666
}
6667
#endif
6668
 
6669
/*
6670
 * Force a reinitialization of the sched domains hierarchy. The domains
6671
 * and groups cannot be updated in place without racing with the balancing
6672
 * code, so we temporarily attach all running cpus to the NULL domain
6673
 * which will prevent rebalancing while the sched domains are recalculated.
6674
 */
6675
static int update_sched_domains(struct notifier_block *nfb,
6676
                                unsigned long action, void *hcpu)
6677
{
6678
        switch (action) {
6679
        case CPU_UP_PREPARE:
6680
        case CPU_UP_PREPARE_FROZEN:
6681
        case CPU_DOWN_PREPARE:
6682
        case CPU_DOWN_PREPARE_FROZEN:
6683
                detach_destroy_domains(&cpu_online_map);
6684
                return NOTIFY_OK;
6685
 
6686
        case CPU_UP_CANCELED:
6687
        case CPU_UP_CANCELED_FROZEN:
6688
        case CPU_DOWN_FAILED:
6689
        case CPU_DOWN_FAILED_FROZEN:
6690
        case CPU_ONLINE:
6691
        case CPU_ONLINE_FROZEN:
6692
        case CPU_DEAD:
6693
        case CPU_DEAD_FROZEN:
6694
                /*
6695
                 * Fall through and re-initialise the domains.
6696
                 */
6697
                break;
6698
        default:
6699
                return NOTIFY_DONE;
6700
        }
6701
 
6702
        /* The hotplug lock is already held by cpu_up/cpu_down */
6703
        arch_init_sched_domains(&cpu_online_map);
6704
 
6705
        return NOTIFY_OK;
6706
}
6707
 
6708
void __init sched_init_smp(void)
6709
{
6710
        cpumask_t non_isolated_cpus;
6711
 
6712
        mutex_lock(&sched_hotcpu_mutex);
6713
        arch_init_sched_domains(&cpu_online_map);
6714
        cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6715
        if (cpus_empty(non_isolated_cpus))
6716
                cpu_set(smp_processor_id(), non_isolated_cpus);
6717
        mutex_unlock(&sched_hotcpu_mutex);
6718
        /* XXX: Theoretical race here - CPU may be hotplugged now */
6719
        hotcpu_notifier(update_sched_domains, 0);
6720
 
6721
        /* Move init over to a non-isolated CPU */
6722
        if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6723
                BUG();
6724
        sched_init_granularity();
6725
}
6726
#else
6727
void __init sched_init_smp(void)
6728
{
6729
        sched_init_granularity();
6730
}
6731
#endif /* CONFIG_SMP */
6732
 
6733
int in_sched_functions(unsigned long addr)
6734
{
6735
        return in_lock_functions(addr) ||
6736
                (addr >= (unsigned long)__sched_text_start
6737
                && addr < (unsigned long)__sched_text_end);
6738
}
6739
 
6740
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6741
{
6742
        cfs_rq->tasks_timeline = RB_ROOT;
6743
#ifdef CONFIG_FAIR_GROUP_SCHED
6744
        cfs_rq->rq = rq;
6745
#endif
6746
        cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6747
}
6748
 
6749
void __init sched_init(void)
6750
{
6751
        int highest_cpu = 0;
6752
        int i, j;
6753
 
6754
        for_each_possible_cpu(i) {
6755
                struct rt_prio_array *array;
6756
                struct rq *rq;
6757
 
6758
                rq = cpu_rq(i);
6759
                spin_lock_init(&rq->lock);
6760
                lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6761
                rq->nr_running = 0;
6762
                rq->clock = 1;
6763
                init_cfs_rq(&rq->cfs, rq);
6764
#ifdef CONFIG_FAIR_GROUP_SCHED
6765
                INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6766
                {
6767
                        struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6768
                        struct sched_entity *se =
6769
                                         &per_cpu(init_sched_entity, i);
6770
 
6771
                        init_cfs_rq_p[i] = cfs_rq;
6772
                        init_cfs_rq(cfs_rq, rq);
6773
                        cfs_rq->tg = &init_task_group;
6774
                        list_add(&cfs_rq->leaf_cfs_rq_list,
6775
                                                         &rq->leaf_cfs_rq_list);
6776
 
6777
                        init_sched_entity_p[i] = se;
6778
                        se->cfs_rq = &rq->cfs;
6779
                        se->my_q = cfs_rq;
6780
                        se->load.weight = init_task_group_load;
6781
                        se->load.inv_weight =
6782
                                 div64_64(1ULL<<32, init_task_group_load);
6783
                        se->parent = NULL;
6784
                }
6785
                init_task_group.shares = init_task_group_load;
6786
                spin_lock_init(&init_task_group.lock);
6787
#endif
6788
 
6789
                for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6790
                        rq->cpu_load[j] = 0;
6791
#ifdef CONFIG_SMP
6792
                rq->sd = NULL;
6793
                rq->active_balance = 0;
6794
                rq->next_balance = jiffies;
6795
                rq->push_cpu = 0;
6796
                rq->cpu = i;
6797
                rq->migration_thread = NULL;
6798
                INIT_LIST_HEAD(&rq->migration_queue);
6799
#endif
6800
                atomic_set(&rq->nr_iowait, 0);
6801
 
6802
                array = &rq->rt.active;
6803
                for (j = 0; j < MAX_RT_PRIO; j++) {
6804
                        INIT_LIST_HEAD(array->queue + j);
6805
                        __clear_bit(j, array->bitmap);
6806
                }
6807
                highest_cpu = i;
6808
                /* delimiter for bitsearch: */
6809
                __set_bit(MAX_RT_PRIO, array->bitmap);
6810
        }
6811
 
6812
        set_load_weight(&init_task);
6813
 
6814
#ifdef CONFIG_PREEMPT_NOTIFIERS
6815
        INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6816
#endif
6817
 
6818
#ifdef CONFIG_SMP
6819
        nr_cpu_ids = highest_cpu + 1;
6820
        open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6821
#endif
6822
 
6823
#ifdef CONFIG_RT_MUTEXES
6824
        plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6825
#endif
6826
 
6827
        /*
6828
         * The boot idle thread does lazy MMU switching as well:
6829
         */
6830
        atomic_inc(&init_mm.mm_count);
6831
        enter_lazy_tlb(&init_mm, current);
6832
 
6833
        /*
6834
         * Make us the idle thread. Technically, schedule() should not be
6835
         * called from this thread, however somewhere below it might be,
6836
         * but because we are the idle thread, we just pick up running again
6837
         * when this runqueue becomes "idle".
6838
         */
6839
        init_idle(current, smp_processor_id());
6840
        /*
6841
         * During early bootup we pretend to be a normal task:
6842
         */
6843
        current->sched_class = &fair_sched_class;
6844
}
6845
 
6846
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6847
void __might_sleep(char *file, int line)
6848
{
6849
#ifdef in_atomic
6850
        static unsigned long prev_jiffy;        /* ratelimiting */
6851
 
6852
        if ((in_atomic() || irqs_disabled()) &&
6853
            system_state == SYSTEM_RUNNING && !oops_in_progress) {
6854
                if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6855
                        return;
6856
                prev_jiffy = jiffies;
6857
                printk(KERN_ERR "BUG: sleeping function called from invalid"
6858
                                " context at %s:%d\n", file, line);
6859
                printk("in_atomic():%d, irqs_disabled():%d\n",
6860
                        in_atomic(), irqs_disabled());
6861
                debug_show_held_locks(current);
6862
                if (irqs_disabled())
6863
                        print_irqtrace_events(current);
6864
                dump_stack();
6865
        }
6866
#endif
6867
}
6868
EXPORT_SYMBOL(__might_sleep);
6869
#endif
6870
 
6871
#ifdef CONFIG_MAGIC_SYSRQ
6872
static void normalize_task(struct rq *rq, struct task_struct *p)
6873
{
6874
        int on_rq;
6875
        update_rq_clock(rq);
6876
        on_rq = p->se.on_rq;
6877
        if (on_rq)
6878
                deactivate_task(rq, p, 0);
6879
        __setscheduler(rq, p, SCHED_NORMAL, 0);
6880
        if (on_rq) {
6881
                activate_task(rq, p, 0);
6882
                resched_task(rq->curr);
6883
        }
6884
}
6885
 
6886
void normalize_rt_tasks(void)
6887
{
6888
        struct task_struct *g, *p;
6889
        unsigned long flags;
6890
        struct rq *rq;
6891
 
6892
        read_lock_irq(&tasklist_lock);
6893
        do_each_thread(g, p) {
6894
                /*
6895
                 * Only normalize user tasks:
6896
                 */
6897
                if (!p->mm)
6898
                        continue;
6899
 
6900
                p->se.exec_start                = 0;
6901
#ifdef CONFIG_SCHEDSTATS
6902
                p->se.wait_start                = 0;
6903
                p->se.sleep_start               = 0;
6904
                p->se.block_start               = 0;
6905
#endif
6906
                task_rq(p)->clock               = 0;
6907
 
6908
                if (!rt_task(p)) {
6909
                        /*
6910
                         * Renice negative nice level userspace
6911
                         * tasks back to 0:
6912
                         */
6913
                        if (TASK_NICE(p) < 0 && p->mm)
6914
                                set_user_nice(p, 0);
6915
                        continue;
6916
                }
6917
 
6918
                spin_lock_irqsave(&p->pi_lock, flags);
6919
                rq = __task_rq_lock(p);
6920
 
6921
                normalize_task(rq, p);
6922
 
6923
                __task_rq_unlock(rq);
6924
                spin_unlock_irqrestore(&p->pi_lock, flags);
6925
        } while_each_thread(g, p);
6926
 
6927
        read_unlock_irq(&tasklist_lock);
6928
}
6929
 
6930
#endif /* CONFIG_MAGIC_SYSRQ */
6931
 
6932
#ifdef CONFIG_IA64
6933
/*
6934
 * These functions are only useful for the IA64 MCA handling.
6935
 *
6936
 * They can only be called when the whole system has been
6937
 * stopped - every CPU needs to be quiescent, and no scheduling
6938
 * activity can take place. Using them for anything else would
6939
 * be a serious bug, and as a result, they aren't even visible
6940
 * under any other configuration.
6941
 */
6942
 
6943
/**
6944
 * curr_task - return the current task for a given cpu.
6945
 * @cpu: the processor in question.
6946
 *
6947
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6948
 */
6949
struct task_struct *curr_task(int cpu)
6950
{
6951
        return cpu_curr(cpu);
6952
}
6953
 
6954
/**
6955
 * set_curr_task - set the current task for a given cpu.
6956
 * @cpu: the processor in question.
6957
 * @p: the task pointer to set.
6958
 *
6959
 * Description: This function must only be used when non-maskable interrupts
6960
 * are serviced on a separate stack. It allows the architecture to switch the
6961
 * notion of the current task on a cpu in a non-blocking manner. This function
6962
 * must be called with all CPU's synchronized, and interrupts disabled, the
6963
 * and caller must save the original value of the current task (see
6964
 * curr_task() above) and restore that value before reenabling interrupts and
6965
 * re-starting the system.
6966
 *
6967
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6968
 */
6969
void set_curr_task(int cpu, struct task_struct *p)
6970
{
6971
        cpu_curr(cpu) = p;
6972
}
6973
 
6974
#endif
6975
 
6976
#ifdef CONFIG_FAIR_GROUP_SCHED
6977
 
6978
/* allocate runqueue etc for a new task group */
6979
struct task_group *sched_create_group(void)
6980
{
6981
        struct task_group *tg;
6982
        struct cfs_rq *cfs_rq;
6983
        struct sched_entity *se;
6984
        struct rq *rq;
6985
        int i;
6986
 
6987
        tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6988
        if (!tg)
6989
                return ERR_PTR(-ENOMEM);
6990
 
6991
        tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
6992
        if (!tg->cfs_rq)
6993
                goto err;
6994
        tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
6995
        if (!tg->se)
6996
                goto err;
6997
 
6998
        for_each_possible_cpu(i) {
6999
                rq = cpu_rq(i);
7000
 
7001
                cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
7002
                                                         cpu_to_node(i));
7003
                if (!cfs_rq)
7004
                        goto err;
7005
 
7006
                se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
7007
                                                        cpu_to_node(i));
7008
                if (!se)
7009
                        goto err;
7010
 
7011
                memset(cfs_rq, 0, sizeof(struct cfs_rq));
7012
                memset(se, 0, sizeof(struct sched_entity));
7013
 
7014
                tg->cfs_rq[i] = cfs_rq;
7015
                init_cfs_rq(cfs_rq, rq);
7016
                cfs_rq->tg = tg;
7017
 
7018
                tg->se[i] = se;
7019
                se->cfs_rq = &rq->cfs;
7020
                se->my_q = cfs_rq;
7021
                se->load.weight = NICE_0_LOAD;
7022
                se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
7023
                se->parent = NULL;
7024
        }
7025
 
7026
        for_each_possible_cpu(i) {
7027
                rq = cpu_rq(i);
7028
                cfs_rq = tg->cfs_rq[i];
7029
                list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7030
        }
7031
 
7032
        tg->shares = NICE_0_LOAD;
7033
        spin_lock_init(&tg->lock);
7034
 
7035
        return tg;
7036
 
7037
err:
7038
        for_each_possible_cpu(i) {
7039
                if (tg->cfs_rq)
7040
                        kfree(tg->cfs_rq[i]);
7041
                if (tg->se)
7042
                        kfree(tg->se[i]);
7043
        }
7044
        kfree(tg->cfs_rq);
7045
        kfree(tg->se);
7046
        kfree(tg);
7047
 
7048
        return ERR_PTR(-ENOMEM);
7049
}
7050
 
7051
/* rcu callback to free various structures associated with a task group */
7052
static void free_sched_group(struct rcu_head *rhp)
7053
{
7054
        struct task_group *tg = container_of(rhp, struct task_group, rcu);
7055
        struct cfs_rq *cfs_rq;
7056
        struct sched_entity *se;
7057
        int i;
7058
 
7059
        /* now it should be safe to free those cfs_rqs */
7060
        for_each_possible_cpu(i) {
7061
                cfs_rq = tg->cfs_rq[i];
7062
                kfree(cfs_rq);
7063
 
7064
                se = tg->se[i];
7065
                kfree(se);
7066
        }
7067
 
7068
        kfree(tg->cfs_rq);
7069
        kfree(tg->se);
7070
        kfree(tg);
7071
}
7072
 
7073
/* Destroy runqueue etc associated with a task group */
7074
void sched_destroy_group(struct task_group *tg)
7075
{
7076
        struct cfs_rq *cfs_rq = NULL;
7077
        int i;
7078
 
7079
        for_each_possible_cpu(i) {
7080
                cfs_rq = tg->cfs_rq[i];
7081
                list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7082
        }
7083
 
7084
        BUG_ON(!cfs_rq);
7085
 
7086
        /* wait for possible concurrent references to cfs_rqs complete */
7087
        call_rcu(&tg->rcu, free_sched_group);
7088
}
7089
 
7090
/* change task's runqueue when it moves between groups.
7091
 *      The caller of this function should have put the task in its new group
7092
 *      by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7093
 *      reflect its new group.
7094
 */
7095
void sched_move_task(struct task_struct *tsk)
7096
{
7097
        int on_rq, running;
7098
        unsigned long flags;
7099
        struct rq *rq;
7100
 
7101
        rq = task_rq_lock(tsk, &flags);
7102
 
7103
        if (tsk->sched_class != &fair_sched_class) {
7104
                set_task_cfs_rq(tsk, task_cpu(tsk));
7105
                goto done;
7106
        }
7107
 
7108
        update_rq_clock(rq);
7109
 
7110
        running = task_current(rq, tsk);
7111
        on_rq = tsk->se.on_rq;
7112
 
7113
        if (on_rq) {
7114
                dequeue_task(rq, tsk, 0);
7115
                if (unlikely(running))
7116
                        tsk->sched_class->put_prev_task(rq, tsk);
7117
        }
7118
 
7119
        set_task_cfs_rq(tsk, task_cpu(tsk));
7120
 
7121
        if (on_rq) {
7122
                if (unlikely(running))
7123
                        tsk->sched_class->set_curr_task(rq);
7124
                enqueue_task(rq, tsk, 0);
7125
        }
7126
 
7127
done:
7128
        task_rq_unlock(rq, &flags);
7129
}
7130
 
7131
static void set_se_shares(struct sched_entity *se, unsigned long shares)
7132
{
7133
        struct cfs_rq *cfs_rq = se->cfs_rq;
7134
        struct rq *rq = cfs_rq->rq;
7135
        int on_rq;
7136
 
7137
        spin_lock_irq(&rq->lock);
7138
 
7139
        on_rq = se->on_rq;
7140
        if (on_rq)
7141
                dequeue_entity(cfs_rq, se, 0);
7142
 
7143
        se->load.weight = shares;
7144
        se->load.inv_weight = div64_64((1ULL<<32), shares);
7145
 
7146
        if (on_rq)
7147
                enqueue_entity(cfs_rq, se, 0);
7148
 
7149
        spin_unlock_irq(&rq->lock);
7150
}
7151
 
7152
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7153
{
7154
        int i;
7155
 
7156
        /*
7157
         * A weight of 0 or 1 can cause arithmetics problems.
7158
         * (The default weight is 1024 - so there's no practical
7159
         *  limitation from this.)
7160
         */
7161
        if (shares < 2)
7162
                shares = 2;
7163
 
7164
        spin_lock(&tg->lock);
7165
        if (tg->shares == shares)
7166
                goto done;
7167
 
7168
        tg->shares = shares;
7169
        for_each_possible_cpu(i)
7170
                set_se_shares(tg->se[i], shares);
7171
 
7172
done:
7173
        spin_unlock(&tg->lock);
7174
        return 0;
7175
}
7176
 
7177
unsigned long sched_group_shares(struct task_group *tg)
7178
{
7179
        return tg->shares;
7180
}
7181
 
7182
#endif  /* CONFIG_FAIR_GROUP_SCHED */
7183
 
7184
#ifdef CONFIG_FAIR_CGROUP_SCHED
7185
 
7186
/* return corresponding task_group object of a cgroup */
7187
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7188
{
7189
        return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7190
                            struct task_group, css);
7191
}
7192
 
7193
static struct cgroup_subsys_state *
7194
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7195
{
7196
        struct task_group *tg;
7197
 
7198
        if (!cgrp->parent) {
7199
                /* This is early initialization for the top cgroup */
7200
                init_task_group.css.cgroup = cgrp;
7201
                return &init_task_group.css;
7202
        }
7203
 
7204
        /* we support only 1-level deep hierarchical scheduler atm */
7205
        if (cgrp->parent->parent)
7206
                return ERR_PTR(-EINVAL);
7207
 
7208
        tg = sched_create_group();
7209
        if (IS_ERR(tg))
7210
                return ERR_PTR(-ENOMEM);
7211
 
7212
        /* Bind the cgroup to task_group object we just created */
7213
        tg->css.cgroup = cgrp;
7214
 
7215
        return &tg->css;
7216
}
7217
 
7218
static void
7219
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7220
{
7221
        struct task_group *tg = cgroup_tg(cgrp);
7222
 
7223
        sched_destroy_group(tg);
7224
}
7225
 
7226
static int
7227
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7228
                      struct task_struct *tsk)
7229
{
7230
        /* We don't support RT-tasks being in separate groups */
7231
        if (tsk->sched_class != &fair_sched_class)
7232
                return -EINVAL;
7233
 
7234
        return 0;
7235
}
7236
 
7237
static void
7238
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7239
                        struct cgroup *old_cont, struct task_struct *tsk)
7240
{
7241
        sched_move_task(tsk);
7242
}
7243
 
7244
static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7245
                                u64 shareval)
7246
{
7247
        return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7248
}
7249
 
7250
static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7251
{
7252
        struct task_group *tg = cgroup_tg(cgrp);
7253
 
7254
        return (u64) tg->shares;
7255
}
7256
 
7257
static struct cftype cpu_files[] = {
7258
        {
7259
                .name = "shares",
7260
                .read_uint = cpu_shares_read_uint,
7261
                .write_uint = cpu_shares_write_uint,
7262
        },
7263
};
7264
 
7265
static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7266
{
7267
        return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7268
}
7269
 
7270
struct cgroup_subsys cpu_cgroup_subsys = {
7271
        .name           = "cpu",
7272
        .create         = cpu_cgroup_create,
7273
        .destroy        = cpu_cgroup_destroy,
7274
        .can_attach     = cpu_cgroup_can_attach,
7275
        .attach         = cpu_cgroup_attach,
7276
        .populate       = cpu_cgroup_populate,
7277
        .subsys_id      = cpu_cgroup_subsys_id,
7278
        .early_init     = 1,
7279
};
7280
 
7281
#endif  /* CONFIG_FAIR_CGROUP_SCHED */
7282
 
7283
#ifdef CONFIG_CGROUP_CPUACCT
7284
 
7285
/*
7286
 * CPU accounting code for task groups.
7287
 *
7288
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7289
 * (balbir@in.ibm.com).
7290
 */
7291
 
7292
/* track cpu usage of a group of tasks */
7293
struct cpuacct {
7294
        struct cgroup_subsys_state css;
7295
        /* cpuusage holds pointer to a u64-type object on every cpu */
7296
        u64 *cpuusage;
7297
};
7298
 
7299
struct cgroup_subsys cpuacct_subsys;
7300
 
7301
/* return cpu accounting group corresponding to this container */
7302
static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7303
{
7304
        return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7305
                            struct cpuacct, css);
7306
}
7307
 
7308
/* return cpu accounting group to which this task belongs */
7309
static inline struct cpuacct *task_ca(struct task_struct *tsk)
7310
{
7311
        return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7312
                            struct cpuacct, css);
7313
}
7314
 
7315
/* create a new cpu accounting group */
7316
static struct cgroup_subsys_state *cpuacct_create(
7317
        struct cgroup_subsys *ss, struct cgroup *cont)
7318
{
7319
        struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7320
 
7321
        if (!ca)
7322
                return ERR_PTR(-ENOMEM);
7323
 
7324
        ca->cpuusage = alloc_percpu(u64);
7325
        if (!ca->cpuusage) {
7326
                kfree(ca);
7327
                return ERR_PTR(-ENOMEM);
7328
        }
7329
 
7330
        return &ca->css;
7331
}
7332
 
7333
/* destroy an existing cpu accounting group */
7334
static void
7335
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
7336
{
7337
        struct cpuacct *ca = cgroup_ca(cont);
7338
 
7339
        free_percpu(ca->cpuusage);
7340
        kfree(ca);
7341
}
7342
 
7343
/* return total cpu usage (in nanoseconds) of a group */
7344
static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
7345
{
7346
        struct cpuacct *ca = cgroup_ca(cont);
7347
        u64 totalcpuusage = 0;
7348
        int i;
7349
 
7350
        for_each_possible_cpu(i) {
7351
                u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
7352
 
7353
                /*
7354
                 * Take rq->lock to make 64-bit addition safe on 32-bit
7355
                 * platforms.
7356
                 */
7357
                spin_lock_irq(&cpu_rq(i)->lock);
7358
                totalcpuusage += *cpuusage;
7359
                spin_unlock_irq(&cpu_rq(i)->lock);
7360
        }
7361
 
7362
        return totalcpuusage;
7363
}
7364
 
7365
static struct cftype files[] = {
7366
        {
7367
                .name = "usage",
7368
                .read_uint = cpuusage_read,
7369
        },
7370
};
7371
 
7372
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7373
{
7374
        return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
7375
}
7376
 
7377
/*
7378
 * charge this task's execution time to its accounting group.
7379
 *
7380
 * called with rq->lock held.
7381
 */
7382
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
7383
{
7384
        struct cpuacct *ca;
7385
 
7386
        if (!cpuacct_subsys.active)
7387
                return;
7388
 
7389
        ca = task_ca(tsk);
7390
        if (ca) {
7391
                u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
7392
 
7393
                *cpuusage += cputime;
7394
        }
7395
}
7396
 
7397
struct cgroup_subsys cpuacct_subsys = {
7398
        .name = "cpuacct",
7399
        .create = cpuacct_create,
7400
        .destroy = cpuacct_destroy,
7401
        .populate = cpuacct_populate,
7402
        .subsys_id = cpuacct_subsys_id,
7403
};
7404
#endif  /* CONFIG_CGROUP_CPUACCT */

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.